
1 
 

Reply to interactive comments on “Evaluating Trends and 
Seasonality in Modeled PM2.5 Concentrations Using Empirical 
Mode Decomposition”  
 

Anonymous Referee #3 
 
This manuscript presented an evaluation of the WRF-CAMQ model simulated temporal trends 
through a detailed comparison with observation using improved CEEMDAN method. The 
comparison was based on measurements of PM2.5 and its key components, i.e., sulphate, nitrate, 
ammonium, chloride, organic carbon, and elemental carbon, made at three ground monitoring 
stations in US from t 2002 to 2008. It is clearly demonstrated that the improved CEEMDAN 
approach can decompose the observed and simulated temporal trends, which allows to extract 
more information from the comparisons of individual temporal modes. For example, the authors 
concluded that the model can better simulate the rate of change of the multi-year trend than the 
absolute magnitude. At the same time, model can generally reproduce the amplitudes of the sub-
seasonal and annual variations for PM2.5, sulphate, and OC. This study revealed that it appears 
there is a temporal phased shift between the observed and model simulated PM2.5, OC, and EC 
as large as a half year. It is further suggested that this phase shift indicted “a need for proper 
temporal allocation of emissions”. In general, the manuscript is well organized.  
 
We thank the reviewer for the positive assessment of our manuscript and for providing 
constructive feedback to help improve the quality of the manuscript. We have addressed all 
questions and suggestions in our response as well as in the text or figures, as necessary. Please 
see detailed responses below and the marked-up version of the revised manuscript.  
 
This reviewer believes that this is an important work which can potentially help identifying model 
deficiencies. However, there several concerns needed to be addressed:  
 

1) The authors correctly stated that EMD is a widely used methodology in various field. At 
the same time, this reviewer would like to suggest that the authors should consider 
adding some brief high-level descriptions of the method. This will improve the 
manuscript’s readability, especially for those who are not familiar with EMD methods. It 
is also important to clearly state the criteria how the modes are determined and 
separated. The statement in line 134-135, “to achieve best mode separation”, leaves 
much room for interpretation. The discussion on determination of tp and tm is interesting 
and thorough. It does, however, leave an impression that the evaluation of tp and tm is 
somewhat uncertain and is not completely deterministic. This reviewer would like to 
suggest adding additional text to discuss if the determination of tp and tm is sufficiently 
accurate or useful for model assessment to identify issues in the processes at the similar 
time scale as decomposed tp and/or tm. This will strengthen the manuscript to 
demonstrate the usefulness of the improved CEEMDAN approach in model assessments.  
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The decomposition process and parameters controlling the decomposition have been 
added in Section 3.1 as suggested. The “best mode separation” is also further explained 
following the reviewer’s suggestion.  
 
CEEMDAN is a technique that is particularly suitable to analyze non-linear and non-
stationary time series data. The decomposed time series of speciated and total PM2.5 
reveal the agreement/disagreement between observations and model simulations at 
various intrinsic temporal scales without any predetermined assumptions on the data. 
Both tp and tm represent approximate estimates of the characteristic scale of an IMF, 
where non-linear and non-stationary processes with close temporal scales could exist. For 
tp (from the revised text): “The peak estimates can be biased if more than one high-power 
frequency is located closely within one IMF. Thus, the power spectrum and 𝑡𝑝 is only used 

as a fast screening tool to determine if a desired decomposition is accomplished.” For tm: 
“As the frequency decreases, the mean period estimates become less accurate because of 
the limited time span compared with the length of the cycle and should be carefully 
interpreted.” We have added the following test in Section 4.1: “Since each IMF represents 
a non-stationary process, the mean period 𝑡𝑚 is only an estimate of its characteristic scale. 
Evaluation of 𝑡𝑚 might not necessarily be able to identify issues with corresponding model 
simulations, and it does not indicate any information on the magnitude or the phase of 
the time series, which is more important and will be further discussed in Sections 4.3 to 
4.4.”. 

  
 

2) Section 2 (starting from line 74) provided a good discussion on how the observation data 
sets are selected. It is equally important to discuss the temporal resolution of model in 
terms of the driving factors, e.g., emissions. This will give readers a sense if one should 
expect if the model should reproduce observations at certain temporal scale. For example, 
if the emissions are given in yearly average, one would consider the impact of the lack 
emission temporal variability on the comparison of seasonal and/or sub-seasonal trends.  

 
We added the following text in Section 2: “Annual emissions for the CMAQ simulations 
were estimated using the methodology described in Xing et al. (2013).  Briefly, the 
National Emissions Inventory (NEI) for 1990, 1995, 1996, 1999, 2001, 2002 and 2005 and 
a number of sector-specific long-term databases containing information about trends in 
activity data and emission controls were used to create county-level annual emissions for 
a total of 49 emission sectors. Prior to being used as input to the CMAQ simulations, these 
annual emissions were then temporally and spatially allocated to provide hourly emissions 
based on monthly, weekly, and diurnal temporal cross-reference and profile data from the 
2005 NEI modeling platform. These profile data vary by emissions source and sometimes 
by state and county and are generally based on surveys and extrapolation of activity data 
which can be subject to uncertainty. Exceptions to the use of 2005 NEI platform temporal 
profile data for temporal allocation were emissions from electric generating units (EGU) 
which directly used measured hourly emissions after 1995 and wildfire emissions that used 
climatological monthly, weekly, and diurnal profiles for temporal allocation.”     
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The large discrepancy in the magnitude of some long-term trend component seen in Fig. 
6 is likely pointing to the systematic bias in the annual emission estimations as discussed 
in Xing et al. (2013): “…since this study mainly focused on trends rather than the absolute 
value in each individual year, some sectors (e.g., industrial processes) and sub-sectors 
(types of combustion and stoves) may not have been well considered or examined.” The 
intra-annual emission allocation could possibly impact the model performance at the 
seasonal and sub-seasonal scales. Thiss discussion of the impact of emissions on the long-
term trend has been added in Section 4.2. 

 

 
3) This reviewer believes that the concluding remark of “indicating the need for proper 

allocation of emissions” is an important conclusion. However, it was not adequately 
justified. There are many controlling factors and processes. The authors should have 
provided more discussions to illustrate how they narrowed to emissions as the likely 
factor. It should also be pointed out that SOA is typically a large component of OC. 
Changes in emissions to affect OC will likely have implications on O3.  

 
We would like to clarify that our illustrative application of the new methodology to PM2.5 
time series at three specific sites does not allow us to conclude that errors in the temporal 
allocation of PM emissions are the controlling factors for disagreements between 
observed and modeled annual cycle. While we believe that they do play a role as 
discussed below, we also know that the CMAQ version used for these simulations has 
underestimated the formation of SOA, which would also affect the modeled annual cycle 
of OC (e.g. Appel et al., 2017; Murphy et al., 2017; Xu et al., 2018). Because of the 
underestimation of SOA, OC in the simulations analyzed here has an overestimated 
relative contribution of primary OC which, in turn, makes its temporal variations analyzed 
by CEEMDAN sensitive to the temporal allocation of primary PM and specifically primary 
OC emissions. The full statement partially quoted by the reviewer points to both factors 
“indicating the need for proper allocation of emissions and an updated treatment of 
organic aerosols compared to the earlier model version used in this set of model 
simulations”. Without running a new set of decadal simulations with a newer version of 
the model and/or modified temporal allocation of emissions, we are unable to determine 
the relative importance of these factors at the sites examined. However, if such 
simulations were to be performed in the future, the CEEMDAN methodology can help 
demonstrate the benefits of updated emissions allocations and/or the SOA process 
representation.  
 

 
4) The authors presented detailed trend analysis on PM2.5 and its components. It is also 

scientifically interesting to understand the relative contribution of each component and 
their contribution to the identified temporal variability, which are useful to gain insights 
into controlling factors. This reviewer would like to suggest the authors to consider 
addition of the trend analysis on the relative contribution of sulphate, nitrate, ammonium, 
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organic carbon, and elemental carbon to PM2.5. More specific to the manuscript, it would 
be much easier to interpret the results shown in Table 1, 2, and 3 if the relative 
contribution of each component is known.  
 
Yes, it would be useful to explicitly show the importance of each component in driving 
the trend of total PM2.5 in both observations and model simulations. The time series of 
the concentration share of each component (e.g. OC/Total PM2.5 %) is added in Fig. S6 in 
the supplement. However, the decomposition of the concentration share is not included 
since there is not much change in the percentage share in its trend component (few 
percentages at most in very limited cases) and the ratio does not necessarily have strong 
seasonality because of the phase difference in specific component and total PM2.5. Thus, 
including the trend component of time variant share of the ratio would only complicate 
the interpretation of the results. Instead, we have added a new Table 1 (see below) to 
show the overall concentration share of each component for both observations and 
model simulations to reflect the relative importance of different species. 
 

Table 1. Concentration share (%) of different components in total PM2.5. It is estimated by dividing the mean trend 

components of each species by that of total PM2.5 for both OBS and CMAQ, multiplied by 100. The concentration 

share of the remainder species (Rem) is estimated by subtracting all the available species share from 100 to compensate 

for the small discrepancies caused by the rounding up process and uncertainty in the mode decomposition. “-” indicates 

the data is not available (same applies for all other tables). 

  SO4 NO3 NH4 OC EC Cl Rem 

QURE 
OBS 38 7 - 19 5 1 30 

CMAQ 19 15 - 14 5 1 47 

RENO 
OBS 7 13 5 46 11 - 20 

CMAQ 11 4 2 30 7 - 45 

ATL 
OBS 28 6 10 24 8 - 24 

CMAQ 22 10 8 17 9 - 33 

 

 
 

5) In general, model evaluation is designed to improve model. It is difficult to relate the 
comparison results presented in this manuscript to specific model deficiencies in 
description of the chemical/physical processes and/or issues in model data sets, 
meteorological field and/or emission data. As sulphate, OC, nitrate are controlled by very 
different chemical processes, this reviewer would like to encourage the authors to further 
explore the difference in the comparison results for these species, which may reveal 
additional insights into the process-level model deficiencies. 
 
We thank the reviewer for recognizing the potential of the proposed methodology in 
helping identify problems in the specific processes and/or model input. However, without 
running a new set of decadal simulations with a newer version of the model and/or 
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modified temporal allocation of emissions, we cannot determine specific model 
deficiencies and/or issues in the model input data sets.  

 
 
Specific Comments:  

1) Figure 3 is hard to read because of log-log scale. It may be better to change the x-axis to 
the IMF number and y-axis to the ratio between model and observation characteristic 
scales. A second y-axis can be added to show the absolute characteristic scales for each 
IMF.  
 
We thank the reviewer for the suggestion. However, because of the large discrepancies 
in the scales of IMFs (few days to thousands of days), log scale has to be employed to 
show the scales for all IMFs. Given that the characteristic periods are not easy to read 
from the plot, we provided the average characteristic periods for sub-seasonal and 
seasonal IMFs in the text. Moreover, since “not all IMFs from observation are being 
simulated and vice versa”, a figure is needed for each site to show the characteristic scales 
(at least for the last few IMFs) separately for observations and model simulations. Thus, 
we have moved the inlet figures to Figure 3d-f for clarity and added the explanation in 
the caption. Adding a second y-axis and showing only observed characteristic scale would 
result in a very busy plot and we will not able to achieve the second point above. Please 
find our revision to the figure in the manuscript and below. 
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Fig. 3. The characteristic scales (𝑡𝑚) resolved in the IMFs of observed and simulated total and speciated PM2.5 

for (a, d) QURE, (b, e) RENO and (c, f) ATL. In (a-c), IMF1 to the last pair of IMFs with increasing 

characteristic periods are shown from bottom left to top right. Mean periods of IMFs with scales longer than a 

year are being displayed in (d-f) with the same shapes as in the legend above to show the characteristic scales 

of all decomposed IMFs given that not all IMFs from observation are being simulated and vice versa. In the (d-

f), species decomposed from observations are shown with smaller filled shapes, while species decomposed from 

simulations are represented by larger open shapes in slightly darker shades. 

 
 

2) Section 4.2. Figure 6 shows some variation in time-derivatives. At the same, this reviewer 
would like to argue that about half of cases shown in the figure can be well approximated 
by linear assumption. The authors should comment on this aspect. 
 
Linear assumption is useful in many cases, and linear trends do provide a general idea of 
magnitude of the change as well as whether the linear trend is significant or not. EMD is 
particularly useful for analyzing meteorological and pollutant time series, which are non-
linear and non-stationary. The decomposed trend components can provide the exact time 
span and magnitude of a decreasing/increasing change throughout time. If we take the 
trend component of observed OC at ATL as an example, the OC level is stable at around 
4.5 µg/m3 in 2002 and 2003 and decreases at varying rates during 2004-2007. 
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Anonymous Referee #4 
 
General Comments: This paper introduces a new approach for process-based model evaluation 
of speciated PM2.5, which allows for the assessment of the performance of regional-scale air 
quality models like CMAQ on the intrinsic time-dependent longterm trend and cyclic variations 
in daily average PM2.5 and its species. The authors tested the method with time series data at 
three sites. The data are generally sound, whereas some results and discussions of the study are 
still lack of persuasion.  
 
One major concern is about how well the current approach’s performance is compared with the 
previously published methods and some over-interpreted conclusions. The other is that it is not 
sure that the difference between the model and the new approach evaluation results can be 
simply explained by the inadequate description of nitrate or organics in the model. As the authors 
noted, they obtained abnormally low correlations of synoptic scale NO3 at ATL and calls for a 
better representation of nitrate partitioning and chemistry. What about the results for the other 
two sites? The authors need to provide more information on such issues to make the conclusion 
robust. 
 

We appreciate the time and effort devoted by the reviewer to provide suggestions that 
helped improve the quality of our paper.  
 
Our temporal decomposition approach applied to PM2.5 and its speciated components is 
not directly comparable with the other approaches reported in the literature. To avoid 
any over-interpretation of the analyses, we have refrained from exploiting model 
performance on the characteristic time scales and have carefully aligned our 
interpretation with IMFs that are statistically significant (almost all seasonal cycles are 
statistically significant from noise as shown in Fig. S5). Also, the differences between 
observed and simulated total and speciated PM2.5 are driven by several factors discussed 
in the paper. We cannot conclude exclusively that there is inadequate description of 
nitrate or organics in the model. Other potential issues such as the improper allocation of 
emissions also contributed to the difference between model simulations and 
observations. To be specific, description of secondary organic matter formation and 
magnitude and variation of primary sources are emerging areas of research; NO3 
formation pathways are likely inadequately represented in the employed model version, 
and its predictions are also strongly influenced by the uncertainties in NH3 emissions. 
 
CMAQ fails to simulate the magnitude of NO3 at all three sites with very abnormal 𝑟𝐼𝑀𝐹𝑛. 
Moreover, NO3 is the only component that has low correlation on the synoptic scale at 
ATL. The poor performance for NO3 mentioned above at all three sites calls for the 
modeler to look at the representation of nitrate partitioning and chemistry as 
summarized in the conclusions: “The consistent large under/over-prediction of NO3 
variability at all temporal scales and magnitude in the trend component, as well as the 
abnormally low correlations on the synoptic scale NO3 at ATL, calls for better 
representation of nitrate partitioning and chemistry.” 
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Specific comments: 
 

1. Introduction: “Evaluation of ten-year averaged monthly mean of PM2.5 simulated with 
WRF/Chem …” how does the model performance of PM2.5 compositions simulation 
should also be summarized to provide an intact view on the previous results. 
 
Unfortunately, Yahya et al. (2016) only compared the overall 10-year average of the PM 
compositions (sulfate, ammonium, nitrate, EC, and total carbon) from ground-based 
observations to that of the model simulations as the background map. Thus, we are not 
able to make any conclusions on the seasonality of PM2.5 components. 

 
 

2. Line 36: “and other natural species...” what do natural species refer to? 
 
Natural species refer to PM2.5 non-anthropogenic components such as crustal material. 
We have changed this to “crustal elements” in the revised manuscript to avoid confusion. 

 
3. Line 47: “monthly or seasonal means” means of speciated PM2.5? 

 
The sentence is rephrased as: “monthly or seasonal means of total and/or speciated 
PM2.5.” 
 

4. Line 48: what do you mean by “ten-year averaged monthly mean”? 
 
It is the monthly mean averaged over a period of ten years: ten-year averaged mean for 
Jan., Feb., … 
 

5. Line 51: “with a phase shift of few months” please explain phase shift. 
 
The phase shift refers to that in Fig. 4c (copied below) in Yahya et al. (2016). The definition 
is similar to what we used in the evaluation of the cyclic signals: “the phase shift of an IMF 
𝑛 is defined as the days an IMF decomposed from modeled time series has to be shifted 
to maximize the correlation (𝑅𝑚𝑎𝑥)  with the corresponding IMF from observed PM2.5 
time series.” 
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6. Line 55-57: “…long-term trends or interannual variations driven by climate change, 

emission control policies or other slow varying processes...” what is the main reason? Are 
there any previous results? 
 
Changes in air quality concentrations, such as PM2.5, are driven by changes in emissions 
and meteorological processes which highly impact the transport, chemical reactions and 
deposition of air pollutants. Thus, long-term trends reflect the impact of long-term 
changes in emissions (they might be governed by local control policies on anthropogenic 
emissions or climate-impacted natural emissions), long-term meteorological conditions 
(climate) and other slow varying processes (e.g. ENSO). There is no “main reason” among 
them. Here, we are simply stating that averaging over very long time periods can conceal 
signals driven by slow-changing processes: “In addition, averaging of those monthly or 
seasonal means across multiple years may conceal the long-term trends or interannual 
variations driven by climate change, emission control policies or other slow varying 
processes.” We are not certain what the reviewer’s query is directed at. Thus, we have 
left the sentence unaltered. 
 
  

7. Line 68-74: I do not think this paragraph is necessary for the manuscript. 
 
Following the reviewer’s suggestion, the paragraph has been deleted in the revised 
manuscript. 
 

8. Line 311: “RENO is located close to the border with California and is affected by large 
wildfire breakouts in the western U.S….” Is there any evidence for this demonstration? 
 
The location of Reno, NV and the impact of California fire on July 10, 2008 is illustrated in 
Figure 1 (copied below) from Gyawali et al. (2009). We have also demonstrated the 
impact of 2008 fire season earlier in Section 4.1: “The small variation in the estimated 
characteristic period of IMF6 is because this monitoring site is located in a wildfire prone 
region on the border of Nevada and California. Clear evidence can be seen from Fig. 4a 
that an extra annual cycle in the IMF6 of observations in the summer of 2008 is depicted, 
which is very possibly driven by the 2008 California Wildfires spanning from May until 
November.” 
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9. Line 327-: “To sum up, the long-term trend at QURE is well simulated by the model.” This 
is unlikely consistent with the data presented in Table 1. 
 
Our statement is based on the fact that the model has captured the decrease (i.e., rate of 
change), even though the absolute magnitude of the trend/long-term component is 
overestimated (which is what is shown in Table 1-now Table 2). We have re-phrased the 
sentence to: “To sum up, the decreasing long-term trend at QURE is well simulated by the 
model.” 
 
 

10. Lines 333-335: “Species other than those in the available dataset may also play a 
considerable role in driving the agreements or disagreements between model simulations 
and observations of total PM2.5” What are the contribution of these species to PM2.5 at 
the studied sites? 
 
We have decomposed the remaining components (Rem) and added an 8th line of figures 
for the trend component in Rem in Fig. 6. The overall concentration share (%) of the 
remaining components can be found in the newly added Table 1.  We have also added 
Figure S6 in the supplement that shows time series of the concentration share of each 
component (e.g. OC/Total PM2.5 %). 
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11. Lines 367-368: “Both observed and simulated annual cycles at the RENO site are largely 
contaminated by the extreme events lasting for several months that are not properly 
simulated” is it possible to remove the data of extreme events before simulation, in order 
to eliminate the contamination? 
 
These extreme events are very likely caused by large wildfires. We can eliminate 
emissions from wildfires in model simulations, but there is no straightforward way to 
eliminate contributions of wildfires in the observations. Thus, we kept the original 
observations and CMAQ model simulations, which included wildfire emissions.  

 
12. Lines 384-387: “Specifically, the anti-correlation likely points to an inaccurate 

representation of the seasonal variation of the non-carbonaceous portion of organic 
matter due to an improper representation of organic aerosols in the model version 
analyzed here; this problem has since been corrected in more recent releases of the 
CMAQ model.” This sentence needs to be rewritten for clearance. And what does the 
noncarbonaceous portion of organic matter refer to? 
 
The long sentence has been revised for clarity: “Specifically, the anti-correlation likely 
points to an inaccurate representation of the seasonal variation of the non-carbonaceous 
portion of organic matter due to an incomplete representation of organic aerosols in the 
model version analyzed here; newer versions of the CMAQ model include updated 
treatment of organic aerosols (e.g., additional SOA formation pathways, improvements in 
representation of primary OM emissions) which is likely to correct the mentioned features 
(Appel et al., 2017; Murphy et al., 2017; Xu et al., 2018).” 
 
The non-carbonaceous portion of organic matter refers to the portion of organic matter 
consisting of oxygen, hydrogen, and nitrogen. 
 

Minor: 
 

13. Line 17: “chloride (Cl) organic” 
 
Corrected. 

 
14. Line 311: “U.S. as can been seen” 

 
Corrected. 
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Abstract. Regional-scale air quality models are being used for studying the sources, composition, transport, 11 

transformation, and deposition of fine particulate matter (PM2.5). The availability of decadal air quality simulations 12 

provides a unique opportunity to explore sophisticated model evaluation techniques rather than relying solely on 13 

traditional operational evaluations. In this study, we propose a new approach for process-based model evaluation of 14 

speciated PM2.5 using improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (improved 15 

CEEMDAN) to assess how well version 5.0.2 of the coupled Weather Research and Forecasting model - Community 16 

Multiscale Air Quality model (WRF-CMAQ) simulates the time-dependent long-term trend and cyclical variations in 17 

the daily average PM2.5 and its species, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Cl), organic 18 

carbon (OC) and elemental carbon (EC) . The utility of the proposed approach for model evaluation is demonstrated 19 

using PM2.5 data at three monitoring locations. At these locations, the model is generally more capable of simulating 20 

the rate of change in the long-term trend component than its absolute magnitude. Amplitudes of the sub-seasonal and 21 

annual cycles of total PM2.5, SO4 and OC are well reproduced. However, the time-dependent phase difference in the 22 

annual cycles for total PM2.5, OC and EC reveal a phase shift of up to half year, indicating the need for proper temporal 23 

allocation of emissions and for updating the treatment of organic aerosols compared to the model version used for this 24 

set of simulations. Evaluation of sub-seasonal and inter-annual variations indicates that CMAQ is more capable of 25 

replicating the sub-seasonal cycles than inter-annual variations in magnitude and phase.  26 

Keywords 27 

Model evaluation, coupled WRF-CMAQ, improved Complete Ensemble Empirical Mode Decomposition (EMD) 28 
with Adaptive Noise, Speciated PM2.5, Scale Separation, Seasonality, Trend 29 

  30 
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1 Introduction 31 

It is well recognized that inhalable fine particulate matter (PM2.5) adversely impacts human health and the 32 

environment. Regional-scale air quality models are being used in health impact studies and decision-making related 33 

to PM2.5. Long-term model simulations of PM2.5 concentrations using regional air quality models are essential to 34 

identify long-term trends and cyclical variations such as annual cycles in areas larger than what is covered by in-situ 35 

measurements. However, total PM2.5 concentrations are challenging to predict because of the dependence on the 36 

contributions from individual PM2.5 components, such as sulfates, nitrates, carbonaceous species, and other natural 37 

speciescrustal elements. In this context, a detailed process-based evaluation of the simulated speciated PM2.5 must be 38 

carried out to ensure acceptable replication of observations so model users can have confidence in using regional air 39 

quality models for policy-making. Furthermore, process basedprocess-based information can be useful for making 40 

improvements to the model. 41 

Some of the trend or step change evaluations of regional air quality models in the past have focused on specific pairs 42 

of years (Kang et al., 2013; Zhou et al., 2013; Foley et al., 2015). These studies do not properly account for the sub-43 

seasonal and inter-annual variations between those specific periods. Trend evaluation is commonly done by linear 44 

regression of indexes such as the annual mean or specific percentiles, assuming linearity and stationarity of time series 45 

(Civerolo et al., 2010; Hogrefe et al., 2011; Banzhaf et al., 2015; Astitha et al., 2017). The problem with the linear 46 

trend evaluation is that there is no guarantee the trend is actually linear during the period of the study because the 47 

underlying processes are in fact nonlinear and nonstationary (Wu et al., 2007).  48 

Seasonal variations are usually studied and evaluated by investigating the monthly or seasonal means of total and/or 49 

speciated PM2.5 (Civerolo et al., 2010; Banzhaf et al., 2015; Yahya et al., 2016; Henneman et al., 2017). Evaluation of 50 

ten-year averaged monthly mean (i.e., ten-year averaged mean in Jan., …, Dec.) of PM2.5 simulated with WRF/Chem 51 

against the Interagency Monitoring of Protected Visual Environments (IMPROVE) by Yahya et al. (2016) shows that 52 

the model captures the observed features of summer peaks in PM2.5 with a phase shift of few months. However, 53 

according to the analysis (Fig. 10) in Henneman et al. (2017), the seasonality shown in monthly-averaged PM2.5 time 54 

series is much less distinguishable compared with that of ozone and CMAQ (version 5.0.2) does not replicate the 55 

monthly PM2.5 quite well with large underestimation in the summer months. In these studies, the seasonality might not 56 

be well represented by the preselected averaging window size of one or three months. In addition, averaging of those 57 

monthly or seasonal means across multiple years may conceal the long-term trends or interannual variations driven 58 

by climate change, emission control policies or other slow varying processes. 59 

To address the above-mentioned problems, we propose a new method for conducting air quality model evaluation for 60 

PM2.5 using improved CEEMDAN. Improved CEEMDAN is an Empirical Mode Decomposition (EMD)-based, data-61 

driven intrinsic mode decomposition technique that can adaptively and recursively decompose a nonlinear and 62 

nonstationary signal into multiple modes called intrinsic mode functions (IMFs) and a residual (trend component) 63 

(Huang et al., 1998; Wu and Huang, 2009; Yeh et al., 2010; Torres et al., 2011; Colominas et al., 2014). It does not 64 

require any preselection of the temporal scales or assumptions of linearity and stationarity for the data, thereby 65 

providing some insights into time series of PM2.5 concentrations and its components. Decomposed PM2.5 long-term 66 
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trend components and annual cycles from observed and simulated PM2.5 serve as the intuitive carrier of the trend and 67 

seasonality evaluation. In the meantime, several other IMFs with characteristic time scales ranging from multiple days 68 

to years are also decomposed, enabling model evaluation of the less studied sub-seasonal and inter-annual variations.  69 

Section 2 describes the coupled WRF-CMAQ model simulations and corresponding observations from multiple 70 

speciated PM2.5 networks. Section 3 presents an overview of the EMD and improved CEEMDAN technique and the 71 

statistical metrics accompanying model evaluation, including the time-dependent intrinsic correlation (TDIC) on the 72 

decomposed IMFs (Chen et al., 2010; Huang and Schmitt, 2014; Derot et al., 2016). Section 4 describes the findings 73 

on the long-term trend and seasonality in total PM2.5 and its components, as resolved by the improved CEEMDAN 74 

technique and includes a discussion on the sub-seasonal, seasonal, and inter-annual variability. The conclusions from 75 

this work are presented in section 5. 76 

2 Coupled WRF-CMAQ PM2.5 Simulations and Observations 77 

The two-way coupled WRF-CMAQ (version 5.0.2) is configured with a 36 km horizontal grid spacing over the 78 

contiguous United States (CONUS) with 35 vertical layers of varying thickness extending from the surface to 50 mb 79 

(Wong et al., 2012; Gan et al., 2015). Time-varying chemical lateral boundary conditions were derived from the 108 80 

km resolution hemispheric WRF-CMAQ (Mathur et al., 2017) simulation for the 1990-2010 period (Xing et al., 2015). 81 

The simulations are driven by a comprehensive emission dataset which includes the aerosol precursors and primary 82 

particulate matter (Xing et al., 2013, 2015). Annual emissions for the CMAQ simulations were estimated using the 83 

methodology described in Xing et al. (2013). Briefly, the National Emissions Inventory (NEI) for 1990, 1995, 1996, 84 

1999, 2001, 2002 and 2005 and a number of sector-specific long-term databases containing information about trends 85 

in activity data and emission controls were used to create county-level annual emissions for a total of 49 emission 86 

sectors. Prior to being used as input to the CMAQ simulations, these annual emissions were then temporally and 87 

spatially allocated to provide hourly emissions based on monthly, weekly, and diurnal temporal cross-reference and 88 

profile data from the 2005 NEI modeling platform. These profile data vary by emissions source and sometimes by 89 

state and county and are generally based on surveys and extrapolation of activity data which can be subject to 90 

uncertainty. Exceptions to the use of 2005 NEI platform temporal profile data for temporal allocation were emissions 91 

from electric generating units (EGU) which directly used measured hourly emissions after 1995 and wildfire emissions 92 

that used climatological monthly, weekly, and diurnal profiles for temporal allocation. The rReaders can refer to Gan 93 

et al. (2015) for additional model information and the trend evaluation against seven pairs of sites from the CASTNET 94 

(Clean Air Status and Trend Network) and IMPROVE networks for 1995-2010. We obtained the 2002-2010 daily 95 

average PM2.5 and its speciated time series from the set of simulations with direct aerosol feedback. The earlier years 96 

of 1990-2001 are not included in this evaluation because of the limited availability of speciated PM2.5 observations.  97 

To avoid misinterpretation of data due to the presence of missing values, only sites with continuous complete long-98 

term record for total PM2.5 and its speciation including SO4, NO3, NH4, OC, EC, and Cl are studied (Fig. 1). All of the 99 

selected sites have data coverage above 90% each year for at least six consecutive years between 2002 and 2010 100 

(equivalent to 30% for 1-in-3 days sampling sites). This strict data selection led to the sparsity of this type of 101 
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observations for the study period. QURE, a rural site carrying out 1-in-3 days sampling of total and speciated PM2.5 102 

of SO4, NO3, OC, EC, and Cl, is located in Quabbin Summit, MA. It is one of the three sites from the IMPROVE 103 

network that has at least six continuous years of speciated observations and was selected here to demonstrate the 104 

application of the proposed method in rural areas. It should be noted that the majority of the observed Cl in 2002 and 105 

2003 is negative due to a filter issue problem which was not addressed until 2004 (White, 2008). Thus, simulations of 106 

Cl are only evaluated during 2004-2007 at this site. Station RENO, located in urban Reno, NV, is also a 1-in-3 days 107 

sampling site of total and speciated PM2.5 of SO4, NO3, NH4, OC, and EC, and it is the only Chemical Speciation 108 

Network (CSN) site that fulfills this data coverage requirement. The third site ATL in the Southeastern Aerosol 109 

Research and Characterization Study (SEARCH) network is located 4.2 km northwest of downtown Atlanta, GA. It 110 

is the only long-term site available with daily sampling rate (Hansen et al., 2003; Edgerton et al., 2005) that meets the 111 

data coverage requirement. The best-estimate (BE), a calculated concentration intended to represent what is actually 112 

in the atmosphere (Edgerton et al., 2005), of the total PM2.5 and SO4, NO3, NH4, and EC components are retrieved for 113 

the evaluation. OC component is a direct measurement. These three sites have a continuous record covering at least 6 114 

years (2002 – 2007 for QURE and ATL and 2002 – 2010 for RENO) that allows an evaluation of long-term trends.  115 

 116 

Fig. 1. Location and data coverage of the PM2.5 monitoring sites QURE, RENO and ATL. 117 

3 Methodology 118 

3.1 Empirical Mode Decomposition 119 

The Empirical Mode Decomposition (EMD) technique, proposed in the late 1990s, is capable of adaptively and 120 

recursively decomposing a signal into multiple modes called intrinsic mode functions (IMFs), where each mode has 121 

a characteristic frequency, and a residual with at most one extremum (Huang et al., 1998). EMDIt decomposes the 122 

original signal into several IMFs and a residual through a repeated process called “sifting”: first, local maxima and 123 

minima are identified and interpolated separately with a cubic spline as the upper and lower envelop; then an IMF 124 

candidate is derived by subtracting the mean of the envelops from the original signal. If the candidate satisfies the 125 

following criteria (Huang et al., 1998), it is saved as the first IMF (IMF1), and the remaining portion (original signal 126 
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– IMF1) is treated as a new input signal for the decomposition of the remaining IMFs; otherwise, more sifting 127 

processes should be carried out until the candidate becomes an IMF. 128 

1) The number of extrema (maxima and minima) and the number of zero-crossings must be equal or differ at most by 129 

one;  130 

2) The local mean at any point, the mean of the envelope defined by local maxima and the envelope defined by local 131 

minima, must be zero.  132 

In this way, IMF1, IMF2, … areis decomposed recursively with decreasing characteristic frequency. The final 133 

remaining residual (trend) could be a monotonic function of time or a long-term component with one extremum at 134 

most. The decomposed signal then is expressed as the summation of all IMFs and the final residual: 135 

𝑥 = ∑ 𝑑𝑖 +𝑘
𝑖=1 𝑟                                         (1) 136 

where 𝑥 is the original signal, 𝑑𝑖 is the ith IMF, 𝑘 is the total number of the IMFs and 𝑟 is the final residual. Each IMF 137 

has the following properties (Huang et al., 1998): 138 

1) The number of extrema (maxima and minima) and the number of zero-crossings must be equal or differ at most by 139 

one;  140 

2) The local mean at any point, the mean of the envelope defined by local maxima and the envelope defined by local 141 

minima, must be zero.  142 

Nevertheless, “mode mixing”, where oscillations with very disparate scales can be present in one mode or vice versa, 143 

is commonly reported. To cope with this issue, multiple noise assisted EMD have been developed successively (Wu 144 

and Huang, 2009; Yeh et al., 2010; Torres et al., 2011; Colominas et al., 2014). It is evident that the latest improved 145 

Complete Ensemble EMD with Adaptive Noise (improved CEEMDAN) manages to alleviate the problem of mode 146 

mixing with the benefit of reducing the amount of noise presented and avoiding spurious modes (Colominas et al., 147 

2014). Moreover, the end effects or boundary effects have been addressed by its predecessor EEMD (Ensemble 148 

Empirical Mode Decomposition) by extrapolating the maxima and minima, and behaved well in numerous time series 149 

with dramatically variant characteristics (Wu and Huang, 2009). The extrapolation of maxima and minima is proven 150 

to be more effective compared with the extrapolation of the signal itself such as repetition or reflection (Rato et al., 151 

2008).  152 

Given the EMD’s ability to deal with real-world nonstationary and nonlinear time series data, it is widely used in 153 

engineering, economics, earth and environmental sciences (e.g., Huang et al., 1998; Chang et al., 2003; Yu et al., 2008; 154 

Colominas et al., 2014; Derot et al., 2016). We use the most up-to-date noise-assisted improved CEEMDAN technique 155 

with at least hundreds of noise realizations to decompose observed and simulated PM2.5 time series. Readers can refer 156 

to Colominas et al. (2014) for a detailed description of the technique and access to the corresponding MATLAB code. 157 

Trial and error attempts are made in setting the inputs (standard deviation of the added noise and the limit of maximum 158 

number of sifting allowed) of the improved CEEMDAN function to achieve best mode separation. In a desired best 159 
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mode separation, neighboring IMFs should have very limited levels of mode mixing, which can be fast screened based 160 

on the time series of the decomposed IMFs and their power spectrum.  161 

The impact of boundaries on the decomposed annual cycles and the residual is assessed by the variations (standard 162 

deviation) of hypothetical decomposed boundaries by cutting a continuous eighteen-year total PM2.5 observation 163 

(North Little Rock, AR) 48 times at different years and times of the year (Fig. S1). The standard deviation is found to 164 

largely diminish within half the annual cycles and could be negligible within one year for the annual cycle. This could 165 

very possibly expand to IMFs with other characteristic scales. Yet, trend components (residuals) show variability 166 

depending on the available time period after cutting. Most of the time, they follow the reference long-term trend 167 

reflected either by the residual or the summation of the residual and the IMF with the longest temporal scale 168 

decomposed from the eighteen-year PM2.5 (Fig. S1c). This is in line with our expectations as a trend should exist 169 

within a given time span, following the definition in Wu et al. (2007): “The trend is an intrinsically fitted monotonic 170 

function or a function in which there can be at most one extremum within a given data span”. Although very strict 171 

data completeness requirement is employed for this study, it should not be conceived as a limitation of the method 172 

itself. A sensitivity test based on a period of nine years of total PM2.5 observations at the same site with 99% data 173 

coverage shows that even though variability of annual cycles and long-term trends increases with decreased data 174 

availability (100%, 90%,..., 10%), the structure of those components is consistent. The average of 40 realizations of 175 

annual cycles and long-term trend components in each data-completeness scenario is in perfect alignment with that of 176 

100% data completeness (Fig. S2 and S3). Given the fact that those 40 realizations in each scenario are based on 177 

independent random samplings of the original observations, the increased variability could very possibly result from 178 

the difference in the sampled data itself rather than the method. Thus, the robustness of improved CEEMDAN 179 

decomposed annual cycles and long-term trend is justified. In fact, EMD has been proven to be an effective tool for 180 

data gap-filling (Moghtaderi et al., 2012). 181 

 182 

 183 
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 184 

Fig. 2. Decomposition of observed (blue) and simulated (red) 24-hour average total PM2.5 into 7 IMFs and a 185 
residual component (trend) at Quabbin Summit, MA using the improved CEEMDAN: (a) Time series of total 186 
PM2.5, IMFs and the residual component (all with the unit of  µg/m3); (b) Power spectrum of the corresponding 187 
time series. The colored numbers on the right side of time series are the mean period 𝒕𝒎 in days, while the ones 188 
on the right side of the power spectrum are the peak period 𝒕𝒑 in days, which are also indicated by the dashed 189 
vertical lines on the power spectrum. Note that the scales for the time series are not all the same. Also, all power 190 
spectra are in the log scale, and those of the IMFs are zoomed in with a range of 100 to 104 on the y-scale for 191 
better visual clarity (compared with 10-2 to 107 for total PM2.5 and the residual component). 192 

 193 

The characteristic period of each IMF can be estimated by the peak period 𝑡𝑝 (days) where the power spectrum of the 194 

IMF peaks: 195 

𝑡𝑝 =
1

𝑓𝑝
              (2) 196 

in which 𝑓𝑝 is the frequency that the power spectrum peaks in the unit of number of cycles per day. The peak estimates 197 

can be biased if more than one high-power frequency is located closely close to each other within one IMF. Thus, the 198 

power spectrum and 𝑡𝑝 is only used as a fast screening tool to determine if a desired decomposition is accomplished. 199 

As an alternative approach, the mean period 𝑡𝑚 can be estimated by: 200 
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𝑡𝑚 =
𝑇𝑖𝑚𝑒 𝑠𝑝𝑎𝑛

(𝑛𝑚𝑎𝑥+𝑛𝑚𝑖𝑛+𝑛𝑧𝑒𝑟𝑜)/4
              (3) 201 

where 𝑛𝑚𝑎𝑥  , 𝑛𝑚𝑖𝑛  and 𝑛𝑧𝑒𝑟𝑜  are the number of maxima, minima and zero-crossings, respectively, during the 202 

𝑇𝑖𝑚𝑒 𝑠𝑝𝑎𝑛 (days). As the frequency decreases, the mean period estimates become less accurate because of the limited 203 

time span compared with the length of the cycle and should be carefully interpreted. 204 

An example of the total PM2.5 decomposition with improved CEEMDAN at the QURE site shows modes ranging from 205 

very high frequency to very low frequency (IMF1 to IMF7) and a residual (Fig. 2). No visible mode mixing can be 206 

detected in both the time series (Fig. 2a) and the power spectrum (Fig. 2b) of all IMFs. Mean (𝑡𝑚) and peak (𝑡𝑝) 207 

estimations of the characteristic periods of each IMF are presented on the right side of each mode. Annual cycles and 208 

long-term trend components are well represented by IMF6 and the residual, with the remaining IMFs carrying weekly, 209 

sub-seasonal, seasonal, and inter-annual variations, respectively, for both observed and simulated PM2.5 (Fig. 2). We 210 

have noticed that in some rare cases, a spurious mode in the last IMF with synchronous signal and very close scales 211 

to its previous IMF exists. This is possibly due to the fact that the characteristic periods of those IMFs are in proximity 212 

to the span of the studied time span. In these cases, the last two modes are merged by adding those two modesthem 213 

together to conduct a detailed evaluation as discussed in Section 4.1. 214 

3.2 Statistical metrics 215 

EMD-decomposed IMFs and trend components allow for a detailed time-dependent evaluation of PM2.5 and provide 216 

a novel opportunity to trace the performances of specific scales back to the corresponding speciated components. Note 217 

that the trend component is the decomposed residual component from the PM2.5 in the unit of µg/m3 , and it is not the 218 

traditional concept of trend in concentration per time. In addition to a direct evaluation of its magnitude, we also 219 

calculated its derivative to identify the periods with higher or lower rate of change (concentration per time). Time-220 

dependent intrinsic correlation (TDIC) is utilized to study the evolvement of the model performance for cyclic 221 

variations throughout time (Chen et al., 2010; Huang and Schmitt, 2014; Derot et al., 2016). It is a set of correlations 222 

calculated for IMFs over a local period of time 𝐼 centered around time 𝑡: 223 

𝐼(𝑡) = [𝑡 −
𝑡𝑤

2
, 𝑡 +

𝑡𝑤

2
]              (4) 224 

in which 𝑡 is the center time for the calculation of the correlation and 𝑡𝑤 is the moving window length. The minimum 225 

of 𝑡𝑤 is set to be the local instantaneous period of the IMF (larger of that in observation or simulation) using the 226 

general zero- crossing method to ensure that at least one instantaneous period is included in calculating the local 227 

correlation coefficient (Chen et al., 2010). The maximum of 𝑡𝑤 is the entire data period with a traditional overall 228 

correlation being calculated. The empty spaces in the pyramids used to depict the TDIC are an indication that the 229 

correlation is not statistically significantly different from zero. With both decomposed observed and modeled 230 

concentrations in a narrow scale range, the correlation would no longer be contaminated by coexisting signals of 231 

different scales (Chen et al., 2010).  232 
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In order to summarize the performance of the decomposed trend component and IMFs, the ratio of the mean 233 

magnitudes of the trend components is defined as: 234 

𝑟𝑡𝑟𝑒𝑛𝑑 =
𝑀𝑒𝑎𝑛𝐶𝑀𝐴𝑄

𝑀𝑒𝑎𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
            (5) 235 

where 𝑀𝑒𝑎𝑛𝐶𝑀𝐴𝑄  and 𝑀𝑒𝑎𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  represent the mean of simulated and observed residual components 236 

respectively. The ratio of the mean amplitude of each IMF is defined by Equation 6, where an example for the annual 237 

cycles is provided: 238 

𝑟𝑎𝑛𝑛𝑢𝑎𝑙 =
𝑅𝑀𝑆𝐶𝑀𝐴𝑄,𝑎𝑛𝑛𝑢𝑎𝑙

𝑅𝑀𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,𝑎𝑛𝑛𝑢𝑎𝑙
            (6) 239 

where 𝑅𝑀𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,𝑎𝑛𝑛𝑢𝑎𝑙 and 𝑅𝑀𝑆𝐶𝑀𝐴𝑄,𝑎𝑛𝑛𝑢𝑎𝑙 represent the root mean square of observed and simulated annual 240 

cycles respectively. Finally, the phase shift of an IMF 𝑛 is defined to bas thee days an IMF decomposed from modeled 241 

time series has to be shifted in order to maximize the achieve the highest correlation (𝑅𝑚𝑎𝑥)  with the corresponding 242 

IMF with similar scale from observed PM2.5 time series. In practice, 𝑛 could be as much as a few cycles of the mean 243 

period, 𝑡𝑚. Here, we limit the absolute number of shift days to not exceed a half cycle as a reference for the phase 244 

shift of an IMF. Thus, 𝑛 satisfies − (
𝑡𝑚

2⁄ ) ≤ 𝑛 ≤ (
𝑡𝑚

2⁄ ) with 𝑡𝑚 being the larger mean period in observation or 245 

simulation. It becomes −0.5 ≤ 𝑛
𝑡𝑚

⁄ ≤ 0.5 in terms of number of cycles.  246 

4 Results and Discussion 247 

4.1 Temporal scales  248 

Temporal scales in PM2.5 resolved by EMD depend solely on the intrinsic properties of the data itself. These properties 249 

include underlying characteristics of specific PM2.5 concentrations, the data sampling frequency, which determines the 250 

scales that can be resolved in the high frequency IMFs, and the time span for the data coverage, which could possibly 251 

play an important role in differentiating the low frequency IMFs from the trend component. Here, we first evaluate 252 

the scales represented by the mean period in the speciated and total PM2.5 time series. Since each IMF represents a 253 

nonstationary process, the mean period 𝑡𝑚 is only an estimate of its characteristic scales. Evaluation of 𝑡𝑚 might not 254 

necessarily be able to identify issues with corresponding model simulationsNote that the mean period is only one 255 

indication of the model evaluation against observations, and it does not indicate any information on the magnitude or 256 

the phase of the time series, which is more important and will be further discussed in Sections 4.3 to 4.4. 257 

Fig. 3a presents the characteristic scales (𝑡𝑚) of IMFs in observed and simulated total and speciated PM2.5 of QURE. 258 

The CMAQ model compares well with the observations for IMFs 1 through 6 with cycles of 9, 19, 37, 78, 158 and 259 

347 days (average of all observed and simulated total and speciated PM2.5). Among all these IMFs, IMF6, which 260 

represents the annual cycles, shows the least variations in the characteristic scale (Fig. 3a) and highest peak energy 261 

from the power spectrum such as Fig. 2b for total PM2.5, except for observed EC and OC where the power of half-262 

year cycles is more dominant (Fig. S4). These two features demonstrate a clear seasonality in both observed and 263 

simulated total and speciated PM2.5, which would otherwise be concealed by practices such as monthly averaging. 264 



21 
 

This can be further confirmed by the statistically significant annual cycles (except for observed EC and OC) (Fig. S5) 265 

based on a Monte Carlo verified relationship between the energy density and mean period of IMFs (Wu and Huang, 266 

2004; Wu et al., 2007). To explore the inter-annual cycles in more detail, mean periods of IMFs with scales longer 267 

than a year are being displayed in the top left panel of Fig. 3a. Some variability exists between the observation and 268 

model simulation to the extent that not all IMFs from observation are being simulated and vice versa for the inter-269 

annual cycles. The characteristic scales of all decomposed IMFs with scales longer than a year are shown in Fig. 3d. 270 

The estimated mean periods of the inter-annual cycles and the differences in the presence of slow varying cycles with 271 

the long characteristic scales are likely to be influenced by their proximity to the data time span of 6 years (4 years for 272 

Cl). This implies that the model evaluation shouldn’t go beyond 3 years (2 years for Cl) given the current data 273 

coverage. CMAQ captured the 3-year cycles in EC and total PM2.5 and 2-year cycles in OC and Cl, despite an 274 

overestimation in the scales of 2-year cycles in observed SO4 and NO3.  275 

 276 
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 277 

Fig. 3. The characteristic scales (𝑡𝑚) resolved in the IMFs of observed and simulated total and speciated PM2.5 278 
for (a, d) QURE, (b, e) RENO and (c, f) ATL. In (a-c), IMF1 to the last pair of IMFs with increasing 279 
characteristic periods are shown from bottom left to top right. Mean periods of IMFs with scales longer than a 280 
year are being displayed in (d-f) with the same shapes as in the legend above to show the characteristic scales 281 
of all decomposed IMFs given that not all IMFs from observation are being simulated and vice versa. Top left 282 
panel in each subplot shows characteristic scales in the unit of years (y-axis) of all IMFs with inter-annual cycles 283 
(the x-axis represents the IMF number). In the (d-f)subplots, species decomposed from observations are shown 284 
with smaller filled shapes connected by solid lines, while species decomposed from simulations are represented 285 
by smaller markerslarger open shapes in slightly darker shades connected by dashed lines. 286 

Similar features in observed and simulated total and speciated PM2.5 concentrations at RENO are presented in Fig. 3b. 287 

Likewise, the highest peaks in the power spectrum also sit in the annual cycles of IMF6 except for the observed OC 288 

and total PM2.5 which have higher peak power at half-year cycles. All annual IMFs are statistically significant except 289 

for simulated NH4 (Fig. S5). The small variation in the estimated characteristic period of IMF6 is because this 290 

monitoring site is located in a wildfire prone region on the border of Nevada and California. Clear evidence can be 291 

seen from Fig. 4a that an extra annual cycle in the IMF6 of observations in the summer of 2008 is depicted, which is 292 

very possibly driven by the 2008 California Wildfires spanning from May until November. Satellite image of the 293 

wildfire smoke on July 10, 2008 can be found in Figure 1 from Gyawali et al. (2009). Unlike the diversified scales in 294 

IMF7 at QURE, IMF7 at RENO features universal 2-year cycles of all species as well as total PM2.5 and all of them 295 

are well replicated by the model. However, variations in time scales are present in IMF8 possibly because of the 296 

limited data coverage. Thus, only species with time scales less than 4 years in both observations and model simulations 297 

are evaluated. It is evident that CMAQ has reproduced the 3-year cycles in SO4 and NH4.  298 
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 299 

Fig. 4. Same as Fig. 2 but for the RENO site with 8 IMFs. 300 

 301 

ATL is the only speciated site with daily data coverage. Observed and simulated total and speciated PM2.5 302 

concentrations at the ATL site are decomposed into 9 or 10 IMFs (Fig. 3c). Because of the change in data frequency, 303 

high frequency scales such as weekly cycles can be evaluated and the significance tested (Fig. S5) annual cycles with 304 

the highest peak power is represented by IMF8 (IMF7 for SO4 and NO3). Annual cycles of SO4 and NO3 appeared in 305 

the earlier stage of decomposition in IMF7 because of their relatively weak half-year cycles, which largely led to the 306 

mixed signal of half- year and annual cycles in IMF7 in total PM2.5PM2.5 as in Fig. 5b. This is more visible in the 307 

observed IMF7 where the energy of the one-year period surpasses that of the half- year. Yet, clues can be seen from 308 

Fig. 5 that the amplitude and the energy of annual cycles leaked into IMF7 is very limited compared to that remaining 309 

in IMF8, indicating that it is still safe to conduct model evaluation on the seasonality using IMF8 with an 310 

underestimation in the amplitude of observation. On the other hand, inferences should be made with caution for IMF7 311 

because of the mixed modes. Scales up to 3 years are relatively well reproduced by the model. 312 
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 313 

Fig. 5. Same as Fig. 2 but for the ATL site with 10 IMFs. 314 

4.2 Long-term trend 315 

The EMD-decomposed long-term trend components for the observed and simulated total and speciated PM2.5 316 

concentrations are presented in Fig. 6. To better visualize the non-linearity of the trend component, the rates of change 317 

(temporal derivative of a trend component, which is the change in the consecutive concentration divided by the 318 

sampling rate of 1 or 3 days and converted to the unit of µg/m3/year by multiplying 365 day/year) are added with a 319 

separate y-axis on the right side in each panel (gray colored scale). It is evident that PM2.5 is changing at a varying 320 

rate, forming either a monotonic trend component or a trend component with one extremum, which cannot be fully 321 

represented by a single constant number using a traditional linear regression approach. Given that there are chemical 322 
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species (the remaining component, Rem) other than the ones studied in the total PM2.5, not all performance issues can 323 

be fully explained by the five available species.  324 
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 326 

Fig. 6. Trend components of observed and simulated total and speciated PM2.5 for (a) QURE, (b) RENO and (c) 327 
ATL in µg/m3 . with dDashed lines representing the rate of the change (temporal derivative of the trend 328 
component converted to µg/m3/year) are plotted against the right-side y axis, with a reference line of no change 329 
in dark grayblack line in the center. Note that the scales are not all the same. 330 

 331 

At the QURE site, CMAQ captures the general decreasing trend in observed total PM2.5 which can mainly be traced 332 

back to NO3 and , OC and the remaining components, while both observed and simulated trend components in SO4 333 

and EC are relatively constant (Fig. 6a). The relative importance of each component in driving the trend of observed 334 

and simulated total PM2.5 reflected by its mean concentration share is summarized in Table 1 (time-dependent 335 

variations of the concentration share is attached in Fig. S6 for reference). Moreover, the periods with highest 336 

decreasing rate in observed total PM2.5 during 2003-2004 with a decreasing rate of -0.44 µg/m3/year is also well 337 

replicated by the model. Nevertheless, the slightly increasing PM2.5 level in the later years is simulated to be decreasing 338 

at a much higher rate, which is partly due to the overestimated decreasing rate in OC and species other than the five 339 

studied ones. The trend component of simulated Cl shows a cyclic-like feature because of proximity between the 340 

existence of a cycle of 4-5 years (by decomposing the simulation during the 6-year study period) and 4-year period 341 

limited by the available quality assured observations. The rate of change in the simulated trend component by 342 
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decomposing the simulation during the 6-year study period would mimic that from the 4-year observation, both with 343 

a negligible negative value throughout 2004-2007. However, the mean magnitude of the trend component is almost 344 

doubled twice as high (1.8 times compared with observation) in the model with contribution from all species except 345 

for SO4. A quantitative summary of the comparison between the mean magnitudes of the observed and model trend 346 

components can be found in Table 12.  347 

Table 1. Concentration share (%) of different components in total PM2.5. It is estimated by dividing the mean trend 348 
components of each species by that of total PM2.5 for both OBS and CMAQ, multiplied by 100. The concentration 349 
share of Rem is estimated by subtracting all the available species share from 100 to compensate for the small 350 
discrepancies caused by the rounding up process and uncertainty in the mode decomposition. “-” indicates the data is 351 
not available (same applies for all other tables). 352 

  SO4 NO3 NH4 OC EC Cl Rem 

QURE 
OBS 38 7 - 19 5 1 30 

CMAQ 19 15 - 14 5 1 47 

RENO 
OBS 7 13 5 46 11 - 20 

CMAQ 11 4 2 30 7 - 45 

ATL 
OBS 28 6 10 24 8 - 24 

CMAQ 22 10 8 17 9 - 33 

 353 

Table 12. The ratio of mean magnitude of the trend component 𝑟𝑡𝑟𝑒𝑛𝑑 (CMAQ/observation). Boldface values indicate 354 
a relatively good estimate of the magnitude (0.7 - 1.3). “-” indicates the data is not available (same applies for Tables 355 
2 and 3). 356 

  TOT SO4 NO3 NH4 OC EC Cl 

QURE 1.8 0.9 3.5 - 1.4 1.7 1.3 

RENO 0.8 1.3 0.3 0.4 0.5 0.6 - 

ATL 1.2 1.0 2.1 1.0 0.9 1.4 - 

 357 

 358 

RENO is located close to the border with California and is affected by large wildfire breakouts in the western U.S. 359 

(Gyawali et al., 2009) as can been seen in the spikes of the observed total PM2.5 (Fig. 4a). Thus, OC makes up a much 360 

larger portion of total PM2.5 compared to other locations (Table 1). The model simulates large increasing rate up to 361 

1.03 µg/m3/year and decreasing rate up to -0.80 µg/m3/year before and after the 2006-2007 winter season and fails to 362 

reproduce the relatively stable condition seen in the observations with only -0.09 µg/m3/year decreasing in 2004-2005 363 

and 0.04 µg/m3/year  increasing in 2008-2009 (Fig. 6b). Similar feature is found for combustion- related OC and EC 364 

species. The observed slightly decreasing trends in SO4 and NH4 during 2005-2009 are not being captured in the model 365 

simulations. The magnitude of the trend component is slightly underestimated with 𝑟𝑡𝑟𝑒𝑛𝑑 of 0.8 with contribution 366 

from all species except for SO4 as well (Table 12). 367 
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During the period of 2002-2007, observations at ATL reveal a slightly increasing PM2.5 trend that cannot be explained 368 

by the five listed available PM2.5PM2.5 components trend (Fig. 6c), possibly indicating a contribution of the remaining 369 

species such as the non-carbonaceous portion of organic matter. Non-carbonaceous organic matter can account for 370 

more than half of total organic matter, which, in turn, can account for a large portion of the total PM2.5 mass (Edgerton 371 

et al., 2005). In contrast, the model shows a slight decreasing trend with a peak decreasing rate in 2003 and misses the 372 

peak increasing rate of 0.23 µg/m3/year in the winter season of 2005. Similarly, reversed trends are also simulated for 373 

SO4, OC and EC, while the change rate in NO3 is well captured. Unlike the previous sites, magnitude of trend 374 

components in total and speciated PM2.5 are well simulated except for EC (1.4 times the observation) and NO3 (2.1 375 

times).    376 

To sum up, the decreasing long-term trend at QURE is well simulated by the model. The occurrence of large wildfires 377 

lasting for several months have has significantly impacted the long-term trend component at RENO and the model 378 

failed to capture those combustion-related species and total PM2.5 primarily due to limitations in the historical data 379 

used to specify day-specific wildfire emissions (Xing et al., 2013). Slightly increasing levels of PM2.5 and its species 380 

observed at ATL are simulated to be slightly decreasing, except for NO3 which is well simulated. The magnitude of the 381 

long-term trend components of total PM2.5 and SO4 are well represented by CMAQ (Table 12). The model performs 382 

differently across the sites in terms of the magnitudes of the trend component in NO3, NH4, Cl, OC and EC. The large 383 

discrepancy in the magnitude of some long-term trend components is likely pointing to the systematic bias in the 384 

annual emission estimations as discussed in Xing et al., (2013), which mainly focused on long-term trend rather than 385 

the absolute level of the emissions. Species other than those in the available dataset may also play a considerable role 386 

in driving the agreements or disagreements between model simulations and observations of total PM2.5. 387 

4.3 Seasonality 388 

The EMD-assisted seasonality evaluations utilize the decomposed IMFs with characteristic period of one year to 389 

evaluate the amplitude and phase of the model simulation, both of which are time- dependent. As mentioned in Section 390 

4.1, these IMFs are statistically significant from white noise with few exceptions (Fig. S5). We first demonstrate the 391 

evaluation for total PM2.5 at QURE (Fig. 7a). The top panel shows the annual cycle components and the bottom panel 392 

shows its TDIC pyramid. The decreasing amplitude of the annual cycles throughout 2002-2007 is almost perfectly 393 

represented with an overall ratio 𝑟𝑎𝑛𝑛𝑢𝑎𝑙  being 1.0 (Table 23). Each pixel in the TDIC pyramid is the correlation 394 

(color-coded) calculated during a period of time 𝐼(𝑡) with width of 𝑡𝑤 days (y-axis) centered at a specific day (x-axis) 395 

as introduced in Section 3.2. The annual cycle mean periods are identical between CMAQ and observations (350 days, 396 

Fig. 2a IMF6), but there is a phase shift for all years with the entire TDIC pyramid being close to -1. By shifting the 397 

CMAQ annual cycles backward 159 days (almost half year), the overall correlation of the annual component can reach 398 

up to a peak of 0.9 (Table 34).  399 
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 400 

Fig. 7. Decomposed annual cycles (IMF6) from observed (blue) and simulated (red) concentrations (µg/m3) of 401 
(a) total PM2.5, (b) SO4, (c) NO3, (d) Cl, (e) OC and (f) EC and their corresponding TDIC at Quabbin Summit, 402 
MA. The window size 𝒕𝒘 indicates the width of the window used to calculate a specific correlation centered at 403 
the day represented in x-axis.  404 

What are the driving factors for the above phase shift in modeled total PM2.5 at Quabbin Summit, MA? The illustrations 405 

in Fig. 7a for total PM2.5 alone cannot provide useful information that will allow the modeler to improve the model’s 406 

performance. This is accomplished by applying the EMD method to the PM2.5 speciated components (Fig. 7b-f). Traces 407 

of the semi-annual phase shift (-159 days) of annual cycles or large overestimation in the winter and underestimation 408 

in the summer is because of the largely overestimated amplitude of NO3 (4.3 times that of observation) which peaks 409 

in the winter and the almost semi-annual shifted OC (-147 days), as well as contributions from EC and Cl. NO3 has a 410 

mean amplitude reaching almost half of that of the total PM2.5. OC directly drives both the observed and simulated 411 

annual components to be negatively correlated. EC follows the feature of OC in the first four years or so and the 412 

feature of NO3 in 2006 and 2007 and contributes to the half year shifted total PM2.5. The magnitude of winter-peaking 413 

Cl cycles areis overestimated with a phase shift of one month. However, the contribution of Cl is very limited because 414 

of the tiny amplitude in both observed and simulated annual cycles. In addition, annual cycles in SO4 are well 415 

reproduced for the entire time span with an amplitude ratio of 0.7. A quantitative summary of the evaluation of the 416 

annual cycles at this site can be found in Tables 2 3 and 34. 417 
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 418 

Fig. 8. Same as in Fig. 7 for Reno, NV, except that (d) represents NH4 rather than Cl. 419 

Both observed and simulated annual cycles at the RENO site are largely contaminated influenced by the extreme 420 

events lasting for several months that are not properly simulated, indicating the need for more accurately specified 421 

wildfire emissions appropriate emissions allocation. Overall, annual variations for total and speciated PM2.5 are largely 422 

underestimated except for the total PM2.5 and combustion-driven EC and OC from 2005 to 2007 (Fig. 8). The modeled 423 

phase of SO4, NO3, NH4 and OC agrees with that of observation with the exception for a length of about two years in 424 

each that missed the phasing: 2009-2010 for SO4, summer 2005-summer 2007 for NO3, 2006-2007 for NH4 and 2004-425 

2005 for OC. It is also notable that the TDIC pyramid of EC mimics that of total PM2.5, implying the existence of 426 

errors in modeled EC in processes such as emissions, transport, and deposition that affected the model performance 427 

for total PM2.5. In comparison, SO4 and OC are relatively well simulated with a mean amplitude ratio of 0.5 and 1.5 428 

and a phase shift of 36 and 33 days, respectively. 429 

Observed annual cycles of total PM2.5 at the ATL site features a slightly increasing amplitude of annual variations 430 

from 2002 to 2006 which then decreased to the original state in 2007 (Fig. 9a). Conversely, model-simulated annual 431 

cycles became weaker throughout the period, with an overall 𝑟𝑎𝑛𝑛𝑢𝑎𝑙  of 0.5. As at the QURE site, the simulated annual 432 

components at the ATL site also show a shift of several months (-132 days). Specifically, traces of these phase shifts 433 

or large overestimation in the winter and underestimation in the summer can be seen from the more than doubled 434 

amplitude of NO3 which peaks in winter and underestimated SO4 and NH4 in the warm seasons as well as the -54 days 435 

shifted EC. The anti-correlated remaining species other than those in the available dataset clearly played a role in 436 

driving the discrepancies seen in the total PM2.5 annual cycles (Fig. 10). Specifically, the anti-correlation likely points 437 

to an inaccurate representation of the seasonal variation of the non-carbonaceous portion of organic matter due to an 438 

incompleteimproper representation of organic aerosols in the model version analyzed here; newer versions of the 439 
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CMAQ model include updated treatment of organic aerosols (e.g., additional SOA formation pathways, improvements 440 

in representation of primary OM emissions) which is likely to correct the mentioned features (Appel et al., 2017; 441 

Murphy et al., 2017; Xu et al., 2018) this problem has since been corrected in more recent releases of the CMAQ 442 

model. The underestimated annual variations in the remaining components closely resemble that of the annual 443 

variation in total PM2.5. The phase of simulated SO4, NO3, NH4, and OC species is in good agreement with those in 444 

observations and the amplitude of simulated annual cycles in SO4, OC and EC agree well with that in the observations 445 

(Tables 2 3 and 34).  446 

In sum, annual cycles of PM2.5 are also time-dependent and the phase in the annual cycles for total PM2.5, OC and EC 447 

reveals a general shift of up to half a year (Table 34); this indicates a potential problem in the allocation of emissions 448 

during this study period and/or the treatment of organic aerosols in this version of the model. CMAQ generally 449 

simulated the phase in SO4, NO3, Cl and NH4 quite well but did not always capture the magnitude of their variations 450 

(Table 23).  451 

 452 

Fig. 9. Same as in Fig. 7 for Atlanta, GA, except that the annual component is resolved in IMF8 (IMF7 for SO4 453 
and NO3) because of the difference in sampling rate and characteristic embedded in the time series at ATL and 454 
(d) represents NH4 rather than Cl.  455 

 456 
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 457 

Fig. 10. Decomposed annual cycles in Atlanta, GA for the remaining components presented in total PM2.5 other 458 
than the five species in Fig.9. 459 

Table 32. The ratio of mean amplitude of the annual component 𝑟𝑎𝑛𝑛𝑢𝑎𝑙  (CMAQ/observation). Boldface values 460 
indicate a magnitude with a ratio close to 1 (0.7 -1.3).  461 

  TOT SO4 NO3 NH4 OC EC Cl 

QURE 1.0 0.7 4.3 - 1.6 3.1 1.6 

RENO 1.2 0.5 0.1 0.2 1.5 0.9 - 

ATL 0.5 0.7 2.4 0.4 1.2 1.0 - 

 462 

Table 43. Phase shift (𝑛) of CMAQ simulated annual cycle components in days. The background color indicates the 463 
maximum correlation ( 𝑅𝑚𝑎𝑥 ) that can be reached by shifting the CMAQ time series 𝑛  days with respect to 464 
observations: white = [0.8, 1], light grey = [0.6, 0.8), grey = [0.4, 0.6), dark grey = (0.2, 0.4). The bold shows number 465 
of shifts less than a month while the italic shows shifts longer than three months.  466 

  TOT SO4 NO3 NH4 OC EC Cl 

QURE -159 -6 3 - -147 -105 -30 

RENO 78 36 12 -21 33 96 - 

ATL -132 0 8 -17 -24 -54 - 

 467 

4.4 Sub-seasonal and inter-annual variability 468 

In this section, model performance at multiple sub-seasonal and inter-annual scales with cycles less than 3 years, 469 

presented in the total and speciated PM2.5, is evaluated following an approach similar to that for the annual cycles in 470 

Section 4.3 (Fig. 11). First, IMFs from observations and model simulations are paired based on their characteristic 471 

periods following the discussion in Section 4.1. Then, the magnitude of specific scales is evaluated using 𝑟𝐼𝑀𝐹𝑛 472 

following Equation 6 of the 𝑟𝑎𝑛𝑛𝑢𝑎𝑙   for annual cycles. The phase shifts of the time series are assessed by the proportion 473 

of shifted days relative to the mean characteristic scales of the corresponding observed and simulated IMFs (𝑛
𝑡𝑚

⁄ ). 474 
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For example, a phase shift of 0.1 cycles in the 2-year cycles is approximately 73 days while it would be 18 days for 475 

the half-year cycles. 476 

The performance of the simulated amplitude of the sub-seasonal and inter-annual cycles is relatively stable from a few 477 

days to semi-annual scales and 𝑟𝐼𝑀𝐹𝑛 is close to 1 in most cases (Fig. 11a-c). CMAQ captures the features seen in the 478 

observations at QURE, except for the large overestimation of NO3 (𝑟𝐼𝑀𝐹𝑛 ranges from 2.6 to 3.7 at the sub-seasonal 479 

scale and reaches up to 13.8 for the 3-year cycles). Similar overestimation of NO3 is also found at ATL (𝑟𝐼𝑀𝐹𝑛 ranges 480 

from 2.0 to 3.4, except for the 2-year cycles). In contrast, NO3 at RENO is strongly underestimated with 𝑟𝐼𝑀𝐹𝑛 ranging 481 

from 0.1 to 0.3 and reaching its minimum at the 2-year cycles. Likewise, all time scales of NH4 at RENO are also 482 

being underestimated with 𝑟𝐼𝑀𝐹𝑛  decreasing from 0.4 to only 0.1 at the 3-year cycles. The coexistence of 483 

underestimation of NO3 and NH4 variability, as well as their trend component, likely points to the insufficient grid 484 

resolution in representing ammonium nitrate episodes associated with stagnant meteorology in the mountainous 485 

regions as illustrated by Kelly et al. (2019). To sum up, model has simulated the magnitude of features across all scales 486 

in most of the studied cases. However, fluctuations in NO3 are constantly being largely over- or under-estimated and 487 

improvements to the model are required to better replicate its variability (Fig. 11a-c). 488 

A high 𝑅𝑚𝑎𝑥 of corresponding IMFs can only be achieved when the characteristic scales of those from observations 489 

and model simulations are close, there is minimal mode mixing, and negligible irregular change of amplitude exists 490 

during the study period. Thus, 𝑅𝑚𝑎𝑥 tends to be small for all oscillations at RENO because of the irregular impact 491 

from events such as wildfires. Thus, the interpretation of phase shift is focused on the components and time scales 492 

having correlations above 0.4 only.  493 

Results show that the sub-seasonal cycles at QURE all have a negligible phase shift of less than 0.1 cycles (Fig. 11d). 494 

The semi-annual cycles at RENO have around 0.2 cycle phase shifts in total PM2.5 (-0.2), NH4(0.2), OC (-0.2), and 495 

EC (-0.2) while negligible phase shifts of less than 0.1 cycles are simulated in SO4 ranging from 9 days to semi-annual 496 

in scale. As at QURE, multiple sub-seasonal cycles at ATL all have a negligible phase shift of less than 0.1 cycles, 497 

with the exception of semi-annual OC which has a phase shift of nearly -0.4 cycles with a marginal correlation of 498 

around 0.4. Unlike the relatively stable 𝑅𝑚𝑎𝑥 throughout the time scales within each of the species for QURE and 499 

RENO, the 𝑅𝑚𝑎𝑥 at ATL tends to be much higher (roughly 0.6-0.8) in the scales of 6 to 25 days, except for NO3, 500 

indicating the model’s success in simulating those weather-induced air quality fluctuations at this site as reflected by 501 

their negligible phase shifts.  502 

However, the physical meaning of each sub-seasonal IMF is not yet fully understood and requires further study. 503 

Synoptic For example, synoptic scale IMFs (IMFs with scale less than/around a month) usually have large variance 504 

and are not statistically significantly different from white noise except for observed SO4 and NH4 (Fig. S5). Yet, 505 

observed and simulated total and some speciated PM2.5 at QURE and ATL (except IMF1) can achieve moderate to 506 

high 𝑅𝑚𝑎𝑥 at these time scales (Fig. 11 g-i), indicating a potential physical explanation of those time scales using 507 

meteorological variables. IMFs with scales longer than a month but less than half year possess much less variance and 508 

are usually not statistically significantly different from noise. Exceptions are also found at the Atlanta site where 509 
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observed IMFs are mostly significantly different from noise. Whereas semi-annual cycles are mostly statistically 510 

significant (note that semi-annual SO4 and NO3 at ATL are too weak to be decomposed into a separate IMF). In a 511 

previous study, He et al. (2014) found semi-annual oscillations in the corrected AErosol RObotic NETwork 512 

(AERONET) Aerosol Optical Depth (AOD) and PM10 mass concentrations are primarily caused by the change of 513 

wind directions in Hong Kong.  514 

 515 
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 516 

Fig. 11. Model performance at all temporal scales for sites QURE, RENO and ATL. (a-c) ratio of mean 517 
amplitude of corresponding IMFs with similar characteristic mean periods (ideal ratio=1.0); (d-f) the phase 518 
shift 𝒏  in the number of mean periods (average mean period of corresponding IMFs decomposed from 519 
observation and model simulation); (g-i) maximum correlation 𝑹𝒎𝒂𝒙 can be achieved by shifting the modeled 520 
time series. The average mean period of corresponding IMFs decomposed from observations and CMAQ of 521 
total and speciated PM2.5 are represented on the x-axis; all metrics on the y-axis are unitless. Horizontal 522 
reference lines are drawn at 0.7 and 1.3 in (a-c). Weekly, annual and inter-annual (2- to 3-year) scales are 523 
marked with vertical dashed lines.  524 

The evaluation and interpretation of inter-annual cycles are constrained by the limited available speciated observations 525 

for a period of 6 to 9 years (4 years for Cl at QURE). Thus, only 2- to 3-year cycles are presented (Fig. 11) and 526 

evaluated. Among the 2- to 3-year inter-annual cycles at QURE, there is minimal phase shift for total PM2.5, SO4, Cl, 527 

and EC with moderate to high 𝑅𝑚𝑎𝑥. At RENO, the model presents negligible shifts in 2-year cycles of OC and NH4 528 

while phase shifts of 0.3 and -0.5 cycles are simulated in the 3-year cycles for SO4 and NH4. At ATL, the phase shift 529 

of -0.2 to -0.4 cycles are simulated for PM2.5, NH4, OC, and EC with periods of 2- to 3-year cycles; while 2- to 3-year 530 

SO4 cycles have a half-year cycle shift.  531 

5 Conclusions 532 
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The main advantage for using EMD to evaluate PM2.5 and its speciated components is that it decomposes nonlinear 533 

and nonstationary signals into multiple modes and a residual trend component. It does not require any preselection of 534 

the temporal scales and assumptions of linearity and stationarity for the data, thereby providing insights into time 535 

series of PM2.5 concentrations and its components. Using improved CEEMDAN, we are able to assess how well 536 

regional-scale air quality models like CMAQ can simulate the intrinsic time-dependent long-term trend and cyclic 537 

variations in daily average PM2.5 and its species. This type of coordinated decomposition and evaluation of total and 538 

speciated PM2.5 provides a unique opportunity for modelers to assess influences of each PM2.5 species to the total 539 

PM2.5 concentration in terms of time shifts for various temporal cycles and the magnitude of each component including 540 

the trend.  541 

A demonstration of how improved CEEMDAN could be applied to PM2.5 time series data at three sites over CONUS 542 

that provide speciated PM2.5 data reveals the presence of the annual cycles in PM2.5 concentrations and time-543 

dependent features in all decomposed components. At these three sites, the model generally is more capable of 544 

simulating the change rate in the trend component than the absolute magnitude of the long-term trend component. 545 

However, the magnitude of SO4 trend components is well represented across all three sites. Also, the model reproduced 546 

the amplitude of the annual cycles for total PM2.5, SO4 and OC. The phase difference in the annual cycles for total 547 

PM2.5, OC and EC reveal a shift of up to half-year, indicating the need for proper allocation of emissions and an 548 

updated treatment of organic aerosols compared to the earlier model version used in this set of model simulations. The 549 

consistent large under/over-prediction of NO3 variability at all temporal scales and magnitude in the trend component, 550 

as well as the abnormally low correlations of synoptic scale NO3 at ATL, calls for better representation of nitrate 551 

partitioning and chemistry. Wildfires have the potential to elevate PM2.5 for months and can alter its variability at 552 

scales from few days to the entire year. Thus, more accurate fire emission data should be incorporated to improve 553 

model simulation, especially in those fire-prone regions. 554 
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