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Anonymous Referee #3 
 
This manuscript presented an evaluation of the WRF-CAMQ model simulated temporal trends 
through a detailed comparison with observation using improved CEEMDAN method. The 
comparison was based on measurements of PM2.5 and its key components, i.e., sulphate, nitrate, 
ammonium, chloride, organic carbon, and elemental carbon, made at three ground monitoring 
stations in US from t 2002 to 2008. It is clearly demonstrated that the improved CEEMDAN 
approach can decompose the observed and simulated temporal trends, which allows to extract 
more information from the comparisons of individual temporal modes. For example, the authors 
concluded that the model can better simulate the rate of change of the multi-year trend than the 
absolute magnitude. At the same time, model can generally reproduce the amplitudes of the sub-
seasonal and annual variations for PM2.5, sulphate, and OC. This study revealed that it appears 
there is a temporal phased shift between the observed and model simulated PM2.5, OC, and EC 
as large as a half year. It is further suggested that this phase shift indicted “a need for proper 
temporal allocation of emissions”. In general, the manuscript is well organized.  
 
We thank the reviewer for the positive assessment of our manuscript and for providing 
constructive feedback to help improve the quality of the manuscript. We have addressed all 
questions and suggestions in our response as well as in the text or figures, as necessary. Please 
see detailed responses below and the marked-up version of the revised manuscript.  
 
This reviewer believes that this is an important work which can potentially help identifying model 
deficiencies. However, there several concerns needed to be addressed:  
 

1) The authors correctly stated that EMD is a widely used methodology in various field. At 
the same time, this reviewer would like to suggest that the authors should consider 
adding some brief high-level descriptions of the method. This will improve the 
manuscript’s readability, especially for those who are not familiar with EMD methods. It 
is also important to clearly state the criteria how the modes are determined and 
separated. The statement in line 134-135, “to achieve best mode separation”, leaves 
much room for interpretation. The discussion on determination of tp and tm is interesting 
and thorough. It does, however, leave an impression that the evaluation of tp and tm is 
somewhat uncertain and is not completely deterministic. This reviewer would like to 
suggest adding additional text to discuss if the determination of tp and tm is sufficiently 
accurate or useful for model assessment to identify issues in the processes at the similar 
time scale as decomposed tp and/or tm. This will strengthen the manuscript to 
demonstrate the usefulness of the improved CEEMDAN approach in model assessments.  
 



The decomposition process and parameters controlling the decomposition have been 
added in Section 3.1 as suggested. The “best mode separation” is also further explained 
following the reviewer’s suggestion.  
 
CEEMDAN is a technique that is particularly suitable to analyze non-linear and non-
stationary time series data. The decomposed time series of speciated and total PM2.5 
reveal the agreement/disagreement between observations and model simulations at 
various intrinsic temporal scales without any predetermined assumptions on the data. 
Both tp and tm represent approximate estimates of the characteristic scale of an IMF, 
where non-linear and non-stationary processes with close temporal scales could exist. For 
tp (from the revised text): “The peak estimates can be biased if more than one high-power 
frequency is located closely within one IMF. Thus, the power spectrum and 𝑡𝑝 is only used 

as a fast screening tool to determine if a desired decomposition is accomplished.” For tm: 
“As the frequency decreases, the mean period estimates become less accurate because of 
the limited time span compared with the length of the cycle and should be carefully 
interpreted.” We have added the following test in Section 4.1: “Since each IMF represents 
a non-stationary process, the mean period 𝑡𝑚 is only an estimate of its characteristic scale. 
Evaluation of 𝑡𝑚 might not necessarily be able to identify issues with corresponding model 
simulations, and it does not indicate any information on the magnitude or the phase of 
the time series, which is more important and will be further discussed in Sections 4.3 to 
4.4.”. 

  
 

2) Section 2 (starting from line 74) provided a good discussion on how the observation data 
sets are selected. It is equally important to discuss the temporal resolution of model in 
terms of the driving factors, e.g., emissions. This will give readers a sense if one should 
expect if the model should reproduce observations at certain temporal scale. For example, 
if the emissions are given in yearly average, one would consider the impact of the lack 
emission temporal variability on the comparison of seasonal and/or sub-seasonal trends.  

 
We added the following text in Section 2: “Annual emissions for the CMAQ simulations 
were estimated using the methodology described in Xing et al. (2013).  Briefly, the 
National Emissions Inventory (NEI) for 1990, 1995, 1996, 1999, 2001, 2002 and 2005 and 
a number of sector-specific long-term databases containing information about trends in 
activity data and emission controls were used to create county-level annual emissions for 
a total of 49 emission sectors. Prior to being used as input to the CMAQ simulations, these 
annual emissions were then temporally and spatially allocated to provide hourly emissions 
based on monthly, weekly, and diurnal temporal cross-reference and profile data from the 
2005 NEI modeling platform. These profile data vary by emissions source and sometimes 
by state and county and are generally based on surveys and extrapolation of activity data 
which can be subject to uncertainty. Exceptions to the use of 2005 NEI platform temporal 
profile data for temporal allocation were emissions from electric generating units (EGU) 
which directly used measured hourly emissions after 1995 and wildfire emissions that used 
climatological monthly, weekly, and diurnal profiles for temporal allocation.”     



 
The large discrepancy in the magnitude of some long-term trend component seen in Fig. 
6 is likely pointing to the systematic bias in the annual emission estimations as discussed 
in Xing et al. (2013): “…since this study mainly focused on trends rather than the absolute 
value in each individual year, some sectors (e.g., industrial processes) and sub-sectors 
(types of combustion and stoves) may not have been well considered or examined.” The 
intra-annual emission allocation could possibly impact the model performance at the 
seasonal and sub-seasonal scales. Thiss discussion of the impact of emissions on the long-
term trend has been added in Section 4.2. 

 

 
3) This reviewer believes that the concluding remark of “indicating the need for proper 

allocation of emissions” is an important conclusion. However, it was not adequately 
justified. There are many controlling factors and processes. The authors should have 
provided more discussions to illustrate how they narrowed to emissions as the likely 
factor. It should also be pointed out that SOA is typically a large component of OC. 
Changes in emissions to affect OC will likely have implications on O3.  

 
We would like to clarify that our illustrative application of the new methodology to PM2.5 
time series at three specific sites does not allow us to conclude that errors in the temporal 
allocation of PM emissions are the controlling factors for disagreements between 
observed and modeled annual cycle. While we believe that they do play a role as 
discussed below, we also know that the CMAQ version used for these simulations has 
underestimated the formation of SOA, which would also affect the modeled annual cycle 
of OC (e.g. Appel et al., 2017; Murphy et al., 2017; Xu et al., 2018). Because of the 
underestimation of SOA, OC in the simulations analyzed here has an overestimated 
relative contribution of primary OC which, in turn, makes its temporal variations analyzed 
by CEEMDAN sensitive to the temporal allocation of primary PM and specifically primary 
OC emissions. The full statement partially quoted by the reviewer points to both factors 
“indicating the need for proper allocation of emissions and an updated treatment of 
organic aerosols compared to the earlier model version used in this set of model 
simulations”. Without running a new set of decadal simulations with a newer version of 
the model and/or modified temporal allocation of emissions, we are unable to determine 
the relative importance of these factors at the sites examined. However, if such 
simulations were to be performed in the future, the CEEMDAN methodology can help 
demonstrate the benefits of updated emissions allocations and/or the SOA process 
representation.  
 

 
4) The authors presented detailed trend analysis on PM2.5 and its components. It is also 

scientifically interesting to understand the relative contribution of each component and 
their contribution to the identified temporal variability, which are useful to gain insights 
into controlling factors. This reviewer would like to suggest the authors to consider 
addition of the trend analysis on the relative contribution of sulphate, nitrate, ammonium, 



organic carbon, and elemental carbon to PM2.5. More specific to the manuscript, it would 
be much easier to interpret the results shown in Table 1, 2, and 3 if the relative 
contribution of each component is known.  
 
Yes, it would be useful to explicitly show the importance of each component in driving 
the trend of total PM2.5 in both observations and model simulations. The time series of 
the concentration share of each component (e.g. OC/Total PM2.5 %) is added in Fig. S6 in 
the supplement. However, the decomposition of the concentration share is not included 
since there is not much change in the percentage share in its trend component (few 
percentages at most in very limited cases) and the ratio does not necessarily have strong 
seasonality because of the phase difference in specific component and total PM2.5. Thus, 
including the trend component of time variant share of the ratio would only complicate 
the interpretation of the results. Instead, we have added a new Table 1 (see below) to 
show the overall concentration share of each component for both observations and 
model simulations to reflect the relative importance of different species. 
 

Table 1. Concentration share (%) of different components in total PM2.5. It is estimated by dividing the mean trend 

components of each species by that of total PM2.5 for both OBS and CMAQ, multiplied by 100. The concentration 

share of the remainder species (Rem) is estimated by subtracting all the available species share from 100 to compensate 

for the small discrepancies caused by the rounding up process and uncertainty in the mode decomposition. “-” indicates 

the data is not available (same applies for all other tables). 

  SO4 NO3 NH4 OC EC Cl Rem 

QURE 
OBS 38 7 - 19 5 1 30 

CMAQ 19 15 - 14 5 1 47 

RENO 
OBS 7 13 5 46 11 - 20 

CMAQ 11 4 2 30 7 - 45 

ATL 
OBS 28 6 10 24 8 - 24 

CMAQ 22 10 8 17 9 - 33 

 

 
 

5) In general, model evaluation is designed to improve model. It is difficult to relate the 
comparison results presented in this manuscript to specific model deficiencies in 
description of the chemical/physical processes and/or issues in model data sets, 
meteorological field and/or emission data. As sulphate, OC, nitrate are controlled by very 
different chemical processes, this reviewer would like to encourage the authors to further 
explore the difference in the comparison results for these species, which may reveal 
additional insights into the process-level model deficiencies. 
 
We thank the reviewer for recognizing the potential of the proposed methodology in 
helping identify problems in the specific processes and/or model input. However, without 
running a new set of decadal simulations with a newer version of the model and/or 



modified temporal allocation of emissions, we cannot determine specific model 
deficiencies and/or issues in the model input data sets.  

 
 
Specific Comments:  

1) Figure 3 is hard to read because of log-log scale. It may be better to change the x-axis to 
the IMF number and y-axis to the ratio between model and observation characteristic 
scales. A second y-axis can be added to show the absolute characteristic scales for each 
IMF.  
 
We thank the reviewer for the suggestion. However, because of the large discrepancies 
in the scales of IMFs (few days to thousands of days), log scale has to be employed to 
show the scales for all IMFs. Given that the characteristic periods are not easy to read 
from the plot, we provided the average characteristic periods for sub-seasonal and 
seasonal IMFs in the text. Moreover, since “not all IMFs from observation are being 
simulated and vice versa”, a figure is needed for each site to show the characteristic scales 
(at least for the last few IMFs) separately for observations and model simulations. Thus, 
we have moved the inlet figures to Figure 3d-f for clarity and added the explanation in 
the caption. Adding a second y-axis and showing only observed characteristic scale would 
result in a very busy plot and we will not able to achieve the second point above. Please 
find our revision to the figure in the manuscript and below. 
 

 



Fig. 3. The characteristic scales (𝑡𝑚) resolved in the IMFs of observed and simulated total and speciated PM2.5 

for (a, d) QURE, (b, e) RENO and (c, f) ATL. In (a-c), IMF1 to the last pair of IMFs with increasing 

characteristic periods are shown from bottom left to top right. Mean periods of IMFs with scales longer than a 

year are being displayed in (d-f) with the same shapes as in the legend above to show the characteristic scales 

of all decomposed IMFs given that not all IMFs from observation are being simulated and vice versa. In the (d-

f), species decomposed from observations are shown with smaller filled shapes, while species decomposed from 

simulations are represented by larger open shapes in slightly darker shades. 

 
 

2) Section 4.2. Figure 6 shows some variation in time-derivatives. At the same, this reviewer 
would like to argue that about half of cases shown in the figure can be well approximated 
by linear assumption. The authors should comment on this aspect. 
 
Linear assumption is useful in many cases, and linear trends do provide a general idea of 
magnitude of the change as well as whether the linear trend is significant or not. EMD is 
particularly useful for analyzing meteorological and pollutant time series, which are non-
linear and non-stationary. The decomposed trend components can provide the exact time 
span and magnitude of a decreasing/increasing change throughout time. If we take the 
trend component of observed OC at ATL as an example, the OC level is stable at around 
4.5 µg/m3 in 2002 and 2003 and decreases at varying rates during 2004-2007. 
 

 


