Dear Editor Rolf,

On behalf of my co-authors, we thank you very much for your kind work and anonymous reviewers' constructive comments on our manuscript entitled "Exploring the inconsistent variations in atmospheric primary and secondary pollutants during the G20 2016 Summit in Hangzhou, China: implications from observation and model" (acp-2019-1061) published in ACPD as scientific article. These comments are all valuable and helpful for revising and improving our paper, as well as the important guiding significance to our researches. We have studied the comments carefully and made the corresponding corrections in the revised manuscript. We hope that this revision could meet the requirement of the publication in ACP.

The referees' comments (from RC1 to RC3) and our response point by point are listed below.

Thank you for your time in advance.

Sincerely,

Dr. Gen Zhang (E-mail: zhanggen@cma.gov.cn)

Zhongguancun South Str. 46, Haidian District,

Chinese Academy of Meteorological Sciences (CAMS),

Beijing 100081, China

Response to Review Comments (RC1) from Anonymous Referee #2

Based on the unique case of G20 held in Hangzhou, the authors systematically evaluated the effectiveness of powerful control measures implemented by the Chinese State Council on reducing atmospheric primary (i.e., NO_x , SO_2 , and CO) and secondary pollutants (PAN and O_3) after discriminating the effect of meteorological condition during G20. Then, they explored the underlying mechanisms of photochemical pollution including PAN and O_3 by using MCM, appointed the source of VOCs by PMF model and further calculated the OFP for these various sources. The observational dataset are valuable, and the manuscript reports the measurement results well. In summary, the topic is very interesting and the manuscript is also of good quality. Thus I strongly recommend it could be published in the ACP after minor revision below.

Response: Thanks so much for your positive comments on our manuscript. According to your suggestions, we made the corresponding corrections in the revised manuscript.

1) line25-26 reconstruct this sentence as ": : :during G20 Summit provide us a unique opportunity to address this issue. Surface concentrations of: : :"

Accept

2) line 53 add the phase "matter" after "particulate"
 Accept

3) line 89-90 rewrite this sentence

According to your suggestion, we have corrected it as "During these events, the effectiveness of a series of emission control measures on reducing atmospheric primary pollutants, in particular to the particulate matter, has been comprehensively evaluated, but less on photochemical pollution." in the revised manuscript.

4) line 120-121 add some detailed information about the $PM_{2.5}$ measurement.

Accept. We added the statement that "Ambient $PM_{2.5}$ samples were collected using co-located Thermo Scientific (formerly R&P) Model 1405D samplers. PM-Coarse and $PM_{2.5}$ particulate, split by a virtual impactor, each accumulate on the system's exchangeable TEOM filters. By maintaining a flow rate of 1.67 L min⁻¹ through the coarse sample flow channel and 3 L min⁻¹ through the PM_{2.5} sample channel, and measuring the total mass accumulated on each of the TEOM filters, the device can calculate the

mass concentration of both the $PM_{2.5}$ and PM Coarse sample streams in near real-time." in the revised manuscript.

5) line 124-125 the abbreviate phase of "EMC" and "EEC" are not consistent with those below. Revise them.

Accept. We revised this sentence as "To quantify the separate effects of meteorological condition (EMC) and emission control measures (ECC) on observed particulate concentrations,..." in the revised manuscript.

Response to Review Comments (RC2) from Anonymous Referee #3

The authors evaluated the effectiveness of pollution control measures implemented during the G20 2016 Summit in Hangzhou, China. Field observation on NO_x , SO_2 , CO, VOCs, PM_{10} , $PM_{2.5}$, PAN and O_3 were carried out. OBM and PMF model tools were used to analyze the data. It's valuable to publish in this journal. However, the English writing should be improved before publication.

Response: Thanks a lot for your positive comments and kind work on our manuscript. According to your suggestion, we made the corrections point by point in the revised manuscript.

Specific comments:

Line 269-270: CO showed a gradual increase (~20.7%), which is not consistent with SO₂, NO₂, and PM. It seems that CO sources are very different with NO_x and SO₂ sources in Hangzhou or pollution controls are not effective on CO reduction. Could the authors give more explanations? I also notice that 48i analyzer is used for the measurement. As we know, zero drift is inevitable for this kind of principle. So, pls provide the quality control measures during the observation.

Response: As we know, especially in urban region, atmospheric CO is normally derived from human activities (coal combustion, farming, residual usage, etc.) while vehicle exhaust and coal combustion are typically representative of the sources of NO_x and SO₂, respectively. As illustrated below in the Section 3.4 in the manuscript, industrial process with coal combustion and vehicle exhaust were strictly limited throughout the whole G20 period. Thereby, NO_x and SO₂ both exhibited significant decreases from BG20 to DG20. In addition, straw combustion was excluded according to the decrease in the number of fire spots in the same time period from BG20 to AG20. On the contrary, to ensure the clean energy used in 2016 G20, local government accelerated the supply of liquid natural gas and liquid petroleum gas (ZPSY, 2016, 2017). The consequent CO was more produced from the incomplete combustion of these fuels during G20 relative to BG20. As you speculated, the emission control measures might be poorly effective on CO reduction, specifically on fuel combustion. Also in our study, ethylene, as a representative tracer of fuel combustion, showed continuous increase from BG20 to DG20, further confirming the ineffectiveness of control measures in this source. Therefore, CO showed a gradual increase which is not consistent with the variation of NO_x and SO₂. This phenomenon was also found in another research conducted during G20 in 2016 (Zhao et al., 2017).

Yes, all trace gas analyzers were weekly span and daily zero checked during our measurement. Thus, according to your suggestion we added "It is worth noting that CO showed gradual increases (ca. 20.7%) from BG20 to DG20, which was mainly attributed to the weak control in fuel combustion. Specifically,

residential usage and liquid natural gas and petroleum gas around YRD regions during this period might account for such unique pattern of CO. The other two types of fuel combustion including straw combustion and coal combustion were both excluded as discussed in Section 3.4." and "All trace gas analyzers were weekly span and daily zero checked." in the revised manuscript, respectively.

Reference:

Zhao, J. P., Luo, L., Zheng, Y. J., Liu, H. H.: Analysis on air quality characteristics and meteorological conditions in Hangzhou during the G20 summit, Acta Scientiae Circumstantiae, 37(10), 3885-3893, 2017. (In Chinese)

In Fig. 1, TVOCs is needed to add. It seems that PM_{10} and $PM_{2.5}$ results play no roles on the data analysis in the whole context.

Response: Yes, as you suggested we added TVOCs in this figure in the revised manuscript.

In this manuscript, we also discussed the variation of PM from BG20 to AG20 and evaluated the effectiveness of powerful control measures on reducing atmospheric pollutants such as PM, PAN, O_3 , and the other chemicals (NO_x, SO₂, and CO). As classified in the Introduction, the effectiveness of a series of emission control measures on reducing atmospheric primary pollutants, in particular to the particulate matter, has been comprehensively evaluated during the events such as Summer Olympic Games (August 2008), the 21th Asia-Pacific Economic Cooperation (APEC) conference, and China Victory Day Parade (Victory Parade 2015), but less on photochemical pollution. So we focused on their variation and underlying mechanism of photochemical pollution response to the effectiveness of emission control measures. However, it does not mean that PM is not necessary to be investigated in this study. We also paid much attention to PM in terms of their day-to-day variations and estimating the contribution of meteorological conditions by using the simulated PM_{2.5} by WRF-Chem model.

Fig. S1 is better in the manuscript than in the supplement information.

Response: Accept

Fig.5, Similar fuel combustion contributions are found in DG20-II and AG20, which is very different with that in BG20. Why?

Response: Similar with the explanation response to the first comment above, we speculated that the increased contribution of fuel combustion from BG20 to DG20 II and to AG20 was attributed to the increased supply of liquid natural gas and liquid petroleum gas with the increasingly strict emission

control measures on the other fossil fuels during the acceleration of emission control strategy. Similar phenomenon was also found by Li et al. (2015) in APEC China 2014, with the increased contribution of fuel combustion from 7.05 ppbv before APEC to 12.7 ppbv during APEC and to 31.7 ppbv after APEC to VOCs mixing ratios, although the other sources were effectively reduced.

Reference:

Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014, Atmos. Chem. Phys., 15, 7945-7959, 2015.

Much more contents are done in section 3.4 (VOCs source identification and OFP quantification). How do those results relate with the inconsistent variations in the primary and secondary pollutants?

Response: In this study, our main objects are not only to discuss the variation of atmospheric primary and secondary pollutants from BG20 to AG20, but especially to elucidate the underlying mechanism for photochemical pollution. We first found the daily maximum average-8 h (DMA8) O₃ exhibited a slight increase from BG20 to DG20 I and then decrease from DG20 I to DG20 II and to AG20, which was unlike with the other pollutants. However, we found the peak values of mean daily O₃ in DG20 II exhibited significant decrease compared to BG20 and DG20 I. So, another question is proposed, which factors dominated such variation? As we know, VOCs are the crucial precursors of PAN and O₃, and thus we should first identify which VOCs were the predominant precursors for PAN and O₃ and explore their variation from BG20 to AG20. As depicted in the Introduction, the additional emission control measure was vehicles control. It possibly played an important role in reducing the peak of atmospheric O₃ pollution in Hangzhou. Further, we should comprehensively appoint the corresponding sources of various VOCs and compare their variations and their respective ozone formation potentials (OFPs) before, during, and after G20. In summary, VOCs source identification and OFP quantification were necessary for exploring the variation of photochemical pollution from BG20 to AG20 in details.

Response to Review Comments (RC3) from Anonymous Referee #1

The manuscript describes a comprehensive observational dataset including atmospheric O_3 , PAN, particulate matter, VOCs, NOx, and other trace gases to evaluate the effectiveness of emission control measures on reducing pollutant concentrations before, during, and after G20. It's very reasonable to demonstrate the effect of meteorological conditions by using WRF-Chem model. Further, an explicit OBM model was used to identify the predominant VOCs precursors and key chemical processes in PAN and O_3 formation and to further appoint the corresponding VOCs sources before, during, and after G20 by using PMF model. The manuscript is clearly written and for matted very well. Thus, after considering several comments below as minor revisions, I recommend the publication of this manuscript in ACP.

Response: Thanks so much for your positive comments and kind work on our manuscript. As you suggested, we made the corrections point by point in the revised manuscript.

1. The authors mentioned emission control measures contributed 63.5%, 44.1% and 31.2% to the reductions of $PM_{2.5}$, SO_2 and NO_2 in DG20 II relative to BG20. And meteorological conditions made negative contributions. What are the other factors contributing to the reduction of the observed pollutants?

Response: Your question is quite important. Normally, the pollutant concentration is determined by the strength of emission source, chemical processes, and physical processes (meteorological conditions). In our study, we assumed that no significant change occurred in the chemical processes affecting the concentrations of these primary pollutants from BG20 to AG20. To some extent, the key factors affecting the photochemical reactions such as the intensity of solar irradiation could be indirectly reflected by the meteorological condition. Indeed, we assumed no significant change in the other reactive gases involved in the chemical reactions with these pollutants from BG20 to AG20. Therefore, the variation of the observed pollutants could be roughly attributed to the net contribution of emission control measures and meteorological conditions. In the revised manuscript, we have added "Here we assumed no significant change in chemical processes (specifically the other reactive gases involved in these pollutants) from BG20 to AG20."

2. What are the contribution of emission control measure and meteorological conditions to O_3 concentration?

Response: According to the calculation method as depicted in the manuscript, the contribution of

meteorological conditions to the increased O_3 concentration was estimated to be 16.4% in this study. For the contribution of emission control measures, it was quite complex and should be separate discussed in different periods. During the period from BG20 to DG20I, the control measures on reducing the emission of VOCs sources except fuel combustion were really effective in alleviating O_3 pollution, which is confirmed by the decreased OFP. Unfortunately, during this period the unfavorable meteorological conditions such as the enhanced intensity of solar irradiation and regional transport both aggravated the O_3 pollution. In DG20 II, significant reduction of NO_x due to the additional vehicle controls might lead to the increase in O_3 concentration during G20. It was not only because this region was under the VOC-limited regime in Hangzhou revealed by the results of OBM, but also due to the decreased titration effect of NO on O_3 in the morning and evening traffic rush hour during this period. These effects significantly worsen the effectiveness of control measures in vehicle exhaust on reducing OFP. Thus, the final contribution of emission control measures to the increased O_3 concentration was estimated to be 21.5% in this study.

3. I don't understand the variation of CO concentration during different stages. The authors mentioned fuel combustions should be the reason. Is there any evidence? Why did fuel combustion increase during G20?

Response: As we know, atmospheric CO is normally derived from human activities including fuel combustion (coal combustion, farming, residual usage, etc.). As illustrated in the Section 3.4 in the manuscript, industrial process with coal combustion and vehicle exhaust were strictly limited throughout the whole G20 period. In addition, straw combustion was excluded according to the decrease in the number of fire spots in the same time period from BG20 to AG20. On the contrary, to ensure the clean energy used in 2016 G20, local government accelerated the supply of liquid natural gas and liquid petroleum gas (ZPSY, 2016, 2017). The consequent CO was more produced from the incomplete combustion of these fuels during G20 relative to BG20. The emission control measures might be poorly effective on CO reduction, specifically on fuel combustion. Also in our study, ethylene, as a representative tracer of fuel combustion, showed continuous increase from BG20 to DG20, further confirming the ineffectiveness of control measures in this source. Therefore, CO showed a gradual increase. This phenomenon was also found in another research conducted during G20 in 2016 (Zhao et al., 2017).

Reference:

Zhao, J. P., Luo, L., Zheng, Y. J., Liu, H. H.: Analysis on air quality characteristics and meteorological

conditions in Hangzhou during the G20 summit, Acta Scientiae Circumstantiae, 37(10), 3885-3893, 2017. (In Chinese)

4. Other minor errors:

Line 61-62: no need to mention "which are dominant compounds of fine particulate matter". Delete it Accept

Line 69-70 the complexity of mitigating secondary photochemical pollution is also highly related with intricately photochemical reactions. Thus add the phase "in addition to intricate photochemical reactions".

Accept

Line 207-210: This section belongs to the description of emission control measures. Thus suggest moving it in Introduction.

Accept.

Line 429-459 The Conclusion is a bit long. The authors are encouraged to shorten this Section. Response: Accept. According to your suggestion, we shorten the Conclusion as "In this study, ground-based concentrations of atmospheric trace gases and particulate matter, together with meteorological parameters, were measured at a NRCS site in urban Hangzhou before, during, and after G20. We found significant decreases in atmospheric VOCs, PM_{2.5}, NO_x, and SO₂ in DG20 relative to BG20 and AG20, respectively, under the unfavorable meteorological conditions (e.g., stable weather pattern and regional transport). This evidence well indicated that the powerful control measures have taken effect in their emissions in Hangzhou. On the contrary, observed DMA8 O₃ increased from BG20 to DG20 I, which was attributed to the regional transport from the northern provinces and the enhanced solar radiation intensity, and then decreased from DG20 II to AG20. The decreases in the peak concentration of daily O₃ and the OFP estimated from various VOCs sources both suggested the effectiveness of stringent control measures on reducing atmospheric O₃ concentrations. Unlike O₃, PAN exhibited gradual decrease from BG20 to DG20. With the OBM model, we found acetaldehyde and methyl glyoxal (MGLY) to be the most important second-generation precursors of PAN, accounting for 37.3-51.6% and 22.8%-29.5% of the total production rates. Furthermore, we confirmed that the production of PAN was sensitive to anthropogenic and biogenic VOCs (isoprene) throughout the whole period, specifically aromatics in BG20 and DG20 I but alkenes in AG20. Similarly, the sensitivity of ozone formation was also under VOC-limited regime throughout G20 period. These findings suggest

that reducing emissions of alkanes, alkenes, and aromatics would mitigate photochemical smog including PAN and O₃ formation. Furthermore, traffic (vehicle exhaust and gasoline evaporation) and industrial sources (solvent utilization, industrial manufacturing, and chemical feedstock) were found to be the major VOCs sources before G20, accounting for ca. 50.0% and 31.7% of the total, respectively, with the ozone formation potential (OFP) of 14.4 ppbv and 16.1 ppbv. Large decreases were found in the sources and OFPs of solvent utilization (74.1% and 17.3%), followed by vehicle exhaust (57.4% and 77.2%) and industrial manufacturing (56.0% and 40.3%) response to the stringent control measures during G20. We also appeal to pay attention on controlling fuel combustion and biogenic emission especially when anthropogenic VOCs were substantially reduced following the process of control measures." in the revised manuscript.

Exploring the inconsistent variations in atmospheric primary and 1 secondary pollutants during the G20 2016 Summit in Hangzhou, China: 2 implications from observation and model 3 Gen Zhang^{1,2*}, Honghui Xu^{3*}, Hongli Wang⁴, Likun Xue⁵, Jianjun He¹, Wanyun Xu¹, Bing Qi⁶ 4 Rongguang <u>Du⁶</u>, Chang Liu¹, Zeyuan <u>Li⁵</u>, Ke Gui¹, Wanting <u>Jiang⁷</u>, Linlin Liang¹, Yan Yan¹, Xiaoyan 5 Meng⁸ 6 State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, 7 Chinese Academy of Meteorological Sciences, Beijing 100081, China 8 9 Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing 10 University of Information Science & Technology, Nanjing 210044, China 11 ³Zhejiang Institute of Meteorological Science, Hangzhou 310008, China 12 State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution 13 14 Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China 15 ² Environment Research Institute, Shandong University, Ji'nan, Shandong 250100, China ⁶ Hangzhou Meteorological Bureau, Hangzhou 310051, China 16 Plateau Atmospheric and Environment Laboratory of Sichuan Province, College of Atmospheric 17 Science, Chengdu University of Information Technology, Chengdu 610225, China 18 19 State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China 20 *Correspondence to: Gen Zhang (zhanggen@cma.gov.cn) and Honghui Xu (forsnow@126.com) 21 22 Abstract. Complex aerosol and photochemical pollution (ozone and peroxyacetyl nitrate (PAN)) frequently occur in eastern China and mitigation strategies to effectively alleviate both kinds of pollution 23 24 are urgently needed. Although the effectiveness of powerful control measures implemented by the 25 Chinese State Council has been comprehensively evaluated on reducing atmospheric primary pollutants, the effectiveness on mitigating photochemical pollution is less assessed and therein the underlying 26 mechanisms are still poorly understood. The stringent emission controls implemented from 24 August to 27 28 6 September, 2016 during the summit for Group of Twenty Finance Ministers and Central Bank Governors (G20) provides us a unique opportunity to address this issue. Surface concentrations of 29 30 atmospheric O₃, PAN, and their precursors including volatile organic compounds (VOCs) and nitrogen dioxides (NO_x) , in addition to the other trace gases and particulate matter were measured at the National 31 Reference Climatological Station (NRCS) (30.22 °N, 120.17 °E, 41.7 m a.s.l) in urban Hangzhou. We 32 found significant decreases in atmospheric PAN, NO_x, the total VOCs, PM_{2.5}, and sulfur dioxide (SO₂) 33

删除的内容: Xu ²
带格式的: 字体:非加粗
带格式的: 字体:非加粗
删除的内容: Wang ³
带格式的: 字体:非加粗
带格式的: 字体:非加粗
刪除的内容: Xue ⁴
带格式的: 字体:非加粗
刪除的内容: Qi ⁵
带格式的: 字体:非加粗
刪除的内容: Du⁵
带格式的: 字体:非加粗
删除的内容: Li ⁴
带格式的: 字体:非加粗
删除的内容: Jiang ⁶
带格式的: 字体:非加粗
删除的内容: Meng ⁷
带格式的: 字体:非加粗
删除的内容: ²
删除的内容:3
删除的内容:4
刪除的内容: ⁵
删除的内容: ⁶
删除的内容:7

under the unfavorable meteorological condition during G20 (DG20) relative to the adjacent period 48 49 before and after G20 (BG20 and AG20), indicating that the powerful control measures have taken into effect on reducing the pollutants emissions in Hangzhou. Unlike with the other pollutants, daily 50 51 maximum average-8 h (DMA8) O₃ exhibited a slight increase and then decrease from BG20 to AG20, which was mainly attributed to the variation in the solar irradiation intensity and regional transport 52 53 besides the contribution from the implement of stringent control measures. Results from observation-based chemical model (OBM) indicated that acetaldehyde and methyl glyoxal (MGLY) 54 55 were the most important second-generation precursors of PAN, accounting for 37.3-51.6% and 22.8%-29.5% of the total production rates including the reactions of OVOCs, propagation of other 56 57 radicals, and the other minor sources. Moreover, we confirmed the productions of PAN and O_3 were both sensitive to VOCs throughout the whole period, specifically dominated by aromatics in BG20 and DG20 58 59 but alkenes in AG20. These findings suggested that reducing emissions of aromatics, alkenes, and alkanes would mitigate photochemical pollution including PAN and O₃. Source appointment results <u>attributed</u> the 60 61 reductions of VOCs source and ozone formation potentials (OFP) during G20 to the effective emission 62 controls on traffic (vehicle exhaust) and industrial processes (solvent utilization and industrial 63 manufacturing). However, fuel combustion and biogenic emission both weakened such effect with 64 sizeable contribution on the VOCs mixing ratios (18.8% and 20.9%) and OFPs (25.6% and 17.8%), 65 especially during the latter part of G20 (G20 II) when anthropogenic VOCs were substantially reduced. This study highlights the effectiveness of stringent emission controls in relation to traffic and industrial 66 67 sources, but a coordinated program related with controlling fuel combustion and biogenic emissions is 68 also required on addressing secondary pollution.

69 1 Introduction

81

70 Complex atmospheric pollution including particulate matter and photochemical pollution (ozone (O_3)) and peroxyacetyl nitrate (PAN)) is a pervasive environmental issue in eastern China (Geng et al., 2007; 71 72 Ding et al., 2013; Mo et al., 2015; Li et al., 2016; Zhang et al., 2018). Numerous mitigation strategies have been released by the Chinese government, such as the nationwide application of flue-gas 73 74 desulfurization (FGD) devices in power plants after 2006 (Feng et al., 2014) and "Atmospheric Pollution Prevention and Control Action Plan" in 2013 (Zhang et al., 2016). As expected, ambient 75 76 concentrations of primary gas pollutants such as sulfur dioxide (SO₂) (Koukouli et al., 2016) and nitrogen oxides $(NO_x = NO + NO_2)$ (de Foy et al., 2016) showed good response to emission reductions. 77 78 However, secondary atmospheric pollutants such as ozone and secondary aerosols, frequently exceeded their respective Chinese Grade II standards over urban cities in China (Wang et al., 2014). Severe haze 79

so pollution, mainly comprised of $PM_{2.5}$ (particles within 2.5 μ m diameter range), still occur in China

during wintertime, although it started to decline during the 11th Five-Year Plan period (Huang et al.,

删除的内容: attribute

删除的内容:, which are dominant compounds of fine particulate matter,

2014; Cheng et al., 2016; Miao et al., 2018; Miao and Liu, 2019). Surface O₃ also exhibits a rapid 85 increasing trend over China since 2000 (Verstraeten et al., 2015; Wang et al., 2017), with high levels 86 (9.5-14.0 ppbv) of PAN often encountered during O₃ pollution events (Shao et al., 2009; Liu et al., 2010; 87 88 Zhang et al., 2012a; Zhang et al., 2014; Zhang et al., 2015; Xue et al., 2014c). Due to the highly nonlinear response of O₃ and PAN to primary pollutant emissions, in addition to intricate photochemical 89 90 reactions, the mitigation of secondary photochemical pollution is even more challenging. In the troposphere, O_3 and PAN are both formed in photochemical reactions of VOCs in the presence of NO_x. 91 92 However, PAN is exclusively formed by the oxidation of a small part of VOCs that can generate peroxy acetyl radical (CH₃C(O)O₂, PA) including oxygenated VOCs (OVOCs) such as acetaldehyde, acetone, 93 94 methacrolein (MACR), methyl vinyl ketone (MVK), and methyl glyoxal (MGLY) (Williams et al., 2000; LaFranchi et al., 2009), while O₃ formation involves almost all VOCs. Therefore, PAN is considered to 95 96 be a better indicator for photochemical smog than O₃ (McFadyen and Cape, 2005). In addition, these OVOCs are mainly oxidation products (here referred to secondary precursors of PAN) of a certain class 97 98 of hydrocarbons (e.g., ethane, propene, isoprene, and some aromatics) by the oxidations of OH/NO₃/O₃. 99 The relative importance of individual precursors to the formation of PAN and O₃ varies from place to 100 place depending on the reactivity and composition of VOCs. Identification of the dominant precursors is the key to effective control of photochemical pollution, which, however, remains poorly characterized 101 102 in China.

Recently, a series of temporary and stringent emission control measures were implemented in China during several mega-events including the 29th Summer Olympic Games (August 2008), the 21th Asia-Pacific Economic Cooperation (APEC) conference (November 2014), and China Victory Day Parade (Victory Parade 2015) in Beijing (Verstraeten et al., 2015) and the surrounding areas (Xu et al., 2010; Zhang et al., 2012b; Gao et al., 2011; Li et al., 2017). During these events, the effectiveness of a series of emission control measures on reducing atmospheric primary pollutants, in particular to the particulate matter, has been comprehensively evaluated, but <u>less</u> on photochemical pollution.

In September 2016, the Group of Twenty (G20) summit was hosted in Hangzhou, the capital city of 110 Zhejiang Province, which is located along the mid-Yangtze River Delta (YRD) in the eastern part of 111 112 China. Similar with other major events held in Beijing, rigorous temporal control measures were set to reduce emissions of air pollutants in Hangzhou and the adjacent regions including Zhejiang, Shanghai, 113 Jiangsu, and Anhui province from 24 August to 7 September_including Phase I (24-27 August) and 114 Phase II (28 August-6 September). These control measures included restrictions on the number of 115 vehicles, limited production or complete shut-down of industrial enterprises, and temporary cessation of 116 construction activities, and the target sources incorporated vehicles, paint and solvent use, steel factories, 117 chemical factories, power plants. During phase I the government implemented strict emission control 118

measures in industrial source, power plant, and residential and the phase II referred to the additional
 controls measures as vehicles controls in the Hangzhou and surrounding provinces (including Zhejiang,
 Jiangsu, Jiangxi, and Anhui).

125 In this study, to evaluate the effectiveness of emission control measures on reducing pollutant concentrations, we compared the variations of atmospheric O3, PAN, particulate matter, VOCs, NOx, 126 127 and other trace gases before, during, and after G20, also demonstrating the effect of meteorological conditions by using WRF-Chem model. An observation-based chemical box model (OBM) was used to 128 129 identify the predominant precursors and key chemical processes in PAN and O₃ formation and to further assess the effect of reducing their respective precursors before, during, and after G20. Positive matrix 130 131 factorization (PMF) was employed to appoint the corresponding sources of various VOCs and compare their variations and their respective ozone formation potentials (OFPs) before, during, and after G20. 132

133 **2. Experimental**

134 2.1 Observations

In-situ observations of atmospheric PAN, O₃, and VOCs and a suite of associated chemical species and 135 meteorological parameters, including NOx, CO, SO2, fine particulate matter (PM2.5), were conducted at 136 an urban site named as National Reference Climatological Station (NRCS) (30.22°N, 120.17°E, 41.7 m 137 a.s.l) in the center of Hangzhou as shown in Fig. 1. PAN was measured by a modified gas 138 chromatography (Agilent 7890B, USA) equipped with electron capture detector, which has been 139 described in our previous studies in details (Zhang et al., 2012a; Zhang et al., 2014; Zhang et al., 2015). 140 Trace gases including O₃, SO₂, NO_x, and CO were detected by a set of commercial trace gas analyzers 141 (Thermo Environmental Instruments Inc., USA i-series 49i, 43i, 42i, and 48i), respectively (Zhang et al., 142 2018). All trace gas analyzers were weekly span and daily zero checked. Ambient VOCs were measured 143 by using an on-line gas chromatography (Syntech Spectras Instrument Co., Ltd., The Netherlands) 144 coupled with dual detectors (Photo Ionization Detector (PID) and flame ionization detector (FID) for 145 quantifying C₂-C₅ VOCs (GC955 series 811) and PID for detecting C₆-C₁₂ VOCs (GC955 series 611). 146 Ambient PM2.5 samples were collected using co-located Thermo Scientific (formerly R&P) Model 147 148 1405D samplers. PM-Coarse and PM2.5 particulate, split by a virtual impactor, each accumulate on the system's exchangeable TEOM filters. By maintaining a flow rate of 1.67 L min⁻¹ through the coarse 149 sample flow channel and 3 L min⁻¹ through the PM_{2.5} sample channel, and measuring the total mass 150 accumulated on each of the TEOM filters, the device can calculate the mass concentration of both the 151 152 PM_{2.5} and PM Coarse sample streams in near real-time.

4

153 **2.2 Models**

删除的内容: Figure S1 in Supplement (SI).

156 **2.2.1 WRF-Chem model**

157	To quantify the separate effects of meteorological condition (EMC) and emission control measures	
158	(ECC) on observed particulate concentrations, we performed simulations using Weather Research and	删除的内容: EEC
159	Forecasting model coupled to Chemistry (WRF-Chem). WRF-Chem V3.9 was used to simulate the	
160	variation of PM _{2.5} concentration from Aug. 6 00:00 UTC, 2016 to Sep. 16 00:00 UTC, 2016.	
161	Multi-resolution Emission Inventory for China at 0.25° in 2016, developed by Tsinghua University	
162	(http://www.meicmodel.org/), was used as input for WRF-Chem. WRF-Chem was configured to have	
163	two nested domains, i.e. an outer domain with horizontal resolution of 25 km (140×100 grid points)	
164	covering East China and the surrounding areas and an inner domain with 5 km-resolution (101×101 grid	
165	points) covering Yangtze River Delta. Hangzhou is located in the center of domain. Vertically, there	
166	were a total of 35 full eta levels extending to the model top at 50 hPa, with 16 levels below 2 km. The	
167	National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) data	
168	available at 1°×1° every six hours were used meteorological driving fields. Analysis nudging was used	
169	for domain one. RADM2 chemical mechanism and MADE/SORGAM aerosols were used in this study.	
170	Here we assumed no significant change in chemical processes (specifically the other reactive gases	删除的内容: In principle
171	involved in the chemical reactions with these pollutants) from BG20 to AG20. Thereby, the net	
172	contribution (NCC) of emission controls and meteorological conditions primarily results in the	
173	difference between observed PM _{2.5} before and during G20, which is represented by the ratio of	
174	(observed PM2.5 (BG20)-observed PM2.5 (DG20 II))/observed PM2.5 (BG20). The effect of	删除的内容: Observed
175	meteorological conditions (EMC) was quantified by comparing the modeled PM _{2.5} without emission	删除的内容: Observed
176	controls before and during G20 under their respective meteorological condition (Equation 1). Thereby,	删除的内容: Observed
177	the effect of emission controls (ECC) could be obtained through the difference between NCC and EMC	
178	before and during G20 (Equation 2) below	
	Modeled $PM_{25}(BG20) - Modeled PM_{25}(DG20 II)$	

删除的内容:(NCC - EMC)

$EMC = \frac{Modeled \ TM_{2.5}(B020) - Modeled \ TM_{2.5}(B020)}{Modeled \ PM_{2.5}(BG20)}$	$\times 100\%$	(1)
$ECC = (NCC - EMC) \times 100\%$		(2)

In general, the modeled results of $PM_{2.5}$ before and after G20 can reproduce the observation results (mean bias (MB) =2.46, root mean-square error (RMSE) = 15.5, R = 0.63, p < 0.01), providing the basis of the following comparison.

182 2.2.2 Backward trajectories analysis

To determine the influence of regional transport on the pollutant concentrations, 24 h air mass back trajectories starting at 300 m from NRCS site were calculated by using the National Oceanic and Atmospheric Administration (NOAA) HYSPLIT-4 model with a $1^{\circ} \times 1^{\circ}$ grid and the final meteorological

database. The 6-hourly final archive data were obtained from the National Center for Environmental 192 Prediction's Global Data Assimilation System (GDAS) wind field reanalysis. GDAS uses a spectral 193 model. medium-range forecast More details can be found at http://www.arl. 194 195 noaa.gov/ready/open/hysplit4.html. The model was run 24 times per day. The method used in trajectory clustering was based on the GIS-based software TrajStat (Wang et al., 2004). 196

197 2.2.3 Observation-based chemical box model (OBM)

198 Here we used OBM model to simulate in situ PAN and O₃ production and their sensitivity to changes in PAN and O_3 precursors, which has been successfully implied in our previous studies (Xue et al., 2014a; 199 Xue et al., 2014c; Xue et al., 2016; Li et al., 2018). In brief, the model was built on the latest version of 200 the Master Chemical Mechanism (MCM v3.3), an explicit mechanism describing the degradation of 143 201 primarily emitted VOC, resulting in 17,224 reactions involving 5833 molecular and free radical species 202 (Saunders et al., 2003). Besides the existing reactions in MCM v3.3, the heterogeneous reactions of 203 NO₂, HO₂, NO₃, and N₂O₅ were also incorporated. In addition, we also optimized the model with some 204 physical processes such as the variations of boundary layer height and solar zenith angle, dry deposition, 205 and the dilution of air pollutants within the planetary boundary layer (Xue et al., 2014b). The photolysis 206 frequencies appropriate for Hangzhou are parameterized using a two-stream isotropic-scattering model 207 under clear sky conditions. In this study, all of these reactions were tracked and grouped into a small 208 number of formation pathways, such as acetaldehyde, acetone, MACR, MVK, MGLY, other OVOCs, 209 reactions of O₃ with isoprene and MPAN, and propagation of other radicals to PA. The production rate 210 211 of PA could be estimated as the sum of these reaction rates. The ozone production rates were calculated through the oxidation of NO by HO₂ and RO₂, and its destruction rates were mainly facilitated by O_3 212 213 photolysis and reaction with NO, NO₂, OH, HO₂, and unsaturated VOCs. Moreover, we investigated the 214 sensitivities of PAN and O_3 formation to their respective precursor species by introducing a relative 215 incremental reactivity (RIR) concept which is widely applied in the OBM investigation of PAN and 216 ozone formation (Chameides et al., 1999; Xue et al., 2014c). In this calculation, we performed model calculations during the period of 20 August-10 September, 2016, during which the VOCs measurement 217 218 were available. The model was run based on the hourly average profiles of PAN, O₃, CO, SO₂, NO, NO₂, C₂-C₁₀ NMHCs, air temperature and pressure, and RH measured at NRCS site. During the simulation, 219 220 the model was pre-run for three days with constrain of the data of 20-22 August so that it reached a steady state for the unmeasured species (e.g., MACR, MVK, HONO, radicals). More detailed 221 222 description of this model has been given in previous studies (Jenkin et al., 2003; Xue et al., 2014a; Xue et al., 2014c). 223

224 2.2.4 Positive matrix factorization (PMF) Model

Positive matrix factorization (PMF) is an effective source apportionment receptor model based on the fingerprints of the sources that does not require the source profiles prior to analysis and has no limitation on source numbers (Hopke, 2003; Pentti and Unto, 1994). The data used in PMF is of the form of an $i \times j$ matrix X, in which i is the sampling number and j is the number of species. Based on chemical mass balance of the pollutants, the following equation can be derived as:

$$X_{ij} = \sum_{k=1}^{p} g_{ik} f_{ik} + e_{ij}$$

where p is the number of the sources (i.e., the number of factors), f is the profile of each source, g refers to the contribution of each factor to the total concentration, and e is the residual. Factor contributions and profiles are derived by minimizing the total scaled residual Q:

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{e_{ij}}{u_{ij}}\right)^2$$

where u is the uncertainty of the sampling data. More details about principles have been found elsewhere (Cai et al., 2010; Zhang et al., 2013; Li et al., 2017; Li et al., 2015). In this study, we used EPA PMF 5.0 model to identify major VOCs sources and their temporal variations. We discarded the species that were below MDL for more than 50% of the time or showed a significantly smaller signal to noise ratio (S/N). The uncertainties for each sample and species were calculated based on the following equation if the concentration is greater than the method detection limit (MDL) provided:

Uncertainty = $\sqrt{(0.5 \times DML)^2 + (\text{Error Fraction} \times \text{Concentration})^2}$

Values below the detection limit were replaced by one-half of the MDL and their overall uncertainties were set at five-sixths of the MDL values. In this analysis, different numbers of factors were tested. The robust mode was used to reduce the influence of extreme values on the PMF solution. More than 95% of the residuals were between -3 and 3 for all compounds. The Q values in the robust mode were approximately equal to the degrees of freedom.

244 3 Results and discussion

In order to comprehensively evaluate air quality during the G20 period, we compared the concentrations of pollutants during G20 with the adjacent time period in 2016, respectively. According to the control measures schemes, we classified the whole period into three episodes: one week before G20 (BG20) (16-23 August, 2016), during G20 (DG20) (24 August-6 September) including Phase I (24-27 August) and Phase II (28 August-6 September), and one week after G20 (AG20) (7-15 September),

250 **3.1 Evolutions of meteorological condition**

First, we looked into the day-to-day variations of meteorological parameters and atmospheric pollutants from BG20 to AG20 in Fig. <u>S1</u> in <u>Supplement (SI)</u>. In the period of BG20 and the beginning of DG20 I

7

删除的内容:

已上移 [1]: During phase I the government implemented strict emission control measures in industrial source, power plant, and residential and the phase II referred to the additional controls measures as vehicles controls in the Hangzhou and surrounding provinces (including Zhejiang, Jiangsu, Jiangxi, and Anhui).

删除的内容:S2

(16-25 August), subtropical anticyclone dominated the Hangzhou and surrounding area, leading to 265 continuous 10 days with daily mean temperature of 31.5 °C ranged from 29.9-32.5 °C and strong solar 266 irradiation intensity (mean daily maximum value: 369.4 W m⁻²), favorable for the photochemical 267 268 production of O₃ and PAN. The highest O₃ (113.4 ppbv) occurred at 13:00 LT on 25 August under the maximum air temperature of 35.2 °C. Meanwhile, the mean daily maximum height of mixing boundary 269 270 layer (MBL) during this period was up to ca. 1895 m, beneficial for the diffusion of atmospheric primary pollutants in the vertical direction. In addition, the prevailing wind was from east (15.1%) with 271 272 a mean wind speed of 2.9 m s⁻¹. Results from the backward trajectory simulations demonstrated that the air masses from the east originated from the East China Sea and Yellow Sea, bringing in clean marine 273 274 air (Fig. \$2). Thus, meteorological conditions before G20 were favorable for the dispersal of atmospheric pollutants. On 26 and 27 August, the weather pattern changed to a cold continental high 275 with showery and windy days. The total precipitation and mean wind speed both reached their 276 respective maximums of 14.6 mm and 3.7 m s⁻¹ on 26 August. Accordingly, all species except CO 277 significantly decreased by 12.3% for SO₂, 29.7% for NO_x, 6.7% for PM_{2.5}, 11.9% for daily maximum 278 279 average-8 h (DMA8) O₃, and 56.1% for PAN relative to BG20. With respect to the last half of DG20 I 280 and the beginning of DG20 II (28-31 August), the prevailing wind experienced a shift from northwest to west and to southwest. On 28 August, the prevailed wind was from the north with the average daily 281 maximum wind speed of 3.9 m s^{-1} during G20, and the relative humidity rapidly decreased by 26.2% 282 relative to the previous day. As seen in Fig. S3, air masses arrived at Hangzhou from the north passed 283 284 through all of Jiangsu Province and northern parts of Zhejiang Province, two of the most developed provinces in China, with intense human activities. They carried higher PM2.5, SO2, NOx, and CO 285 loadings than the other clusters (See Table S1). On 1 September, the prevailing wind was from 286 southwest with high wind speeds (3.3 m s⁻¹). Results from back trajectories indicated that the 287 southwesterly air masses originated from northern Jiangxi Province, transported over western Zhejiang 288 289 Province, and arrived at Hangzhou, with high concentration loadings of SO₂, particulate matter, O₃, and PAN. The increased relative humidity (56.5%) relative to 49.5% on 31 August was beneficial for the 290 formation of particulate matter. During 2-4 September, Hangzhou area witnessed a stable 291 292 meteorological condition with weak wind (ws < 2.6 m/s), continuously high air temperature (daily maximum average: 32.2 °C), and moderate relative humidity (ca. 60%). Such condition was favorable 293 294 for the accumulation of particulate matter and the photochemical production of O₃. It caused significant increases by 25.1% for PM_{2.5}, 16.7% for PM₁₀, and 10.7% for O₃ compared with BG20, in contrast to 295 the large decreases by 56.4% for SO2 and 27.9% for NOx due to the implement of emission control 296 measures. Overall, the meteorological condition during G20 II was not favorable for the dispersal of 297 atmospheric primary pollutants but beneficial for producing O₃. However, with the proceeding of the 298

删除的内容:S3

删除的内容:WS

stringent control measures, the most distinct drops of pollutants concentrations were found on 5 301 September, with the large reductions of 50.0% for PM_{2.5}, 18.3% for DMA8 O_3 , 55.7% for SO₂, 41.3% 302 for NOx, and 65.6% for PAN relative to BG20, respectively. Within AG20, 7 rainy days with mean daily 303 304 total precipitation of 18.7 mm occurred as well as 6 days with low wind speed (ca. 2.0 m/s) and 8 days with low MBL (<1000 m). Such meteorological condition was beneficial for scavenging the particulate 305 306 matter and SO₂ by wet deposition in addition to the accumulation of NO_x. In addition, weak solar irradiation intensity was not favorable for the photochemical formation of O₃ and PAN. On 7 September 307 308 a moderate showery lasted from 2:00 LT to 11:00 LT with daily total precipitation of 9.5 mm, accompanied by low air temperature (21.5 °C) and wind speed (1.8 m/s). Compared with the previous 309 310 day, significant decreases of DMA8 O₃ (22.6%) was found as expected, while together with a small reduction ratio of PM2.5 (2.7%) and unexpected increases for NOx (41.1%) and SO2 (175.1%), indicating 311 312 that emissions immediately bounced back after lifting the ban on emission controls.

313 **3.2 Evolutions of pollutant concentrations**

Statistically, observed daytime concentrations of PM2.5, NOx, and SO2 in DG20 II both exhibited 314 significant decreases relative to those in BG20 with the reduction ratios of 11.3%, 17.0%, and 18.0%, 315 respectively (Fig. 2). Furthermore, by using WRF-Chem model we quantified the contributions of the 316 emission control measures (ECC) with 63.5%, 44.1%, and 31.2% to the reductions of PM2.5, SO2, and 317 NO₂ in DG20 II relative to BG20, respectively, but for the meteorological conditions it made negative 318 319 contributions. This evidence well indicated that powerful control measures have taken into effect on 320 reducing pollutant emissions in Hangzhou under the unfavorable meteorological conditions. The large 321 decreases of NO_x and SO₂ reflected the reduction of vehicle exhaust and coal consumption during G20 322 in Hangzhou and surrounding areas. It is worth noting that CO showed gradual increases (ca. 20.7%) 323 from BG20 to DG20, which was mainly attributed to the weak control in fuel combustion. Specifically, 324 residential usage and liquid natural gas and petroleum gas around YRD regions during this period might 325 account for such unique pattern of CO. The other two types of fuel combustion including straw combustion and coal combustion were both excluded as discussed in Section 3.4. Under the same 326 327 stringent control measures, the variation of O₃ was not consistent with the primary pollutants. Observed DMA8 O₃ increased by 12.4% in DG20 I relative to BG20, which was attributed to regional transport 328 329 from the northern provinces and the enhanced solar radiation intensity. Afterwards, DMA8 O₃ decreased by 33.4% from DG20 II to AG20 (Fig. 2), as did the peak values of mean daily O_3 in DG20 II compared 330 331 to BG20 and DG20 I (Fig. <u>S3</u>). This evidence suggests that additional vehicles controls implemented during DG20 II might have played an important role in reducing atmospheric O₃ pollution in Hangzhou 332 333 reflected by shaping such unique diurnal variation, which was also confirmed by the decreased OFP from vehicle exhaust below. Elevated O_3 during DG20 rush hours (as shown in Fig. <u>S1</u> and <u>S2</u>) was 334

删除的内容:1

删除的内容: . Fuel combustions, 删除的内容: including 删除的内容: ,

删除的内容: S4	
删除的内容: S2	

删除的内容:1

删除的内容:S3

attributed to the reduced titration of fresh NO emission under the control measures on vehicle exhaust. 343 Considering such effects, O_x (represented by the sum of O_3 +NO₂) was used to determine the local 344 photochemical formation. The variation of DMA8 O_x was similar with O_3 , with distinct decreasing 345 346 trend from DG20 II to AG20. For PAN, it showed different pattern with O₃. Daytime PAN exhibited significant decrease (ca. 45.4%) found from BG20 to DG20 II and then it sharply built up to similar 347 348 magnitudes in AG20 with BG20. Thereby, it both indicates the significant effectiveness of emission control measures on reducing local photochemical formation of O_3 and PAN. The underlying formation 349 350 mechanisms of PAN and O₃ including their respective key precursors and chemical process are elucidated in Sect.3.3. 351

352 With respect to VOCs, the mixing ratios of total VOCs also showed significant reduction of 20.0% in DG20 compared with BG20, but increased by 104.1% in AG20 after control (Table S2). Alkanes were 353 354 the most abundant VOCs group (55.4%) in all periods, and were reduced by 19.8% from BG20 to DG20. On the contrary, alkenes increased by 20.0% in DG20 compared to BG20, among which ethylene 355 356 accounted for 63.9%-78.0% during the three periods, although other alkenes decreased to a minor extent. 357 As expected, aromatics were reduced by 49.7% in DG20 compared with BG20. Ambient mixing ratios 358 of specific VOCs at NRCS station are summarized in Table S3. Ethane, ethylene, benzene, and toluene are the four most abundant species during all the periods. Compared with BG20, except ethane, 359 360 isopentane, and ethylene, the mixing ratios of all species decreased in DG20. Ethylene, as a representative tracer of fuel combustion, showed continuous increase from BG20 to AG20, possibly 361 362 indicating the ineffectiveness of control measures in this source.

363 3.3 Identification of the Key Precursors and Chemical Processes for PAN and O₃

364 To identify the key precursors and chemical processes for PAN, we employed the observation-based 365 model to investigate the daytime average contributions to PA radical production rates directly from individual pathways for these four episodes (Fig. $\frac{2}{3}$). Acetaldehyde (e.g., oxidation of OH and NO₃) and 366 367 MGLY (e.g., photolysis and oxidation by OH and NO₃) were the most important sources of PA in Hangzhou, accounting for 37.3-51.6% and 22.8%-29.5% of the total production rates. This was in 368 agreement with the findings obtained from the other typical urban areas such as Beijing (Xue et al., 369 2014c; Liu et al., 2010; Zhang et al., 2015), Tokyo (Kondo et al., 2008), Houston, Nashville (Roberts et 370 371 al., 2001), and Sacramento (LaFranchi et al., 2009). Reactions of OVOCs and propagation of other radicals to PA (mainly including decomposition of some RO radicals and reactions of some higher acyl 372 373 peroxy radicals with NO) were also significant sources, with average contributions of 7.1%-9.1% and 18.1%-27.0%, respectively. A minor contribution (\sim 1% in total) was originated from the other pathways 374 375 of O₃+isoprene, O₃+MPAN, acetone, and MVK. Acetaldehyde and other OVOCs are mainly photooxidation products of hydrocarbons, thus it's necessary to further identify the first-generation 376 10

删除的内容:2

precursors of PAN here. We tested the model sensitivity by introducing the concept of relative 378 incremental reactivity (RIR), which is widely used in the OBM study of ozone formation (Chameides et 379 al., 1999). Here RIR is defined as the ratio of decrease in PAN production rates to decrease in precursor 380 381 concentrations (e.g., 20% reduction is used in this study). A number of sensitivity model runs were performed to calculate the RIRs for NO_x, alkanes, alkenes, and aromatics classes as well as the 382 383 individual C_2 - C_{10} hydrocarbon species. As shown in Fig. <u>4a</u>, production of PAN was sensitive to VOCs from BG20 to AG20. Meanwhile, the negative RIR values for NO_x also indicated a VOCs regime of 384 385 PAN production around the G20 period in urban Hangzhou. In terms of BVOCs, the positive RIRs values for isoprene (0.18-0.38) from BG20 to AG20 implied that in-situ formation of PAN at NRCS was 386 387 highly sensitive to isoprene. As to AVOCs, alkenes and aromatics were the most important first-generation PAN precursors, with the RIRs range of 0.24-0.37 and 0.26-0.52, respectively. 388 389 Furthermore, we identified the other specific VOCs controlling PAN production, which were xylenes, trans/cis-2-butenes, trimethylbenzenes, toluene, and propene evidenced by their positive RIRs. 390 391 Compared with their individual RIRs between control and non-control period, the in-situ production of 392 PAN was dominated by aromatics in BG20 and DG20 I, but controlled by alkenes in AG20. Besides 393 secondary acetaldehyde formed by the oxidation of ethanol, most aromatics were mainly emitted by vehicle exhaust. The decreased RIRs of aromatics together with the decreased contribution ratios of 394 395 acetaldehyde to the PA radical formation during G20 both indicated the effectiveness of control measures on vehicle exhaust on reducing atmospheric PAN concentration. Similar with PAN, the 396 397 daytime average RIRs for major groups of O₃ precursors during the episodes are shown in Fig. 4b. Overall, the in-situ ozone formation was also controlled by VOCs from BG20 to AG20. AVOCs were 398 399 dominated by alkenes and aromatics, along with their increasing and decreasing RIRs, respectively. 400 With the proceeding of emission control, the RIR for AVOCs showed gradual decrease from BG20 to 401 DG20, but increased after G20. In contrast, BVOCs (mainly as isoprene) exhibited gradual increases for all periods, especially during the phase II in DG20 and AG20 when their RIRs were both higher than 402 403 those for AVOCs. Thereby, the contribution of BVOCs to the photochemical production of O_3 weakened the effect of stringent control measures on reducing surface O_3 . The RIRs for NO_x were negative 404 405 throughout the period of G20, also indicating a VOC-limited regime for the sensitivity of ozone formation. This suggests that reducing emissions of aromatics, alkenes, and alkanes would alleviate the 406 407 O₃ formation, yet cutting NO_x emissions may aggravate the local O₃ problems.

3.4 Identification of VOCs sources and quantification of their respective ozone formation potential

To distinguish the various sources of VOCs, we compared the PMF profiles with the reference profiles

from the literature as listed below. Seven sources were identified as follows: (1) gasoline evaporation (2)

删除的内容: 3a

删除的内容: 3b

solvent utilization (3) industrial manufacturing (4) industrial chemical feedstock (5) vehicle exhaust (6) 414 fuel combustion (7) biogenic emission. Figure 5 exhibited the modelled source profiles together with 415 the relative contributions of each sources to individual species. The first source is characterized by a 416 417 significant amount (78.5%) of isopentane which is a typical tracer for gasoline evaporation (Liu et al., 418 2008). Therefore, this source was identified as gasoline evaporation. The second source was rich in 419 n-pentane and aromatics. Many aromatics such as BTEX are the dominant components of organic paints, and were regarded as chemical tracers of solvent utilization (Watson et al., 2001). Significant amounts 420 421 of ethylbenzene, xylenes, and n-pentane present in the second source, accounting for 19.2%, 58.8%, and 98.8%, respectively. Thus, the second source was identified as solvent utilization. The third source was 422 423 characterized by high loading of cyclohexane (54.7%) and BTEX (15.1%-46.2%). These compounds are confirmed to be typical species in the industrial manufacturing in China (Liu et al., 2008). Thus, this 424 425 source was representative of industrial manufacturing. The fourth source identified as industrial chemical feedstock (shown in Fig. 5) was characterized by a very little contribution to alkanes and 426 427 aromatics and large amounts of 3-ethyltoluene (29.4%), 3-methylheptane (51.0%), and n-hexane 428 (47.1%), which are typical proxies for industrial chemical feedstock (Liu et al., 2008; Mo et al., 2015). 429 The fifth source was characterized by abundant 2-methylpentane (61.7%) and BTEX, which is a typical tracer for vehicle exhaust (Liu et al., 2008; Li et al., 2015). In addition, 2, 2, 4-trimethylpentane is a fuel 430 431 additive used to gain higher octane ratings (McCarthy et al., 2013) with high abundance of 21.4% in this source and thus it is identified as vehicle exhaust. The sixth source profile shown in Fig. 5 was in 432 433 relation to 48.9% of the total measured ethylene mixing ratios, of which was major species emitted from fuel combustion process (Li et al., 2015). It was also characterized by significant amounts of ethane, 434 435 propane, n-butane, propene, and benzene. Ethane and propane are the tracers of natural gas and liquid 436 petroleum gas (LPG) usage, respectively, and the source profiles of resident fuel combustion in China 437 contained alkenes (Wang et al., 2013). Coal combustion can release a large amount of BTEX into the atmosphere and styrene is a typical indictor of industrial manufacturing in China (Liu et al., 2008; Li et 438 439 al., 2015). Thus, this source was believed to be as fuel combustion related with industrial process and residual usage. The seventh source was distinguished by a significant amount of isoprene, a 440 441 representative indicator of biogenic emission. About 93.1% of the total isoprene mixing ratios is apportioned to this factor (Guenther et al., 1995). There were very small quantities of the other species 442 443 such as aromatics (0-1.8%) in this factor. Therefore, it was excluded from biomass burning but mainly identified as biogenic emission. Figure \underline{b} shows the variation of the seven sources during the four 444 periods. Clearly, anthropogenic sources such as solvent utilization, industrial manufacturing, vehicle 445 exhaust, fuel combustion, and industrial chemical feedstock were the predominant sources to the total 446 VOCs before and after G20, as high as 52.4%-81.7%. Furthermore, anthropogenic emission showed 447

删除的内容:4

删除的内容:4

删除的内容:4

删除的内容:5

significant reductions during G20 response to the stringent emission control. In BG20, solvent 452 utilization was the predominant contributors to VOCs mixing ratios, contributing 1.88 ppbv, followed 453 by vehicle exhaust (1.77 ppby, 21.6%), industrial manufacturing (1.55 ppby, 19.0%), biogenic emission 454 455 (1.16 ppbv, 14.1%), gasoline evaporation (0.83 ppbv, 10.1%), and fuel combustion (0.35 ppbv, 4.3%). The industry-related emission (industrial manufacturing, chemical feedstock, and solvent utilization) 456 457 together accounted for 50.0% of the total VOCs mixing ratios. The vehicle-related emission sources (vehicle exhaust and gasoline evaporation), accounted for 31.7% of the total VOCs mixing ratios. It 458 459 indicated that traffic and industry sources were the major VOCs sources before the control period. Compared with BG20, the contribution of solvent utilization was reduced to the largest extent, with a 460 461 magnitude of 1.43 ppby, followed by industrial manufacturing (0.69 ppby), and vehicle exhaust (0.38 ppbv), during the first emission control period (DG20 I). According to the control strategy during G20, 462 463 the control measures of source emission were mainly on the industry and power plant in DG20 I, and thus it was responsible for the large reduction of industry-related emission including solvent utilization 464 465 (76.0%), industrial manufacturing (44.0%), and vehicle exhaust (21.0%). With the acceleration of 466 emission control (DG20 II), the contribution of vehicle-related emission was reduced as expected in 467 vehicle exhaust (66.1%) and gasoline evaporation (61.8%) relative to DG20 I, while significant increase was also found in fuel combustion with the increment of 0.7 ppbv (152.6%). After G20, the 468 469 contributions of vehicle-related emission and industry-related emission both showed bounces due to lifting a ban on industry, power plant, and transport in and around Zhejiang Province. It should be 470 471 mentioned that biogenic emission also played an indispensable importance in contributing to the VOCs mixing ratios, from 0.81 ppbv to 1.29 ppbv. About 20.9% of the total VOCs mixing ratios could be 472 473 ascribed to the biogenic emission, acting as the second major source, during the G20 II period. It 474 indicated that biogenic VOCs might make more contribution to the VOCs mixing ratios especially when 475 anthropogenic VOCs were substantially reduced following the process of control measures.

476 Moreover, we quantified their respective ozone formation potential (OFP) before, during, and after G20 477 by using the latest maximum incremental reactivity (MIR) and the appointed concentration profiles above (See Fig. 7). Overall, the total OFP in DG20 was significantly reduced by the implement of 478 479 stringent control measures compared with BG20 and AG20. Specifically, the OFPs of solvent utilization, industrial manufacturing, and vehicle exhaust both showed significant decreases (17.3%-77.2%) 480 compared with BG20, while fuel combustion significantly increased by 52.2% with the OFP of 6.9 ppby, 481 accounting for 25.6% of the total during G20. Thus, it is clear that the high OFP of fuel combustion 482 contributed by ethylene was also responsible for the enhanced concentration of O₃ during G20. Such 483 high OFP from fuel combustion was also elucidated in APEC in Beijing (Li et al., 2015). To classify the 484 specific fuel type, we first examined the fire spots derived from the Fire Inventory NCAR Version-1.5 485

删除的内容:6

(FINNV1.5) in eastern China before, during, and after the period of 2016 G20 (See Fig. S4 in SI). Straw 487 488 combustion was excluded according to the decrease in the number of fire spots in the same time period from BG20 to AG20. As mentioned above, industrial process with coal combustion was strictly limited 489 throughout the whole G20 period. To ensure the clean energy used in 2016 G20, local government 490 accelerated the supply of liquid natural gas during the 13th Five-Year Plan period in Hangzhou. In 2016, 491 the consumption amounts of natural gas and liquid petroleum gas both increased up to 4.55×10^9 kg 492 (54.4%) and 5.09×10^8 kg (13.4%) compared with those in 2015, respectively (ZPSY, 2016, 2017). Thus, 493 494 liquid natural gas and petroleum gas were identified as the major fuel used in the residential usage during G20. After G20, all anthropogenic sources both showed significant increments of OFP, among 495 496 which the fastest growth of source was vehicle exhaust (17.6 ppby, 638.4%), followed by fuel combustion (9.4 ppbv, 35.1%), industrial manufacturing (7.7 ppbv, 89.2%), and solvent utilization (7.4 497 498 ppbv, 258.1%), respectively.

499 4 Conclusions

In this study, ground-based concentrations of atmospheric trace gases and particulate matter, together 500 with meteorological parameters, were measured at a NRCS site in urban Hangzhou before, during, and 501 after G20. We found significant decreases in atmospheric VOCs, PM2.5, NOx, and SO2 in DG20 relative 502 503 to BG20 and AG20, respectively, under the unfavorable meteorological conditions (e.g., stable weather pattern and regional transport). This evidence well indicated that the powerful control measures have 504 505 taken effect in their emissions in Hangzhou. On the contrary, observed DMA8 O₃ increased from BG20 506 to DG20 I, which was attributed to the regional transport from the northern provinces and the enhanced solar radiation intensity, and then decreased from DG20 II to AG20. The decreases in the peak 507 508 concentration of daily O₃ and the OFP estimated from various VOCs sources both suggested the 509 effectiveness of stringent control measures on reducing atmospheric O₃ concentrations. Unlike O₃, PAN exhibited gradual decrease from BG20 to DG20. With the OBM model, we found acetaldehyde and 510 methyl glyoxal (MGLY) to be the most important second-generation precursors of PAN, accounting for 511 37.3-51.6% and 22.8%-29.5% of the total production rates. Furthermore, we confirmed that the 512 513 production of PAN was sensitive to anthropogenic and biogenic VOCs (isoprene) throughout the whole period, specifically aromatics in BG20 and DG20 I but alkenes in AG20. Similarly, the sensitivity of 514 515 ozone formation was also under VOC-limited regime throughout G20 period. These findings suggest that reducing emissions of alkanes, alkenes, and aromatics would mitigate photochemical smog 516 517 including PAN and O₃ formation. Furthermore, traffic (vehicle exhaust and gasoline evaporation) and industrial sources (solvent utilization, industrial manufacturing, and chemical feedstock) were found to 518 519 be the major VOCs sources before G20, accounting for ca. 50.0% and 31.7% of the total, respectively, with the ozone formation potential (OFP) of 14.4 ppbv and 16.1 ppbv. Large decreases were found in 520

删除的内容:S5

删除的内容: including the reactions of OVOCs, propagation of other radicals, and other minor sources.

525	the sources and OFPs of solvent utilization (74.1% and 17.3%), followed by vehicle exhaust (57.4% and				
526	77.2%) and industrial manufacturing (56.0% and 40.3%) response to the stringent control measures				
527	during G20, We also appeal to pay attention on controlling fuel combustion and biogenic emission	,			
528	especially when anthropogenic VOCs were substantially reduced following the process of control	1			
529	measures	1			
530	Author contributions. GZ and HX designed research; HW, BQ, RD, and XM performed research, GZ,	, i			
531	LX, JH, WX, CL, LL, ZL, KG, YY, and WJ analyzed data; and GZ, HX, LX wrote the paper.	s			
532		l I			
533	Data availability. The data in the figures in both the main text and the Supplement are available upon				
534	request to the corresponding author (Gen Zhang, zhanggen@cma.gov.cn).				
535					
536	36 <i>Competing interests.</i> The authors declare that they have no conflict of interest.				
537					
538	Acknowledgements. This study is financially supported by National Key Research and Development				
539	Program of China (2016YFC0202300), National Natural Science Foundation of China (41775127 and				
540	41505108), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control				
541	(KHK1903). State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air				
542	Pollution Complex (Y201701), and Zhejiang Provincial National Science Foundation (LY19D050002).				

543 The authors are especially grateful to Dr. Xiaobin Xu for the help in discussions.

删除的内容:, but significantly increased by 4.2 and 2.6, 0.7 and 6.4, and 1.7 and 0.9 times after G20 due to lifting a ban on industry, power plant, and transport in and around Zhejiang Province

删除的内容: The experience of G20 suggests that stringent emission controls do effectively address primary pollution, but a coordinated program related with controlling fuel combustion and biogenic emissions is required to mitigate secondary pollution.

删除的内容: Data

559 References

- Cai, C., Geng, F., Tie, X., Yu, Q., and An, J.: Characteristics and source apportionment of VOCs
 measured in Shanghai, China, Atmos. Environ., 44, 5005-5014, 2010.
- 562 Chameides, W. L., Xingsheng, L., Xiaoyan, T., Xiuji, Z., Luo, C., Kiang, C. S., St. John, J., Saylor, R.
- D., Liu, S. C., Lam, K. S., Wang, T., and Giorgi, F.: Is ozone pollution affecting crop yields in China?,
 Geophys.Res. Lett., 26, 867-870, 1999.
- 565 Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B.,
- Carmichael, G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of
 sulfate during haze events in China, Sci. Adv., 2, 2016.
- de Foy, B., Lu, Z. F., and Streets, D. G.: Satellite NO₂ retrievals suggest China has exceeded its NO_x
 reduction goals from the twelfth Five-Year Plan, Sci Rep-Uk, 6,35912, 2016.
- 570 Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Zheng, L. F., Xie, Y. N., Herrmann, E., Nie, W., Petäjä, T.,
- Kerminen, V. M., and Kulmala, M.: Ozone and fine particulate in the western Yangtze River Delta: an
 overview of 1 yr data at the SORPES station, Atmos. Chem. Phys., 13, 5813-5830, 2013.
- Feng, C., Gao, X., Tang, Y., and Zhang, Y.: Comparative life cycle environmental assessment of flue gas
 desulphurization technologies in China, J. Clean. Prod., 68, 81-92, 2014.
- Gao, Y., Liu, X., Zhao, C., and Zhang, M.: Emission controls versus meteorological conditions in
 determining aerosol concentrations in Beijing during the 2008 Olympic Games, Atmos. Chem. Phys., 11,
 12437-12451, 2011.
- Geng, F. H, Zhao, C. S, Tang, X., Lu, G. L, and Tie, X. X: Analysis of ozone and VOCs measured in
 Shanghai: A case study, Atmos. Environ., 41, 989-1001, 2007.
- Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L.,
 Manuel, L., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and
 Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys.
 Res-Atmos., 100, 8873-8892, 1995.
- Hopke, P. K.: Recent developments in receptor modeling, J. Chemometr., 17, 255-265, 2003.
- Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J.
- 586 G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
- 587 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z. S.,
- 588 Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.: High secondary aerosol contribution to
- particulate pollution during haze events in China, Nature, 514, 218-222, 2014.
- 590 Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the
- 591 Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic
- 592 compounds, Atmos. Chem. Phys., 3, 181-193, 2003.

- 593 Kondo, Y., Morino, Y., Fukuda, M., Kanaya, Y., Miyazaki, Y., Takegawa, N., Tanimoto, H., McKenzie,
- R., Johnston, P., Blake, D. R., Murayama, T., and Koike, M.: Formation and transport of oxidized reactive nitrogen, ozone, and secondary organic aerosol in Tokyo, J. Geophys. Res.-Atmos., 113, 2008.
- 596 Koukouli, M. E., Balis, D. S., van der A, R. J., Theys, N., Hedelt, P., Richter, A., Krotkov, N., Li, C.,
- and Taylor, M.: Anthropogenic sulphur dioxide load over China as observed from different satellite
 sensors, Atmos. Environ., 145, 45-59, 2016.
- 599 LaFranchi, B. W., Wolfe, G. M., Thornton, J. A., Harrold, S. A., Browne, E. C., Min, K. E., Wooldridge,
- 600 P. J., Gilman, J. B., Kuster, W. C., Goldan, P. D., de Gouw, J. A., McKay, M., Goldstein, A. H., Ren, X.,
- Mao, J., and Cohen, R. C.: Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates
 (PAN, PPN, and MPAN) during BEARPEX 2007, Atmos. Chem. Phys., 9, 7623-7641, 2009.
- Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air
 pollution sources to premature mortality on a global scale, Nature, 525, 367-371, 2015.
- Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of ambient volatile
 organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic
 Cooperation China 2014, Atmos. Chem. Phys., 15, 7945-7959, 2015.
- Li, L., An, J. Y., Shi, Y. Y., Zhou, M., Yan, R. S., Huang, C., Wang, H. L., Lou, S. R., Wang, Q., Lu, Q.,
 and Wu, J.: Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of
 2013, Atmos. Environ., 144, 194-207, 2016.
- Li, K., Li, J., Wang, W., Tong, S., Liggio, J., and Ge, M.: Evaluating the effectiveness of joint emission
 control policies on the reduction of ambient VOCs: Implications from observation during the 2014
 APEC summit in suburban Beijing, Atmos. Environ., 164, 117-127, 2017.
- Li, Z., Xue, L., Yang, X., Zha, Q., Tham, Y. J., Yan, C., Louie, P. K. K., Luk, C. W. Y., Wang, T., and
 Wang, W.: Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China, Sci. Total
 Environ., 612, 1114-1122, 2018.
- Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.: Source profiles of volatile organic compounds
 (VOCs) measured in China: Part I, Atmos. Environ., 42, 6247-6260, 2008.
- 619 Liu, Z., Wang, Y. H., Gu, D. S., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L.
- M., Liu, S. C., Chang, C. C., Amoroso, A., and Costabile, F.: Evidence of reactive aromatics as a major
 source of peroxy acetyl nitrate over China, Environ. Sci. Technol., 44, 7017-7022, 2010.
- McCarthy, M. C., Aklilu, Y.-A., Brown, S. G., and Lyder, D. A.: Source apportionment of volatile
 organic compounds measured in Edmonton, Alberta, Atmos. Environ., 81, 504-516, 2013.
- McFadyen, G. G., and Cape, J. N.: Peroxyacetyl nitrate in eastern Scotland, Sci Total Environ, 337, 213-222, 2005.
- 626 Miao, Y. C., and Liu, S. H.: Linkages between aerosol pollution and planetary boundary layer structure

627 in China, Sci. Total Environ., 650, 288-296, 2019.

- Miao, Y. C., Liu, S. H., Guo, J. P., Huang, S. X., Yan, Y., and Lou, M. Y.: Unraveling the relationships
 between boundary layer height and PM2.5 pollution in China based on four-year radiosonde
 measurements, Environ. Pollut., 243, 1186-1195, 2018.
- Mo, Z., Shao, M., Lu, S., Qu, H., Zhou, M., Sun, J., and Gou, B.: Process-specific emission
 characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River
 Delta, China, Sci. Total Environ., 533, 422-431, 2015.
- Pentti, P., and Unto, T.: Positive matrix factorization: a non-negative factor model with optimal
 utilization of error estimates of data values, Environmetrics, 5, 111-126, 1994.
- 636 Roberts, J. M., Stroud, C. A., Jobson, B. T., Trainer, M., Hereid, D., Williams, E., Fehsenfeld, F., Brune,
- W., Martinez, M., and Harder, H.: Application of a sequential reaction model to PANs and aldehyde
 measurements in two urban areas, Geophys. Res. Lett., 28, 4583-4586, 2001.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the
 Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile
 organic compounds, Atmos. Chem. Phys., 3, 161-180, 2003.
- Shao, M., Lu, S. H., Liu, Y., Xie, X., Chang, C. C., Huang, S., and Chen, Z. M.: Volatile organic
 compounds measured in summer in Beijing and their role in ground-level ozone formation, J. Geophys.
 Res.-Atmos., 114, 2009.
- Verstraeten, W. W., Neu, J. L., Williams, J. E., Bowman, K. W., Worden, J. R., and Boersma, K. F.:
 Rapid increases in tropospheric ozone production and export from China, Nat. Geosci, 8, 690-695,
 2015.
- Wang, Q., Geng, C., Lu, S., Chen, W., and Shao, M.: Emission factors of gaseous carbonaceous species
 from residential combustion of coal and crop residue briquettes, Front. Environ. Sci. Eng., 7, 66-76,
 2013.
- Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A
 review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total.
 Environ., 575, 1582-1596, 2017.
- Wang, Y. G., Ying, Q., Hu, J. L., and Zhang, H. L.: Spatial and temporal variations of six criteria air
 pollutants in 31 provincial capital cities in China during 2013-2014, Environ. Int., 73, 413-422, 2014.
- Wang, Y. Q., Zhang, X. Y., Arimoto, R., Cao, J. J., and Shen, Z. X.: The transport pathways and sources
 of PM₁₀ pollution in Beijing during spring 2001, 2002 and 2003, Geophys.Res. Lett., 31, 2004.
- Watson, J. G., Chow, J. C., and Fujita, E. M.: Review of volatile organic compound source
 apportionment by chemical mass balance, Atmos. Environ., 35, 1567-1584, 2001.
- 660 Williams, J., Roberts, J. M., Bertman, S. B., Stroud, C. A., Fehsenfeld, F. C., Baumann, K., Buhr, M. P.,

- Knapp, K., Murphy, P. C., Nowick, M., and Williams, E. J.: A method for the airborne measurement of
 PAN, PPN, and MPAN, J. Geophys. Res.-Atmos., 105, 28943-28960, 2000.
- Ku, Z., Liu, J. F., Zhang, Y. J., Liang, P., and Mu, Y. J.: Ambient levels of atmospheric carbonyls in
 Beijing during the 2008 Olympic Games, J. Environ. Sci., 22, 1348-1356, 2010.
- Kue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I.,
- Ku, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., and Wang, W.: Oxidative capacity and radical
 chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe
 photochemical smog episode, Atmos. Chem. Phys., 16, 9891-9903, 2016.
- Kue, L. K., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R., and Xu, Z.: Increasing external
 effects negate local efforts to control ozone air pollution: a case study of Hong Kong and implications
 for other Chinese cities, Environ. Sci. Techol., 48, 10769-10775, 2014a.
- 672 Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan,
- S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four Chinese cities: precursors,
 regional transport and heterogeneous processes, Atmos. Chem. Phys., 14, 13175-13188, 2014b.
- Kue, L. K., Wang, T., Wang, X. F., Blake, D. R., Gao, J., Nie, W., Gao, R., Gao, X. M., Xu, Z., Ding, A.
 J., Huang, Y., Lee, S. C., Chen, Y. Z., Wang, S. L., Chai, F. H., Zhang, Q. Z., and Wang, W. X.: On the
 use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation, Environ. Pollut., 195,
 39-47, 2014c.
- Yang, G. H., Wang, Y., Zeng, Y. X., Gao, G. F., Liang, X. F., Zhou, M. G., Wan, X., Yu, S. C., Jiang, Y.
 H., Naghavi, M., Vos, T., Wang, H. D., Lopez, A. D., and Murray, C. J. L.: Rapid health transition in
 China, 1990-2010: findings from the Global Burden of Disease Study 2010, Lancet, 381, 1987-2015,
 2013.
- Zhang, G., Mu, Y. J., Liu, J. F., and Mellouki, A.: Direct and simultaneous determination of trace-level
 carbon tetrachloride, peroxyacetyl nitrate, and peroxypropionyl nitrate using gas
 chromatography-electron capture detection, J. Chromatogr. A, 1266, 110-115, 2012a.
- Zhang, G., Mu, Y. J., Liu, J. F., Zhang, C. L., Zhang, Y. Y., Zhang, Y. J., and Zhang, H. X.: Seasonal and
 diurnal variations of atmospheric peroxyacetyl nitrate, peroxypropionyl nitrate, and carbon tetrachloride
 in Beijing, J. Environ. Sci., 26, 65-74, 2014.
- Zhang, G., Mu, Y. J., Zhou, L. X., Zhang, C. L., Zhang, Y. Y., Liu, J. F., Fang, S. X., and Yao, B.:
 Summertime distributions of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in Beijing:
 Understanding the sources and major sink of PAN, Atmos. Environ., 103, 289-296, 2015.
- 692 Zhang, G., Xu, H. H., Qi, B., Du, R. G., Gui, K., Wang, H. L., Jiang, W. T., Liang, L. L., and Xu, W. Y.:
- Characterization of atmospheric trace gases and particulate matter in Hangzhou, China, Atmos. Chem.
 Phys., 18, 1705-1728, 2018.

- Zhang, H., Wang, S., Hao, J., Wang, X., Wang, S., Chai, F., and Li, M.: Air pollution and control action
- 696 in Beijing, J. Clean. Prod., 112, 1519-1527, 2016.
- 697 Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and
- Shen, Z.: Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal
 perspective, Atmos. Chem. Phys., 13, 7053-7074, 2013.
- 700 Zhang, Y. J., Mu, Y. J., Liang, P., Xu, Z., Liu, J. F., Zhang, H. X., Wang, X. K., Gao, J., Wang, S. L.,
- Chai, F. H., and Mellouki, A.: Atmospheric BTEX and carbonyls during summer seasons of 2008-2010
 in Beijing, Atmos. Environ., 59, 186-191, 2012b.
- 703 Zhejiang Province Statistics Yearbook, 2016.
- 704 Zhejiang Province Statistics Yearbook, 2017.

Figure 2. The comparisons of daytime PM2.5, NOx, SO2, CO, TVOCs, PAN, DMA8 O3, and DMA8 Ox. before, during, and after G20, denoted as BG20, DG20, and AG20, respectively. The error bars represent the standard deviations.

← 删除的内容:2

Figure <u>3</u>. Contributions of individual path
DG20 I, DG20 II, and AG20, respectively.

721

individual factor.

