

1 Effects of continental emissions on Cloud Condensation

2 Nuclei (CCN) activity in northern South China Sea

3 during summertime 2018

- 4 Mingfu Cai^{1,2,4}, Baoling Liang¹, Qibin Sun¹, Shengzhen Zhou^{1,5}, Bin Yuan⁴, Min
- 5 Shao⁴, Haobo Tan^{2*}, and Jun Zhao^{1,3,5*}
- 6 ¹ School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and
- 7 Natural Disaster Studies, and Institute of Earth Climate and Environment System, Sun Yat-sen
- 8 University, Guangzhou, Guangdong 510275, China
- 9 ² Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional
- 10 Numerical Weather Prediction, CMA, Guangzhou, Guangdong 510640, China
- 11 ³ Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, Guangdong,
- 12 519082, China
- ⁴ Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443,
- 14 China
- 15 ⁵ Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality
- 16 Change in the Pearl River Estuary, Guangzhou, Guangdong 510275, China
- 17
- 18 *Corresponding authors: Jun Zhao (<u>zhaojun23@mail.sysu.edu.cn</u>) and Haobo Tan (<u>hbtan@gd121.cn</u>)
- 19
- Abstract. Aerosol particles in marine atmosphere have been shown to significantly affect cloud formation, atmospheric optical properties, and climate change. However, high temporal and spatial resolved atmospheric measurements over sea are currently sparse, limiting our understanding of aerosol properties in marine atmosphere. In this study, a ship-based cruise campaign was conducted over northern South China Sea (SCS) region (19°37' N to 22°43' N, 113°44' E to 118°12' E) during summertime 2018. Chemical compositions of the non-refractory PM₁ (NR-PM₁), particle number size distribution (PNSD) and size-resolved cloud condensation nuclei (CCN) activity (at supersaturation

27	SS=0.18%, 0.34%, and 0.59%) were measured by a time-of-flight aerosol chemical speciation monitor
28	(ToF-ACSM), and the combination of a cloud condensation nuclei counter (CCNc) and a scanning
29	mobility particle sizer (SMPS), respectively. Overall, aerosol particles exhibited a unimodal
30	distribution (centering at 60~80 nm) and dominated by sulfate (~46%) in the NR-PM ₁ , similar to the
31	characteristic of previously-reported background marine aerosols. Two polluted episodes were
32	respectively observed at the beginning (P1, 6 th -8 th August) and at the end (P2, 25 th -26 th August) of the
33	campaign and both were characterized by high particle number concentrations $(N_{\mbox{\scriptsize CN}})$ which were
34	shown to originate from local emissions or pollutants from long range transport. Two relatively clean
35	periods (C1, 9 th -10 th and C2, 19 th -21 st August) prior to and after tropical storm Bebinca (11 th -15 th
36	August) were also classified due to substantial removal of pollutants by strong winds and rainfalls
37	accompanying with the storm. A value of about 0.4 for aerosol hygroscopicity parameter $\boldsymbol{\kappa}$ measured in
38	this study falls in a range of values (i.e., 0.2-1.0) reported previously for urban atmosphere and for
39	remote marine atmosphere.
40	The concentrations of trace gases (i.e., O_3 , CO, NO_X) and particles (N_{CN} and N_{CCN} at SS=0.34%) were
41	elevated at the end of the campaign and decreased with the offshore distance, suggesting important
42	impacts of anthropogenic emissions from the inland Pearl River Delta (PRD) region on the northern
43	SCS. A good correlation between NO_X concentration and N_{CN} implies similar sources (e.g., heavy ship,
44	traffic, and biomass burning) for NOx and particles. The results showed that the $N_{\text{CCN}}\!/\!N_{\text{CN,tot}}$ and the κ
45	values obtained from the CCNc measurement (SS=0.34%) had no clear correlation either with the
46	offshore distance or with the concentrations of the particles. Back trajectory analysis showed that the
47	air pollutants originated from local emissions and from inland China continent via long range transport
48	during P1 and P2, respectively. In addition, the air was affected by air masses from southwest and from

49	Indo-China Peninsula during the clean C1 and C2 periods respectively. Chemical composition
50	measurements showed an increase of organic mass fraction and no obviously different $\boldsymbol{\kappa}$ values were
51	obtained from CCN measurements during C2 and P2, implying that the air masses carried pollutants
52	from local sources during long range transport from Indo-China Peninsula and from the inland China
53	continent respectively during the above two periods. Our study highlights dynamical variations of
54	particle properties and the impact of long range transport from the China continent and Indo-China
55	Peninsula on the northern SCS region during summertime.
56	

57 1 Introduction

58	Aerosol particles directly affect global radiation balance by scattering and absorbing solar
59	radiation. Meanwhile, they can alter cloud microphysics, lifetime, and albedo, indirectly affecting heat
60	transfer through atmosphere (Stocker, 2013). However, high uncertainties still exist on their
61	contributions to the climatic impact, partly owing to our limited knowledge on spatial and temporal
62	distribution of aerosol particles and their properties in various environments. Thus, it is essential to
63	conduct field measurements under different environments to obtain chemical and physical properties of
64	particles, including chemical composition, particle number size distribution (PNSD), and cloud
65	condensation nuclei (CCN) activity, in order to better understand the radiation forcing induced by
66	aerosol particles.
67	The CCN activity describes how particles grow into cloud droplets and further affect cloud

development. Whether particles can be activated as CCN is determined by their chemical composition, 68 69 hygroscopicity, size, and ambient supersaturation (SS). Generally, the CCN activity can be described 70 by Köhler theory based on the water activity in solution, surface tension, molecular weight of water, 71 temperature, and diameter of the particle (K öhler, 1936). Alternatively, the hygroscopicity parameter κ 72 proposed by Petters and Kreidenweis (2007) can be used to characterize the CCN activity. Aerosol 73 hygroscopicity describes the ability of particles to grow by absorbing moisture in ambient 74 environments. The κ values can be measured in subsaturation (RH<100%) condition by the 75 hygroscopicity-tandem differential mobility analyzer (HTDMA) measurements or in supersaturation 76 (RH>100%) by the cloud condensation nuclei counter (CCNc) measurements.

Field measurements for the CCN activity have been conducted primarily in terrestrial
environments (e.g., urban cities, forested areas, and remote countryside areas) (Rose et al., 2010; Wang

79	et al., 2010; Cerully et al., 2011; Pierce et al., 2012; Hong et al., 2014; Cai et al., 2018). Cerully et al.
80	(2011) reported κ values ranging from 0.1 to 0.4 in forest during the 2007 EUCAARI campaign and
81	concluded that the κ values obtained from the HTDMA measurements were generally 30% lower than
82	those from the CCNc measurements. Wang et al. (2010) showed that the mixing state of particles was
83	important in predicting the CCN number concentration (N_{CCN}). Cai et al. (2018) found that the CCN
84	activity increased by decreasing the surface tension through increase of organic fractions in particles
85	based on the measurements of the CCN activity, hygroscopicity, and chemical composition in the Pearl
86	River Delta (PRD) region. Progresses on the aforementioned field measurements conducted in the
87	continental environments have substantially improved our understanding of the influence of aerosols in
88	global radiation forcing and precipitation under the terrestrial environments.
89	Aerosol particles in the marine atmosphere, on the other hand, have been well known to
90	significantly affect cloud development, atmospheric optical properties, and climate change (Johnson et
91	al., 2004; Ackerman et al., 2004; Mulcahy et al., 2008). Fewer field measurements were conducted in
92	the oceanic atmosphere than those in land, leading to less characterization of marine aerosol particles.
93	Remote sensing and ship-based cruise methods are two typical approaches employed to measure
94	aerosol properties in marine environments (Durkee et al., 1986; Kim et al., 2009; Lehahn et al., 2010;
95	Huang et al., 2018). Compared to ship-based measurements, remote sensing covers spatially a larger
96	area and temporally a longer period which are essential in the characterization of marine aerosols. For
97	example, Reid et al. (2013) employed remote sensing to describe long range transport patterns in the
98	Southeast Asia. The aerosol size information was compared between the retrievals from Moderate
99	Resolution Imaging Spectroradiometer (MODIS) and the measurements from ground-based
100	radiometers such as Aerosol Robotic Network (AERONET) over ocean (Kleidman et al., 2005).

101	However, extensive cloud coverages over oceanic region can significantly affect the quality and
102	availability of satellite measurements. Furthermore, dry bias or clear-sky bias also challenge satellite
103	measurements for obtaining accurate data (John et al., 2011; Reid et al., 2013; Choi and Ghim, 2017).
104	Moreover, remote sensing using satellite sensors is limited in providing high time resolution (i.e.,
105	minutes), high spatial resolution (i.e., within tens of meters in dimension) data and specific particle
106	properties (i.e., hygroscopicity and chemical composition). Although ship-based measurements are
107	limited in spatial coverage, they can provide higher spatial and temporal resolution for obtaining
108	comprehensive physical and chemical properties of gas and aerosol particles. Huang et al. (2018)
109	measured chemical composition of particles with a high-resolution time-of-flight aerosol mass
110	spectrometer (HR-ToF-AMS) over the Atlantic Ocean aboard a campaign ship and found that about 19%
111	of organics originated from continental long-range transport. Kim et al. (2009) found that particle size
112	distribution varied in a dynamic range, depending on the meteorological conditions over the Yellow
113	Sea and the East China Sea. Atwood et al. (2017) showed that biomass burning, anthropogenic
114	pollution from continent and ship emissions would affect the remote South China Sea during the
115	southwestern monsoon (SWM) season. However, few ship-based campaigns are available in the
116	literature on measurements of atmospheric composition including gases and aerosol particles,
117	especially in several important China sea regions (e.g., SCS).
118	The air over northern SCS is affected by anthropogenic pollution from the adjacent Pearl River
119	Delta region, China inner continent, and Indo-China Peninsula (Zhang et al., 2018). Furthermore, as
120	one of the most important and busy trading regions in China, the PRD and the northern SCS are
121	subjected to severe air pollution due to emissions from heavy loadings of cargo ships and fishing

122 vessels (Lv et al., 2018). Special weather patterns are dominant in the SCS during summertime which

123	are characterized by southwest monsoon (SWM) and occasionally affected by typhoons. Typically,
124	typhoon brings heavy precipitation and strong wind to this region, which helps to remove air pollutants.
125	However, on one hand, it has been found that downdrafts prior to a typhoon usually affect negatively
126	atmospheric diffusion, leading to the accumulation of the air pollutants in the region (Feng et al., 2007).
127	On the other hand, marine background particles and emissions from Indo-China Peninsula are brought
128	into this region through SWM. As a result, the physical and chemical properties of marine aerosol
129	particles vary dynamically which can be distinguished from those of continental particles. Differences
130	(i.e., physical and chemical properties, life cycle) between the two types of aerosol particles reflect
131	different transport pathways and source origins which are not well known. In addition, lack of
132	understanding on aerosol characteristics will inevitably hinder our ability to evaluate the impacts of
133	aerosol particles on global radiation forcing and atmospheric processes. Thus, ship-based field
134	measurements are urgently needed in this region in order to understand the CCN activity, chemical
135	composition, particle size distribution, and their relationships with continental and marine air masses.
136	In this study, we report results from a recent ship-based cruise measurement in the northern SCS
137	during summertime 2018. During the campaign, size-resolved CCN activity, chemical composition,
138	and particle number size distribution were measured by a CCNc, a time-of-flight aerosol chemical
139	speciation monitor (ToF-ACSM) and a scanning mobility particle sizer (SMPS), respectively. Temporal
140	and spatial distributions of the aerosol chemical and physical properties and impact of different air
141	masses on the properties were investigated. Our results provide valuable knowledge on the effects of
142	long range transport and on the atmospheric processes in the SCS.

144 2 Methodology

145 2.1 Ship-based campaign

146	The cruise campaign is a routine comprehensive exercise organized by Sun Yat-sen University
147	(SYSU) during summertime 2018 (6 th to 27 th August) including a variety of multidisciplinary sciences
148	(i.e., atmosphere, ocean, chemistry, geology, and biology). The round-trip journey both started and
149	ended at Huizhou port (22°43' N, 114°36' E) which is about 140 km from Guangzhou, traveling
150	towards northern SCS with an area between 19°37' N to 22°43' N and 113°44' E to 118°12' E. The ship
151	track includes two routes during which the vessel was anchored near the port due to tropical storm
152	Bebinca as its track was shown in Fig. 1a, along with the complete, color-coded ship track. The first
153	route started 7 th August from the port and arrived northeast of Dongsha Islands (20°45' N 118°12' E) on
154	10^{th} August 2018, and then returned to anchor near the port during the typhoon period (11^{th} to 15^{th}
155	August). The second route left the port on 15 th August toward Hong Kong and arrived at its south in the
156	afternoon (18:00 local time, LT). The vessel then headed southeast for about 42 hours on 18 th August
157	and turned toward Dongsha Islands. It anchored at several sites around this sea area and then returned
158	on 24 th August following a similar pathway as the first route to Huizhou port on 27 th August.
159	A commercial vessel with a capacity of 8000 ton was employed for the routine summer
160	measurement campaign whose schematic diagram was shown in Fig. 1b. An air conditioned (T=298K)
161	sea container of about 30 m^2 housed all the instruments which was listed in Table 1 and was placed in
162	the front deck of the vessel. Trace gases, including O_3 , SO_2 , CO , NO_X (NO and NO_2), were measured
163	by gas analyzers (model T400U, T100U, T300, and T200U, Teledyne API Inc., USA, respectively).
164	Detailed descriptions of the major instruments used in the campaign could be found in the following

165	subsection. The aerosol sampling port with a $PM_{2.5}$ cyclone inlet was made of a 5 m long $3/8^{\prime\prime}$ o.d.
166	stainless-steel tube which extended outside of the container with an inclination angle of 45 $^\circ\text{to}$ the deck.
167	The inlet is about 2.5 m above the deck and 1.5 m away from the container. All aerosol sampling flows
168	firstly passed through a Nafion dryer (model MD-700, Perma Pure Inc., USA) to reach a relative
169	humidity (RH) lower than 30%. The gas sample inlet made of a 2 m long 1/4" o.d. Teflon tube with a
170	similar inclination angle, also extended outside of the container. For consistency, any abnormal data
171	were removed from the dataset, including either abnormal particle number size distribution or spike
172	high number concentrations of particles (measured by SMPS), organics (measured by ToF-ACSM), and
173	NO_{X} (measured by the NO_{X} monitor) which were most likably from emissions of the vessel or other
174	neighbor ships.

175

176 2.2 Origins of air masses by HYSPLIT

177The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model developed by178National Oceanic and Atmospheric Administration (NOAA) was used to investigate trajectories of air179movement for identification of source origins which might affect the northern SCS region during the180campaign. The model calculated the 72 hours back trajectories of air masses at 6 hours intervals181arriving at the campaign vessel. The arrival height of the trajectories was set to be 150 m, 500 m, and1821000 m above the ground level, a reasonable representative of the air masses. The Global Data183Assimilation System (GDAS) 1 °× 1 ° meteorological data was employed to drive the HYSPLIT.

185 2.3 Measurements

186 2.3.1 Size-resolved cloud condensation nuclei activity

187	The size-resolved CCN activity was measured with combination of a homemade scanning
188	mobility particle sizer system and a cloud condensation nuclei counter (model CCNc-200, DMT Inc.,
189	USA). The homemade SMPS system consisted of a differential mobility analyzer (DMA, model 3081L,
190	TSI., Inc.) and a condensation particle counter (CPC, model 3787, TSI Inc.). The CCNc-200 has two
191	parallel cloud columns (column A and B) which measure the CCN concentrations $\left(N_{CCN}\right)$ at two
192	specific SS at the same time. Only the N_{CCN} measured by column A was discussed in this study. During
193	the measurements, the SMPS system was operated in a scanning mode. The sample particles after the
194	Nafion dryer were firstly neutralized by a X-ray neutralizer (model 3088, TSI., Inc., USA) and were
195	subsequently classified by the DMA. The selected particles were split into the CPC for measurements
196	of total particle number concentration (with a flow rate of 0.6 LPM) and the CCNc for measurements
197	of the CCN number concentration at a specific supersaturation (with a flow rate of 0.5 LPM). The
198	SMPS and the CCNc system were set to measure particle number size distribution and size-resolved
199	CCN number concentration at a mobility size range of 10-400 nm. The supersaturation of the CCNc
200	was set to be 0.18%, 0.34%, and 0.59%. Before the measurements, the CCNc-200 was calibrated with
201	ammonium sulfate ((NH_4) ₂ SO ₄) particles at three SS (0.18%, 0.34%, and 0.59%), detailed description
202	of the calibration could be found in Cai et al. (2018). The SMPS system was also calibrated with
203	standard polystyrene latex spheres (PSL, with a size of 20 nm, 50 nm, and 200 nm) prior to the
204	campaign.

206 2.3.2 Aerosol chemical composition

207	An Aerodyne time-of-flight aerosol chemical speciation monitor was deployed to measure bulk
208	non-refectory $\ensuremath{\text{PM}}_1$ chemical composition during the campaign. The ToF-ACSM can provide mass
209	concentration of sulfate, nitrate, ammonium, chloride, and organics, except non-refectory components
210	such as sea salt, black carbon, and crustal species. Detailed description of ToF-ACSM can be found in
211	Fröhlich et al. (2013) and only a brief introduction relevant to this work was given here. During the
212	campaign, the measurement cycle of the ToF-ACSM was set to be about 10 min and the mass resolving
213	power was about 160. The sample flow dried by the Nafion dryer firstly entered an automatic
214	three-way valve, of which one way was directly connected to the lens system and the other way was
215	connected to a filter before entering the aerodynamic lens. By switching the automatic valve
216	periodically, the instrument can measure the total signal without a filter and the background signal with
217	a filter, thus the net signal representing the chemical composition of the aerosol particles can be
218	obtained. The aerodynamic lens system removes particles larger than 1 μm (at aerodynamic diameter,
219	$D_{\text{VA}})$ and has a relative low transmission for small particles (D_{\text{VA}} < 50 \text{ nm}). Monodisperse pure
220	ammonium nitrate (NH_4NO_3) and ammonium sulfate ((NH_4) ₂ SO ₄) particles generated by a homemade
221	atomizer and then selected by a DMA (about 300 nm in diameter) were used to calibrate the relative
222	ionization efficiency (RIE) value of NH_4 (RIE _{NH4}) and SO_4 (RIE _{SO4}) at the beginning and at the end of
223	the campaign.
224	

224

225 2.4 Data processing of CCN activation

226 The size-resolved N_{CN} and N_{CCN} measured by the SMPS and CCNc-200 system was used to

227	calculate the activation ratio (AR), which was defined as the ratio of N_{CCN} to N_{CN} at each size	bin. The
228	size-resolved ARs were inverted based on the method described by Moore et al. (2010).	The AR
229	spectrum was then fitted using a three-parameter fit:	
230	$\frac{N_{CCN}}{N_{CN}} = \frac{B}{1 + (\frac{D_p}{D_{50}})^C} ,$	(1)
231	where D_{p} represents dry particle diameter (nm), B, C and D_{50} are the three fitting parameter	rs which
232	represent the asymptote, the slope, and the inflection point of the sigmoid, respectively (Moc	ore et al.,
233	2010). The D_{50} is called the critical diameter, where 50% of the particles are activated at a spec	ific SS.
234	A hygroscopicity parameter $\boldsymbol{\kappa}$ which represents the CCN activity was calculated from th	e critical
235	saturation ratio (Sc) and D_{50} from the following equation (Petters and Kreidenweis, 2007):	
236	$\kappa = \frac{4A^3}{27D_{50}^3(\ln Sc)^2} , A = \frac{4\sigma_{S/a}M_W}{RT\rho_W} , \qquad (6)$	2)
237	where ρ_w is density of pure water (about 997.04 kg $m^{\text{-}3}$ at 298.15K), M_w is molecular weight	of water
238	(0.018 kg mol^-1), $\sigma_{s/a}$ is surface tension of the solution/air interface which is assumed to be	value of
239	pure water ($\sigma_{s/a}$ =0.0728 N m $^{-1}$ at 298.15K), R is the universal gas constant (8.314 J mol $^{-1}$ H	ζ ⁻¹), Τ is
240	thermodynamic temperature in Kelvin (298.15K), and D_{50} is the critical diameter (in meter).	
241		
242	3 Results and Discussion	
243	3.1 Overview	
244	Figure 2 shows number size distribution (a), mass concentration and fraction (b and c),	number
245	concentration of CCN (d), and hygroscopicity parameter (e) measured by different instrument	ts during
246	the campaign. The particle sizes were predominantly larger than 10 nm, implying that no new	particle
247	formation events were observed during the campaign. Furthermore, the distribution exhibited	d mainly

248	unimodal characteristics which peaked at a size range of about 60-80 nm. The average number
249	concentration was about 3400 cm ⁻³ , which was in general lower than that in inland PRD region (Cai et
250	al., 2017) and slightly lower than the ship measurement (4335 cm ⁻³) over the East China Sea (Kim et al.,
251	2009). However, two relative polluted periods were classified with high particle number concentrations
252	at the beginning (6 th -8 th August, defined as P1 with a particle size peaking at about 80 nm) and at the
253	end (25th-26th August, defined as P2 peaking at about 100 nm) of the campaign. In contrast, two
254	relatively clean periods were identified in between (9th-10th August, defined as C1 and 19th-21st August,
255	defined as C2).
256	Temporal profile of the mass concentration (Fig. 2a) measured by ToF-ACSM was consistent with
257	that of PNSD, which showed the highest concentration on 25 th August. The total measured mas
258	concentration of NR-PM1 varied dramatically from 0.92 to 85.08 μg m $^{\text{-3}}$, with a median of 7.97 μg m $^{\text{-3}}$.
259	Mass concentrations of $PM_{2.5}$ were reported over the same region during Cruise I (27.6 $\mu g\ m^{\text{-3}})$ and
260	Cruise II (10.10 $\mu g\ m^{\text{-3}})$ in Zhang et al. (2007). The mass concentration in our measurements was
261	higher than that in clean marine atmosphere (from 0.27 to 1.05 $\mu g\ m^{\text{-3}}$) reported at the coastal station,
262	Ireland (Ovadnevaite et al., 2014) and the atmosphere over the Atlantic Ocean (Huang et al., 2018).
263	Mass concentration of ${\rm SO_4}^{2\text{-}}$ varied from 0.35 to 33.20 μg m^3, with a median of 3.66 μg m^3, which
264	falls in a range of previous measurement in Dongsha Islands (1.3 to 5.5 μ g m ⁻³ , Chuang et al., 2013).
265	The average mass fraction of NR-PM ₁ during the campaign was dominated by sulfate (46%), followed
266	by organics (35%), ammonium (14%), nitrate (3%), and chloride (2%), which was similar to the
267	measurement over the Atlantic Ocean (Huang et al., 2018). The chemical composition over northern
268	SCS was quite different from that at the urban site which was dominated by organics largely from
269	anthropogenic sources (Cai et al., 2017). A higher mass fraction of sulfate in the marine atmosphere

270	may probably be attributed to nearby ship emissions rather than oxidation of dimethyl sulfide (DMS)
271	emitted from the ocean. However, solid evidences are needed since the emission inventory in the
272	northern SCS region is still lacking and the sources of sulfate in this region remain currently unknown.
273	The number concentrations of CCN (N _{CCN} at SS=0.18%, 0.34%, and 0.59%) and total particles
274	(N_{CN}) were shown in Fig. 2d. The N_{CN} values during the two polluted periods (P1 and P2) were
275	significantly higher than the average $N_{CN}(3463 \text{ cm}^{-3})$ over the whole campaign period and those from
276	other marine measurements (Cai et al., 2017; Kim et al., 2009). This average value falls between the
277	smoke type (2280 cm ⁻³) and the port type (4890 cm ⁻³) measured over the remote South China Sea
278	(Atwood et al., 2017). Note that since the abnormally spiked signals which were probably caused by
279	emissions of the nearby ships or the ship itself were removed in the data processes, the high $N_{\mbox{\tiny CN}}$ values
280	during those episodes were likably attributed to regional pollution or long range transport from
281	continents. In general, the $N_{\rm CCN}$ values at the three supersaturations increased with increase of the $N_{\rm CN}$
282	The average value of N_{CCN} (1544 cm ⁻³ , SS=0.34%) fell in the range of the simulated values (1000-2000
283	cm ⁻³ , SS=0.4%) reported in a previous study (Yu and Luo, 2009), suggesting that the model employed
284	in the study in general successfully predicted the N_{CCN} in the SCS region. Although the N_{CCN} and N_{CN}
285	were relatively higher in P1 and P2 than the average value, they remained overall low during the
286	campaign compared to those from the inland PRD sites. The N_{CCN} values in P1 were lower than those
287	in P2 with similar values of N_{CN} in both P1 and P2, suggesting a lower activation fraction in P1 than in
288	P2, which cloud be attributed to relatively high fractions of smaller particles and a lower hygroscopcity
289	in P1. As discussed above, particles peaked at a smaller size in P1, leading to fewer particles larger than
290	$D_{50}.$ The time series of the κ values calculated using Eq. 2 show that the aerosol hygroscopicity was
291	lower at the beginning of the campaign, leading to a lower CCN activity in P1. The measurements

292	could be affected by local fresh emissions with lower hygroscopic particles in urban since the ship was
293	anchored near Huizhou port and Hong Kong during P1, similar to lower hygroscopicity for urban
294	particles previously measured by Cai et al. (2017). Furthermore, low particle hygroscopicity was found
295	from 11 th August to 15 th August when the ship was sheltered at the port from the tropical storm
296	Bebinca.
297	Aerosol hygroscopicity, an important parameter affecting CCN activity, can vary largely in its
298	values under different environments due to a variety of particle sources (Adam et al., 2012; Liu et al.,
299	2014; Hong et al., 2014; Wu et al., 2013; Cai et al., 2017). Comparison of the hygroscopicity parameter
300	κ obtained from this study, from urban Guangzhou, from remote marine Okinawa, remote South China
301	Sea, and mountain Goldlauter was shown in Fig. 3. The κ_{median} values obtained from this study (around
302	0.4) fall between those at the continental sites (Guangzhou and Goldlauter) and remote marine
303	measurement (remote South China Sea and Okinawa) and are barely dependent on particle sizes whose
304	pattern is quite similar to those in Okinawa. Moreover, a κ value was respectively reported to be in a
305	range of 0.22-0.65 measured by CCNc over the remote South China Sea and in a range of 0.30-0.56
306	measured by HTDMA over the coast of central California during a flight campaign (Atwood et al.,
307	2017; Hersey er al., 2009). In addition, high hygroscopicity values (0.56-1.04) measured by HTDMA
308	were also reported over the Pacific and Southern Oceans (Berg et al., 1998). In contrast to maritime
309	environments (i.e., SCS and Okinawa), the κ_{median} values in Guangzhou (0.21-0.31) are much lower and
310	increase obviously with particle sizes. The low hygroscopicity for small particles in Guangzhou was
311	attributed to local emissions from traffic and industry (Cai et al., 2017). The cruise in this campaign is
312	in an offshore region where the air is affected by anthropogenic emissions from the adjacent inland
313	PRD region, leading to medium values of aerosol hygroscopicity between urban and marine

background regions.

315 **3.2** Temporal and spatial distributions

316	As discussed above, the air over the offshore northern SCS is affected by local emissions from
317	inland PRD regions. The shoreline along Huizhou port is roughly 45° inclined to the latitude (from
318	South to North) and it is reasonable to assume that the concentrations of the air pollutants originating
319	from local emissions are generally dependent on the distance offshore which can be roughly
320	represented by the latitude in this study. Hence in this section, the temporal and spatial concentration
321	distributions of air pollutants (particles and gases) were presented with latitude and the dates were
322	color-coded, representing from the beginning (dark blue) to the end (dark red) of the cruise (Fig. 4).
323	The concentrations of trace gases (O ₃ , CO, and NO _X), N _{CN} , and N _{CCN} (SS=0.34%) were higher during
324	the late half than during early half of the campaign, while SO ₂ concentration varied in an opposite way,
325	suggesting that the sources of the air pollutants or the air masses were different at the beginning and at
326	the ending of the campaign. In particular, the aforementioned quantities increased substantially with
327	latitude (the higher the latitude the closer to the shore) from 19^{th} to 26^{th} August, indicating that the air
328	masses from inland China could affect the northern SCS region during this period. However, the
329	$N_{CCN}/N_{CN,tot}$ and κ values (SS=0.34%) showed almost no pattern (Figs. 4g and 4h), except that the
330	$N_{\text{CCN}}/N_{\text{CN,tot}}$ values were both high (about 0.8) at the beginning and at the end of the cruise. The
331	$N_{\text{CCN}}/N_{\text{CN,tot}}$ was defined as the ratio of number concentration of cloud condensation nuclei and total
332	aerosol particles at a specific SS. The $\boldsymbol{\kappa}$ values were observed to be relatively low when the vessel
333	located at a latitude of about 22 $\ensuremath{^\circ}\ensuremath{N}$ corresponding to 6^{th} and 26^{th} August, suggesting that the air was
334	affected by local fresh emissions which increased the organic content of the particles. Interestingly, a

335	higher value on 26 th August than on 6 th August was clearly shown (Fig. 4g) due probably to larger
336	averaged particle sizes on 26 th August (about 110 nm) which were more easily activated than smaller
337	particles on 6 th August (about 60-90 nm).
338	To further investigate the effects of local emissions on aerosol particles over northern SCS, the
339	correlations of SO ₂ , CO, NOx concentration, N _{CCN} , N _{CCN} /N _{CN,tot} , κ with N _{CN} were explored (Fig. 5).
340	The variation of SO_2 concentration was independent on N_{CN} , suggesting that SO_2 did not likably
341	originate from the same source as particles. In comparison, CO concentration was correlated with $N_{\mbox{CN}}$
342	during the second half of the cruise, implying that CO might share the same source as particles. An
343	excellent correlation between NOx concentration and $N_{\mbox{CN}}$ was shown in all ranges of particle number
344	concentrations, implying that the aerosol particles might originate from the same source as NOx which
345	was likably attributed to traffic and industry in the continental PRD region. The N_{CCN} was observed to
346	follow two distinct trends for the first and second half of the cruise which show in general a higher
347	activation efficiency during the second half of the campaign, especially when N_{CN} is greater than about
348	7000 cm ⁻³ , further validated by a much higher $N_{CCN}/N_{CN,tot}$ ratio against N_{CN} as shown in Fig. 5e. As
349	discussed in the previous paragraph, distinct $\boldsymbol{\kappa}$ values were seen at the very beginning and at the end of
350	the campaign, suggesting that the properties and sources of the particles could be different as will be
351	further discussed in the case study below.

352 3.3 Case Study

In section 3.1, we classified four periods (all in August) based upon particle number concentration, corresponding to P1 (6th to 8th), C1 (9th to 10th), C2 (19th to 21st), and P2 (25th to 26th) as shown in Fig. 6. During the two clean periods (C1, before Bebinca; C2, after Bebinca), the vessel travelled around northeast of Dongsha islands where the particle number concentrations remained relatively low which

357	were not affected by the continental emissions from the PRD region. However, high number
358	concentrations of particles were observed during P1 when the vessel was close to the shore where the
359	air was substantially affected by local emissions from either Hongkong or Huizhou. During the last two
360	days in P2, even higher particle number concentrations were observed, suggesting that the pollutants
361	might originate from inland continent via long range transport.
362	We performed HYSPLIT to investigate the source origins of the air pollutants according to
363	movement of air masses during the campaign (Fig. 7). The backward trajectories during P1 showed that
364	the air masses were mainly from east and south and when arriving at the location of the vessel, the air
365	masses were stagnant on the shore, suggesting that the pollutants might originate from local emissions.
366	Interestingly, particle number concentrations were low during 11^{th} to 15^{th} August when the vessel was
367	sheltered from Bebinca, due probably to the arrival of the typhoon which caused high wind speeds and
368	brought rainfall in the northern SCS, resulting in removal of air pollutants in Huizhou and in Hong
369	Kong. The air masses over northern SCS originated from southwest (C1) or from Indo-China Peninsula
370	(C2) due to summer monsoon during the two clean periods (Fig. 7). The air masses moved northerly
371	during P2 and brought high concentrations of particles from inland China to PRD region, and then
372	further to the northern SCS (Fig. 7).
373	Chemical speciation by ToF-ACSM showed that the mass fractions of aerosol composition were
374	substantially different during C1, C2, and P2, except for nitrate whose fraction remain almost constant
375	among the above three periods (Fig. 8). Note that the mass fraction during P1 was not available for
376	comparison due to instrumental failure. Even the mass fractions during the two clean periods were
377	distinctly different, in particular, those of organics (26% for C1 vs 40% for C2), ammonium (19% for

378 C1 vs 12% for C2), and chloride (7% for C1 vs 2% for C2), although the particle composition was

379	dominated by sulfate which was almost equal in mass fraction (44% for C1 vs 42% for C2). The mass
380	fraction during C1 was dominated by sulfate, followed by organics, ammonium which was similar to
381	that in remote marine region (Cai et al., 2017). The mass fraction of sulfate in the NR-PM ₁ during C1
382	and C2 was also similar to the previous study (44% and 43% in $PM_{2.5}$ for Cruise I and II, respectively)
383	over the northern SCS (Zhang et al., 2007) Although the mass fraction was still dominated by sulfate, a
384	substantially increasing fraction of organic (increase of 26% for C1 to 40% for C2) was observed. This
385	increase in organic fraction was likably attributed to the air masses passing through Indo-China
386	Peninsula which brought significant local sources. In contrast to the clean periods, the mass fraction in
387	the NR-PM ₁ during P2 was dominated by organics (47%), followed by sulfate (33%) and ammonium
388	(13%), similar to that in urban areas (Huang et al., 2014), indicating that air masses from the north
389	could bring continental particles in inland China to the northern SCS.
390	The particle number size distribution (PNSD) was measured by the custom-made SMPS which
391	was described in the methodology section. The average particle number concentrations during P1 and
392	P2 (9239 and 10088 cm ⁻³ respectively) were much higher than those during the clean periods (1826 and
393	1683 cm ⁻³ for C1 and C2 respectively). In addition, the PNSD during the pollution periods was
394	characterized by an obvious accumulation mode that was attributed to secondary aerosols (Fig. 9),
395	while the one during the clean periods has a smaller and a less obvious accumulation mode and a more
396	obvious Aitken mode which was more related to marine background particles (Cai et al., 2017; Atwood
397	et al., 2017; Kim et al., 2009). The median diameters and concentration of the accumulation mode
398	during C1 and C2 was similar to those previously reported in South China Sea (Reid et al., 2015). Note
399	that the fitted nucleation modes for both clean and pollution periods were barely seen due to the

401	mode (70.4 nm) and the accumulation mode (165.7 nm) during P2 were respectively larger than those
402	(48.6 nm and 143.1 nm) during P1, implying more aging processes and particle growth in the long
403	range transport from the inland continent. Furthermore, a wider accumulation mode during C2 than
404	during C1 was observed, implying more complex sources for larger size particles which could probably
405	be attributed to biomass burning or anthropogenic activities across Indo-China Peninsula.
406	The CCN activity parameters (average $N_{CCN},D_{50},$ and $N_{CCN}\!/N_{CN,tot}$ at SS=0.18%, 0.34%, and
407	0.59%) during each period were summarized in Table 2. Note that the N_{CCN} values (SS=0.34%) during
408	P1 and P2 (3969 and 7139 cm ⁻³) were much higher than the simulated values (1000-2000 cm ⁻³ ,
409	SS=0.4%) (Yu and Luo, 2009) since the modeled CCN concentrations represent averaged values in a
410	larger regional scale than those measured in our ship-based cruise study. It also implied that the
411	continental emissions had significant impact on the CCN concentrations in the SCS region. Although
412	the mass fractions of chemical composition for C1, C2, and P2 were quite different among those
413	periods, no significant differences of the CCN activity parameters were seen, indicating particles with a
414	size range of 30-120 nm were less affected by long range transport from Indo-China Peninsula or
415	inland China continent. The calculated median κ values based on the measured D_{50} ranged from 0.32 to
416	0.41 and no significant differences in diameters and periods were observed (Fig. S1), suggesting that
417	the high mass fractions of organics during C2 might be distributed in larger particle size (Fig. 8). The
418	D_{50} values during P2 were smaller at all supersaturation ratios, suggesting higher hygroscopicity and
419	CCN activity during this period. In addition, the $N_{\text{CCN}}/N_{\text{CN,tot}}$ and N_{CCN} during P2 was larger than
420	during P1, owing to a larger number fraction of accumulation mode and a higher hygroscopicity.
421	Meanwhile, the median κ values fell in a range of 0.12-0.19 during P1, significantly lower than those
422	during three other periods but similar to the values measured in urban cities (Tan et al., 2013; Jiang et

423	al., 2016; Cai et al., 2018). Such lower values of hygroscopicity were probably contributed from local
424	emissions originating from inland urban cities or heavy duty ships. More cruise campaigns are hence
425	needed to identify the source origins of marine aerosols over the SCS region.
426	
427	4 Conclusions
428	As an annual routine exercise for SCS expedition during summertime, the 2018 cruise campaign
429	organized by Sun Yat-sen University is a comprehensive and interdisciplinary field measurement
430	involving atmosphere, ocean, geology, biology, and chemistry etc. The measurement includes
431	stationary and navigating observations based on compromise among multiple disciplines. For
432	atmospheric measurements, several key scientific questions are emerging to be addressed over SCS
433	region, including sources of air pollutants (gases and particles) in marine atmosphere, impacts of
434	biomass burning from southeastern Asia and summer monsoon on atmospheric chemistry and physics
435	in SCS region. In this study, the CCN activity, chemical composition, and particle number size
436	distribution over northern SCS were measured using several onboard instruments including a
437	TOF-ACSM, a CCNc, a SMPS, several monitors for trace gases (i.e., SO_2 , NO_X , CO , and O_3), and
438	offline high flow particle collectors. On one hand, lower concentrations of key trace gas pollutants and
439	particle number or mass were observed in atmosphere of SCS than those in urban areas in PRD region,
440	consistent with previously reported values for background marine atmosphere. Overall, chemical
441	composition of NR-PM $_1$ was dominated by sulfate (46%) and the PNSD showed bimodal distribution
442	centering at ~80 nm and the hygroscopicity κ values being higher than those in urban areas. On the
443	other hand, characteristics of air pollutants (e.g., concentrations, physical and chemical properties)

444	show substantially variations during summer monsoon season, depending on source origins.
445	Characteristics similar to continental aerosols were shown when air masses originate from inland China
446	continent or Indo-China peninsula possibly via long range transport, leading to increase of organic
447	fraction in chemical composition and decrease of hygroscopicity which might be attributed to picking
448	up locally emitted and fresh pollutants during transport. Furthermore, low hygroscopicity κ values were
449	also shown when the air was affected by local fresh emissions and in this case the number
450	concentration of particles increased with decrease of offshore distance. In addition, concentrations of
451	both NOx and CCN concentrations were well correlated with the total concentration of particles.
452	Interestingly, a tropical storm Bebinca was caught in the middle of the campaign, resulting in two
453	relatively clean periods (C1 and C2). These clean periods were likably attributed to strong wind and
454	rainfall brought by the typhoon which could obviously blow away or wash out pollutants in northern
455	SCS region.
455 456	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is
455 456 457	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern
455 456 457 458	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern SCS were measured to be about 0.4, in the range of between those in the remote northwestern Pacific
455 456 457 458 459	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern SCS were measured to be about 0.4, in the range of between those in the remote northwestern Pacific Ocean and those in urban PRD region, implying that particles in northern SCS could be a mixture of
455 456 457 458 459 460	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern SCS were measured to be about 0.4, in the range of between those in the remote northwestern Pacific Ocean and those in urban PRD region, implying that particles in northern SCS could be a mixture of marine background and anthropogenic particles from continents (e.g., Indo-China peninsula and inland
455 456 457 458 459 460 461	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern SCS were measured to be about 0.4, in the range of between those in the remote northwestern Pacific Ocean and those in urban PRD region, implying that particles in northern SCS could be a mixture of marine background and anthropogenic particles from continents (e.g., Indo-China peninsula and inland China continent). Concentrations of aerosol particles and trace gases exhibit complex temporal and
455 456 457 458 459 460 461 462	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern SCS were measured to be about 0.4, in the range of between those in the remote northwestern Pacific Ocean and those in urban PRD region, implying that particles in northern SCS could be a mixture of marine background and anthropogenic particles from continents (e.g., Indo-China peninsula and inland China continent). Concentrations of aerosol particles and trace gases exhibit complex temporal and spatial distribution. Concentrations of trace gases (i.e., O ₃ , CO, and NO _X except SO ₂), particles (i.e.,
455 456 457 458 459 460 461 462 463	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern SCS were measured to be about 0.4, in the range of between those in the remote northwestern Pacific Ocean and those in urban PRD region, implying that particles in northern SCS could be a mixture of marine background and anthropogenic particles from continents (e.g., Indo-China peninsula and inland China continent). Concentrations of aerosol particles and trace gases exhibit complex temporal and spatial distribution. Concentrations of trace gases (i.e., O ₃ , CO, and NO _X except SO ₂), particles (i.e., N _{CN} and N _{CCN}) were higher at the beginning (pollution episode: P1) than at the end (pollution episode:
455 456 457 458 459 460 461 462 463 464	SCS region. Our results suggest that aerosol properties and trace gases concentration over northern SCS is complex and substantially variable. The median hygroscopicity κ values of the particles in northern SCS were measured to be about 0.4, in the range of between those in the remote northwestern Pacific Ocean and those in urban PRD region, implying that particles in northern SCS could be a mixture of marine background and anthropogenic particles from continents (e.g., Indo-China peninsula and inland China continent). Concentrations of aerosol particles and trace gases exhibit complex temporal and spatial distribution. Concentrations of trace gases (i.e., O ₃ , CO, and NO _X except SO ₂), particles (i.e., N _{CN} and N _{CCN}) were higher at the beginning (pollution episode: P1) than at the end (pollution episode: P2) of the campaign, implying different source origins for the two periods. At the beginning of the

466	concentrations of both measured trace gases (except SO_2) and particles with decrease of offshore
467	distance. Meanwhile, concentration of NO_X had a good correlation with the N_{CN} , suggesting they might
468	originate from the same sources. Similarly, at the end of the campaign, concentrations of both
469	measured trace gases (except SO ₂) and particles also increased with decrease of offshore distance,
470	while because of more larger particles, higher fractions of particles were activated at the end than at the
471	beginning of the campaign. We attributed the source origin during this period to inland China content
472	via long range transport with additional local fresh pollutants during transport process, leading to
473	barely clear patterns for both $N_{CCN}\!/\!N_{CN,tot}$ and D_{50} at all applied SS (SS=0.18, 0.34, and 0.59%).
474	Furthermore, our results indicate that biomass burning from southeastern Asia may have important
475	impacts on chemical composition and properties of aerosol particles over northern SCS, in particular,
476	leading to increase of organic mass fractions and decrease of hygroscopicity $\boldsymbol{\kappa}$ values and hence
477	affecting CCN activity in the region. Our study highlights the necessity for performing more intensive
478	ship-based atmospheric measurements in order to better understand marine aerosols and air pollution in
479	SCS region.
480	
481	Data availability. Data from the ship-based cruise measurements are available upon request (Jun Zhao
482	via <u>zhaojun23@mail.sysu.edu.en</u>).
483	
484	Supplement. The supplement related to this article is available online at xxx.
485	
486	Author contributions. MC, JZ, and HT designed the research. MC and BL performed the ship-based
487	cruise measurements. MC, JZ, HT, BL, and QS analyzed the data. MC, JZ, and HT wrote the paper

- 488 with contributions from all co-authors.
- 489
- 490 *Competing interests.* The authors declare that they have no conflict of interest.
- 491
- 492 Acknowledgements. We acknowledges support from National Key Project of MOST 493 (2017YFC0209502, 2016YFC0201901, 2016YFC2003305), National Natural Science Foundation of 494 China (NSFC) (91644225, 21577177, 41775117), Science and Technology Innovation Committee of Guangzhou (201803030010), the "111 plan" Project of China (Grant B17049), Scientific and 495 496 Technological Innovation Team Project of Guangzhou Joint Research Center of Atmospheric Sciences, China Meteorological Administration (Grant No.201704). Additional support from the crew of the 497 498 vessel and from Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai) is 499 greatly acknowledged.

500	References
501	Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above
502	stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014, 2004.
503	Adam, M., Putaud, J. P., Martins dos Santos, S., Dell'Acqua, A., and Gruening, C.: Aerosol
504	hygroscopicity at a regional background site (Ispra) in Northern Italy, Atmos. Chem. Phys., 12,
505	5703-5717, 2012.
506	Atwood, S. A., Reid, J. S., Kreidenweis, S. M., Blake, D. R., Jonsson, H. H., Lagrosas, N. D., Xian, P.,
507	Reid, E. A., Sessions, W. R., and Simpas, J. B.: Size-resolved aerosol and cloud condensation nuclei
508	(CCN) properties in the remote marine South China Sea - Part 1: Observations and source
509	classification, Atmos. Chem. Phys., 17, 1105-1123, 2017.
510	Berg, O. H., Swietlicki, E., and Krejci, R.: Hygroscopic growth of aerosol particles in the marine
511	boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization
512	Experiment (ACE 1), J. Geophys. ResAtmos., 103, 16535-16545, 1998.
513	Cai, M., Tan, H., Chan, C. K., Mochida, M., Hatakeyama, S., Kondo, Y., Schurman, M. I., Xu, H., Li,
514	F., and Shimada, K.: Comparison of Aerosol Hygroscopcity, Volatility, and Chemical Composition
515	between a Suburban Site in the Pearl River Delta Region and a Marine Site in Okinawa, Aerosol Air
516	Qual. Res., 2017.
517	Cai, M., Tan, H., Chan, C. K., Qin, Y., Xu, H., Li, F., Schurman, M. I., Li, L., and Zhao, J.: The size
518	resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol
519	hygroscopicity and composition in the Pearl Delta River (PRD) Region during wintertime 2014,
520	Atmos. Chem. Phys., 18, 16419-16437, 2018.

521 Cerully, K., Raatikainen, T., Lance, S., Tkacik, D., Tiitta, P., Pet äjä, T., Ehn, M., Kulmala, M., Worsnop,

- 522 D., and Laaksonen, A.: Aerosol hygroscopicity and CCN activation kinetics in a boreal forest
- 523 environment during the 2007 EUCAARI campaign, Atmos. Chem. Phys., 11, 12369-12386, 2011.
- 524 Choi, Y., and Ghim, Y. S.: Assessment of the clear-sky bias issue using continuous PM10 data from two
- 525 AERONET sites in Korea, J. Environ. Sci., 53, 151-160, 2017.
- 526 Chuang, M.-T., Chang, S.-C., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., and Lee, C.-T.:
- 527 Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern
- 528 South China Sea during 7-SEAS/Dongsha Experiment, Atmos. Environ., 78, 82-92, 4, 2013.
- 529 Durkee, P. A., Jensen, D., Hindman, E., and Haar, T.: The relationship between marine aerosol particles
- and satellite detected radiance, J. Geophys. Res.-Atmos., 91, 4063-4072, 1986.
- 531 Feng, Y., Wang, A., Wu, D., and Xu, X.: The influence of tropical cyclone Melor on PM10
- 532 concentrations during an aerosol episode over the Pearl River Delta region of China: Numerical
- 533 modeling versus observational analysis, Atmos. Environ., 41, 4349-4365, 2007.
- 534 Fröhlich, R., Cubison, M. J., Slowik, J. G., Bukowiecki, N., Prévôt, A. S. H., Baltensperger, U.,
- 535 Schneider, J., Kimmel, J. R., Gonin, M., and Rohner, U.: The ToF-ACSM: a portable aerosol
- chemical speciation monitor with TOFMS detection, Atmos. Meas. Tech., 6, 3225-3241, 2013.
- 537 Hersey, S., Sorooshian, A., Murphy, S., Flagan, R., and Seinfeld, J.: Aerosol hygroscopicity in the
- 538 marine atmosphere: A closure study using high-time-resolution, multiple-RH DASH-SP and
- 539 size-resolved C-ToF-AMS data, Atmos. Chem. Phys., 9, 2543-2554, 2009.
- 540 Hong, J., Häkkinen, S. A. K., Paramonov, M., Äijälä, M., Hakala, J., Nieminen, T., Mikkilä, J., Prisle,
- 541 N. L., Kulmala, M., and Riipinen, I.: Hygroscopicity, CCN and volatility properties of submicron
- 542 atmospheric aerosol in a boreal forest environment during the summer of 2010, Atmos. Chem.
- 543 Phys., 14, 29097-29136, 2014.

- 544 Huang, R., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G.,
- 545 Platt, S. M., and Canonaco, F.: High secondary aerosol contribution to particulate pollution during
- 546 haze events in China, Nature, 514, 218, 2014.
- 547 Huang, S., Wu, Z., Poulain, L., Pinxteren, M. V., Merkel, M., Assmann, D., Herrmann, H., and
- 548 Wiedensohler, A.: Source apportionment of the submicron organic aerosols over the Atlantic Ocean
- from 53 °N to 53 °S using HR-ToF-AMS, Atmos. Chem. Phys., 1-35, 2018.
- 550 John, V. O., Holl, G., Allan, R. P., Buehler, S. A., Parker, D. E., and Soden, B. J.: Clear sky biases in
- satellite infrared estimates of upper tropospheric humidity and its trends, J. Geophys. Res.-Atmos.,
- 552 116, D14108, doi:10.1029/2010JD015355, 2011.
- 553 Johnson, B., Shine, K., and Forster, P.: The semi direct aerosol effect: Impact of absorbing aerosols
- 554 on marine stratocumulus, Q. J. Roy. Meteor. Soc., 130, 1407-1422, 2004.
- 555 Köhler, H.: The nucleus in and the growth of hygroscopic droplets, T. Faraday Soc., 32, 1152-1161,
- 556 1936.
- 557 Kim, J. H., Yum, S. S., Lee, Y. G., and Choi, B. C.: Ship measurements of submicron aerosol size
- distributions over the Yellow Sea and the East China Sea, Atmos. Res., 93, 700-714, 2009.
- 559 Kleidman, R. G., O'Neill, N. T., Remer, L. A., Kaufman, Y. J., Eck, T. F., Tanr & D., Dubovik, O., and
- 560 Holben, B. N.: Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and
- 561 Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction
- 562 over ocean, J. Geophys. Res.-Atmos., 110, D22205, doi:10.1029/2005JD005760, 2005.
- 563 Lehahn, Y., Koren, I., Boss, E., Ben-Ami, Y., and Altaratz, O.: Estimating the maritime component of
- aerosol optical depth and its dependency on surface wind speed using satellite data, Atmos. Chem.
- 565 Phys., 10, 6711-6720, 2010.

566	Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Wiedensohler, A., van Pinxteren, D., Spindler, G., Müller, K.,
567	and Herrmann, H.: Aerosol hygroscopicity derived from size-segregated chemical composition and
568	its parameterization in the North China Plain, Atmos. Chem. Phys., 14, 2525-2539, 2014.
569	Lv, Z., Liu, H., Ying, Q., Fu, M., Meng, Z., Wang, Y., Wei, W., Gong, H., and He, K.: Impacts of
570	shipping emissions on PM2.5 pollution in China, Atmos. Chem. Phys., 18, 15811–15824, 2018.
571	Moore, R. H., Nenes, A., and Medina, J.: Scanning Mobility CCN Analysis-A Method for Fast
572	Measurements of Size-Resolved CCN Distributions and Activation Kinetics, Aerosol Sci. Tech., 44,
573	861-871, 2010.
574	Mulcahy, J., O'Dowd, C., Jennings, S., and Ceburnis, D.: Significant enhancement of aerosol optical
575	depth in marine air under high wind conditions, Geophys. Res. Let., 35, L16810,
576	doi:10.1029/2008GL034303, 2008.
577	Ovadnevaite, J., Ceburnis, D., Leinert, S., Dall'Osto, M., Canagaratna, M., O'Doherty, S., Berresheim,
578	H., and O'Dowd, C.: Submicron NE Atlantic marine aerosol chemical composition and abundance:
579	Seasonal trends and air mass categorization, Journal of Geophysical Research: Atmospheres, 119,
580	11,850-811,863, 2014.
581	Petters, M., and Kreidenweis, S.: A single parameter representation of hygroscopic growth and cloud
582	condensation nucleus activity, Atmos. Chem. Phys., 7, 1961-1971, 2007.
583	Pierce, J., Leaitch, W., Liggio, J., Westervelt, D., Wainwright, C., Abbatt, J., Ahlm, L., Al-Basheer, W.,
584	Cziczo, D., and Hayden, K.: Nucleation and condensational growth to CCN sizes during a sustained
585	pristine biogenic SOA event in a forested mountain valley, Atmos. Chem. Phys., 12, 3147-3163,
586	2012.
587	Reid, J. S., Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J., Zhang, J., Campbell, J. R.,

- 588 Christopher, S. A., Di Girolamo, L., and Giglio, L.: Observing and understanding the Southeast
- 589 Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast
- 590 Asian Studies (7SEAS) program, Atmos. Res., 122, 403-468, 2013.
- 591 Reid, J. S., Lagrosas, N. D., Jonsson, H. H., Reid, E. A., Sessions, W. R., Simpas, J. B., Uy, S. N., Boyd,
- 592 T., Atwood, S. A., and Blake, D. R.: Observations of the temporal variability in aerosol properties
- 593 and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the
- scale-dependent role of monsoonal flows, the Madden-Julian Oscillation, tropical cyclones, squall
- lines and cold pools, Atmospheric Chemistry and Physics, 15, 1745-1768, 2015.
- 596 Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and
- 597 Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the
- 598 mega-city Guangzhou, China Part 1: Size-resolved measurements and implications for the
- 599 modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365-3383,
- 600 2010.
- 601 Tan, H., Yin, Y., Gu, X., Li, F., Chan, P. W., Xu, H., Deng, X., and Wan, Q.: An observational study of
- the hygroscopic properties of aerosols over the Pearl River Delta region, Atmos. Environ., 77,
- 603 817-826, 2013.
- Wang, J., Cubison, M., Aiken, A., Jimenez, J., and Collins, D.: The importance of aerosol mixing state
- and size-resolved composition on CCN concentration and the variation of the importance with
 atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267-7283, 2010.
- 607 Wu, Z. J., Poulain, L., Henning, S., Dieckmann, K., Birmili, W., Merkel, M., van Pinxteren, D.,
- 608 Spindler, G., Müller, K., Stratmann, F., Herrmann, H., and Wiedensohler, A.: Relating particle
- 609 hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign,

- 610 Atmos. Chem. Phys., 13, 7983-7996, 2013.
- 611 Yu, F., and Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of
- 612 nucleation to aerosol and CCN number concentrations, Atmos. Chem. Phys., 9, 7691-7710,
- 613 10.5194/acp-9-7691-2009, 2009.
- 614 Zhang, M., Wang, Y., Ma, Y., Wang, L., Gong, W., and Liu, B.: Spatial distribution and temporal
- 615 variation of aerosol optical depth and radiative effect in South China and its adjacent area, Atmos.
- 616 Environ., 188, 120-128, 2018.
- 617 Zhang, X., Zhuang, G., Guo, J., Yin, K., and Zhang, P.: Characterization of aerosol over the Northern
- 618 South China Sea during two cruises in 2003, Atmospheric Environment, 41, 7821-7836, 2007.

620	
020	

 Table 1. Summary of the instruments used in the campaign.

 Instruments	Parameters
 ToF-ACSM	NR-PM ₁
SMPS+CCNc	PNSD (9-415 nm), Size-resolved CCN
	Activation Ratio (at SS=0.18%, 0.34%, and 0.59%)
CO Monitor	CO concentration
SO ₂ Monitor	SO ₂ concentration
O ₃ Monitor	O ₃ concentration
 NO _x Monitor	NO _x , NO, NO ₂ concentration

621

623	Table 2. Summary of averag	e N _{CCN} , D ₅₀ , and	NCCN/NCN,tot at 0	0.18%, 0.34%	, and 0.59% SS	during P1,
-----	----------------------------	--	-------------------	--------------	----------------	------------

624	C1	C^2	and P2	
024	сı,	€2,	anu i z.	

Period	SS	0.18%	0.34%	0.59%
P1	N_{CCN} (# cm ⁻³)	1824.5	3969.4	7197.7
	D ₅₀ (nm)	131.5	95.6	65.26
	$N_{CCN}/N_{CN,tot}$	0.19	0.34	0.49
C1	N_{CCN} (# cm ⁻³)	565.7	978.3	1329.6
	D ₅₀ (nm)	105.1	67.2	48.5
	$N_{CCN}/N_{CN,tot}$	0.31	0.54	0.71
C2	N_{CCN} (# cm ⁻³)	535.6	844.47	1183.4
	D ₅₀ (nm)	107.5	68.1	47.8
	$N_{CCN}/N_{CN,tot}$	0.32	0.55	0.73
P2	N_{CCN} (# cm ⁻³)	4969.1	7139.6	8679.0
	D ₅₀ (nm)	100.6	64.8	48.6
	N _{CCN} /N _{CN,tot}	0.49	0.74	0.85

625

627	FIGURE CAPTIONS

- 628 Figure 1. Ship track and tropical storm Bebinca track during the campaign (a), and schematic diagram
- 629 of the vessel showing the location of the sea container which housed the onboard instruments during
- 630 the campaign (b).
- 631 Figure 2. Temporal profiles of the meausred particle number size distribution (a), mass concentration (b)
- and mass fraction (c) of chemical composition, N_{CCN} and $N_{CN}\left(d\right)$ and the daily averaged κ values with
- the upper and lower error bars (e). No data were shown between 6th and 8th August due to the
- 634 instrumental failure of the TOF-ACSM
- 635 Figure 3. The median and interquartile κ values measured over South China Sea, at urban Guangzhou
- 636 site, at marine background Okinawa site, and the mean and standard deviation κ values measured over
- 637 remote South China Sea and at mountain Goldlauter site. The κ values over South China Sea were
- 638 obtained from CCNc measurements (SS=0.18%, 0.34%, and 0.59%, in blue). The κ values in urban
- 639 Guangzhou were obtained from CCNc (SS =0.1%, 0.2%, 0.4%, and 0.7%, in orange) and HTDMA
- 640 measurements (in purple). The κ values in marine region Okinawa were obtained from HTDMA
- 641 measurements (in green). The κ values in remote South China Sea were obtained from CCNc (SS
- 642 = 0.14% and 0.38%, in orange). The κ values in mountain Goldlauter site were obtained from CCNc
- 643 (SS =0.07%, 0.10%, 0.19% and 0.38%, in black).
- 644 Figure 4. Concentrations of SO₂ (a), O₃ (b), CO(c), NO_X (d), N_{CN} (e), N_{CCN} (f), N_{CCN}/N_{CN,tot} at 0.34%
- 645 SS (g), and κ at 0.34% SS (h) as a function of latitude. The data points were color-coded according to
- 646 date.
- Figure 5. Correlations of SO₂ (a), CO (b), NO_X (c), N_{CCN} (d), AR at 0.34% SS (e), and κ at 0.34% SS (f)
- 648 with N_{CN}. The data were plotted according to color-coded dates.

- 649 Figure 6. The ship track during P1, C1, C2 and P2 periods
- 650 Figure 7. The 72 h backward trajectories arriving at the location of the vessel with three heights (150 m,
- 651 500 m, and 1000 m) during P1 , during C1, during C2 , and during P2 respectively.
- Figure 8. The average mass fraction of NR-PM1 composition during the C1, C2 and P2 periods
- 653 Figure 9. The average and standard deviation (shaded area) PNSD, along with trimodal lognormal
- $\,654\,$ $\,$ fitted modes (dash color lines). The average N_{CN} during each period and the parameter μ of each
- 655 lognormal fit were shown.
- 656

658

659 Fig. 1.

671 Fig. 4.

- 677
- 678

- 688
- 689 Fig. 8.
- 690

- 692
- 693 Fig. 9.
- 694