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Abstract. We address the problem of identifying the evaporation rates for neutral molecular clusters from synthetic (computer-

simulated) cluster concentrations. We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC)

algorithm to determine cluster evaporation/fragmentation rates from known cluster distributions, assuming that the cluster

collision rates are known. We used the Atmospheric Cluster Dynamic Code (ACDC) with evaporation rates based on quantum

chemical calculations to generate cluster distributions for a set of electrically neutral sulphuric acid and ammonia clusters. We5

then treated these concentrations as synthetic experimental data, and tested two approaches for estimating the evaporation rates.

First we have studied a scenario where at one single temperature time-dependent cluster distributions are measured before the

system reaches a time-independent steady-state. In the second scenario only steady-state cluster distributions are measured, but

at several temperatures. This allowed us to use multiple sets of concentrations at different temperatures. Additionally, in the

latter case the evaporation rates were represented in terms of cluster formation enthalpies and entropies which were considered10

to be free parameters. This reparametrization reduced the number of unknown parameters, since several evaporation rates

depend on the same cluster formation enthalpy and entropy values.

We show that in the second setting, even if only two temperatures were used, the temperature-dependent steady-state data

outperforms the first setting for parameter identification. We can thus conclude that for experimentally determining evaporation

rates, cluster distribution measurements at several temperatures are recommended over time-dependent measurements at one15

temperature.
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1 Introduction

The formation of molecular clusters, and their subsequent growth to aerosol particles, is an important yet poorly understood

process in our atmosphere. Clusters and aerosols affect both climate, air chemistry (Yu and Turco (2000)), evapotranspiration

in forest environments (Yan et al. (2018)), and many other atmospheric processes (Lee et al. (2003)).20

Recent developments in mass spectrometers have enabled the detection, quantification, and chemical characterization of

ionic clusters containing between one and some tens of molecules at atmospherically relevant mixing ratios 1 (Almeida et al.

(2013); Bianchi et al. (2016); Ehn et al. (2014); Eisele and Hanson (2000); Junninen et al. (2010); Zhao et al. (2010)). Molecular

clusters in atmospheric conditions are predominantly electrically neutral, and must thus be charged prior to mass spectrometric

detection. This may affect the measurement results, as only part of the sample molecules or clusters may be charged (Hyttinen25

et al. (2018)), and the charging may also alter cluster compositions. For example, for sulfuric acid base clusters, negative

charging tends to lead to loss of base molecules, and positive charging to loss of acid molecules (Ortega et al. (2012)). Modelling

is thus needed to connect measured ion cluster distributions to the original neutral population.

Even when the atmospheric cluster distribution can be accurately deduced from experimental data, this does not quantify

the individual kinetic parameters, such as the cluster collision and evaporation rates (Kupiainen-Määttä (2016)). Collision30

rates may be computed from kinetic gas theory or classical trajectory simulations with reasonable accuracy (Matsugi (2018)),

although recent research has shown that long-range attractive interactions may enhance collision rates (Yang et al. (2018)), for

example by around a factor of 2-3 for H2SO4-H2SO4 collisions (Halonen et al. (2019)). These relatively minor uncertainties

in the collision rates are dwarfed by the error margins of cluster evaporation rates. In computational applications, evaporation

rates are usually computed using the detailed balance assumption together with the free energies of cluster formation, which35

can in turn be computed using quantum chemical (QC) methods (Kurtén et al. (2007); Ortega et al. (2012); Elm et al. (2013);

Elm and Kristensen (2017); Yu et al. (2018)). Unfortunately, the evaporation rates depend exponentially on the free energies

variations of several kcal/mol between different QC methods thus translate into orders of magnitude differences in evaporation

rates, (Kupiainen-Määttä et al. (2013), Nadykto et al. (2014)).

Despite uncertainties involved in computational estimates of collision and evaporation rates, cluster population dynamic40

models based on Becker-Döring equations have been able to predict the sulphuric acid concentration dependence of cluster

concentrations (Olenius et al. (2013a)), and even absolute particle formation rates (Almeida et al. (2013)) in sulphuric acid-

ammonia and sulphuric acid-DMA systems, without empirical model calibration or parameter tuning. The Becker-Döring equa-

tions are a system of Ordinary Differential Equations (ODE), which account for cluster birth and death processes (which depend

on the collision and evaporation rates), as well as external cluster sinks and sources. In both studies (Olenius et al. (2013a)45

and Almeida et al. (2013)), these equations were implemented through the Atmospheric Cluster Dynamic Code (ACDC) (Mc-

Grath et al. (2012)), using kinetic gas theory collision rates, and standard quantum chemistry techniques for computing cluster

formation free energies (and thus evaporation rates).

1around or below one part per trillion (ppt)
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In mathematical terms, the prediction of cluster concentrations using known collision and evaporation rates is called the

forward problem. The associated inverse problem is to use known cluster concentrations to deduce the collision and evaporation50

rates. The inverse problem can be addressed with Bayesian approaches such as Markov chain Monte Carlo (MCMC) methods.

In a recent paper (Kupiainen-Määttä (2016)), Differential Evolution (DE) MCMC (see Braak (2006)) was applied to determine

evaporation rates for negatively charged sulphuric acid and ammonia clusters (containing up to five of each type of molecules,

with the HSO4− ion here defined as an "acid"). This study used steady-state cluster concentrations measured in the CLOUD
2 chamber experiment at constant temperature, with varying sulphuric acid and ammonia concentrations (we refer to Almeida55

et al. (2013) for details relevant to the experimental data). Collision rates were taken from kinetic gas theory. Kupiainen-Määttä

(2016) concluded that these data were insufficient for identification of all the evaporation rate coefficients. Another recent

paper (Kürten (2019)) reported thermodynamic data (cluster formation enthalpies and entropies) for 11 neutral sulphuric acid

and ammonia clusters. In the CLOUD experiment these were deduced from new particle formation (NPF) rates measured

at 5 different temperatures, over a wide range of sulphuric acid and ammonia concentrations. Most of the thermodynamic60

parameters could not be narrowly constrained, as the ranges of cluster formation enthalpies and entropies that reproduced the

measured NPF rates were quite wide. However, for each cluster only one monomer evaporation rate was taken into account

(either acid or base). Furthermore, the NPF rates obtained using the fitted parameters were systematically lower than the

measured ones for warmer temperatures (≥ 248 K).

In this study, we test which combinations of experimental data and fitted parameters leads to the best identification of cluster65

evaporation rates. As experiments are expensive and time-consuming to perform, we use synthetic cluster concentration data

created from ACDC simulations to test if the use of time-dependent cluster distribution data would significantly improve the

accuracy of the evaporation rates. Use of synthetic data also allows us to know for sure if our inverse modelling actually

produces the correct kinetic parameters or not, which would not be possible with experimental concentration data. As in the

Kupiainen-Määttä (2016) study, we compute collision rates from kinetic gas theory, while the evaporation rates used to generate70

our synthetic data are calculated from Gibbs free energies published by Ortega et al. (2012). Note that the conclusions of this

study are not sensitive to the accuracy of the quantum chemical data, as our focus is on the inverse problem of how to determine

evaporation rates from known concentrations rather than the forward problem.

For simplicity, we consider the case of neutral sulphuric acid-ammonia clusters containing up to five of each type of

molecules. Studying neutral clusters has the advantage that we can restrict ourselves to a smaller set of kinetic parameters,75

and ignore uncertainties related to charging and neutralization processes. In situations where a large fraction of the clusters are

charged, accurate modelling would require at least three times as many parameters, as both the negative, positive and neutral

cluster populations interact with each other. The downside of this simplification is that we lose the direct connection to potential

real-life experiments, as neutral atmospheric clusters cannot currently be measured without first charging them.

We investigate two different scenarios for estimating evaporation rates. First, we test the use of time-dependent cluster80

concentrations measured before the system has attained a steady state. This is motivated by the fact that this transient data

should provide additional information about the speed of the processes, which is missing from the steady-state data. Second,

2Cosmics Leaving OUtdoor Droplets
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we apply the approach of Kürten (2019), and express the evaporation rates as parameterized functions of the temperature, with

the cluster formation enthalpies and entropies (assumed here to be temperature-independent) as the unknown parameters. This

reparametrization is useful for two reasons. First, since the formation enthalpies and entropies of the monomers can be set85

to zero, and since several evaporation rates depend on the same enthalpy and entropy values, the dimension of the unknown

parameter space for our problem is actually reduced, despite the apparent doubling of the number of parameters. Second,

utilizing the temperature dependence allows us to produce and use arbitrarily many synthetic data sets at various temperatures,

which mathematically has a regularizing effect on the problem. Note that unlike in Kürten (2019), all possible evaporation

processes, including cluster fissions into two daughter clusters, are taken into consideration.90

2 SIMULATION METHODS

2.1 Generation of synthetic data

The 16 cluster types included in our study are summarized in Table 1. To save computational time, we have excluded clusters

where the number of acid and base molecules differs significantly from each other. Irrespective of the level of theory, quantum

chemical data predict that these clusters will have very high evaporation rates, leading to negligibly small concentrations. This95

is also supported by mass spectrometric measurements showing that the clusters with highest concentrations have roughly the

same number of acid and base molecules (see Kirkby et al. (2011), Schobesberger et al. (2015), Elm and Kristensen (2017),

Yu et al. (2018)). The ammonia monomer mixing ratio is assumed to remain constant in each individual simulation, and varied

between 5 and 200 ppt. (These correspond to concentrations of 1.3×108 and 5.0×109 molecules per cm3 for the temperature

ranges studied here, respectively). The sulfuric acid monomer source rate is kept constant at Q = 6.3× 104 cm−3s−1 in all100

simulations (see Table 2).

Synthetic concentration data for such neutral clusters were generated by the following method.

The evaporation rate coefficients computed in Olenius et al. (2013b), the associated collision rates as determined by Eq. A3-

A4, the wall losses calculated by Eq. A2, and dilution losses of (Si = 9.6×10−5s−1), are substituted in to the ACDC algorithm

McGrath et al. (2012), which computes the first-order non-linear, ordinary differential system of cluster concentrations as given105

by Eq. A1. Similarly to the earlier paper Kupiainen-Määttä (2016), we then integrate the system produced by ACDC using

the Fortran ordinary differential equation solver VODE (N. Brown et al. (1989)). A detailed description of this program was

published in McGrath et al. (2012). We note that unlike in Kupiainen-Määttä (2016), the system is considered at various

temperatures in this paper.

Two data sets were generated. First, time evolution of the concentrations Yi(t) is computed for time values less than the time110

at which the system has attained the steady state. The maximum time we run is 60 minutes in the above model configurations. In

this case, it is assumed that the concentrations for all the clusters are measured under constant temperature with time resolution

comprising 1.5 minutes, which comprises overall 41 transient concentration measurements for each of the cluster types i.

Secondly, we solve for time-independent steady-state concentrations for all the cluster types for two temperatures comprising

278 K and 292 K. In both data configurations, the steady-state cluster concentrations are calculated as the average of the115
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concentrations determined for time instances t1 := 50 min and t2 := 60 min. The measure of how close the system has reached

to the steady state is monitored by a convergence parameter, which is the ratio of the concentrations at times t2 and t1, taken

in each case for the cluster for which this ratio deviated most from unity, Kupiainen-Määttä (2016).

In both data settings, the simulation outputs are amended with the measurement errors sampled from a multivariate, non-

correlated, Gaussian distribution, where the variance of the distribution depends on cluster type i, temperature T and time120

instance t. While a simplification of noise characteristics of the real data obtained from a mass spectrometer, we impose that

the standard deviation of the noise comprises 0.001% of the original concentration.

Note that apart from generation of synthetic data, we apply the ACDC as a kinetics model of cluster population in the MCMC

simulations. The ACDC outputs are compared to the synthetic measurements and explained in Section 2.2.

Table 1. Neutral molecular clusters included into model system. The first column indicates the number of sulphuric acid molecules, the

second column stands for the number of ammonia in the cluster.

Number of H2SO4 molecules Number of NH3 molecules

0 1

1 0-1

2 0-2

3 1-3

4 2-5

5 3-5

Table 2. Monomer concentrations used in simulations

[H2SO4] monomer source [NH3] concentration

6.3× 104 cm−3s−1 5 ppt

6.3× 104 cm−3s−1 35 ppt

6.3× 104 cm−3s−1 100 ppt

6.3× 104 cm−3s−1 200 ppt

2.2 Markov chain Monte-Carlo simulations125

The evaporation rate coefficients γi+j→i,j appearing in the ACDC simulation of Equation A1 are treated as unknown param-

eters. Our purpose is to determine all the parameter sets that reproduce the synthetic data within their noise level (which is

known). We do this using Markov Chain Monte Carlo (MCMC) sampling.
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Table 3. Domain limitations for two data settings under consideration imposed to exclude non-physical parameters in parameter identification

procedure.

Data settings Estimated parameters Minimal value Maximal value

Data setting 1 Base 10 logarithms of -12 12

evaporation rates (in s−1)

Data setting 2 Cluster formation

enthalpies (kcal mol−1) and -400 0

entropies (cal K−1 mol−1) -400 0

The MCMC approach computes a posterior probability density function of the parameters as point-wise likelihood ap-

proximations across the parameter space. The algorithm samples the candidate parameter points from a predefined proposal130

distribution, and then either accept or reject it, according to how closely the output model fits the data. The fundamental

technique is the Metropolis algorithm (Metropolis et al. (1953)). The sets of parameters which produce cluster concentrations

within the allotted noise level of the data are kept in the sampled distribution. Finally, the approximation of the posterior

distribution is constructed from the retained parameter sets. We remark that to create a reliable sample from the underlying

parameter distribution, many different parameter combinations must be tested; that is, the length of the MCMC chain must135

be large enough (Haario et al. (1999), Haario et al. (2001)). In both our studies, the MCMC chain length typically comprised

3 million samples. The MCMC acceptance probabilities (defined below) in each of the cases were about 88.0%, which is a

typical level of acceptance since the “forward” ACDC model (in which the rate coefficients are known) is deterministic.

In this paper we employ a variant of the Metropolis algorithm which is more efficient at parameter sampling when the

parameter space is large (Haario et al. (2006)). This variant is called the Delayed Rejection Adaptive Metropolis (DRAM),140

introduced in Haario et al. (2006). We briefly explain our approach below.

Parameter identification is conducted using the ’mcmcstat’ toolbox implemented for FORTRAN (see Haario et al. (2001),

Haario et al. (2006)). See the description and the examples of usage on the web page helios.fmi.fi/~lainema/.

First, an initial prior distribution for the parameter values θ (represented in array form) is chosen and set to be the proposed

“true” distribution from which possible parameters are sampled. In our case, we chose the flat prior, but impose some domain145

restrictions for sampling from this prior to exclude unphysical parameters (see Tables 3-4).

We emphasize that there are currently no theoretical principles or experimental results which indicate possible restrictions

for even the order of magnitude of the evaporation rates. However, we assume that the evaporation rates with orders of mag-

nitude less than 10−10s−1 are irrelevant in practise, since such an evaporation event is highly improbable, and it is very likely

that instead the cluster will grow further by collisions. Similarly, when the evaporation rate is of the order of magnitude more150

than 10+10s−1, it is reasonable to expect that the cluster will most certainly evaporate before it has a chance to grow further.

With these assumptions, the prior distribution of the evaporation rates spans over several orders of magnitude, and the base 10

logarithm of evaporation rates was sampled from the range of -12 to 12.
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Table 4. Additional domain limitations for the data setting 2 from Table 3 (identification of thermodynamic data), where the cluster formation

enthalpy of the i-th cluster is denoted by ∆Hi and the symbols A and N stand for ammonia and sulphuric acid, respectively.

∆H2A > ∆H2A1N ∆H3A2N > ∆H4A2N

∆H1A1N > ∆H2A1N ∆H4A2N > ∆H4A3N

∆H2A1N > ∆H3A1N ∆H4A3N > ∆H4A4N

∆H2A2N > ∆H3A2N ∆H4A4N > ∆H5A5N

∆H3A1N > ∆H3A2N ∆H4A4N > ∆H4A5N

Once initialized, the following iterative steps take place. From the proposed distribution, a guess for the parameter values

sampled, denoted θold. Then, a new candidate for the unknown parameter values, θnew, is sampled from the old point using155

Gaussian proposal distribution. We use ACDC plus VODE to simulate concentration outputs with parameter rates θnew. In the

first stage of DRAM, we chose to accept the new proposed values θnew with probability

pacc(θold,θnew) = min
{

1,
p(Yexp|θnew))
p(Yexp|θold))

}
, (1)

where Yexp is the array of synthetic cluster concentration data, and p(Yexp|θold), p(Yexp|θnew) denote the likelihood (condi-

tional) probabilities for the old and new parameter values, respectively. These likelihood probabilities quantify how closely the160

kinetic model with parameters θ reproduce the data, as they depend on the sum of squared residuals between the given data and

the concentrations obtained from the ACDC and VODE simulations with parameters θ. This relationship is explained further

in Appendix A1. In DRAM we allow for partial modification of the proposed parameters (the “delayed rejection” component

of DRAM). This second stage of sampling improves the computational time needed to obtain an estimate for θ; it is performed

as follows. If the proposed θnew is rejected, a nearby proposal is created, θnew2. We accept this second proposal keeping in165

mind the rejection probability of the first, according to

pacc2 = min
{

1,
p(Yexp|θnew)p(Yexp|θnew,θnew2)[1−pacc(θnew,θnew2)]

p(Yexp|θold)p(Yexp|θold,θnew)[1−pacc(θold,θnew)]

}
. (2)

At the start of the MCMC simulations, the proposal covariances for both stages are initialized using arbitrary diagonal

matrices with equal variances. It is assumed that the proposals of the form p(Yexp|·) and p(Yexp|·, ·) are Gaussian. They are

updated at each successive iteration of the MCMC algorithm to improve the mixing of the chains.170

The first-stage proposal covariance is recomputed via the Adaptive Metropolis (AM) procedure (see Haario et al. (2001)).

Let d be the dimension of the parameter space, and {X0, . . . ,Xn} ⊂ Rd be a set of d-dimensional vectors containing the

sampled values of free parameters. Then the first-stage proposal is centred at the current position of the Markov chain Xn,
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whereas the corresponding proposal covariance C1
n is updated using the path of the previously sampled MCMC chain:

C1
n =





C0, n≤ n0

sdCov(X0, . . . ,Xn−1), n> n0,
(3)175

where C0 is the initial covariance assigned at the beginning of the MCMC runs, n0 stands for the length of the initial non-

adaptation period, sd = 2.4/d is the scaling parameter, and Cov(X0, . . . ,Xn−1) is the empirical covariance matrix for the

vectors X0, . . . ,Xn−1:

Cov(X0, . . . ,Xn−1) =
1

n− 1

(n−1∑

i=0

XiXT
i −nXn−1X

T

n−1,
)
, (4)

where X
T

n−1 = 1
n

∑n−1
i=0 Xi and Xi ∈ Rd are column vectors. In our study and all runs therein, we set n0 to be 100 iterations.180

Simultaneously, the second-stage proposal covariance is computed as a scaled version of the first-stage proposal covariance:

C2
n = γC1

n, (5)

with the scaling factor γ = 5 borrowed from Haario et al. (2006). This value was chosen to increase the acceptance at the

second stage.185

Then, if both θold and θnew are rejected at this stage, a new parameter candidate is sampled and the process is repeated. If

the parameter candidate is accepted, the Markov chain is advanced one step and sampling as above is repeated. The process

stops once the chain length is exhausted.

Further, observe that the sampled parameters of the posterior distribution represent the model evaluations which produce

values within the noise level of 0.001% of the data concentrations for each of the respective cluster types.190

An outline of the above procedure is illustrated in Figure 1 below.

We next explicitly describe what Yexp and θ which give the acceptance probability in Equation 1 represent in the two study

cases.

In the first study, the free parameters θ represent the evaporation rates. The data Yexp is either the time-independent steady-

state or transient cluster concentrations measured at temperature 278 K.195

In the second study, we use Eq. A4 and A5 to express the evaporation rates as functions of thermodynamic data, parametrized

by temperature:

γi+j→i,j = f(T,{∆Hk,∆Sk}k∈{i+j,i,j}). (6)

In Eq. 6, we set T = 278 K or T = 292 K. We emphasize that the rates γi+j→i,j now depend on temperature and six parameters:

the cluster formation enthalpy ∆Hi+j and entropy ∆Si+j of the evaporating cluster i+j, and the formation enthalpies ∆Hi,∆Hj200

and entropies ∆Si,∆Sj of the clusters i and j respectively. In this setting θ represents the array of quantities ∆Hi+j, ∆Si+j,

∆Hi, ∆Hj, ∆Si, ∆Sj with i+ j ∈ {1,2, . . . ,16}.
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Figure 1. Schematic representation of the study methods.

At either temperature T = 278 K or T = 292 K, the smaller clusters for certain combinations of ammonia and sulphuric acid

may arise from the evaporation of several larger clusters. This implies that several of the pairs ∆Hi,∆Si appear in expression

6 for the evaporation rates of different cluster types. Additionally, the Gibbs formation free energies of monomers are fixed205

to be zero, and their associated enthalpies and entropies do not vary in our simulations. This imposes additional constraints

on possible parameter values. One can calculate that of the 39 evaporations that are involved in the dynamics of the neutral

cluster system under consideration, only 28 distinct entropy and enthalpy values appear. Consequently, in this case the number

of free parameters has been reduced from 39 to 28. This information is summarized in Table 3. Moreover, from this table one

can see that the entropy and enthalpy values lie within two orders of magnitude. This feature of the cluster formation entropies210

and enthalpies has the effect of reducing the stiffness of the differential system in Equation A1 (computed via ACDC) which

allows for easier integration via VODE.

For the setting above, the data Yexp are the time-independent steady-state cluster concentrations measured at temperature

278 K or 292 K. We note that several experiments conducted at different temperatures are needed to obtain state information

concerning the specific evaporation rate associated with each temperature level (Soncini (2014)). In this work we consider two215

temperatures, which is one such minimal configuration that contains information sufficient for determination of thermodynamic
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Figure 2. Steady-state cluster concentrations for the clusters containing sulphuric acid and a varying number of ammonia molecules as

a function of the number of acid molecules for [NH3] concentrations comprising (a) 5 ppt, (b) 35 ppt, (c) 100 ppt and (d) 200 ppt at

temperature T=278 K. The concentrations have been amended with multivariate non-correlated Gaussian noise with standard deviation

comprising 0.001% of the original cluster concentration. The source of sulphuric acid monomers is [H2SO4] = 6.3×104 s−1 in each of the

simulations.

data. Similar approaches were applied for the inverse problem of chemical kinetics modelled by the Arrhenius equation, where

chemical reaction rates are temperature dependent (Vahteristo et al. (2008)).

3 RESULTS AND DISCUSSION

3.1 Identification of the evaporation rate coefficients from steady-state data220

First, we generate synthetic steady-state data by the method in Section 2.1, for varying initial ammonia monomer concentra-

tions, previously summarized in Table 2; the sulphuric acid monomer is supplied to the system at a constant rate comprising

6.3×104 s−1 at the temperature T = 278 K. As an output, we obtain the concentrations for all cluster types considered (listed

earlier in Table 1), measured when the system has attained the steady-state. A graphical representation of the data set is given

above in Figure 2.225
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Next, from the steady-state data we determine the base 10 logarithms of the evaporation rate coefficients. Since the noise

added to cluster concentrations results in a random bias towards an increase (or decrease) from the original values produced

from the ACDC, the estimates of parameters derived from synthetic data are likely to be biased. In order to average the effects

attributed to the random bias, we generated 3 sets of synthetic data by adding random increments to original concentration

measurements. Utilizing these data sets, three independent MCMC runs were conducted, each run containing 3 million param-230

eter samples. An example of one of the sampled chains is depicted in Figures B1-B2. We omit the initial one million samples

and plot the stationary3 parts of the chains. As we observe from the plots in Figures B1-B2, all the parameter chains feature

an upper limit. However, only 15 out of 39 evaporation rates are limited from below (see subfigures labelled 1-5, 7, 10, 12, 16,

18, 22, 27, 31, 33 and 35 in Figures B1-B2). This subset of evaporation parameters is comprised of the evaporation rates of

monomers, with the exception of monomer evaporation rates for: H2SO4 from
(
H2SO4

)
5

(
NH3

)
4

and
(
H2SO4

)
5

(
NH3

)
5
, and235

the evaporation rate of NH3 from
(
H2SO4)

)
5

(
NH3

)
5
. These excluded parameters correspond to the evaporations of monomers

from the largest and most stable clusters.

For each evaporation parameter, we calculate the one dimensional (that is, depending only on the evaporation rate) marginal

posterior distribution as the position-wise average of the stationary parts of the three sampled chains. This procedure is needed

to average the bias originating from random noise. The resulting distributions are given in Figures 3-4. We use the maximum240

(also called the mode in the statistics literature) of the posterior marginal distribution function as our parameter estimate in

the case when the marginal posterior distributions have precisely one maximum value. In the cases where we have multiple

estimators, we provide a range for the evaporation rate values.

All the evaporation rates larger than 10−3 s−1 are well-identified (see subfigures labelled 1, 2, 4, 5, 7, 10, 12, 16, 18, 22, 27,

31 and 35 in Figures 3- 4). The estimates for the remaining evaporation rates can take values within ranges spanning several245

orders of magnitude and are thus uncertain. Also, notice that most of the marginal posterior distributions are non-uniform,

except for the evaporation rate of
(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
5

(
NH3

)
5
. In five cases (refer to subfigures labelled 6, 21,

28, 32 and 36 in Figures 3- 4), the estimated parameter values are not unique; that is the marginal posterior distributions feature

multiple modes. The results of our parameter identification are summarized in Tables C1- C2 and in subfigures labelled (a)

and (b) in Figure 5.250

The pairwise marginal posterior distributions for the estimated evaporation rates are illustrated in Figures B3-B6. From

these plots one can see that the majority of parameters are not correlated. However, the evaporation of monomers from
(
H2SO2

)
5
NH3,

(
H2SO4

)
3

(
NH3

)
2

and
(
H2SO4

)
5

(
NH3

)
4

display non-linear inverse correlations. This implies that either

H2SO4 rarely evaporates (at the rate less then 10−4 s−1) and that NH3 evaporates often, or the evaporation rates of H2SO4

and NH3 are of comparable magnitude in these cases. Additionally, it can be seen from the pairwise posteriors that most of the255

estimated parameters are highly uncertain. Therefore, we conclude that in the situation where we determine parameters from

the synthetic steady-state data, parameter identification is not unique.

3Here stationary means that the probability of transitioning from the current state at position j to the new state at position j +1 is independent of j.
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Figure 3. One-dimensional marginal posterior distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines

denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.

From a mathematical perspective, the existence of multiple distinct parameter estimates indicates that the problem of re-

covering evaporation rates from the synthetic steady-state concentration data is ill-posed. In these situations, one seeks to

regularize the problem; that is, add more data or information to the model to reduce the number of possible estimates.260
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Figure 4. One-dimensional marginal posterior distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines

denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.

3.2 Identification of the evaporation rate coefficients from transient data

In this section and next, we consider two methods of regularizing our problem. First, we change the synthetic measurement

data from steady state concentrations to transient concentrations. We then conduct analogous MCMC runs (as described in

Section 2 using this extended data set. The time resolution of our new synthetic data set is 1.5 minutes, which results in 2624

total concentration measurements for all the cluster type measured for four different ammonia concentrations. These data sets265

are illustrated in Figure C1.

As in the steady-state setting, we conduct three independent MCMC runs to determine the base 10 logarithms of the evap-

oration rates. One of these runs is presented in Figures C2-C3. Again, we omit the first one million samples, which are the

samples before the chains have obtained their stationary distributions.

It is shown in Figures C2-C3, that all the chains have the upper limits. Most of the chains are bounded from below, with270

five exceptions. Specifically, the evaporation rates of
(
H2SO2

)
2

(
NH3

)
2

from
(
H2SO2

)
4

(
NH3

)
4

and
(
H2SO2

)
5

(
NH3

)
3
, the

evaporation rates of H2SO4, H2SO2NH3 and
(
H2SO2

)
2

(
NH3

)
2

from
(
H2SO2

)
5

(
NH3

)
5

have arbitrarily large magnitude.

We examine the one-dimensional marginal posterior distributions for the estimated parameters in Figures 6-7. From these

plots, one sees that most of the estimates are close to the baseline values used for generation of the synthetic data. However, the

estimated evaporation parameters still feature substantial uncertainties, as their marginal posterior distributions span several275
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orders of magnitude (see subfigures 6, 8, 9, 11, 13, 14, 17, 21, 23-26, 30, 32-34, 37-39 in Figures 6-7). Three parameters

(subfigures 20, 29 and 36 in Figures 6-7) have multimodal marginal posterior distributions. We also note that the evaporation

rate of
(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
5

(
NH3

)
3

(which corresponds to subfigure 26) has a uniform posterior distribution.

Further, we can only specify that the upper limits for the evaporation rates depicted in subfigures 20 and 36 are less than 1.96×
10−5 s−1. However, given the reliable upper estimates, the evaporation processes

(
H2SO4

)
4

(
NH3

)
3
→
(
H2SO4

)
4

(
NH3

)
2

+280

NH3 and
(
H2SO4

)
5

(
NH3

)
5
→
(
H2SO4

)
4

(
NH3

)
5

+ H2SO4 can be neglected, as they are relatively slow when compared

with the other competing processes.

Pairwise marginal posterior distributions for the evaporation rates are plotted in Figures C4-C8. Notice that the evaporation

rates of monomers for clusters
(
H2SO2

)
2

and
(
H2SO2

)
2
NH3 display inverse linear correlations. Additionally, the uncertain-

ties in all the correlated parameters are relatively small (less then an order of magnitude). We also remark that from these plots285

one can see that most of the evaporation rates do not display any substantial correlations.

In Tables C1-C2 we summarize the results of parameter identification for the above-discussed two data settings. Note that

the estimated upper limits for some of the small evaporation rates (less than 10−5 s−1) determined from the steady-state data

can be as large as 1.55×10−2 s−1. This is a poor estimate, since the uncertainties in the synthetic data are small. For example,

see the results for parameters shown in subfigures 32 and 34 of Figure 7. In these cases the identification has improved when we290

extended the data set with time-dependent measurements. Overall one observes that the transient data enabled us to determine

the lower bounds for most of the parameters, with the exception of those parameters shown in subfigures numbered 26 and 29.

Moreover, the additional time dependent data enabled us to reduce the uncertainties in the estimates of parameters in subfigures

15, 19 and 37. As a result, with the aid of time-dependent data we have improved the estimates of minimal and maximal values

for the evaporation rate parameters (see comparison of the 95 % confidence intervals plotted in Figure 5).295
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Figure 5. Comparison of 95 % confidence intervals (orange box plots) of base 10 logarithms of the evaporation rates determined from (a)-(b)

steady-state and (c)-(d) time-dependent synthetic data measured at temperature 278 K. In reactions "A" stands for H2SO4 and "N" for NH3.

Here blue asterisks denote the baseline values used for creating the synthetic data (borrowed from Ortega et al. (2012)). Black circle and

horizontal line markers indicate the mode and the mean value of the distribution, respectively.
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Figure 6. One-dimensional marginal posterior distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from transient measurements of the cluster concentrations with time resolution comprising

1.5 minutes at the temperature 278 K. Red lines denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In

reactions "A" stands for H2SO4 and "N" for NH3.
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Figure 7. One-dimensional marginal posterior distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from transient measurements of the cluster concentrations with time resolution comprising

1.5 minutes at the temperature 278 K. Red lines denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In

reactions "A" stands for H2SO4 and "N" for NH3.

3.3 Estimating thermodynamic data from steady-state concentration measurements

In this section we describe another method for regularizing our problem of estimating evaporation rates from steady-state

concentration data. We will determine the cluster formation enthalpies and entropies from two sets of synthetic, steady-state

cluster concentrations, now measured at two temperatures: 278 and 292 K. This data set is plotted in Figures 2 and D1 for 278

K and 292 K, respectively.300

We will demonstrate that reparameterization (in terms of thermodynamic data) plus the extended data set transforms our

parameter identification problem from an ill-posed problem to a well-posed one. We use synthetic steady-state cluster concen-

trations generated for two temperatures to recover the thermodynamic parameters. This is done to improve the identification

by using the temperature dependence of the Gibbs free energies (and the evaporation rates).

For each temperature choice, we use the methods described in Section 2 to obtain synthetic steady-state cluster concentra-305

tion data. We summarize this data in Table 2; the data sets are plotted in Figure 2 for 278 K and D1 for 292 K. Three MCMC

runs were conducted to average the bias attributed to random noise added to the data, as discussed in the previous section.

An example of one of the sampled chains is illustrated in Figure D2. It can be seen that all the chains are bounded, with the
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exception of the formation enthalpy and entropy of the biggest cluster (
(
H2SO2

)
5

(
NH3

)
5
).

310

Next we consider the one-dimensional (depending on the particular cluster formation entropy or enthalpy parameters)

marginal posterior distributions of free parameters built from the stationary parts of the three sampled chains merged together,

see Figure 9. It can be seen that for all the clusters except
(
H2SO2

)
5

(
NH3

)
5

the estimated formation enthalpies vary at most

by 1 kcal mol−1, while the variance for the formation entropies is less than 1 cal K−1 mol−1. The estimated free parameters

together with the baseline quantum chemistry-based values from Ortega et al. (2012) used for generation of the synthetic data315

are summarized in Table D1.

Although the posterior distributions of sampled thermodynamic parameters for
(
H2SO2

)
5

(
NH3

)
5

feature higher uncer-

tainties in comparison to the corresponding posterior distributions identified for the smaller clusters, the Gibbs free energy

of cluster formation for
(
H2SO2

)
5

(
NH3

)
5
, as calculated from the aforementioned posterior distributions, has low variance.

This is due to the fact that formation enthalpies and entropies of the molecular clusters exhibit strong linear correlations, as320

we see from our MCMC simulations in Figure 8 and Figures D3-D5. As a result, the evaporation rates of
(
H2SO2

)
5

(
NH3

)
5

calculated from a posterior distribution of sampled thermodynamic parameters have low uncertainties, i.e., they vary within

one order of magnitude, see Figure D3.

Notice that the evaporation rates for all the molecular clusters calculated from a posterior distribution of sampled thermody-

namic parameters for the temperature 278 K are close to the baseline values from Ortega et al. (2012) used for generation of325

the synthetic data and their variances are less than one order of magnitude, see Figures D6-D7.

Additionally, strong correlations are observed between formation enthalpies (entropies) of the clusters containing same num-

ber of ammonia molecules larger then 2, except the case of
(
H2SO2

)
5

(
NH3

)
5
. Since our parameters are strongly correlated,

we may alternatively consider just cluster formation enthalpies or the ratios of cluster formation entropies and enthalpies as

our free parameters.330
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Figure 8. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster

formation enthalpies and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.
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Figure 9. One-dimensional marginal posterior distributions of the cluster formation enthalpies (units given in kcal/mol) and entropies (units

given in cal K−1 mol−1)) determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K.

Red lines denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for

cluster formation enthalpies and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.
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3.4 Comparison to previous evaporation rate determinations

In this study we determine the evaporation rates and thermodynamic data from measurements of cluster concentrations. Supple-

mentary to the methodology presented in Kupiainen-Määttä (2016), our first method enables to determine parameters from the

time-dependent cluster concentrations measured before the system has attained the steady state. The transient data improved

the estimates for all the evaporation rates.335

In the second method we identify thermodynamic parameters from the steady-state cluster concentrations measured at two

different temperatures. This approach is similar to Kürten (2019), but our model takes into account all the possible evaporation

processes. In Kürten (2019) the thermodynamic parameters had been determined from the New Particle Formation Rates

(NPFs) measured at different temperatures. Instead of the NPFs, we employ the measurements of cluster concentrations. By

so doing, we find the combination of data and fitted parameters which enables to determine the evaporation rates with the340

variances comprising less that one order of magnitude.

Although the transient data have improved the estimates, the temperature-dependent data have been demonstrated to yield the

most accurate estimates of the evaporation rates, when we treat cluster formation enthalpies and entropies as free parameters.
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4 Conclusions

We applied a Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC) algorithm to identify cluster evap-345

oration/fragmentation rates from known cluster distribution data and known cluster collision rates. We used Atmospheric

Cluster Dynamic Code (ACDC) with quantum chemistry based evaporation rates to generate synthetic data for the purpose of

validating the parameter identification.

First, we sought to determine the cluster evaporation rates from both steady-state and time-dependent cluster concentration

data at one temperature. In this first scenario, we sought to determine the cluster evaporation rates from both steady-state and350

time-dependent cluster concentration data. Due to the mathematical stiffness of the ordinary differential equations describing

the time evolution of the cluster concentrations, we were only able to identify a subset of the free parameters (evaporation rates)

from the available data. This stiffness originates from the vastly different timescales of some of the key evaporation rates.

In the second scenario, we used only steady-state concentration data but for two different temperatures. We introduced

a reparametrization expressing the evaporation rates in terms of cluster formation enthalpies and entropies, and temperature.355

This reduced the number of parameters we sought to identify. It also lessened the stiffness of the system, as the cluster formation

enthalpies and entropies for our system have comparable orders of magnitude. We demonstrated that steady-state concentration

data at two different temperatures could be used to determine all the unknown formation enthalpies and entropies, and thus the

evaporation rates, to within acceptable accuracy.

The approach presented here can also be applied to infer evaporation rates from mass spectrometric measurements of molec-360

ular cluster concentrations. This naturally requires accounting for the process of charging neutral clusters, with its associated

uncertainties. A clear conclusion of our proof-of-concept study is that steady-state data at different temperatures is more use-

ful for determining evaporation rates than time-dependent data at a single temperature. Determining very low (below 10−5

s−1) evaporation rates may also require additional measurements at low vapor concentrations, which naturally require longer

timescales to reach a steady state.365

Code availability. The code is available via GitHub repository: http://doi.org/10.5281/zenodo.3766925
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Appendix A: Supplementary mathematical material

A1 Cluster kinematics

The kinetics of cluster formation is described by Becker-Döring equations (see ?, Hingant and Yvinec (2017)), which model

cluster birth and death which arises from collisions of the smaller clusters into larger ones and evaporations from the bigger370

clusters into smaller ones. Precisely, labelling the clusters by i ∈ {1,2, . . . ,N}, the time derivative of the ith cluster concentra-

tion Yi is governed by

dYi
dt = 1

2

∑
j<i

βi,(i−j)YiYi−j +
∑
j

γi+j→i,jYi+j−
∑
j

βi,jYiYj− 1
2

∑
j<i

γi→j,i−jYi + Qi−Si, (A1)

where βi,j is the collision coefficient of clusters i with j, and γi+j→i,j is the evaporation coefficient of cluster i+j into clusters

i and j, Qi is an external source term of i, and Si represents the total possible types of losses for the cluster of type i. These375

last two terms, which stand for external supply and destruction mechanisms, depend on the system under consideration.

We now specify the quantity and type of sinks and sources included in our studies. We assume that the concentration of

ammonia monomers is constant, while sulphuric acid monomers are supplied to the system at a constant rate comprising

Q = 6.3× 104 cm−3s−1. This settings are selected to imitate the conditions inside of the CLOUD chamber, (see Kirkby et al.

(2011), Kürten et al. (2015)). Further, we include wall losses arising from clusters sticking on the walls of the experimental380

chamber (see Kürten et al. (2015)). These wall losses are parametrized by the size of the cluster

Swall,i = 10−12/(2ri + 0.3× 10−9) s−1, (A2)

where ri is the mass radius of the cluster (in cm). From Eq. A2, wall loss rates decrease with cluster size; in practise it also varies

with respect to cluster position in the chamber and time. We neglect any uncertainties attributed to the wall losses. However,

we do account for dilution losses, with size-independent value comprising Sdil,i = 9.6× 10−5s−1, which had previously been385

determined in the CLOUD chamber, (see Kirkby et al. (2011), Kürten et al. (2015)).

Let T denote the temperature of the system of molecular clusters. Using classical kinetic gas theory, the collision rates βi,j

in Eq. A1 obey

βi,j =
√

T
(

3
4π

)1/6 [
6kB

(
1

mi
+

1
mj

)]1/2(
V1/3

i + V1/3
j

)2

, (A3)

where mi and Vi are respectively the mass and volume of cluster i, and kB is Boltzmann’s constant. In this paper, we assume390

that the masses and volumes are temperature-independent.

The cluster evaporation rates γi+j→i,j in Eq. A1 are given by the expression

γi+j→i,j = βi,j
Pref

kBT
exp

(
∆Gi+j−∆Gi−∆Gj

kBT

)
, (A4)

where Pref is the reference pressure and ∆Gi is the Gibbs free energy of formation for cluster i. We may further describe the

ith Gibbs free energy in terms of the cluster formation enthalpy ∆Hi and entropy ∆Si:395

∆Gi = ∆Hi−T∆Si. (A5)

23

https://doi.org/10.5194/acp-2019-1036
Preprint. Discussion started: 4 May 2020
c© Author(s) 2020. CC BY 4.0 License.



We neglect here the weak temperature dependence of real cluster formation enthalpies and entropies.

A2 Likelihood, data and cost function

The likelihood of observing the data Yexp given the parameter values θ is

p(Yexp|θ) =
1

(2π)nout/2
exp(−1

2
F(θ)), (A6)400

where nout is the number of measurements and F (θ) is the cost function. We elucidate the cost function below. In our first

study in which simulations are conducted with time-dependent data, the number of measurements is nout = 4 ∗ (Nc ∗Nt + 1),

where Nc = 16 is the number of cluster types whose concentrations are measured and Nt = 41 is the number of time-step

measurements available for each of the cluster types. As explained in Section 2.1, after each VODE integration, a convergence

coefficient is computed from the steady-state cluster concentrations to ensure that the system has attained the steady-state.405

In our first study, the parameter fit to the data was evaluated by the sum of squared residuals of the model outputs Ymod and

the measurements, Yexp. The cost function (sum of squared residuals) measures how far our model outputs are from the “true”

experimental outputs. Precisely,

F(θ) =
Nc∑

i=1

Nt∑

j=1

(Yexp,i(tj)−Ymod,i(θ,tj))2

σ2
ji

. (A7)

Since concentrations of molecular clusters span a large range (from 10−5 to 109 particles per cm3), we normalize the residuals410

by the measurement error variance σ2
ji. Normalization in this way avoids overfitting to the larger concentration values. Note also

that the error variance σ2
ji is matched separately for each cluster type and every time instance. We assume that the instrument is

capable of detecting all the cluster types represented in the system at arbitrary small levels of concentration. This simplification

was considered in order to illustrate the proposed approach.

When parameter estimation is conducted with steady-state cluster concentrations (as is considered in our second study), we415

use the following cost function:

F(θ) =
Nc∑

i=1

NT∑

j=1

(Yexp,i(Tj)−Ymod,i(θ,Tj))2

σ2
ji

. (A8)

Now NT = 2 denotes the number of steady state configurations at different temperatures (not times!) and Tj stands for the

measured temperature. In this study, the number of measurements for the likelihood given by Eq. A6 is nout = 4∗(Nc∗NT +1)

(again Nc = 16 cluster types).420
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Appendix B: Identification of the evaporation rates from steady-state data
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Figure B1. Parameter chains (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation rates (units given in

s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines denote the baseline values from

Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Figure B2. Parameter chains (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation rates (units given in

s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines denote the baseline values from

Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Figure B3. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Figure B4. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Figure B5. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.

30

https://doi.org/10.5194/acp-2019-1036
Preprint. Discussion started: 4 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure B6. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 32) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Figure B7. Pairwise marginal posterior distributions (for parameter indexes ranging from 33 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Appendix C: Identification of the evaporation rates from transient data
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Figure C1. Time-dependent cluster concentrations. Simulated time evolution of concentrations for different cluster types at temperature

T=278 K for varying [NH3] concentration: 5 ppt, 35 ppt, 100 ppt and 200 ppt (see the legend). All the model outputs are amended with

multivariate non-correlated Gaussian noise with standard deviation comprising 0.001% of the original cluster concentration. Time resolution

comprises 1.5 minutes. The source of sulphuric acid monomer is [H2SO4] = 6.3× 104 s−1 in all simulations. In reactions "A" stands for

H2SO4 and "N" for NH3.
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Figure C2. Parameter chains (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation rates (units given in

s−1) determined from transient measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the temperature

278 K. Red lines denote the baseline values from Ortega et al. (2012) used to generate the synthetic data.
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Figure C3. Parameter chains (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation rates (units given in

s−1) determined from transient measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the temperature

278 K. Red lines denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4

and "N" for NH3.
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Figure C4. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from transient measurements of the cluster concentrations with time resolution comprising 1.5 minutes

at the temperature 278 K. Red rectangles denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions

"A" stands for H2SO4 and "N" for NH3.
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Figure C5. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from transient measurements of the cluster concentrations with time resolution comprising 1.5 minutes

at the temperature 278 K. Red rectangles denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions

"A" stands for H2SO4 and "N" for NH3.
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Figure C6. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the base 10 logarithm of the evaporation

rates (units given in s−1) from transient measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the

temperature 278 K. Red rectangles denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A"

stands for H2SO4 and "N" for NH3.
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Figure C7. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 32) of the base 10 logarithm of the evaporation

rates (units given in s−1) from transient measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the

temperature 278 K. Red rectangles denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A"

stands for H2SO4 and "N" for NH3.
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Figure C8. Pairwise marginal posterior distributions (for parameter indexes ranging from 33 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) from transient measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the

temperature 278 K. Red rectangles denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A"

stands for H2SO4 and "N" for NH3.
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Symbol Steady-state data (s−1) Transient data (s−1) QC (s−1)

1: 2A→ 1A 8.16× 102 8.23× 102 8.23× 102

(8.05× 102,8.31× 102)

2: 1A1N→ 1N 4.75× 103 4.74× 103 4.74× 103

(4.69× 103,4.87× 103)

3: 2A1N→ 1A 4.22× 10−4 3.30× 10−4 3.64× 10−4

(5.92× 10−11,7.27× 10−4) (1.75× 10−4,5.37× 10−4)

4: 2A1N→ 1N 1.56× 10−3 1.33× 10−3 1.21× 10−3

(8.78× 10−4,1.67× 10−3) (1.04× 10−3,1.4× 10−3)

5: 3A1N→ 1A 2.99× 101 3.02× 101 3.02× 101

(2.94× 101,3.08× 101 (3.01× 101,3.02× 101)

6: 3A1N→ 2A − 2.81× 10−6 6.09× 10−6

1.50× 10−1 (2.86× 10−9,2.76× 10−3)

7: 2A2N→ 1N 1.74× 102 1.76× 102 1.76× 102

(1.71× 102,1.79× 102)

8: 2A2N→ 1A1N 5.52× 10−4 2.11× 10−6 5.33× 10−6

< 5.16× 10−3 (2.95× 10−10,3.59× 10−4)

9: 3A2N→ 1A 3.30× 10−4 7.51× 10−4 6.07× 10−4

< 2.91× 10−3 (3.18× 10−7,1.78× 10−3)

10: 3A2N→ 1N 4.47× 10−3 4.16× 10−3 3.84× 10−3

(5.85× 10−4,5.60× 10−3) (2.86× 10−3,4.66× 10−3)

11: 3A2N→ 1A1N 9.79× 10−5 1.00× 10−5 1.64× 10−5

< 3.88× 10−3 (4.68× 10−10,7.22× 10−4)

12: 4A2N → 1A 5.50× 100 5.46× 100 5.43× 100

(4.50× 100,5.72× 100) (5.39× 100,5.51× 100)

13: 4A2N→ 2A 5.24× 10−7 1.03× 10−6 1.48× 10−6

< 2.74× 10−1 (5.66× 10−11,1.88× 10−2)

14: 4A2N→ 1A1N 2.79× 10−1 2.78× 10−6 2.80× 10−6

< 6.92× 10−1 (6.50× 10−10,1.66× 10−3)

15: 4A2N→ 2A1N 6.49× 10−2 9.04× 10−2 9.94× 10−2

< 1.02× 100 (3.66× 10−2,1.33× 10−1)

16: 3A3N→ 1N 4.62× 10−2 4.61× 10−2 4.60× 10−2

(4.50× 10−2,4.78× 10−2) (4.58× 10−2,4.62× 10−2)

17: 3A3N→ 1A1N 1.37× 10−9 6.32× 10−9 3.74× 10−9

< 3.58× 10−4 (1.05× 10−12,4.91× 10−6)

18: 4A3N→ 1A 2.08× 10−3 2.10× 10−3 2.10× 10−3

(1.79× 10−3,2.27× 10−3) (2.07× 10−3,2.12× 10−3)

19: 4A3N→ 1N 1.19× 10−5 1.96× 10−5 1.88× 10−5

< 7.29× 10−5 (1.11× 10−5,2.50× 10−5)

20: 4A3N→ 1A1N 9.29× 10−11 − 1.23× 10−8

< 2.65× 10−4 (1.81× 10−12,1.96× 10−5)

Table C1. Part 1. Evaporation rates (units given in s−1) determined from the steady-state and the transient data presented in Figure 5-6

and Figures 16-17, respectively. For parameters that have a posterior distribution with the clear peak and practically zero probability density

elsewhere, the mode of the distribution (bold face) is given together with the range of possible values in the parenthesis. In some of the cases

only the limits can be determined. The last column presents the baseline values from Ortega et al. (2012) used to generate the synthetic data.

In reactions "A" stands for H2SO4 and "N" for NH3.
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Symbol Steady-state data (s−1) Transient data (s−1) QC (s−1)

21: 4A3N→ 2A1N − 4.83× 10−9 1.66× 10−8

< 2.14× 10−4 (3.36× 10−12,6.93× 10−6)

22: 5A3N→ 1A 7.88× 10−1 7.81× 10−1 7.83× 10−1

(7.56× 10−1,8.20× 10−1) (7.77× 10−1,7.86× 10−1)

23: 5A3N→ 2A 2.35× 10−8 6.34× 10−7 6.37× 10−7

( < 1.21× 10−2) (1.26× 10−11,3.35× 10−4)

24: 5A3N→ 1A1N 9.12× 10−12 1.50× 10−9 1.70× 10−9

< 3.39× 10−3 (1.02× 10−12,2.22× 10−6)

25: 5A3N→ 2A1N 7.22× 10−4 1.24× 10−5 1.85× 10−5

< 6.95× 10−3 (1.86× 10−8,5.33× 10−4)

26: 5A3N→ 2A2N 1.52× 10−8 − 3.52× 10−10

< 4.49× 10−3 < 1.25× 10−4

27: 4A4N→ 1N 3.79× 101 3.76× 101 3.75× 101

(3.70× 101,3.88× 101) (3.75× 101,3.77× 101)

28: 4A4N→ 1A1N − 9.05× 10−6 9.06× 10−6

< 5.38× 10−3 (1.52× 10−10,2.57× 10−4)

29: 4A4N→ 2A2N 2.07× 10−12 8.55× 10−11 1.33× 10−9

< 2.43× 10−3 < 1.90× 10−4

30: 5A4N→ 1A 3.87× 10−6 2.51× 10−3 1.77× 10−3

< 2.52× 10−2 (1.20× 10−6,5.86× 10−3)

31: 5A4N→ 1N 8.92× 10−2 9.03× 10−2 8.87× 10−2

(6.68× 10−2,9.74× 10−2) (8.52× 10−2,9.19× 10−2)

32: 5A4N→ 1A1N − 3.60× 10−6 7.33× 10−6

< 1.55× 10−2 (6.48× 10−12,1.04× 10−3)

33: 5A4N→ 2A1N 2.28× 10−4 1.32× 10−4 2.97× 10−5

< 1.06× 10−2 (6.46× 10−10,1.53× 10−3)

34: 5A4N→ 2A2N − 7.30× 10−9 6.42× 10−9

< 1.08× 10−2 (1.51× 10−11,3.17× 10−4)

35: 4A5N→ 1N 8.75× 102 8.88× 102 8.89× 102

(8.59× 102,9.03× 102) (8.85× 102,8.92× 102)

36: 5A5N→ 1A − − 2.23× 10−10

< 2.32× 10−4 < 1.14× 10−6

37: 5A5N→ 1N 4.96× 10−4 1.00× 10−4 1.17× 10−4

< 9.89× 10−4 (3.48× 10−5,1.85× 10−4)

38: 5A5N→ 1A1N 5.93× 10−9 1.48× 10−11 2.11× 10−11

< 5.06× 10−4 < 1.06× 10−5

39: 5A5N→ 2A2N − 2.06× 10−11 1.31× 10−11

< 3.09× 10−4 < 4.11× 10−7

Table C2. Part 2. Evaporation rates (units given in s−1) determined from the steady-state and the transient data presented in Figure 5-6

and Figures 16-17, respectively. For parameters that have a posterior distribution with the clear peak and practically zero probability density

elsewhere, the mode of the distribution (bold face) is given together with the range of possible values in the parenthesis. In some of the cases

only the limits can be determined. The last column presents the baseline values from Ortega et al. (2012) used to generate the synthetic data.

In reactions "A" stands for H2SO4 and "N" for NH3.
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Figure D1. Steady-state cluster concentrations for the clusters containing sulphuric acid and a varying number of ammonia molecules as a

function of the number of acid molecules for [NH3] concentrations comprising (a) 5 ppt, (b) 35 ppt, (c) 100 ppt and (d) 200 ppt at temper-

ature T=292 K amended with multivariate non-correlated Gaussian noise with standard deviation comprising 0.001% of the original cluster

concentration. The source of sulphuric acid monomer comprises [H2SO4] = 6.3×104 s−1in all the simulations. Here the symbols ∆H and

∆S stand for cluster formation enthalpies and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.

Appendix D: Identification of the cluster formation enthalpies and entropies from steady-state concentration

measurements
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Figure D2. Parameter chains of the cluster formation enthalpies (units given in kkal/mol) and entropies (units given in cal K−1 mol−1)

determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red lines denote the baseline

values from Ortega et al. (2012) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies

and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.
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Figure D3. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster

formation enthalpies and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.
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Figure D4. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster

formation enthalpies and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.
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Figure D5. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 28) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from Ortega et al. (2012) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster

formation enthalpies and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.
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Symbol Mode value 95% confidence interval QC Units

1: ∆H2A -17.8891 (-18.1913,-17.4941) -17.85 kcal mol−1

2: ∆S2A -33.5475 (-34.6104,-32.1575) -33.42 cal K−1 mol−1

3: ∆H1A1N -15.8751 (-16.2344,-15.5158) -16 kcal mol−1

4: ∆S1A1N -27.6984 (-28.9594,-26.4374) -28.14 cal K−1 mol−1

5: ∆H2A1N -44.8076 (-45.2922,-44.174) -45 kcal mol−1

6: ∆S2A1N -70.3501 (-72.029,-68.1545) -71.02 cal K−1 mol−1

7: ∆H3A1N -66.0006 (-66.428,-65.5732) -66.06 kcal mol−1

8: ∆S3A1N -107.5233 (-109.0059,-106.0407) -107.72 cal K−1 mol−1

9: ∆H2A2N -64.5005 (-64.9799,-64.021) -64.46 kcal mol−1

10: ∆S2A2N -104.6181 (-106.2857,-102.9505) -104.45 cal K−1 mol−1

11: ∆H3A2N -91.8512 (-93.9174,-90.2712) -92.09 kcal mol−1

12: ∆S3A2N -142.3625 (-149.4438,-136.9474) -143.18 cal K−1 mol−1

13: ∆H4A2N -115.0105 (-116.7515,-113.2696) -115.13 kcal mol−1

14: ∆S4A2N -182.938 (-188.9067,-176.9693) -183.34 cal K−1 mol−1

15: ∆H3A3N -116.3273 (-118.1437,-114.5108) -116.6 kcal mol−1

16: ∆S3A3N -177.0462 (-183.2768,-170.8156) -177.99 cal K−1 mol−1

17: ∆H4A3N -144.9757 (-147.3975,-142.554) -145.17 kcal mol−1

18: ∆S4A3N -221.6575 (-229.9554,-213.3595) -222.33 cal K−1 mol−1

19: ∆H5A3N -168.7305 (-171.0579,-166.4031) -168.79 kcal mol−1

20: ∆S5A3N -260.3509 (-268.3225,-252.3794) -260.55 cal K−1 mol−1

21: ∆H4A4N -164.1272 (-166.4394,-161.815) -164.35 kcal mol−1

22: ∆S4A4N -250.2634 (-258.1819,-242.3449) -251.03 cal K−1 mol−1

23: ∆H5A4N -191.7779 (-194.9426,-188.6133) -191.86 kcal mol−1

24: ∆S5A4N -290.7782 (-301.6196,-279.9369) -291.05 cal K−1 mol−1

25: ∆H4A5N -186.3473 (-188.639,-184.0557) -186.47 kcal mol−1

26: ∆S4A5N -296.0839 (-303.9359,-288.2319) -296.51 cal K−1 mol−1

27: ∆H5A5N -205.943 (-241.6193,-190.6532) -221.65 kcal mol−1

28: ∆S5A5N -277.4 (-,-224.8575) -332.49 cal K−1 mol−1

Table D1. Thermodynamic parameters identified from steady-state data measured at two temperatures (278 and 292 K). The last column

presents the quantum-chemistry based values from Ortega et al. (2012) used to generate the synthetic data. Here the symbols ∆H and ∆S

stand for cluster formation enthalpies and entropies, respectively. Symbols "A", "N" denote H2SO4 and "NH3", correspondingly.
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Figure D6. One-dimensional marginal distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation

rates (units given in s−1) at temperature 278 K obtained from a posterior distribution of thermodynamic parameters (cluster formation

enthalpies and entropies) determined from steady-state cluster concentration measured at temperatures 278 K and 292 K. Red lines denote

the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Figure D7. One-dimensional marginal distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) at temperature 278 K obtained from a posterior distribution of thermodynamic parameters (cluster formation

enthalpies and entropies) determined from steady-state cluster concentration measured at temperatures 278 K and 292 K. Red lines denote

the baseline values from Ortega et al. (2012) used to generate the synthetic data. In reactions "A" stands for H2SO4 and "N" for NH3.
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Symbol Steady-state data for 278 K and 292 K (s−1) QC (s−1)

1: 2A→ 1A 8.17× 102 8.23× 102

(8.03× 102,8.36× 102)

2: 1A1N→ 1N 4.76× 103 4.74× 103

(4.66× 103,4.87× 103)

3: 2A1N→ 1A 3.64× 10−4 3.64× 10−4

(3.48× 10−4,3.84× 10−4)

4: 2A1N→ 1N 1.23× 10−3 1.21× 10−3

(1.16× 10−3,1.29× 10−3)

5: 3A1N→ 1A 3.01× 101 3.02× 101

(2.93× 101,3.09× 101)

6: 3A1N→ 2A 6.12× 10−6 6.09× 10−6

(5.77× 10−6,6.47× 10−6)

7: 2A2N→ 1N 1.77× 102 1.76× 102

(1.71× 102,1.82× 102)

8: 2A2N→ 1A1N 5.33× 10−6 5.33× 10−6

(5.02× 10−6,5.64× 10−6)

9: 3A2N→ 1A 6.09× 10−4 6.07× 10−4

(5.14× 10−4,7.05× 10−4)

10: 3A2N→ 1N 3.89× 10−3 3.84× 10−3

(3.27× 10−3,4.50× 10−3)

11: 3A2N→ 1A1N 1.65× 10−5 1.64× 10−5

(1.40× 10−5,1.90× 10−5)

12: 4A2N → 1A 5.45× 100 5.43× 100

(5.25× 100,5.65× 100)

13: 4A2N→ 2A 1.49× 10−6 1.48× 10−6

(1.27× 10−6,1.72× 10−6)

14: 4A2N→ 1A1N 2.82× 10−6 2.80× 10−6

(2.37× 10−6,3.26× 10−6)

15: 4A2N→ 2A1N 1.01× 10−1 9.94× 10−2

(8.35× 10−2,1.18× 10−1)

16: 3A3N→ 1N 4.64× 10−2 4.60× 10−2

(4.47× 10−2,4.81× 10−2)

17: 3A3N→ 1A1N 3.77× 10−9 3.74× 10−9

(3.19× 10−9,4.36× 10−9)

18: 4A3N→ 1A 2.08× 10−3 2.10× 10−3

(1.86× 10−3,2.29× 10−3)

19: 4A3N→ 1N 1.87× 10−5 1.88× 10−5

(1.69× 10−5,2.05× 10−5)

20: 4A3N→ 1A1N 1.21× 10−8 1.23× 10−8

(1.09× 10−8,1.33× 10−8)

Table D2. Part 1. Evaporation rates (units given in s−1) computed from a posterior distribution of the thermodynamic parameters (cluster

formation enthalpies and entropies) which had previously been determined from the steady-state concentration measurements at temperatures

278 and 292 K. Here the mode of distribution (bold face) is given together with the range of possible values in the parenthesis. The last column

presents the quantum-chemistry-based evaporation rates used for creating the synthetic data. In reactions "A" stands for H2SO4 and "N" for

NH3.
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Symbol Steady-state data for 278 K and 292 K (s−1) QC (s−1)

21: 4A3N→ 2A1N 1.65× 10−8 1.66× 10−8

(1.30× 10−8,1.99× 10−8)

22: 5A3N→ 1A 7.98× 10−1 7.83× 10−1

(7.63× 10−1,8.43× 10−1)

23: 5A3N→ 2A 6.40× 10−7 6.37× 10−7

(5.76× 10−7,7.24× 10−7)

24: 5A3N→ 1A1N 1.71× 10−9 1.70× 10−9

(1.54× 10−9,1.88× 10−9)

25: 5A3N→ 2A1N 1.87× 10−5 1.85× 10−5

(1.66× 10−5,2.07× 10−5)

26: 5A3N→ 2A2N 3.56× 10−10 3.52× 10−10

(2.83× 10−10,4.30× 10−10)

27: 4A4N→ 1N 3.82× 101 3.75× 101

(3.69× 101,3.95× 101)

28: 4A4N→ 1A1N 8.97× 10−6 9.06× 10−6

(8.13× 10−6,1.01× 10−5)

29: 4A4N→ 2A2N 1.34× 10−9 1.33× 10−9

(1.07× 10−9,1.62× 10−9)

30: 5A4N→ 1A 1.76× 10−3 1.77× 10−3

(1.56× 10−3,1.96× 10−3)

31: 5A4N→ 1N 8.70× 10−2 8.87× 10−2

(7.68× 10−2,1.00× 10−1)

32: 5A4N→ 1A1N 7.42× 10−6 7.33× 10−6

(6.59× 10−6,8.24× 10−6)

33: 5A4N→ 2A1N 2.92× 10−5 2.97× 10−5

(2.45× 10−5,3.40× 10−5)

34: 5A4N→ 2A2N 6.40× 10−9 6.42× 10−9

(5.40× 10−9,7.40× 10−9)

35: 4A5N→ 1N 8.85× 102 8.89× 102

(8.58× 102,9.12× 102)

36: 5A5N→ 1A 5.38× 10−10 2.23× 10−10

(2.01× 10−11,2.24× 10−9)

37: 5A5N→ 1N 2.77× 10−4 1.17× 10−4

(1.09× 10−5,1.15× 10−3)

38: 5A5N→ 1A1N 5.05× 10−11 2.11× 10−11

(1.87× 10−12,2.10× 10−10)

39: 5A5N→ 2A2N 3.07× 10−11 1.31× 10−11

(1.16× 10−12,1.28× 10−10)

Table D3. Part 2. Evaporation rates (units given in s−1) computed from a posterior distribution of the thermodynamic parameters (cluster

formation enthalpies and entropies) which had previously been determined from the steady-state concentration measurements at temperatures

278 and 292 K. Here the mode of distribution (bold face) is given together with the range of possible values in the parenthesis. The last column

presents the quantum-chemistry-based evaporation rates used for creating the synthetic data. In reactions "A" stands for H2SO4 and "N" for

NH3.
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