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1 Overview

In this document we respond to the referee comments for the paper “Iden-
tification of molecular cluster evaporation rates, enthalpies and entropies by
Monte Carlo method”. These comments were provided at the final minor re-
vision stage of the review process for publication in Atmospheric Chemistry
and Physics journal.
We wish to thank the Referee for their helpful comments and attentive proof-
checking of the manuscript which we believe helped in formulating a more
solid conclusion part and correcting the remaining typos. We feel that we
have addressed all the issues mentioned by the reviewer and, in so doing,
polished the final version of our manuscript.
Next, in Section 2 we list the Referee’s comments. We also include our
comment-by-comment responses. At the end of the document we supply a
marked-up version of the paper which contains a detailed comparison of the
previous and revised versions of the manuscript.
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2 Referee comments and our responses

Recommendation to the editor

1. Scientific significance
Does the manuscript represent a substantial contribution to scientific
progress within the scope of this journal (substantial new concepts,
ideas, methods, or data)?
Outstanding Excellent Good Fair Low

2. Scientific quality
Are the scientific approach and applied methods valid? Are the results
discussed in an appropriate and balanced way (consideration of related
work, including appropriate references)?
Outstanding Excellent Good Fair Low

3. Presentation quality
Are the scientific results and conclusions presented in a clear, concise,
and well structured way (number and quality of figures/tables, appro-
priate use of English language)?
Outstanding Excellent Good Fair Low

For final publication, the manuscript should be accepted subject to minor
revisions

Suggestions for revision or reasons for rejection (will be published
if the paper is accepted for final publication)
Comment: This revision has been substantially improved. The authors ad-
dressed all the concerns raised in the last review. The text has been shortened
and much concise in this version. There are several typos needed to be cor-
rected and it is in a much better shape. It is recommended to be published
after some minor changes.

Response: Thank you for acknowledging the improvements made in the re-
vised version of our manuscript. We further take your recommendations into
account and thereby improve the conclusion and correct the typos.

Comment: 1. The current conclusions of the paper seem just too general.
Although it is indeed admitted that estimates of evaporation rates are quite
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challenging and intriguing, it might still be more encouraging if some values
or ranges of values for the evaporation rates can be concluded from the paper.

Response: Since the paper does not actually treat any real experimental
data, we can unfortunately not make any direct conclusions about values
or ranges for the actual real evaporation rates (if this is what the reviewer
is asking for). However, we agree that the conclusions can be made more
concrete, with numerical examples of the values or ranges corresponding to
our synthetic data. We have accordingly added a section on this to the
conclusions.

Addition to conclusions In Line 319, we add: ”...to within acceptable ac-
curacy In practice, the most important evaporation rates for modelling new
particle formation are those which are roughly of the same order of mag-
nitude as the rates at which the clusters collide with the vapor molecules.
If we assume that the mixing ratios for the clustering vapours are in the
ppt. . . ppb range and use kinetic gas theory collision rates for small molecules
and nanometer-sized clusters, we approximately should obtain evaporation
rates in the range of 10−3 to 103 s−1. Fortunately, our approach is able to con-
strain these evaporations rates to within a factor of 10 or less. Evaporation
rates below 10−4 s−1 are not as well constrained. However, the corresponding
processes are usually not relevant for determining overall new-particle forma-
tion rates. While the high accuracy of estimated evaporation rates originates
from the assumptions of small-noise synthetic data and the concentrations
measured for all the cluster types, similar accuracy can be expected if high-
quality experimental steady-state data at two temperatures is used instead.
” Comment: 2. Some typos

1. Line 40 on p.2, “methods, (“, “,”here is redundant?

2. Line 103 on p.4, two parentheses? Line 105, a list of the 16 considered
clusters? Line 106, between.1.3??? Line 113, N. Brown et al., please
keep the citation consistent;

3. Line 125 on p.5, data sets?

4. Line 164 on p.6, +-10, can one character used for “+-“?

5. Line 194 on p.8, Figure 1 is not below, below is not necessary here;

6. Line 203 on p.9, are you sure you can write the source rate like this?

7. Line 264 on p.13, a “,” is needed after C1-C2.
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Abstract.

We address the problem of identifying the evaporation rates for neutral molecular clusters from synthetic (computer-

simulated) cluster concentrations. We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC)

algorithm to determine cluster evaporation/fragmentation rates from synthetic cluster distributions generated by the Atmo-

spheric Cluster Dynamic Code (ACDC) and based on gas kinetic collision rate coefficients and evaporation rates obtained5

using quantum chemical calculations and detailed balances. The studied system consisted of electrically neutral sulfuric acid

and ammonia clusters with up to 5 of each type of molecules. We then treated the concentrations generated by ACDC as

synthetic experimental data. With the assumption that the collision rates are known, we tested two approaches for estimating

the evaporation rates from these data. First, we studied a scenario where time-dependent cluster distributions are measured at

a single temperature before the system reaches a steady-state. In the second scenario, only steady-state cluster distributions10

are measured, but at several temperatures. Additionally, in the latter case the evaporation rates were represented in terms of

cluster formation enthalpies and entropies. This reparametrization reduced the number of unknown parameters, since several

evaporation rates depend on the same cluster formation enthalpy and entropy values. We also estimated the evaporation rates

using previously published synthetic steady-state cluster concentration data at one temperature and compared our two cases

to this setting. Both the time-dependent and the two-temperature steady-state concentration data allowed us to estimate the15

evaporation rates with less variance than in the steady-state one temperature case.

We show that temperature-dependent steady-state data outperforms single-temperature time-dependent data for parameter

estimation, even if only two temperatures are used. We can thus conclude that for experimentally determining evaporation

rates, cluster distribution measurements at several temperatures are recommended over time-dependent measurements at one

temperature.20
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1 Introduction

The formation of molecular clusters, and their subsequent growth to aerosol particles, is an important yet poorly understood

process in our atmosphere. Clusters and aerosols affect both climate, air chemistry (?), evapotranspiration in forest environ-

ments (?), and many other atmospheric processes (?).

Recent developments in mass spectrometers have enabled the detection, quantification, and chemical characterization of25

ionic clusters containing between one and some tens of molecules at atmospherically relevant mixing ratios 1 (??????). Molec-

ular clusters in atmospheric conditions are predominantly electrically neutral, and must thus be charged prior to mass spectro-

metric detection. This may affect the measurement results, as only part of the sample molecules or clusters may be charged

(?), and the charging may also alter cluster compositions. For example, for sulfuric acid base clusters, negative charging tends

to lead to a loss of base molecules, and positive charging to a loss of acid molecules (?). Modelling is thus needed to connect30

measured ion cluster distributions to the original neutral population.

Even when the atmospheric cluster distributions can be accurately deduced from experimental data, these distributions do

not quantify the individual kinetic parameters, such as the cluster collision and evaporation rates (?). The collision rates may

be computed from kinetic gas theory or classical trajectory simulations with reasonable accuracy (?), although recent research

has shown that long-range attractive interactions may enhance collision rates (?), for example by around a factor of 2-3 for35

H2SO4−H2SO4 collisions (?). These relatively minor uncertainties in the collision rates are dwarfed by the error margins

of cluster evaporation rates. In computational applications, evaporation rates are usually computed using the detailed balance

assumption together with the free energies of cluster formation, which can in turn be computed using quantum chemical (QC)

methods [..2 ](?????). Unfortunately, the evaporation rates depend exponentially on the free energies, and typically observed

variations of up to several kcal/mol between the different applicable QC methods thus translate into orders of magnitude40

differences in evaporation rates (??).

Despite uncertainties involved in computational estimates of collision and evaporation rates, cluster population dynamic

models based on Becker-Döring equations have been able to predict the sulfuric acid concentration dependence of cluster

concentrations (?), and even absolute particle formation rates (?) in sulfuric acid-ammonia and sulfuric acid-DMA systems,

without empirical model calibration or parameter tuning. The Becker-Döring equations are a system of Ordinary Differential45

Equations (ODE), which account for cluster birth and death processes (which depend on the collision and evaporation rates), as

well as external cluster sinks and sources. In both studies (? and ?), these equations were implemented through the Atmospheric

Cluster Dynamic Code (ACDC) (?), using kinetic gas theory collision rates, and standard quantum chemistry techniques for

computing cluster formation free energies (and thus evaporation rates).

In mathematical terms, the prediction of cluster concentrations using known collision and evaporation rates is called the for-50

ward problem. The associated inverse problem is to use known cluster concentrations to deduce the collision and evaporation

rates. The inverse problem can be addressed with Bayesian approaches such as Markov chain Monte Carlo (MCMC) meth-

1around or below one part per trillion (ppt)
2removed: ,
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ods. In a recent paper by ?, Differential Evolution (DE) MCMC (?) was applied to determine evaporation rates for negatively

charged sulfuric acid and ammonia clusters (containing up to five of each type of molecules, with the HSO−4 ion here defined

as an "acid"). This study used steady-state cluster concentrations measured in the CLOUD 3 chamber experiment at constant55

temperature, with varying sulfuric acid and ammonia concentrations (we refer to ? for details relevant to the experimental

data). The collision rates were computed from kinetic gas theory. ? concluded that these data were insufficient for estimation of

all the evaporation rate coefficients. Another recent paper (?) reported thermodynamic data (cluster formation enthalpies and

entropies) for 11 neutral sulfuric acid and ammonia clusters. In the CLOUD experiment, these were deduced from new particle

formation (NPF) rates measured at 5 different temperatures, over a wide range of sulfuric acid and ammonia concentrations.60

Most of the thermodynamic parameters could not be narrowly constrained, as the ranges of cluster formation enthalpies and

entropies that reproduced the measured NPF rates were quite wide. However, for each cluster only one monomer evapora-

tion rate was taken into account (either acid or base). Furthermore, the NPF rates obtained using the fitted parameters were

systematically lower than the measured ones for warmer temperatures (≥ 248 K).

In this study, we test which combinations of experimental data and fitted parameters lead to the best identification of the65

evaporation rates. As experiments are expensive and time-consuming to perform, we use synthetic cluster concentration data

created from ACDC simulations to test if the use of time-dependent cluster distribution data would significantly improve the

accuracy of the evaporation rates. The use of synthetic data also allows us to know for sure if our inverse modelling actually

produces the correct kinetic parameters, which would not be possible with experimental concentration data. As in the ? study,

we compute collision rates from kinetic gas theory, while the evaporation rates used to generate our synthetic data are calculated70

from Gibbs free energies published by ?. Note that the conclusions of this study are not sensitive to the accuracy of the quantum

chemical data, as our focus is on the inverse problem of how to determine evaporation rates from known concentrations rather

than on the forward problem.

For simplicity, we consider the case of neutral sulfuric acid-ammonia clusters containing up to five of each type of molecules.

Studying neutral clusters has the advantage that we can restrict ourselves to a smaller set of kinetic parameters, and ignore75

uncertainties related to charging and neutralization processes. In situations where a large fraction of the clusters are charged,

accurate modelling would require at least three times as many parameters, as both the negative, positive and neutral cluster

populations interact with each other. The downside of this simplification is that we lose the direct connection to potential

real-life experiments, as neutral atmospheric clusters cannot currently be measured without first charging them.

We investigate three different scenarios for estimating evaporation rates. First, we use steady-state concentration measure-80

ments determined at a single temperature, similar to the approach used in ?. Next, we test the use of time-dependent cluster

concentrations measured before the system has attained a steady state. This is motivated by the fact that time-dependent data

should provide additional information about the speed of the processes, which is missing from the steady-state data. Third, we

apply the approach of ?, and express the evaporation rates as parameterized functions of the temperature, with the cluster forma-

tion enthalpies and entropies (assumed here to be temperature-independent) as the unknown parameters. This reparametrization85

is useful for two reasons. First, since the formation enthalpies and entropies of the monomers can be set to zero, and since sev-

3Cosmics Leaving OUtdoor Droplets
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eral evaporation rates depend on the same enthalpy and entropy values, the dimension of the unknown parameter space for

our problem is actually reduced, despite the apparent doubling of the number of parameters. Second, utilizing the temperature

dependence allows us to produce and use arbitrarily many synthetic data sets at various temperatures, which mathematically

has a regularizing effect on the problem. Note that unlike in ?, all possible evaporation processes, including cluster fissions90

into two daughter clusters, are taken into consideration. Also, while ? used steady-state new-particle formation rates measured

at different temperatures to fit their data, we use cluster concentrations.

2 SIMULATION METHODS

2.1 Generation of synthetic data

We simulated the time evolution of cluster concentrations using collision rates computed from kinetic gas theory and evap-95

oration rates computed from the Gibbs free energies reported by ?. To save computational time, we omitted clusters where

the number of acid and base molecules differed by more than two. Based on both fundamental chemical principles and mass

spectrometric data [..4 ](????), these clusters are quite unstable, and thus have very high evaporation rates, leading to negligibly

low concentrations. See Table ?? for a list of the [..5 ]16 considered clusters. We included four different ammonia monomer

mixing ratios between 5 and 200 ppt, corresponding to concentrations between [..6 ]1.3×108 and 5.0×109 molecules per cm3100

for the temperature ranges studied here. In each individual case, the ammonia mixing ratio was kept constant throughout the

simulation. The source rate of sulfuric acid monomer was kept constant at Q = 6.3×104 cm−3s−1. To reproduce experimental

conditions in the CLOUD chamber as closely as possible, the initial sulfuric acid was set to zero in each simulation. See Table

?? for a summary of the concentration settings. Additionally, we considered the losses on the CLOUD chamber walls which

depend on the cluster size (?) and a dilution loss of S = 9.6× 10−5 s−1. For simplicity, we omitted the effect of relative hu-105

midity. We generated the birth-death equations using the ACDC code (?), and then solved for the cluster concentrations using

the Fortran ordinary differential equation solver VODE [..7 ](?). These equations and all related parameters are explained in

Appendix A1.

Our MCMC results are not specific to the set of molecular clusters considered here. This is supported by the fact that

although the size of the system (the number of clusters, or more precisely the maximum size of the clusters, included in the110

simulations) has an impact on the particle formation rates at high temperatures (> 278 K), the particle formation rates and

cluster concentrations produced using different cluster sets (e.g. 4x4, 5x5 and 6x6 sulfuric acid and ammonia molecules) are

qualitatively similar (?). Thus, minor changes of the ACDC outputs due to the difference in the sets of considered clusters

should not change the MCMC parameter estimation results. Additionally, the boundary conditions for the outgrowing clusters

(the choice of the clusters that are considered as formed particles) have only minor influence on the simulation results, as long115

as the simulated system of clusters is defined in a reasonable way (?).
4removed: ((????))
5removed: considered clusters, 16 in total. We considered
6removed: .
7removed: (?)
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Two data sets were created. In the first set, we generated time-dependent concentrations for each cluster type, measured at

1.5 min time intervals before the system reaches a steady state. This corresponded to a total of 41 time steps. The steady-

state single-temperature data correspond to a subset of these data [..8 ]sets. In the second case, we generated steady-state

concentrations for all cluster types at two temperatures (278 and 292 K). In both cases, the steady-state cluster concentrations120

were calculated as the average of the concentrations at t1 := 50 min and t2 := 60 min. Additionally, we include a convergence

parameter for assessing the closeness of cluster concentrations to the steady state for every individual ACDC simulation. This

is computed as a ratio of concentrations taken at times t2 and t1 in each case for the cluster for which this ratio deviated most

from unity (?).

Finally, we added measurement error (noise) to the cluster concentrations in both data sets. We call the resulting noisy cluster125

concentrations synthetic data. Our measurement error was sampled from a multivariate Gaussian distribution, with the variance

depending on cluster type i, temperature T, and time instance t. We assume that the standard deviation of the measurement

error is 0.001 % of the original concentration.

Table 1. Neutral molecular clusters included in the model system (16 in total). The first column indicates the number of sulfuric acid

molecules, the second column stands for the number of ammonia in the cluster.

Number of H2SO4 molecules Number of NH3 molecules Number of clusters

0 1 1

1 0-1 2

2 0-2 3

3 1-3 3

4 2-5 4

5 3-5 3

Table 2. Monomer concentrations used in simulations

[H2SO4] monomer source [NH3] concentration

6.3× 104 cm−3s−1 5 ppt

6.3× 104 cm−3s−1 35 ppt

6.3× 104 cm−3s−1 100 ppt

6.3× 104 cm−3s−1 200 ppt

8removed: set
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2.2 Markov chain Monte-Carlo simulations

We used a Markov Chain Monte Carlo (MCMC) based approach to estimate the evaporation rates which reproduce the synthetic130

cluster concentration data. Unlike optimization algorithms which compute a single optimal parameter set, MCMC methods

sample from a target distribution which contains the most-likely combinations of parameter values for the given data. Multiple

samples of possible parameter sets are taken along a random walk in the target distribution, and are saved as a parameter chain.

As the length of the chain increases, the sampled sets converge to a probability (posterior) distribution of parameters, which

estimates the likelihood of those parameters giving rise to the data. The particular MCMC-based algorithm we use is Delayed135

Rejection Adaptive Metropolis (DRAM), which is an extended variant of the classical Metropolis algorithm (?). We chose the

DRAM algorithm as it is more efficient than the Metropolis regime at parameter estimation when the parameter space is large

(?). The two algorithms and their application to our cases are described in the Appendix.

2.2.1 Selection of minimum and maximum limits for unknown parameters

We emphasize that there are currently no theoretical principles or experimental results which set sound restrictions for even the140

order of magnitude of the evaporation rates. However, evaporation rates much lower than 10−10s−1 are irrelevant in practice,

since the timescale for evaporation is then much longer than the cluster lifetime with respect to further growth. Similarly, when

the evaporation rate is much greater than 10+10s−1, the cluster will certainly evaporate before it has a chance to grow further.

The base 10 logarithm of the evaporation rates was therefore sampled in the interval of -12 to 12.

For the cluster formation enthalpies, we chose an upper limit of 0 kcal/mol, as a positive ∆H would mean an absence of145

attractive interactions in the molecular cluster, which is physically incorrect for polar, H-bonding molecules such as H2SO4

and NH3. This same argument also applies for each individual molecule, which gives rise to the requirement that the formation

enthalpy of each cluster must be lower (more negative) than that of clusters with less acid and/or base molecules. See Table ??

for the full list of restrictions arising from this requirement. As a lower limit for the overall cluster formation enthalpies, we

used ∆H = -400 kcal/mol. As our largest clusters contain 10 molecules, this would imply that, on average, each H2SO4 in all150

the studied clusters is bound substantially stronger than in the exceptionally strongly bound HSO−4 ∗H2SO4 cluster, (for which

recent high-level computational studies indicate a binding enthalpy roughly around -40 kcal/mol, (??)). This in turn implies

that the evaporation rate is zero for all practical purposes.

The upper limit for the formation entropies was set to 0 cal/K/mol, as clustering must have a negative ∆S, since the number

of gas molecules is reduced (and translational and rotational degrees of freedom are thus converted into much more constrained155

vibrational degrees of freedom). The lower limit of -400 cal/K/mol can be justified by noting that the typical per-molecule ∆S

for clustering is around -30 cal/K/mol, with a typical variation of up to [..9 ]± 10 cal/K/mol (?). For a 10-molecule cluster this

would imply a lower bound to ∆S of around -400 cal/K/mol.

9removed: +-10
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Table 3. Additional restrictions on the cluster formation enthalpies arising from the requirement that each individual molecule is bound The

cluster formation enthalpy of the i-th cluster is denoted by ∆Hi. The notation xAyN corresponds to a cluster with x sulfuric acid and y

ammonia molecules.

∆H2A > ∆H2A1N ∆H3A2N > ∆H4A2N

∆H1A1N > ∆H2A1N ∆H4A2N > ∆H4A3N

∆H2A1N > ∆H3A1N ∆H4A3N > ∆H4A4N

∆H2A2N > ∆H3A2N ∆H4A4N > ∆H5A5N

∆H3A1N > ∆H3A2N ∆H4A4N > ∆H4A5N

2.2.2 Overview of the MCMC runs

We first performed DRAM parameter estimation from both steady-state and time-dependent cluster concentrations at 278160

K, treating evaporation rates as the unknown parameters θ. For the time-dependent synthetic data, the number of output

coefficients was nout =NC ×Nt + 1, where NC = 16 is the number of cluster types included into simulations, and Nt = 41

is the number of time-step measurements available for each of the cluster types.

Next, we performed parameter estimation based on steady-state cluster concentrations at two temperatures, 278 K and 292

K. The number of output coefficients in this case was nout = (NC+1)×NT , whereNT = 2 denotes the number of experiments165

conducted at different temperatures. We use Eq. ?? and ?? to express the evaporation rates as functions of formation enthalpies,

entropies and temperature:

γi+j→i,j = f(T,{∆Hk,∆Sk}k∈{i+j,i,j}). (1)

In Eq. ??, we set T = 278 K or T = 292 K. We emphasize that the rates γi+j→i,j now depend on temperature and six other

parameters: the formation enthalpy ∆Hi+j and entropy ∆Si+j of the evaporating/fragmenting cluster i+ j, and the formation170

enthalpies ∆Hi,∆Hj and entropies ∆Si,∆Sj of the product clusters i and j respectively. In this setting θ represents the array

of quantities ∆Hi+j, ∆Si+j, ∆Hi, ∆Hj, ∆Si, ∆Sj with i+ j ∈ {1,2, . . . ,16}. Similar approaches were applied for the inverse

problem of chemical kinetics modelled by the Arrhenius equation, where chemical reaction rates are temperature-dependent

(?).

Many evaporation/fragmentation reactions have the same clusters as products, and thus several of the pairs ∆Hi,∆Si appear175

in Eq. ?? for the evaporation rates of multiple different reactant clusters. The formation enthalpies and entropies of monomers

are defined in the context of molecular clustering to be zero. The number of distinct unknown formation enthalpies and en-

tropies is thus only 28, compared to 39 unknown evaporation rates. Furthermore, the cluster formation entropy and enthalpy

values all lie within two orders of magnitude, compared to the evaporation rates which span 24 orders of magnitude. This

makes the MCMC method more efficient.180
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Figure 1. Schematic representation of the study methods.

To create a reliable sample from the underlying parameter distribution, the length of the MCMC chain must be “large

enough” (??); that is, many different parameter combinations must be tested. In our simulations, the MCMC chain length

typically comprised 3 million samples. The MCMC acceptance probabilities (defined below) in each of the cases were about

88.0%, which is a typical level of acceptance since the forward ACDC model (in which the evaporation and collision rates are

known) is deterministic.185

In the MCMC simulations, all sets of parameters which produce cluster concentrations within the allotted noise level of the

data (0.001%) are kept in the chain. The sampling procedure is outlined in Figure ??[..10 ]. We tested that the MCMC chains

converge to the ’true’ values (i.e., the reference parameter values from ?) when we start sampling the chain from randomly

selected initial guess.

3 RESULTS AND DISCUSSION190

3.1 Identification of evaporation rate coefficients from steady-state data at a single temperature

A graphical representation of the steady-state cluster concentration data at 278 K, as a function of the number of acid molecules

in the clusters, is given in Figure ??.

Next, we determine the base 10 logarithms of the evaporation rate coefficients from the synthetic data. Since the noise added

to the cluster concentrations results in a random bias towards an increase (or decrease) from the original values produced195

10removed: below
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Figure 2. Steady-state cluster concentrations for the clusters containing sulfuric acid and a varying number of ammonia molecules, as a

function of the number of acid molecules, for [NH3] mixing ratios of (a) 5 ppt, (b) 35 ppt, (c) 100 ppt and (d) 200 ppt at the temperature T=278

K. The concentrations have been amended with multivariate non-correlated Gaussian noise with standard deviation comprising 0.001% of

the original cluster concentration. The source rate of sulfuric acid monomers [..11 ]comprises 6.3× 104 s−1.

from the ACDC, the estimates of parameters derived from synthetic data are likely to be biased. In order to average the

effects attributed to this random bias, we generated 3 sets of synthetic data by adding random increments to the original

concentration measurements. Utilizing these data sets, three independent MCMC runs were conducted, each run containing 3

million parameter samples. An example of one of the sampled chains is depicted in Figs. ??-??. We omit the initial one million

samples, and plot the stationary12 parts of the chains. As we observe from the plots in Figs. ??-??, all the parameter chains200

for the evaporation rates have values bounded above by an upper limit, which differs for different evaporation rates. However,

only 15 out of 39 evaporation rates are limited from below (see subfigures labelled 1-5, 7, 10, 12, 16, 18, 22, 27, 31, 33 and 35

in Figs. ??-??). Notably, all monomer evaporation rates are bounded from below, except for some of the rates from the largest

clusters: H2SO4 from
(
H2SO4

)
5

(
NH3

)
4

and
(
H2SO4

)
5

(
NH3

)
5
, and NH3 from

(
H2SO4

)
5

(
NH3

)
5
.

For each evaporation rate, we calculate the one dimensional (that is, depending only on the evaporation rate) marginal205

posterior distribution as the position-wise average of the stationary parts of the three sampled chains. This procedure is needed

to average the bias originating from random noise. The resulting distributions are given in Figs. ??-??. We use the maximum

12Here stationary means that the probability of transitioning from the current state at position j to the new state at position j + 1 is independent of j.
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(also called the mode in the statistics literature) of the posterior marginal distribution function as our parameter estimate in

the case when the marginal posterior distributions have precisely one maximum value. In the cases where we have multiple

estimators, we provide a range for the evaporation rate values.210

All the evaporation rates larger than 10−3 s−1 are well-identified (see subfigures labelled 1, 2, 4, 5, 7, 10, 12, 16, 18, 22, 27,

31 and 35 in Figs. ??- ??), as their estimated variances are well within our accepted error range of less than one order of mag-

nitude. The estimates for the remaining evaporation rates can take values within ranges spanning several orders of magnitude,

and are thus uncertain. Also, most of the marginal posterior distributions are non-uniform, except for the evaporation rate of(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
5

(
NH3

)
5
. In five cases (refer to subfigures labelled 6, 21, 28, 32 and 36 in Figs. ??- ??),215

the estimated parameter values are not unique: the marginal posterior distributions feature multiple modes. The results of our

parameter estimation are summarized in Tabs. ??- ?? and in subfigures labelled (a) and (b) in Figure ??.

The pairwise marginal posterior distributions for the estimated evaporation rates are illustrated in Figs. ??-??. The majority

of the parameters are not correlated. However, the evaporation of monomers from
(
H2SO4

)
5
NH3,

(
H2SO4

)
3

(
NH3

)
2

and(
H2SO4

)
5

(
NH3

)
4

display non-linear inverse correlations. This implies that either H2SO4 rarely evaporates (at a rate less than220

10−4 s−1) and that NH3 evaporates often, or that the evaporation rates of H2SO4 and NH3 are of comparable magnitude.

Additionally, it can be seen from the pairwise posteriors that most of the estimated parameters are highly uncertain. From a

mathematical perspective, the existence of multiple distinct parameter estimates indicates that the problem of recovering evap-

oration rates from the synthetic steady-state concentration data is ill-posed. The general solution to this issue is to regularize

the problem, either by adding more data or information to the model, or by reducing the number of possible estimates.225

Based on parameter estimation results, we conclude that a single-temperature steady-state cluster concentrations are not

enough to estimate the evaporation rates with a reasonable accuracy (i.e., to obtain an upper and lower limits for the rates that

reasonably restrict the cluster kinetics involved in the molecular-level process).
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Figure 3. One-dimensional marginal posterior distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines

denote the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds to a cluster with x sulfuric acid and

y ammonia molecules.
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Figure 4. One-dimensional marginal posterior distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines

denote the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds to a cluster with x sulfuric acid and

y ammonia molecules.

3.2 Identification of evaporation rate coefficients from time dependent data at a single temperature

The data set for time-dependent cluster concentrations is much larger than the data set for steady-state cluster concentrations,230

as it contains the concentration values at multiple time instances. The time-dependent data also contain information about

the time derivatives of the concentrations, (see ??.), which should contribute to quantification of kinetic parameters (in this

case evaporation rates). Our time-dependent cluster concentration data sets contain in total 656 concentration measurements

(corresponding to 16 cluster types and 41 timesteps), for each of the four ammonia mixing ratios.

From this time-dependent cluster concentration data set, we then conduct MCMC runs as described in Section 2.2. As in the235

steady-state setting, we conduct three independent MCMC runs to determine the base 10 logarithms of the evaporation rates.

One of these runs is presented in Figs. ??-??. Again, we omit the first one million samples and merge the stationary parts of

the sampled chains to obtain the posterior distributions.

As seen in Figs. ??-??, all the chains have upper limits. Most of the chains are also bounded from below, with five exceptions.

These exceptions, with arbitrarily large magnitudes, are the evaporation rates of
(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
4

(
NH3

)
4

240

and
(
H2SO4

)
5

(
NH3

)
3
, and the evaporation rates of H2SO4, (H2SO4)(NH3) and

(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
5

(
NH3

)
5
.
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The one-dimensional marginal posterior distributions for the estimated parameters are shown in Figs. ??-??. Most of the

estimates are close to the “true” values used in the generation of the synthetic data. However, the estimated evaporation rates

still feature substantial uncertainties, as their marginal posterior distributions span several orders of magnitude (see subfig-

ures 6, 8, 9, 11, 13, 14, 17, 21, 23-26, 30, 32-34, 37-39 in Figs. ??-??). The evaporation rate of
(
H2SO4

)
2

(
NH3

)
2

from245 (
H2SO4

)
5

(
NH3

)
3

(which corresponds to subfigure 26) has a uniform posterior distribution, corresponding to an enormous

uncertainty. Further, for the evaporation rates depicted in subfigures 20 and 36, we can only determine upper limits of less than

1.96× 10−5 s−1. However, the time-dependent data allows us conclude that the evaporation processes
(
H2SO4

)
4

(
NH3

)
3
→(

H2SO4

)
4

(
NH3

)
2
+NH3 and

(
H2SO4

)
5

(
NH3

)
5
→
(
H2SO4

)
4

(
NH3

)
5
+H2SO4 can be neglected, as they are relatively slow

compared with competing evaporation processes.250

Pairwise marginal posterior distributions for the evaporation rates are plotted in Figs. ??-??. Most of the evaporation rates

do not display substantial correlations. However, the evaporation rates of monomers from the cluster
(
H2SO4

)
2
NH3 display a

strong inverse linear relationship, indicated by the pairwise marginal posterior distribution of the coefficients(
H2SO4

)
2
NH3→

(
H2SO4

)
2

+ NH3 and
(
H2SO4

)
2
NH3→H2SO4NH3 + H2SO4, (see Figure ??). Also, the estimated rate

coefficients
(
H2SO4

)
2
→H2SO4 +H2SO4 and H2SO4NH3→H2SO4 +NH3 exhibit linear correlation. The uncertainties in255

all the correlated parameters are relatively small (less than an order of magnitude).

In Tabs. ??-??, we summarize the results of parameter estimation for the two data settings (steady-state and time-dependent)

at a single temperature. Note that the estimated upper limits for some of the small evaporation rates (less than 10−5 s−1)

determined from the steady-state data can be as large as 1.55×10−2 s−1. This is a poor estimate, since the uncertainties in the

synthetic data are small. For example, see the results for parameters shown in subfigures 32 and 34 of Figure ??. In these cases,260

the identification is improved when we extend the data set with time-dependent measurements. Overall, the time-dependent

data enabled us to determine the lower bounds for most of the parameters, with the exception of the parameters shown in

subfigures numbered 26 and 29. Moreover, the additional time-dependent data enabled us to reduce the uncertainties in the

estimates of parameters in subfigures 15, 19 and 37. As a result, with the aid of time-dependent data we have improved the

estimates of minimal and maximal values for the evaporation rate parameters (see comparison of the 95 % confidence intervals265

plotted in Figure ??).
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(a) (b)

(c) (d)

Figure 5. Comparison of 95 % confidence intervals (orange box plots) of base 10 logarithms of the evaporation rates determined from (a)-(b)

steady-state and (c)-(d) time-dependent synthetic data measured at temperature 278 K. Here blue asterisks denote the baseline values used

for creating the synthetic data (borrowed from ?). Black circle and horizontal line markers indicate the mode and the mean value of the

distribution, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure 6. One-dimensional marginal posterior distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from time-dependent measurements of the cluster concentrations with time resolution

comprising 1.5 minutes at the temperature 278 K. Red lines denote the baseline values from ? used to generate the synthetic data. The

notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure 7. One-dimensional marginal posterior distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of

the evaporation rates (units given in s−1) determined from time-dependent asurements of the cluster concentrations with time resolution

comprising 1.5 minutes at the temperature 278 K. Red lines denote the baseline values from ? used to generate the synthetic data. The

notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.

3.3 Estimating formation enthalpies and entropies from steady-state concentration measurements at multiple

temperatures

We determined cluster formation enthalpies and entropies based on two sets of steady-state cluster concentrations, correspond-

ing to two temperatures: 278 and 292 K. These data sets are plotted in Figs. ?? and ?? for 278 K and 292 K, respectively.270

As in the previous sections, three MCMC runs were conducted to average the bias attributed to random noise. An example of

the sampled chains is shown in Figure ??. It can be seen that all the chains are bounded, with the exception of the formation

enthalpy and entropy of the largest cluster (
(
H2SO4

)
5

(
NH3

)
5
).

The one-dimensional marginal posterior distributions of the formation enthalpies and entropies, built from the stationary

parts of the three sampled chains merged together, are shown in Figure ??. For all the clusters except
(
H2SO4

)
5

(
NH3

)
5
, the275

variances of the estimated formation enthalpies are less than 0.46 kcal mol−1, while the estimated formation entropies vary at

most by 5.4 cal K−1mol−1. The estimated free parameters together with the "true" quantum chemistry-based values from ?

used for generation of the synthetic data are summarized in Table ??.

Although the posterior distributions of the formation enthalpies and entropies of
(
H2SO4

)
5

(
NH3

)
5

feature higher uncer-

tainties in comparison to those of the smaller clusters, the evaporation rates from
(
H2SO4

)
5

(
NH3

)
5
, as calculated from the280
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aforementioned posterior distributions, have low variances, see Table ??. Additionally, strong correlations are observed be-

tween formation enthalpies and entropies of clusters containing the same number n of ammonia molecules when n > 2, except

the case of
(
H2SO4

)
5

(
NH3

)
5
.These strong correlations are consistent with general principles of clustering thermodynamics.

If a cluster has very strong bonds between its constituent molecules, then the formation enthalpy is very negative, and also

the intermolecular vibrational frequencies corresponding in a broad sense to vibrations involving those bonds are fairly high,285

meaning that the entropy loss in forming the cluster is large. These intermolecular frequencies dominate the "variable part"

of the formation entropy, as the entropy change from the loss of translational and rotational degrees of freedom is almost a

constant factor. Thus, if the formation enthalpy of a cluster is very negative, so is also the formation entropy. Conversely, if

the cluster is only quite weakly bound, the formation enthalpy is only slightly negative, and the intermolecular frequencies

can be very low, leading to a less negative (though still negative) formation entropy. Evaporation rates for all the molecular290

clusters calculated from a posterior distribution of sampled formation enthalpies and entropies are close to the "true” values

used for generation of the synthetic data at both temperatures (278 K and 292K) and their variances are less than one order of

magnitude, see Figs. ??-??. Thus, reparametrization of evaporation rates in terms of formation enthalpies and entropies, and

use of data at two different temperatures, thus transforms our parameter estimation problem from an ill-posed to a well-posed

one.295
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Figure 8. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies

and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure 9. One-dimensional marginal posterior distributions of the cluster formation enthalpies (units given in kcal/mol) and entropies (units

given in cal K−1 mol−1)) determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K.

Red lines denote the baseline values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation

enthalpies and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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4 Conclusions

We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC) algorithm to identify cluster evapora-

tion/fragmentation rates from synthetic cluster distribution data, assuming that the cluster collision rates are known. We used

the Atmospheric Cluster Dynamic Code (ACDC) together with evaporation rates based on quantum chemistry and detailed

balance to generate synthetic data for the purpose of optimizing and validating the parameter estimation.300

First, we sought to determine the cluster evaporation rates from both steady-state and time-dependent cluster concentration

data at one temperature. We were only able to identify a subset of the free parameters (evaporation rates) from the available

data using either of these approaches.

Next, we used steady-state concentration data corresponding to two different temperatures. We introduced a reparametriza-

tion which expressed the evaporation rates in terms of temperature and cluster formation enthalpies and entropies. Using305

steady-state concentrations at two temperatures allowed us to apply two general principles of inverse problems/Bayesian es-

timation to the problem of estimating evaporation rates. First, the [..13 ]two-temperature data set enabled us to reformulate

the problem in a numerically effective way (in terms of formation enthalpies and entropies), which reduced the number of

unknown parameters. This reduced the number of parameters we sought to identify. Second, it also lessened the stiffness of

the system, as the cluster formation enthalpies and entropies for our system span a much smaller range compared to the evap-310

oration rates. We demonstrated that steady-state concentration data at two different temperatures could be used to determine

all the unknown formation enthalpies and entropies, and thus the evaporation rates, to within acceptable accuracy.In practice,

[..14 ]the most important evaporation rates for modelling new particle formation are those which are roughly of the same

order of magnitude as the rates at which the clusters collide with the vapor molecules. If we assume that the mixing ratios

for the clustering vapours are in the ppt. . . ppb range and use kinetic gas theory collision rates for small molecules and315

nanometer-sized clusters, we approximately should obtain evaporation rates in the range of 10−3 to 103 s−1. Fortunately,

our approach is able to constrain these evaporations rates to within a factor of 10 [..15 ][..16 ]or less. Evaporation rates

[..17 ]below 10−4 s−1 are not as well constrained. However, the corresponding processes are usually not relevant for [..18

]determining overall new-particle formation rates. While [..19 ]the high accuracy of estimated evaporation rates originates

from the assumptions of small-noise synthetic data and the concentrations measured for all the cluster types, similar320

accuracy can be expected if high-quality experimental steady-state data at two temperatures is used instead.

In general, the accuracy of the MCMC results naturally increases when we include additional data. In particular, including

more concentration data measured at different ammonia concentrations will yield better estimates for the evaporation rates.

13removed: two–temperature
14removed: evaporation rates above about 1E-5 1/s, 1E-3 1/sand 0.1 1/s could be constrained to within factors
15removed: , X and Y, respectively
16removed: ANNA COMPUTE AND INSERT THE NUMBERS X AND Y HERE, FROM TABLE C1
17removed: lower than 1E-5 1/scould not be well constrained, but fortunately
18removed: e.g.
19removed: these conclusions are based on synthetic data
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The sensitivity of the estimates to the number of ammonia concentrations, as well as different sulfuric acid source rates, will

be considered in future work.325

The approach presented here can also be applied to infer evaporation rates from mass spectrometric measurements of molec-

ular cluster concentrations. This naturally requires accounting for the process of charging neutral clusters, with its associated

instrumental and data-analysis-related uncertainties. A clear conclusion of our proof-of-concept study is that steady-state data

at different temperatures is more useful for determining evaporation rates than time-dependent data at a single temperature.

Moreover, reliable steady-state concentrations of clusters at various temperatures are generally easier to obtain experimentally330

(e.g. in chamber experiments) compared to time-dependent concentrations. This finding demonstrates the more general fea-

ture of modelling of the type performed here: it can be used to optimize planning of experiments, and thus save both time

and resources. Determining very low (below 10−5 s−1) evaporation rates may also require additional measurements at low

vapor concentrations, which naturally require longer timescales to reach a steady state. Treating the uncertainties inherent in

experimental data will be the topic of our future studies.335

Code availability. The code is available via GitHub repository: http://doi.org/10.5281/zenodo.3766925

21

http://doi.org/10.5281/zenodo.3766925


A Supplementary mathematical material

A1 Cluster kinetics

The kinetics of cluster formation is described by Becker-Döring equations (??), which model cluster birth and death which

arises from collisions of the smaller clusters into larger ones and evaporations from the bigger clusters into smaller ones.340

Precisely, labelling the clusters by i ∈ {1,2, . . . ,N}, the time derivative of the ith cluster concentration Yi is governed by

dYi

dt = 1
2

∑
j<i

βi,(i−j)YiYi−j +
∑
j

γi+j→i,jYi+j−
∑
j

βi,jYiYj− 1
2

∑
j<i

γi→j,i−jYi + Qi−Si, (A1)

where βi,j is the collision coefficient of clusters i with j, and γi+j→i,j is the evaporation coefficient of cluster i+j into clusters

i and j, Qi is an external source term of i, and Si represents the total possible types of losses for the cluster of type i. These

last two terms, which stand for external supply and destruction mechanisms, depend on the system under consideration.345

We now specify the quantity and type of sinks and sources included in our studies. We assume that the concentration

of ammonia monomers is constant, while sulfuric acid monomers are supplied to the system at a constant rate comprising

Q = 6.3× 104 cm−3s−1. This settings are selected to imitate the conditions inside of the CLOUD chamber, (??). Further,

we include wall losses arising from clusters sticking on the walls of the experimental chamber, (?). These wall losses are

parametrized by the size of the cluster350

Swall,i = 10−12/(2ri + 0.3× 10−9) s−1, (A2)

where ri is the mass radius of the cluster (in cm). From Eq. ??, wall loss rates decrease with cluster size; in practise it also varies

with respect to cluster position in the chamber and time. We neglect any uncertainties attributed to the wall losses. However,

we do account for dilution losses, with size-independent value comprising Sdil,i = 9.6× 10−5s−1, which had previously been

determined in the CLOUD chamber, (??).355

Let T denote the temperature of the system of molecular clusters. Using classical kinetic gas theory, the collision rates βi,j

in Eq. ?? obey

βi,j =
√

T

(
3

4π

)1/6 [
6kB

(
1

mi
+

1

mj

)]1/2(
V

1/3
i + V

1/3
j

)2
, (A3)

where mi and Vi are respectively the mass and volume of cluster i, and kB is Boltzmann’s constant. In this paper, we assume

that the masses and volumes are temperature-independent.360

The cluster evaporation rates γi+j→i,j in Eq. ?? are given by the expression

γi+j→i,j = βi,j
Pref

kBT
exp

(
∆Gi+j−∆Gi−∆Gj

kBT

)
, (A4)

where Pref is the reference pressure and ∆Gi is the Gibbs free energy of formation for cluster i. We may further describe the

ith Gibbs free energy in terms of the cluster formation enthalpy ∆Hi and entropy ∆Si:

∆Gi = ∆Hi−T∆Si. (A5)365

We neglect here the weak temperature dependence of real cluster formation enthalpies and entropies.
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A2 The Metropolis algorithm

We first select the flat prior distribution from which we will initially sample unknown parameters, as we wish to generate phys-

ically reasonable parameter estimates. Therefore, we generate unknown parameters within the chosen minimum and maximum

bounds where all the points are equally likely to be sampled. Please see Section 2.2.3 and Tabs. 3-4 for more details. From the370

prior distribution, a starting guess for the parameters θold ∈Rncoef is chosen (here ncoef is the total number of parameters).

The Metropolis algorithm then requires us to specify how to sample new parameter values θnew. This is done by choosing a

proposal distribution. We chose a multivariate Gaussian proposal density q, defined by:

q(θold,θnew)' exp

(
−1

2
(θnew−θold)

T
Σ−1 (θnew−θold)

)
, (A6)

where Σ is a covariance matrix (of dimensions ncoefs×ncoefs) which specifies the scaling and spatial orientation of the Gaussian375

proposal distribution. As the normalization constants are cancelled out in Eq. ??, we do not take them into consideration.

Next, we run the ACDC and Fortran simulations with the parameter values θnew. We collect the cluster concentration outputs

in the column-vector ymod(θnew) ∈ Rnout , where nout is the number of elements. The candidate vector of parameters θnew is

either accepted or rejected according to the least-squares fit of ymod(θnew) to the synthetic cluster concentrations yexp:

SS(θnew) =

nout∑
i=1

(yexp,i− ymod,i(θnew))2

σ2
i

, (A7)380

where nout is the number of measurements in the synthetic concentrations. By construction our synthetic data contains un-

correlated Gaussian measurement error, hence the likelihood of observing the data yexp given some parameter values θ is

p(yexp|θ)' exp(−1

2
SS(θ)). (A8)

The value SS(θnew) is then compared to the least-square sum from the previous step SS(θold) and accepted with the probability385

pacc(θold,θnew) = min
{

1,
p(yexp|θnew)

p(yexp|θold)

}
= min

{
1,exp

[
−1

2
(SS(θnew)−SS(θold))

]}
. (A9)

If θnew is accepted, this parameter combination is added as the next element in the chain; else the old value is replicated in the

chain. Finally, the value SS(θold) is replaced with SS(θnew) and saved. This completes an iteration of the Metropolis algorithm.

We remark here that the likelihoods p(yexp|θold) and p(yexp|θnew) in Eq. ?? characterize how closely the outputs of the390

ACDC simulations with the parameters θold and θnew respectively fit the synthetic data. By definition of the acceptance

probability pacc(θold,θnew) in Eq. ??, the candidate step is always accepted if the new parameters fit the data at least as good

as the old values (SS(θnew)≤ SS(θold)).
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A3 The DRAM algorithm for sampling from large parameter space

Our implementation of the Delayed Rejection Adaptive Metropolis (DRAM) (??) approach to MCMC parameter estimation395

modifies the above Metropolis algorithm in the following way.

First, we use the Adaptive Metropolis (AM) (?) method for updating the covariance matrix Σ of the proposal distribution

q(θold,θnew) in Eq. ??. That is, if we have generated samples (θ0,θ1, . . . ,θn−1), the next candidate set θnew is proposed from

q(θn−1,θnew) using the empirical covariance Σ = Cov(θ0,θ1, . . . ,θn−1). Therefore the next candidate set is generated by

taking a step with direction and size determined from the values of parameters previously sampled in the MCMC chain. This400

procedure is carried out after every 100 successive accept/reject iterations. To ensure computational stability, we also apply

additional scaling and regularization for the proposal covariance (see ??); please see ? for a detailed explanation.

Second, we carry out local adaptation of the proposal distribution using the Delayed Rejection (DR) algorithm (?). It is

implemented as follows: given n parameter sets (θ0,θ1, . . . ,θn) generated by the AM method above, a candidate θnew is

proposed from the distribution q(θn,θnew) in Eq. ?? and accepted with probability as in Eq. ??, as discussed before. However,405

if the proposed θnew is rejected, instead of replicating the previous values in the MCMC chain (i.e., θn+1 = θn), the algorithm

tests a new candidate move θnew,2 which is close to the current estimate θn. Then the second-stage proposal θnew,2 is accepted

with appropriately adjusted acceptance probability (see ?).

In summary, our application of the DRAM algorithm combines the AM procedure with a two-stage DR modification. In

the first stage, our algorithm carries out the Metropolis regime with both AM adaptation. The proposal covariance at the410

initialization of DR (denoted as Σ) is computed as by AM method above, no matter at which stage of DR these points have

been accepted in the sampling process. The covariance of the proposal for the second stage (denoted as Σ2) is always computed

as the scaled version of the first-stage proposal covariance:

Σ2 = γΣ, (A10)

with the scaling coefficient γ = 1/5 that was chosen to increase the number of accepted candidate steps at the second stage (?).415

This DRAM parameter estimation was conducted using the ’mcmcstat’ toolbox implemented for FORTRAN (??). See the

description and the examples of usage on the web page helios.fmi.fi/~lainema/.

24

helios.fmi.fi/~lainema/


B Estimation of the evaporation rates from steady-state data

Figure B1. Parameter chains (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation rates (units given in s−1) determined

from steady-state cluster concentration measurements at the temperature 278 K. Red lines denote the baseline values from ? used to generate the synthetic

data. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure B2. Parameter chains (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation rates (units given in

s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines denote the baseline values from

? used to generate the synthetic data. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure B3. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from ? used to generate the synthetic data The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia

molecules.
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Figure B4. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds to a cluster with x sulfuric acid and y

ammonia molecules.
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Figure B5. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds to a cluster with x sulfuric acid and y

ammonia molecules.
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Figure B6. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 32) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from ? used to generate the synthetic data The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia

molecules.
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Figure B7. Pairwise marginal posterior distributions (for parameter indexes ranging from 33 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds to a cluster with x sulfuric acid and y

ammonia molecules.
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C Estimation of the evaporation rates from time dependent data

Figure C1. Time-dependent cluster concentrations. Simulated time evolution of concentrations for different cluster types at temperature T=278 K for varying

[NH3] concentration: 5 ppt, 35 ppt, 100 ppt and 200 ppt (see the legend). All the model outputs are amended with multivariate non-correlated Gaussian noise

with standard deviation comprising 0.001% of the original cluster concentration. Time resolution comprises 1.5 minutes. The source of sulfuric acid monomer

is [H2SO4] = 6.3× 104 s−1 in all simulations. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure C2. Parameter chains (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation rates (units given

in s−1) determined from time-dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the

temperature 278 K. Red lines denote the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds to a

cluster with x sulfuric acid and y ammonia molecules. 33



Figure C3. Parameter chains (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation rates (units given

in s−1) determined from time-dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the

temperature 278 K. Red lines denote the baseline values from ? used to generate the synthetic data The notation xAyN corresponds to a

cluster with x sulfuric acid and y ammonia molecules.
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Figure C4. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from time-dependent measurements of the cluster concentrations with time resolution comprising 1.5

minutes at the temperature 278 K. Red rectangles denote the baseline values from ? used to generate the synthetic data. The notation xAyN

corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure C5. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from time-dependent measurements of the cluster concentrations with time resolution comprising 1.5

minutes at the temperature 278 K. Red rectangles denote the baseline values from ? used to generate the synthetic data The notation xAyN

corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure C6. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the base 10 logarithm of the evaporation

rates (units given in s−1) from time-dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes at

the temperature 278 K. Red rectangles denote the baseline values from ? used to generate the synthetic data The notation xAyN corresponds

to a cluster with x sulfuric acid and y ammonia molecules.
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Figure C7. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 32) of the base 10 logarithm of the evaporation

rates (units given in s−1) from time dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the

temperature 278 K. Red rectangles denote the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds

to a cluster with x sulfuric acid and y ammonia molecules.
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Figure C8. Pairwise marginal posterior distributions (for parameter indexes ranging from 33 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) from Time dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes at

the temperature 278 K. Red rectangles denote the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds

to a cluster with x sulfuric acid and y ammonia molecules.
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Symbol Steady-state data (s−1) Time dependent data (s−1) QC (s−1)

1: 2A→ 1A 8.16× 102 8.23× 102 8.23× 102

(8.05× 102,8.31× 102)

2: 1A1N→ 1N 4.75× 103 4.74× 103 4.74× 103

(4.69× 103,4.87× 103)

3: 2A1N→ 1A 4.22× 10−4 3.30× 10−4 3.64× 10−4

(5.92× 10−11,7.27× 10−4) (1.75× 10−4,5.37× 10−4)

4: 2A1N→ 1N 1.56× 10−3 1.33× 10−3 1.21× 10−3

(8.78× 10−4,1.67× 10−3) (1.04× 10−3,1.4× 10−3)

5: 3A1N→ 1A 2.99× 101 3.02× 101 3.02× 101

(2.94× 101,3.08× 101 (3.01× 101,3.02× 101)

6: 3A1N→ 2A − 2.81× 10−6 6.09× 10−6

1.50× 10−1 (2.86× 10−9,2.76× 10−3)

7: 2A2N→ 1N 1.74× 102 1.76× 102 1.76× 102

(1.71× 102,1.79× 102)

8: 2A2N→ 1A1N 5.52× 10−4 2.11× 10−6 5.33× 10−6

< 5.16× 10−3 (2.95× 10−10,3.59× 10−4)

9: 3A2N→ 1A 3.30× 10−4 7.51× 10−4 6.07× 10−4

< 2.91× 10−3 (3.18× 10−7,1.78× 10−3)

10: 3A2N→ 1N 4.47× 10−3 4.16× 10−3 3.84× 10−3

(5.85× 10−4,5.60× 10−3) (2.86× 10−3,4.66× 10−3)

11: 3A2N→ 1A1N 9.79× 10−5 1.00× 10−5 1.64× 10−5

< 3.88× 10−3 (4.68× 10−10,7.22× 10−4)

12: 4A2N → 1A 5.50× 100 5.46× 100 5.43× 100

(4.50× 100,5.72× 100) (5.39× 100,5.51× 100)

13: 4A2N→ 2A 5.24× 10−7 1.03× 10−6 1.48× 10−6

< 2.74× 10−1 (5.66× 10−11,1.88× 10−2)

14: 4A2N→ 1A1N 2.79× 10−1 2.78× 10−6 2.80× 10−6

< 6.92× 10−1 (6.50× 10−10,1.66× 10−3)

15: 4A2N→ 2A1N 6.49× 10−2 9.04× 10−2 9.94× 10−2

< 1.02× 100 (3.66× 10−2,1.33× 10−1)

16: 3A3N→ 1N 4.62× 10−2 4.61× 10−2 4.60× 10−2

(4.50× 10−2,4.78× 10−2) (4.58× 10−2,4.62× 10−2)

17: 3A3N→ 1A1N 1.37× 10−9 6.32× 10−9 3.74× 10−9

< 3.58× 10−4 (1.05× 10−12,4.91× 10−6)

18: 4A3N→ 1A 2.08× 10−3 2.10× 10−3 2.10× 10−3

(1.79× 10−3,2.27× 10−3) (2.07× 10−3,2.12× 10−3)

19: 4A3N→ 1N 1.19× 10−5 1.96× 10−5 1.88× 10−5

< 7.29× 10−5 (1.11× 10−5,2.50× 10−5)

20: 4A3N→ 1A1N 9.29× 10−11 − 1.23× 10−8

< 2.65× 10−4 (1.81× 10−12,1.96× 10−5)

Table C1. Part 1. Evaporation rates (units given in s−1) determined from the steady-state and the time dependent data presented in Figure

5-6 and Figs. 16-17, respectively. For parameters that have a posterior distribution with the clear peak and practically zero probability density

elsewhere, the mode of the distribution (bold face) is given together with the range of possible values in the parenthesis. In some of the cases

only the limits can be determined. The last column presents the baseline values from ? used to generate the synthetic data. The notation

xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Symbol Steady-state data (s−1) Time dependent data (s−1) QC (s−1)

21: 4A3N→ 2A1N − 4.83× 10−9 1.66× 10−8

< 2.14× 10−4 (3.36× 10−12,6.93× 10−6)

22: 5A3N→ 1A 7.88× 10−1 7.81× 10−1 7.83× 10−1

(7.56× 10−1,8.20× 10−1) (7.77× 10−1,7.86× 10−1)

23: 5A3N→ 2A 2.35× 10−8 6.34× 10−7 6.37× 10−7

( < 1.21× 10−2) (1.26× 10−11,3.35× 10−4)

24: 5A3N→ 1A1N 9.12× 10−12 1.50× 10−9 1.70× 10−9

< 3.39× 10−3 (1.02× 10−12,2.22× 10−6)

25: 5A3N→ 2A1N 7.22× 10−4 1.24× 10−5 1.85× 10−5

< 6.95× 10−3 (1.86× 10−8,5.33× 10−4)

26: 5A3N→ 2A2N 1.52× 10−8 − 3.52× 10−10

< 4.49× 10−3 < 1.25× 10−4

27: 4A4N→ 1N 3.79× 101 3.76× 101 3.75× 101

(3.70× 101,3.88× 101) (3.75× 101,3.77× 101)

28: 4A4N→ 1A1N − 9.05× 10−6 9.06× 10−6

< 5.38× 10−3 (1.52× 10−10,2.57× 10−4)

29: 4A4N→ 2A2N 2.07× 10−12 8.55× 10−11 1.33× 10−9

< 2.43× 10−3 < 1.90× 10−4

30: 5A4N→ 1A 3.87× 10−6 2.51× 10−3 1.77× 10−3

< 2.52× 10−2 (1.20× 10−6,5.86× 10−3)

31: 5A4N→ 1N 8.92× 10−2 9.03× 10−2 8.87× 10−2

(6.68× 10−2,9.74× 10−2) (8.52× 10−2,9.19× 10−2)

32: 5A4N→ 1A1N − 3.60× 10−6 7.33× 10−6

< 1.55× 10−2 (6.48× 10−12,1.04× 10−3)

33: 5A4N→ 2A1N 2.28× 10−4 1.32× 10−4 2.97× 10−5

< 1.06× 10−2 (6.46× 10−10,1.53× 10−3)

34: 5A4N→ 2A2N − 7.30× 10−9 6.42× 10−9

< 1.08× 10−2 (1.51× 10−11,3.17× 10−4)

35: 4A5N→ 1N 8.75× 102 8.88× 102 8.89× 102

(8.59× 102,9.03× 102) (8.85× 102,8.92× 102)

36: 5A5N→ 1A − − 2.23× 10−10

< 2.32× 10−4 < 1.14× 10−6

37: 5A5N→ 1N 4.96× 10−4 1.00× 10−4 1.17× 10−4

< 9.89× 10−4 (3.48× 10−5,1.85× 10−4)

38: 5A5N→ 1A1N 5.93× 10−9 1.48× 10−11 2.11× 10−11

< 5.06× 10−4 < 1.06× 10−5

39: 5A5N→ 2A2N − 2.06× 10−11 1.31× 10−11

< 3.09× 10−4 < 4.11× 10−7

Table C2. Part 2. Evaporation rates (units given in s−1) determined from the steady-state and the time dependent data presented in Figure

5-6 and Figs. 16-17, respectively. For parameters that have a posterior distribution with the clear peak and practically zero probability density

elsewhere, the mode of the distribution (bold face) is given together with the range of possible values in the parenthesis. In some of the cases

only the limits can be determined. The last column presents the baseline values from ? used to generate the synthetic data. The notation

xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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D Estimation of the cluster formation enthalpies and entropies from steady-state concentration measurements420

Figure D1. Steady-state cluster concentrations for the clusters containing sulfuric acid and a varying number of ammonia molecules as a function of

the number of acid molecules for [NH3] concentrations comprising (a) 5 ppt, (b) 35 ppt, (c) 100 ppt and (d) 200 ppt at temperature T=292 K amended

with multivariate non-correlated Gaussian noise with standard deviation comprising 0.001% of the original cluster concentration. The source of sulfuric

acid monomer comprises [..20 ]6.3× 104 s−1in all the simulations. Here the symbols ∆H and ∆S stand for cluster formation enthalpies and entropies,

respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure D2. Parameter chains of the cluster formation enthalpies (units given in kcal/mol) and entropies (units given in cal K−1 mol−1)

determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red lines denote the baseline

values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies and entropies,

respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure D3. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies

and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure D4. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies

and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure D5. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 28) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies

and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Symbol Mode value 95% confidence interval QC Units

1: ∆H2A -17.8891 (-18.1913,-17.4941) -17.85 kcal mol−1

2: ∆S2A -33.5475 (-34.6104,-32.1575) -33.42 cal K−1 mol−1

3: ∆H1A1N -15.8751 (-16.2344,-15.5158) -16 kcal mol−1

4: ∆S1A1N -27.6984 (-28.9594,-26.4374) -28.14 cal K−1 mol−1

5: ∆H2A1N -44.8076 (-45.2922,-44.174) -45 kcal mol−1

6: ∆S2A1N -70.3501 (-72.029,-68.1545) -71.02 cal K−1 mol−1

7: ∆H3A1N -66.0006 (-66.428,-65.5732) -66.06 kcal mol−1

8: ∆S3A1N -107.5233 (-109.0059,-106.0407) -107.72 cal K−1 mol−1

9: ∆H2A2N -64.5005 (-64.9799,-64.021) -64.46 kcal mol−1

10: ∆S2A2N -104.6181 (-106.2857,-102.9505) -104.45 cal K−1 mol−1

11: ∆H3A2N -91.8512 (-93.9174,-90.2712) -92.09 kcal mol−1

12: ∆S3A2N -142.3625 (-149.4438,-136.9474) -143.18 cal K−1 mol−1

13: ∆H4A2N -115.0105 (-116.7515,-113.2696) -115.13 kcal mol−1

14: ∆S4A2N -182.938 (-188.9067,-176.9693) -183.34 cal K−1 mol−1

15: ∆H3A3N -116.3273 (-118.1437,-114.5108) -116.6 kcal mol−1

16: ∆S3A3N -177.0462 (-183.2768,-170.8156) -177.99 cal K−1 mol−1

17: ∆H4A3N -144.9757 (-147.3975,-142.554) -145.17 kcal mol−1

18: ∆S4A3N -221.6575 (-229.9554,-213.3595) -222.33 cal K−1 mol−1

19: ∆H5A3N -168.7305 (-171.0579,-166.4031) -168.79 kcal mol−1

20: ∆S5A3N -260.3509 (-268.3225,-252.3794) -260.55 cal K−1 mol−1

21: ∆H4A4N -164.1272 (-166.4394,-161.815) -164.35 kcal mol−1

22: ∆S4A4N -250.2634 (-258.1819,-242.3449) -251.03 cal K−1 mol−1

23: ∆H5A4N -191.7779 (-194.9426,-188.6133) -191.86 kcal mol−1

24: ∆S5A4N -290.7782 (-301.6196,-279.9369) -291.05 cal K−1 mol−1

25: ∆H4A5N -186.3473 (-188.639,-184.0557) -186.47 kcal mol−1

26: ∆S4A5N -296.0839 (-303.9359,-288.2319) -296.51 cal K−1 mol−1

27: ∆H5A5N -205.943 (-241.6193,-190.6532) -221.65 kcal mol−1

28: ∆S5A5N -277.4 (-,-224.8575) -332.49 cal K−1 mol−1

Table D1. Thermodynamic parameters identified from steady-state data measured at two temperatures (278 and 292 K). The last column

presents the quantum-chemistry based values from (?) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster

formation enthalpies and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure D6. One-dimensional marginal distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation

rates (units given in s−1) at temperature 278 K obtained from a posterior distribution of thermodynamic parameters (cluster formation

enthalpies and entropies) determined from steady-state cluster concentration measured at temperatures 278 K and 292 K. Red lines denote

the baseline values from ? used to generate the synthetic data. The notation xAyN corresponds to a cluster with x sulfuric acid and y

ammonia molecules.
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Figure D7. One-dimensional marginal distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) at temperature 278 K obtained from a posterior distribution of thermodynamic parameters (cluster formation

enthalpies and entropies) determined from steady-state cluster concentration measured at temperatures 278 K and 292 K. Red lines denote

the baseline values from ? used to generate the synthetic data The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia

molecules.
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Symbol Steady-state data for 278 K and 292 K (s−1) QC (s−1)

1: 2A→ 1A 8.17× 102 8.23× 102

(8.03× 102,8.36× 102)

2: 1A1N→ 1N 4.76× 103 4.74× 103

(4.66× 103,4.87× 103)

3: 2A1N→ 1A 3.64× 10−4 3.64× 10−4

(3.48× 10−4,3.84× 10−4)

4: 2A1N→ 1N 1.23× 10−3 1.21× 10−3

(1.16× 10−3,1.29× 10−3)

5: 3A1N→ 1A 3.01× 101 3.02× 101

(2.93× 101,3.09× 101)

6: 3A1N→ 2A 6.12× 10−6 6.09× 10−6

(5.77× 10−6,6.47× 10−6)

7: 2A2N→ 1N 1.77× 102 1.76× 102

(1.71× 102,1.82× 102)

8: 2A2N→ 1A1N 5.33× 10−6 5.33× 10−6

(5.02× 10−6,5.64× 10−6)

9: 3A2N→ 1A 6.09× 10−4 6.07× 10−4

(5.14× 10−4,7.05× 10−4)

10: 3A2N→ 1N 3.89× 10−3 3.84× 10−3

(3.27× 10−3,4.50× 10−3)

11: 3A2N→ 1A1N 1.65× 10−5 1.64× 10−5

(1.40× 10−5,1.90× 10−5)

12: 4A2N → 1A 5.45× 100 5.43× 100

(5.25× 100,5.65× 100)

13: 4A2N→ 2A 1.49× 10−6 1.48× 10−6

(1.27× 10−6,1.72× 10−6)

14: 4A2N→ 1A1N 2.82× 10−6 2.80× 10−6

(2.37× 10−6,3.26× 10−6)

15: 4A2N→ 2A1N 1.01× 10−1 9.94× 10−2

(8.35× 10−2,1.18× 10−1)

16: 3A3N→ 1N 4.64× 10−2 4.60× 10−2

(4.47× 10−2,4.81× 10−2)

17: 3A3N→ 1A1N 3.77× 10−9 3.74× 10−9

(3.19× 10−9,4.36× 10−9)

18: 4A3N→ 1A 2.08× 10−3 2.10× 10−3

(1.86× 10−3,2.29× 10−3)

19: 4A3N→ 1N 1.87× 10−5 1.88× 10−5

(1.69× 10−5,2.05× 10−5)

20: 4A3N→ 1A1N 1.21× 10−8 1.23× 10−8

(1.09× 10−8,1.33× 10−8)

Table D2. Part 1. Evaporation rates at temperature 278 K (units given in s−1) computed from a posterior distribution of the thermodynamic

parameters (cluster formation enthalpies and entropies) which had previously been determined from the steady-state concentration measure-

ments at temperatures 278 and 292 K. Here the mode of distribution (bold face) is given together with the range of possible values in the

parenthesis. The last column presents the quantum-chemistry-based evaporation rates used for creating the synthetic data (borrowed from ?).

The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Symbol Steady-state data for 278 K and 292 K (s−1) QC (s−1)

21: 4A3N→ 2A1N 1.65× 10−8 1.66× 10−8

(1.30× 10−8,1.99× 10−8)

22: 5A3N→ 1A 7.98× 10−1 7.83× 10−1

(7.63× 10−1,8.43× 10−1)

23: 5A3N→ 2A 6.40× 10−7 6.37× 10−7

(5.76× 10−7,7.24× 10−7)

24: 5A3N→ 1A1N 1.71× 10−9 1.70× 10−9

(1.54× 10−9,1.88× 10−9)

25: 5A3N→ 2A1N 1.87× 10−5 1.85× 10−5

(1.66× 10−5,2.07× 10−5)

26: 5A3N→ 2A2N 3.56× 10−10 3.52× 10−10

(2.83× 10−10,4.30× 10−10)

27: 4A4N→ 1N 3.82× 101 3.75× 101

(3.69× 101,3.95× 101)

28: 4A4N→ 1A1N 8.97× 10−6 9.06× 10−6

(8.13× 10−6,1.01× 10−5)

29: 4A4N→ 2A2N 1.34× 10−9 1.33× 10−9

(1.07× 10−9,1.62× 10−9)

30: 5A4N→ 1A 1.76× 10−3 1.77× 10−3

(1.56× 10−3,1.96× 10−3)

31: 5A4N→ 1N 8.70× 10−2 8.87× 10−2

(7.68× 10−2,1.00× 10−1)

32: 5A4N→ 1A1N 7.42× 10−6 7.33× 10−6

(6.59× 10−6,8.24× 10−6)

33: 5A4N→ 2A1N 2.92× 10−5 2.97× 10−5

(2.45× 10−5,3.40× 10−5)

34: 5A4N→ 2A2N 6.40× 10−9 6.42× 10−9

(5.40× 10−9,7.40× 10−9)

35: 4A5N→ 1N 8.85× 102 8.89× 102

(8.58× 102,9.12× 102)

36: 5A5N→ 1A 5.38× 10−10 2.23× 10−10

(2.01× 10−11,2.24× 10−9)

37: 5A5N→ 1N 2.77× 10−4 1.17× 10−4

(1.09× 10−5,1.15× 10−3)

38: 5A5N→ 1A1N 5.05× 10−11 2.11× 10−11

(1.87× 10−12,2.10× 10−10)

39: 5A5N→ 2A2N 3.07× 10−11 1.31× 10−11

(1.16× 10−12,1.28× 10−10)

Table D3. Part 2. Evaporation rates at temperature 278 K (units given in s−1) computed from a posterior distribution of the thermodynamic

parameters (cluster formation enthalpies and entropies) which had previously been determined from the steady-state concentration measure-

ments at temperatures 278 and 292 K. Here the mode of distribution (bold face) is given together with the range of possible values in the

parenthesis. The last column presents the quantum-chemistry-based evaporation rates used for creating the synthetic data (borrowed from ?).

The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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