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1 Overview

In this document we respond to the referee comments for the paper “Iden-
tification of molecular cluster evaporation rates, enthalpies and entropies by
Monte Carlo method”. These comments were provided at the major revision
stage of the review process for publication in Atmospheric Chemistry and
Physics journal.
We wish to thank the Referee for their insightful comments which we feel
substantially increased the quality of the manuscript. We believe that we
have addressed all of the major and minor comments made by the reviewer
and, in so doing, have produced a paper that is more rigorous in structure
and more clear in presentation.
Next, in Section 2 we list the Referee’s comments. We also include our
comment-by-comment responses. Each of the referee’s comments are de-
noted with “C” and our responses to the referee’s comments are denoted
with “R”. At the end of the document we supply a marked-up version of
the paper which contains a detailed comparison of the previous and revised
versions of the manuscript.
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2 Referee comments and our responses

Recommendation to the editor

1. Scientific significance
Does the manuscript represent a substantial contribution to scientific
progress within the scope of this journal (substantial new concepts,
ideas, methods, or data)?
Outstanding Excellent Good Fair Low

2. Scientific quality
Are the scientific approach and applied methods valid? Are the results
discussed in an appropriate and balanced way (consideration of related
work, including appropriate references)?
Outstanding Excellent Good Fair Low

3. Presentation quality
Are the scientific results and conclusions presented in a clear, concise,
and well structured way (number and quality of figures/tables, appro-
priate use of English language)?
Outstanding Excellent Good Fair Low

For final publication, the manuscript should be reconsidered after major re-
visions. I would be willing to review the revised paper, if the editor considers
it necessary.

Suggestions for revision or reasons for rejection (will be published
if the paper is accepted for final publication)
Comment: Like the way the authors wrote the paper in a casual way, they
seem to respond to the referees’ comments in a similar way. It is hard to
follow the response letter. There are so many errors, especially what were
written in the letter are not the same as those in the revision. Although the
authors addressed most of the comments and improvement has indeed seen
in the revision, the authors will still need more efforts to improve the quality
and the readability of the manuscript. There are still lot of errors/typos and
those are really surprising. Below are some issues that need to be resolved
before the paper can be publishable in ACP.

Response: Thank you for pointing out the typos, errors and inconsistencies
that appear in the previous response letter. We strongly apologize for the in-
convenience of reading and proof-checking our previous author responses and
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tracking related manuscript changes. We further take your recommendations
into account and thereby avoid confusions and inaccuracies here.

1. Comment: Section 2 is still hard to understand, although it is greatly
improved after the revision. In addition, it is very lengthy and redun-
dant. Would it be shortened to make it concise? Some of technical
descriptions in my opinion can be moved to the Appendix or supple-
mentary. In addition, the authors use a lot of very short paragraphs
and the paper looks like a boring novel. Also, some languages used
here are really awkward, given below are some examples:

Response: We have restructured and rewritten Section 2 to improve its
quality and readability. We merged and reformulated the paragraphs
to make the workflow more logical.
We first explain generation of synthetic data. Next, we place the sec-
tion dedicated to Markov chain Monte-Carlo simulations which is sub-
divided into two parts: selection of minimum and maximum limits for
unknown parameters, and overview of the MCMC runs. Both subsec-
tions have been made conciser. We have moved the technical details of
Metropolis algorithm and its extended version (the DRAM method) to
Appendix. These methods are given in A2 and A3, respectively. Ad-
ditionally we reformulated the language in many of the sentences (see
examples below). Here the lines from revised version of the manuscript
are given in bold.
We have moved the first paragraph from ”Discussions and future work”
to Section 2.1 (”Generation of synthetic data”). Here we explain the
sensitivity of MCMC parameter estimation to the quality and limita-
tions of the synthetic data.

(a) Comment: Line 108, by the following method. You really mean
by the following procedures or steps, right?
Response: Section 2.1 has been substantially rewritten. We re-
moved this sentence from the text. Instead, we explain the origin
of synthetic data as follows: ”We generated the birth-death equa-
tions using the ACDC code (McGrath et al., 2012), and then
solved for the cluster concentrations using the Fortran ordinary
differential equation solver VODE (N. Brown et al., 1989). ” See
Lines 111-114.

(b) Comment: Line 118-119, what do you mean “each simulation was
initialized with . . . and no sulphuric acid”? You mean “without
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sulphuric acid”?
Response: We reformulated this part into ”...the initial sulfuric
acid was set to zero in each simulation.” See Line 109.

(c) Comment: Line 122, what is “our particle system”? In particu-
lar, what is “particle” here?

Response: Thank you for highlighting this important issue which
we believe makes our notions more consistent. Throughout the
text, we have replaced the ’particle system’ with ’the simulated
system of clusters’ or ’the set of molecular clusters considered
here’. See, e.g., Lines 115, 122.

(d) Comment: Line 124, for time values less than the time at which. . . ,
do you mean “for time values before the system has attained the
steady state”?
Response: Indeed, we intended to say “for time values before the
system has attained the steady state”. We reformulated this part
as follows: ”... measured at 1.5 min time intervals before the sys-
tem reaches a steady state. This corresponded to a total of 41
time steps.” See Lines 123-124.

(e) Comment: Line 126-127, “with time resolution comprising 1.5
minutes”, do you mean “with a time interval of 1.5 minutes”?
Response: We reformulated this part, as mentioned above.

(f) Comment: Line 129, would it be “first. . . second”?
Response: Thank you for recommendation. We have changed
the language accordingly. We explain two data sets generated for
synthetic data (in Line 123). These are referred as ”..the fist
set...” and ”In the second case...” (Line 125).

(g) Comment: Line 132, reached not reached to and the sentence
“The measure of how close . . . ”is so complicated and awkward.
Would it be modified for the sake of readers’ benefit?
Response: We modified this sentence as follows: ”Additionally,
we include a convergence parameter for assessing the closeness
of cluster concentrations to the steady state for every individual
ACDC simulation.” See Lines 127-128.

(h) Comment: Line 228-229, please rearrange the sentence.
Response: As it was mentioned above, the discussion related to
Metropolis algorithm was moved to Appendix. We changed the
sentences which describe the initial assumptions for parameter
values as follows: ”We first select the flat prior distribution from
which we will initially sample unknown parameters, as we wish
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to generate physically reasonable parameter estimates. Therefore,
we generate unknown parameters within the chosen minimum and
maximum bounds where all the points are equally likely to be
sampled” (Lines 367-369).

Comment: It is strongly recommended that this section should be
completely rewritten.
Response: The section had been restructured, rewritten and shortened
in accordance with the advice of the Referee, as mentioned above.

2. Comment: The Results and Discussion section looks better than sec-
tion 2. However, there are still some improvements need to be made.
A lot of sentences are quite redundant and need to be modified for
conciseness. For example, Line 293, adding “(Table 2) after concen-
trations will serve the purpose; you don’t need to say listed earlier in
Table 1, “(Table 1) will be the same. Line 295, “the steady-state”
steady-state here I believe is adjective. There are several throughout
the manuscript. Line 300, An example of one of, is it necessary to
include “one of” here?
Response: Following recommendations from the Referee, we restruc-
tured and rewrote Section 3. Below we summarize the main structural
changes as well as some minor edits.
Initially, we reformulated Sections 3.1-3.3 and thus removed the redun-
dancies. According to the Referee’s advise, we omit the references to
Tabs. 1 and 2.
Next, we deleted Sections 3.4 and 3.5. The last section (i.e. ”Discus-
sion and Future Work”) has been redistributed over the manuscript
as follows. First, we have moved the text in Lines 436-449 (related
to quality of the computer-simulated cluster concentrations) to Section
2.1 (”Generation of synthetic data”). See Lines 115-122.
Second, we inserted Lines 450-455 into Conclusion (Lines 311-317).
This part explains two general principles of inverse problems/Bayesian
parameter estimation applied in our study.
The final part of Section 3.5 (Lines 456-465), which explains the corre-
lations between formation enthalpies and entropies is moved to Section
3.3 (Lines 288-297). Here we explain the results of parameter estima-
tion after we expressed evaporation rates as parametrized functions of
the temperature, with the cluster formation enthalpies and entropies as
the unknown parameters. Naturally, we discuss why re-parametrization
has improved the results, and the reasons why thermodynamic data dis-
play correlations.
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Following advise from the Referee, we distinguish between the adjec-
tive ”steady-state” and the noun ”steady state” in the revised version
of the manuscript.
The authors decided to keep the sentence in Line 300 as in the previous
version ( ”An example of one of the sampled chains ...”.) We believe
that the sentence is sufficiently comprehensive for the reader.

3. Comment: The ideas and the results are very interesting and the pa-
per can benefit the community but the way the authors represent do
really discouragement and the manuscript needs to be substantially im-
proved in the next revision.
Response: Thank you for acknowledging the advantages and benefits
of modelling the type accomplished in this study. We made a consid-
erable effort which we hope has helped to improve the quality of the
presentation at the major revision stage. The changes are reflected in
updated version of the manuscript.
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Abstract.

We address the problem of identifying the evaporation rates for neutral molecular clusters from synthetic (computer-

simulated) cluster concentrations. We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC)

algorithm to determine cluster evaporation/fragmentation rates from [..1 ]synthetic cluster distributions generated by the At-

mospheric Cluster Dynamic Code (ACDC) [..2 ]and based on gas kinetic collision rate coefficients and evaporation rates5

obtained using quantum chemical calculations [..3 ]and detailed balances. The studied system consisted of electrically

neutral [..4 ]sulfuric acid and ammonia clusters with up to 5 of each type of molecules. We then treated [..5 ]the concen-

trations generated by ACDC as synthetic experimental data[..6 ]. With the assumption that the collision rates are known,

we tested two approaches for estimating the evaporation rates [..7 ]from these data. First, we studied a scenario where [..8

]time-dependent cluster distributions are measured at a single temperature before the system reaches a steady-state. In the10

second scenario, only steady-state cluster distributions are measured, but at several temperatures. [..9 ]Additionally, in the latter

case the evaporation rates were represented in terms of cluster formation enthalpies and entropies[..10 ]. This reparametrization

reduced the number of unknown parameters, since several evaporation rates depend on the same cluster formation enthalpy

and entropy values. We also estimated the evaporation rates using previously published synthetic steady-state cluster concen-

1removed: known cluster distributions , assuming that the cluster collision rates are known. We used the
2removed: with evaporation rates based on
3removed: to generate cluster distributions for a set
4removed: sulphuric
5removed: these concentrations
6removed: , and
7removed: . First we have
8removed: at one single temperature
9removed: This allowed us to use multiple sets of concentrations at different temperatures.

10removed: which were considered to be free parameters
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tration data at one temperature [..11 ]and compared our two [..12 ]cases to this setting. Both the [..13 ]time-dependent and the15

two-temperature steady-state concentration data [..14 ]allowed us to estimate the evaporation rates with less variance than in

the steady-state one temperature case.

We show that [..15 ]temperature-dependent steady-state data outperforms [..16 ]single-temperature time-dependent data

for parameter estimation, even if only two temperatures are used. We can thus conclude that for experimentally determining

evaporation rates, cluster distribution measurements at several temperatures are recommended over time-dependent measure-20

ments at one temperature.

1 Introduction

The formation of molecular clusters, and their subsequent growth to aerosol particles, is an important yet poorly understood

process in our atmosphere. Clusters and aerosols affect both climate, air chemistry (?), evapotranspiration in forest environ-

ments (?), and many other atmospheric processes (?).25

Recent developments in mass spectrometers have enabled the detection, quantification, and chemical characterization of

ionic clusters containing between one and some tens of molecules at atmospherically relevant mixing ratios 17 [..18 ](??????)

. Molecular clusters in atmospheric conditions are predominantly electrically neutral, and must thus be charged prior to mass

spectrometric detection. This may affect the measurement results, as only part of the sample molecules or clusters may be

charged (?), and the charging may also alter cluster compositions. For example, for sulfuric [..19 ] acid base clusters, negative30

charging tends to lead to a loss of base molecules, and positive charging to a loss of acid molecules (?). Modelling is thus

needed to connect measured ion cluster distributions to the original neutral population.

Even when the atmospheric cluster [..20 ]distributions can be accurately deduced from experimental data, [..21 ]these dis-

tributions do not quantify the individual kinetic parameters, such as the cluster collision and evaporation rates (?). [..22 ]The

collision rates may be computed from kinetic gas theory or classical trajectory simulations with reasonable accuracy (?), al-35

though recent research has shown that long-range attractive interactions may enhance collision rates (?), for example by around

a factor of 2-3 for H2SO4−H2SO4 collisions (?). These relatively minor uncertainties in the collision rates are dwarfed by

the error margins of cluster evaporation rates. In computational applications, evaporation rates are usually computed using the

detailed balance assumption together with the free energies of cluster formation, which can in turn be computed using quantum

11removed: (which has appeared in previous literature)
12removed: study
13removed: transient and
14removed: estimated
15removed: in the second setting, even if only two temperatures were used, the
16removed: the first setting
17around or below one part per trillion (ppt)
18removed: (??????)
19removed: acid-base
20removed: distribution
21removed: this does
22removed: Collision
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chemical (QC) methods, (?????). Unfortunately, the evaporation rates depend exponentially on the free energies[..23 ], and40

typically observed variations of up to several kcal/mol between [..24 ]the different applicable QC methods thus translate into

orders of magnitude differences in evaporation rates [..25 ](??).

Despite uncertainties involved in computational estimates of collision and evaporation rates, cluster population dynamic

models based on Becker-Döring equations have been able to predict the [..26 ]sulfuric acid concentration dependence of cluster

concentrations (?), and even absolute particle formation rates (?) in [..27 ]sulfuric acid-ammonia and [..28 ]sulfuric acid-DMA45

systems, without empirical model calibration or parameter tuning. The Becker-Döring equations are a system of Ordinary Dif-

ferential Equations (ODE), which account for cluster birth and death processes (which depend on the collision and evaporation

rates), as well as external cluster sinks and sources. In both studies (? and ?), these equations were implemented through the

Atmospheric Cluster Dynamic Code (ACDC) (?), using kinetic gas theory collision rates, and standard quantum chemistry

techniques for computing cluster formation free energies (and thus evaporation rates).50

In mathematical terms, the prediction of cluster concentrations using known collision and evaporation rates is called the

forward problem. The associated inverse problem is to use known cluster concentrations to deduce the collision and evaporation

rates. The inverse problem can be addressed with Bayesian approaches such as Markov [..29 ]chain Monte Carlo (MCMC)

methods. In a recent paper by ?, Differential Evolution (DE) MCMC (?) was applied to determine evaporation rates for

negatively charged [..30 ]sulfuric acid and ammonia clusters (containing up to five of each type of molecules, with the HSO−4 ion55

here defined as an "acid"). This study used steady-state cluster concentrations measured in the CLOUD 31 chamber experiment

at constant temperature, with varying [..32 ]sulfuric acid and ammonia concentrations (we refer to ? for details relevant to

the experimental data). [..33 ]The collision rates were computed from kinetic gas theory. ? concluded that these data were

insufficient for estimation of all the evaporation rate coefficients. Another recent paper (?) reported thermodynamic data (cluster

formation enthalpies and entropies) for 11 neutral [..34 ]sulfuric acid and ammonia clusters. In the CLOUD experiment, these60

were deduced from new particle formation (NPF) rates measured at 5 different temperatures, over a wide range of [..35 ]sulfuric

acid and ammonia concentrations. Most of the thermodynamic parameters could not be narrowly constrained, as the ranges of

cluster formation enthalpies and entropies that reproduced the measured NPF rates were quite wide. However, for each cluster

only one monomer evaporation rate was taken into account (either acid or base). Furthermore, the NPF rates obtained using

the fitted parameters were systematically lower than the measured ones for warmer temperatures (≥ 248 K).65

23removed: variations of
24removed: different
25removed: (??)
26removed: sulphuric
27removed: sulphuric
28removed: sulphuric
29removed: Chain
30removed: sulphuric
31Cosmics Leaving OUtdoor Droplets
32removed: sulphuric
33removed: Collision rates were taken
34removed: sulphuric
35removed: sulphuric
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In this study, we test which combinations of experimental data and fitted parameters lead to the best identification of the

evaporation rates. As experiments are expensive and time-consuming to perform, we use synthetic cluster concentration data

created from ACDC simulations to test if the use of time-dependent cluster distribution data would significantly improve the

accuracy of the evaporation rates. [..36 ]The use of synthetic data also allows us to know for sure if our inverse modelling

actually produces the correct kinetic parameters[..37 ], which would not be possible with experimental concentration data. As70

in the ? study, we compute collision rates from kinetic gas theory, while the evaporation rates used to generate our synthetic

data are calculated from Gibbs free energies published by [..38 ]?. Note that the conclusions of this study are not sensitive to

the accuracy of the quantum chemical data, as our focus is on the inverse problem of how to determine evaporation rates from

known concentrations rather than on the forward problem.

For simplicity, we consider the case of neutral [..39 ]sulfuric acid-ammonia clusters containing up to five of each type of75

molecules. Studying neutral clusters has the advantage that we can restrict ourselves to a smaller set of kinetic parameters,

and ignore uncertainties related to charging and neutralization processes. In situations where a large fraction of the clusters are

charged, accurate modelling would require at least three times as many parameters, as both the negative, positive and neutral

cluster populations interact with each other. The downside of this simplification is that we lose the direct connection to potential

real-life experiments, as neutral atmospheric clusters cannot currently be measured without first charging them.80

We investigate [..40 ]three different scenarios for estimating evaporation rates. First, we use steady-state concentration

measurements determined at a single temperature, similar to the approach used in ?. Next, we test the use of time-

dependent cluster concentrations measured before the system has attained a steady state. This is motivated by the fact that

[..41 ]time-dependent data should provide additional information about the speed of the processes, which is missing from

the steady-state data. [..42 ]Third, we apply the approach of ?, and express the evaporation rates as parameterized functions85

of the temperature, with the cluster formation enthalpies and entropies (assumed here to be temperature-independent) as the

unknown parameters. This reparametrization is useful for two reasons. First, since the formation enthalpies and entropies

of the monomers can be set to zero, and since several evaporation rates depend on the same enthalpy and entropy values,

the dimension of the unknown parameter space for our problem is actually reduced, despite the apparent doubling of the

number of parameters. Second, utilizing the temperature dependence allows us to produce and use arbitrarily many synthetic90

data sets at various temperatures, which mathematically has a regularizing effect on the problem. Note that unlike in ?, all

possible evaporation processes, including cluster fissions into two daughter clusters, are taken into consideration. Also, while

? used steady-state new-particle formation rates measured at different temperatures to fit their data, we use cluster

concentrations.
36removed: Use
37removed: or not
38removed: ?
39removed: sulphuric
40removed: two
41removed: this transient
42removed: Second
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2 SIMULATION METHODS95

[..43 ]

2.1 Generation of synthetic data

[..44 ]We simulated the time evolution of cluster concentrations using collision rates computed from kinetic gas theory

and evaporation rates computed from the Gibbs free energies reported by ?. To save computational time, we [..45 ]omitted

clusters where the number of acid and base molecules [..46 ]differed by more than two. Based on both fundamental chemical100

principles and mass spectrometric data ((????)), these clusters are quite unstable, and thus have very high evaporation

rates, leading to negligibly [..47 ]low concentrations. See Table 1 for a list of the considered clusters, 16 in total. We con-

sidered four different ammonia monomer mixing [..48 ]ratios between 5 and 200 ppt[..49 ], corresponding to concentrations

between.1.3× 108 and 5.0× 109 molecules per cm3 for the temperature ranges studied here[..50 ]. In each individual case,

the ammonia mixing ratio was kept constant throughout the simulation. The source rate of sulfuric acid monomer [..51 ]was105

kept constant at Q = 6.3×104 cm−3s−1[..52 ]. To reproduce experimental conditions in the CLOUD chamber as closely as

possible, the initial sulfuric acid was set to zero in each simulation. See Table 2 for [..53 ]

[..54 ]

[..55 ]a summary of the concentration settings. Additionally, we [..56 ]considered the losses on the CLOUD chamber

walls which depend on the cluster size [..57 ](?) and a dilution loss of S = 9.6× 10−5 s−1. [..58 ]For simplicity, we omitted110

the effect of relative humidity. We generated the birth-death equations using the ACDC code (?), and then solved for

43removed: In this section we describe the methods used to create data sets for the synthetic cluster concentrations. We also explain parameter estimation

by Markov Chain Monte Carlo which was used to obtain the evaporation rates and thermodynamic parameters from synthetic data.
44removed: The 16 cluster types included in our study are summarized in Table 1
45removed: have excluded
46removed: differs significantly from each other. Irrespective of the level of theory, quantum chemical data predict that these clusters will
47removed: small concentrations. This is also supported by mass spectrometric measurements showing that the clusters with highest concentrations have

roughly the same number of acid and base molecules (????). The
48removed: ratio is assumed to remain constant in each individual simulation, and varied
49removed: . (These correspond to concentrations of
50removed: , respectively). The
51removed: source rate is
52removed: in all simulations
53removed: the summary of ammonia mixing ratio and the source of sulphuric acid monomer used for the ACDC simulations.
54removed: Synthetic concentration data for such neutral clusters were generated by the following method.
55removed: First, we computed the collision rates using the Eq. A3 from kinetic gas theory. Then, we used these values for the collision rates along with

Eq. A4 and the Gibbs free energies computed from Eq. A5 to obtain the evaporation rates. Note that to compute the Gibbs free energies, we substituted the

values for cluster formation enthalpies and entropies given by ? into Eq. A5.
56removed: consider
57removed: computed with Eq. A2
58removed: These values for the rates and losses were substituted into the ACDC algorithm (?), which simulates the time evolution of molecular cluster

concentrations. The ACDC code computes the first-order non-linear, ordinary differential system of cluster concentrations as given by Eq. A1. We then

integrate the system produced by ACDC
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the cluster concentrations using the Fortran ordinary differential equation solver VODE (?). [..59 ]These equations and all

related parameters are explained in Appendix A1.

[..60 ]Our MCMC results are not specific to the set of molecular clusters considered here. This is supported by the fact

that although the size of the system (the number of clusters, or more precisely the maximum size of the clusters, included115

in the simulations) has an impact on the particle formation rates at high temperatures (> 278 K), the particle formation

rates and cluster concentrations produced using different cluster sets (e.g. 4x4, 5x5 and 6x6 sulfuric acid and ammonia

molecules) are qualitatively similar (?). Thus, minor changes of the ACDC outputs due to the difference in the sets of

considered clusters should not change the MCMC parameter estimation results. Additionally, the boundary conditions for

the outgrowing clusters (the choice of the clusters that are considered as formed particles) have only minor influence on120

the simulation results, as long as the simulated system of clusters is defined in a reasonable way (?).

[..61 ]Two data sets were created. In the first set, we generated time-dependent [..62 ]concentrations for each cluster

type, measured at 1.5 min time intervals before the system [..63 ]reaches a steady state.

[..64 ]This corresponded to a total of 41 time steps. The steady-state single-temperature data correspond to a subset of

these data set. In the second case, we generated steady-state concentrations for all [..65 ]cluster types at two temperatures125

(278 [..66 ]and 292 K). In both [..67 ]cases, the steady-state cluster concentrations [..68 ]were calculated as the average of the

concentrations [..69 ]at t1 := 50 min and t2 := 60 min. [..70 ]Additionally, we include a convergence parameter for assessing

the closeness of cluster concentrations to the steady state [..71 ]for every individual ACDC simulation. This is computed as

a ratio of concentrations taken at times t2 and t1 [..72 ]in each case for the cluster for which this ratio deviated most from

unity [..73 ](?).130

59removed: A detailed description of this strategy for solving the forward-problem of finding the cluster concentration rates from Eq. A1 was published

in ?. To reproduce the experimental conditions as realistically as possible, each simulation was initialized with non-zero concentration of ammonia monomer

and no sulphuric acid. The source of sulphuric acid monomer was supplied at a constant rate as it was previously mentioned.
60removed: The above method we used for producing synthetic concentration rates is similar to the one described in ?. We note that unlike ?, in this paper,

our particle system is considered at various temperatures .
61removed: Using the above algorithm, model configuration and parameters, we generated two data sets . First, time evolution of the concentrations Yi(t)

is computed for time values less than the time at which the system has attained the steady state. The maximum time we run is 60 minutes from beginning of the

simulation, in the above model configurations. In this case, it is assumed that the concentrations for all the clusters are measured under constant temperature

with time resolution comprising 1.5 minutes, which comprises overall 41
62removed: concentration data for each of the cluster types i measured from beginning to the end of each simulation,
63removed: has attained
64removed: Secondly, we solve for time-independent
65removed: the cluster types for two temperatures comprising
66removed: K
67removed: data configurations
68removed: are
69removed: determined for time instances
70removed: The measure of how close the system has reached
71removed: is monitored by a convergence parameter, which is the ratio of the concentrations
72removed: , taken
73removed: ,
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[..74 ]Finally, we added measurement error (noise) to the cluster concentrations in both data sets. We call the resulting

noisy cluster concentrations synthetic data. Our measurement error was sampled from a multivariate [..75 ]Gaussian distri-

bution, [..76 ]with the variance depending on cluster type i, temperature [..77 ]T, and time instance [..78 ]t. We assume that

the standard deviation of the [..79 ]measurement error is 0.001 % of the original concentration.

[..80 ]135

Table 1. Neutral molecular clusters included [..81 ]in the model system (16 in total). The first column indicates the number of [..82 ]sulfuric

acid molecules, the second column stands for the number of ammonia in the cluster.

Number of H2SO4 molecules Number of NH3 molecules Number of clusters

0 1 1

1 0-1 2

2 0-2 3

3 1-3 3

4 2-5 4

5 3-5 3

Table 2. Monomer concentrations used in simulations

[H2SO4] monomer source [NH3] concentration

6.3× 104 cm−3s−1 5 ppt

6.3× 104 cm−3s−1 35 ppt

6.3× 104 cm−3s−1 100 ppt

6.3× 104 cm−3s−1 200 ppt

2.2 Markov chain Monte-Carlo simulations

74removed: In both data settings, the simulation outputs are amended with the measurement errors
75removed: , non-correlated,
76removed: where the variance of the distribution depends
77removed: T
78removed: t. While a simplification of noise characteristics of the real data obtained from a mass spectrometer, we impose
79removed: noise comprises
80removed: Note that apart from generation of synthetic data, we apply the ACDC as a kinetic model of cluster population in the MCMC simulations. The

ACDC outputs are compared to the synthetic measurements and explained in Section 2.2.
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[..83 ][..84 ]We used a Markov Chain Monte Carlo (MCMC) [..85 ]

[..86 ]based approach to estimate the evaporation rates which reproduce the synthetic cluster concentration data. Un-

like optimization algorithms [..87 ]which compute a single optimal parameter set, MCMC methods sample from a target

distribution which contains the most-likely combinations of parameter values [..88 ]for the given data. Multiple samples of140

possible parameter sets are taken along a random walk in the target distribution, and are saved as a parameter chain. As

the length of the chain increases, the sampled sets converge to a probability (posterior) distribution of parameters, which

estimates the likelihood of those parameters giving rise to the data. [..89 ]

2.2.1 [..90 ]

[..91 ]145

[..92 ]

[..93 ]

[..94]

[..95 ]
83removed: The evaporation rate coefficients γi+j→i,j appearing in the ACDC simulation of
84removed: are treated as unknown parameters. Now we describe how we estimate the evaporation rates from the noisy synthetic data sets obtained by

the method described in Section 2.1. We first give a general overview of the basic Metropolis algorithm (?), then describe a modification of the algorithm

we implemented in this study, and finally, in Section 2.2.3 we apply this general framework to each of our study cases. Our purpose is to determine all the

parameter sets that reproduce the synthetic data within their noise level (which is known). We do this using
85removed: sampling.
86removed: The objective of MCMC in parameter estimation is to identify possible parameter values which yield the best fit with the experimental
87removed: that produce one best combination of parameter values, in the MCMC procedure all the most-probable
88removed: are estimated given the
89removed: To obtain these combinations, the values of parameters are generated and stored into the MCMC "chain". The MCMC chain will converge to

the distributioncontaining all the most-likely combinations of parameter values as a number of sampled parameter sets (i. e., the chain length ) increases. The

distribution formed from the chain approximates a posterior probability density function which gives the likelihood of observing each of the parameters given

the concentration data.
90removed: The Metropolis algorithm
91removed: First, a prior distribution for the parameter values θ (represented in array form) is chosen and set to be the proposed "true" distribution from

which possible parameters are sampled . The prior is typically selected based on the previous knowledge of the parameter values. Then an initial guess for

parameter values (denoted as θ0 or θold) is selected from the prior distribution.
92removed: Starting from the initial guess, the algorithm samples candidate parameter values (denoted as θnew) from a proposal distribution centred at the

previous point (denoted as q(θold,θnew)). The proposal density q(θold,θnew) is symmetric, which means that the probability of step taken from the ’old’ θold

to the ’new’ point θnew is same as the probability of the reverse step (q(θold,θnew) = q(θnew,θold)) .
93removed: Then the candidate point θnew is either accepted or rejected, according to the least-squares fit of the output to the data, which measures the

difference between the modelled Ymod and measured Yexp cluster concentrations:
95removed: where N stands for the number of measurements in synthetic data. We consider two sets of synthetic cluster concentrations: time-dependent,

measured at T = 278 K and steady-state, measured for two temperatures (at T = 278 K and T = 292 K), as explained in Section 2.1. For the time-dependent

synthetic dataN =NC ×Nt, where NC = 16 stands for the number of cluster types included into simulations, while Nt = 41 stands for the number of

time-step measurements available for each of the cluster types. For the second data set, N =NC ×NT , where NT = 2 denotes the number of experiments
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[..96 ]150

[..97]

[..98 ]

[..99 ]The particular MCMC-based algorithm we use is Delayed Rejection Adaptive Metropolis (DRAM), [..100 ]

2.2.1 [..101 ]

[..102 ]155

[..103 ]

[..104 ]

[..105]

[..106 ]

[..107 ]160

[..108]

conducted at different temperatures. In the formula above we scale the squared residuals by the measurement error variance σ2
i to avoid overfitting to the

larger concentration values. The error variance σ2
i is matched depending on cluster type, time instance and temperature. See A2 for more details.

96removed: At each iteration of the Metropolis algorithm , the value F (θnew) is compared to the least-square sum from the previous step F (θold). If the

new value is lower (i.e., the candidate parameters fit the data at least as good as the the old values), then the step is accepted. In the opposite case, when

F (θnew)> F (θold), the point will be accepted with the probability
98removed: If the candidate point is accepted, the parameter combination θnew is added to the chain, in the opposite case the old value is replicated in the

chain. Finally, the value F (θold) is replaced with F (θnew) and saved for the next iteration.
99removed: In this paper we employ a variant of the Metropolis algorithm which is more efficient at parameter sampling when the parameter space is large

(?). This variant is called the
100removed: introduced in ?. We briefly explain our approach below.
101removed: The DRAM algorithm
102removed: Similar to the basic Metroplois algorithm, the DRAM is initialized with a chosen prior distribution and initial guess for parameter values.
103removed: We make our initial guess θ = θold, where θold is the flat distribution which obeys the estimates in Tabs. 3-4. The limits are explained in

Section 2.2.3. We also assume that the conditional probability distributions for the parameters given the concentration data are of Gaussian type.
104removed: Once initialized, the following iterative steps take place. From the likelihood probability distribution for θold, a new candidate for the unknown

parameter values, θnew , is sampled using the proposed Gaussian likelihood distribution. We then use the algorithm in Section 2.1 to obtain concentration

outputs from the evaporation rates θnew . In the first stage of DRAM, we chose to accept the new proposed values θnew with probability
106removed: where Yexp is the array of synthetic cluster concentration data, and p(Yexp|θold), p(Yexp|θnew) denote the likelihood (conditional)

probabilities for the old and new parameter values, respectively. These likelihood probabilities quantify how closely the kinetic model with parameters θ

reproduce the data, as they depend on the sum of squared residuals (see Eqs. A8 and A7) between the given data and the concentrations obtained from the

ACDC and VODE simulations with parameters θold and θnew , respectively. This relationship is explained further in Appendix A1.
107removed: In DRAM we allow for partial modification of the proposed parameters (the "delayed rejection" component of DRAM). This second stage of

sampling improves the computational time needed to obtain an estimate for θ; it is performed as follows. If the proposed θnew is rejected, a nearby proposal

is created, θnew2. We accept this second proposal keeping in mind the rejection probability of the first, according to

9



[..109 ]

which is an extended variant of the classical Metropolis algorithm (?). We chose the DRAM algorithm as it is more

efficient than the Metropolis regime at parameter estimation when the parameter space is large (?). The [..110 ]

[..111]165

[..112 ]

[..113]

[..114 ]two algorithms and their application to our cases are described in the Appendix.

[..115 ]

[..116]170

[..117 ]

[..118 ]

2.2.1 Selection of minimum and maximum limits for unknown parameters

[..119 ][..120 ] [..121 ][..122 ]

2.2.2 [..123 ]175

[..124 ]
109removed: At the start of the MCMC simulations, the proposal covariances for both stages are initialized using arbitrary diagonal matrices with equal

variances. It is assumed that the proposals of the form p(Yexp|·) and p(Yexp|·, ·) are Gaussian. They are updated at each successive iteration of the MCMC

algorithm to improve the mixing of the chains.
110removed: first-stage proposal covariance is recomputed via the Adaptive Metropolis (AM) procedure (?). Let d be the dimension of the parameter space,

and {X0, . . . ,Xn} ⊂ Rd be a set of d-dimensional vectors containing the sampled values of free parameters. Then the first-stage proposal is centred at the

current position of the Markov chain Xn, whereas the corresponding proposal covariance C1
n is updated using the path of the previously sampled MCMC

chain:
112removed: where C0 is the initial covariance assigned at the beginning of the MCMC runs, n0 stands for the length of the initial non-adaptation period,

sd = 2.4/d is the scaling parameter , and Cov(X0, . . . ,Xn−1) is the empirical covariance matrix for the vectors X0, . . . ,Xn−1:
114removed: where X

T
n−1 = 1

n

∑n−1
i=0 Xi and Xi ∈ Rd are column vectors. In our study and all runs therein, we set n0 to be 100 iterations.

115removed: Simultaneously, the second-stage proposal covariance is computed as a scaled version of the first-stage proposal covariance:
117removed: with the scaling factor γ = 5 borrowed from ?. This value was chosen to increase the acceptance at the second stage.
118removed: Then, if both θold and θnew are rejected at this stage, a new parameter candidate is sampled and the process is repeated. If the parameter

candidate is accepted, the Markov chain is advanced one step and sampling as above is repeated. The process stops once the chain length is exhausted.
119removed: Parameter estimation is conducted using the
120removed: ’mcmcstat’
121removed: toolbox implemented for FORTRAN (??). See the description and the examples of usage on the web page
122removed: .
123removed: Overview of the MCMC runs
124removed: In our implementation of the DRAM algorithm, we impose upper and lower limits for the parameter values. We add such domain restrictions

to exclude unphysical estimates for our parameters. These restrictions are encoded in our prior distribution, which we set to be a combination of so-called "flat

priors", which are distributions that are proportional to a constant, (see Tabs. ??-3).
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We emphasize that there are currently no theoretical principles or experimental results which [..125 ]set sound restrictions

for even the order of magnitude of the evaporation rates. However, [..126 ]evaporation rates much lower than 10−10s−1 are

irrelevant in [..127 ]practice, since the timescale for evaporation is then much longer than the cluster lifetime with respect

to further growth. Similarly, when the evaporation rate is [..128 ]much greater than 10+10s−1, [..129 ]the cluster will [..130180

]certainly evaporate before it has a chance to grow further. [..131 ]The base 10 logarithm of the evaporation rates was [..132

]therefore sampled in the interval of -12 to 12.

[..133 ]For the cluster formation enthalpies, we chose an upper limit of 0 kcal/mol[..134 ], as a positive ∆H would mean an

absence of attractive interactions in the molecular cluster, which is physically incorrect for polar, H-bonding molecules such as

H2SO4 and NH3. [..135 ]This same argument also applies for each individual molecule, which gives rise to the requirement185

that the formation enthalpy of each cluster must be lower (more negative) than that of clusters with less acid and/or base

molecules. See Table 3 for the full list of restrictions arising from this requirement. As a lower limit for the overall cluster

formation enthalpies, we used ∆H = -400 kcal/mol[..136 ]. As our largest clusters contain 10 molecules, this would imply

that, on average, each H2SO4 in all the studied clusters is bound substantially stronger than in the exceptionally strongly

bound HSO−4 ∗H2SO4 cluster, [..137 ](for which recent high-level computational studies indicate a binding enthalpy roughly190

around -40 kcal/mol, (??)[..138 ]). This in turn implies that the evaporation rate is zero for all [..139 ]practical purposes.

[..140 ]The upper limit for the formation entropies was set to 0 cal/K/mol, [..141 ]as clustering must have a negative ∆S, [..142

]since the number of gas molecules is reduced (and translational and rotational degrees of freedom are thus converted into

much more constrained vibrational degrees of freedom). [..143 ]The lower limit of -400 cal/K/mol [..144 ]can be justified by

125removed: indicate possible
126removed: we assume that the evaporation rates with orders of magnitude less
127removed: practise, since such an evaporation event is highly improbable, and it is very likely that instead the cluster will grow further by collisions
128removed: of the order of magnitude more
129removed: it is reasonable to expect that
130removed: most
131removed: With these assumptions, the prior distribution of the evaporation rates spans over several orders of magnitude, and the
132removed: sampled from the range
133removed: Next, we justify the limits selected for data setting 2, where we sample thermodynamic parameters. For the formation enthalpies
134removed: is chosen by the fact that
135removed: For the lower limit (
136removed: ) we mean thaton average
137removed: for which the most recent
138removed: . Another motivation for the prior distribution selected for the cluster formation enthalpies comes from the fact that the largest cluster included

into the system has 5 H2SO4 and 5 NH3, so 10 molecules, and -400 kcal/mol would give an enthalpy of -40 kcal/mol per molecule, which 1)corresponds to

the strongest known cluster in the system and 2) which
139removed: purposes of measurement (?)
140removed: Next, we set the
141removed: since molecule
142removed: as
143removed: For the
144removed: , we state
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noting that the typical per-molecule ∆S for clustering is around -30 cal/K/mol, with a typical variation of up to +-10 cal/K/mol195

(?). [..145 ]For a 10-molecule cluster this would imply a lower bound to ∆S of [..146 ]around -400 cal/K/mol. [..147 ]

[..148 ][..149 ] [..150 ][..151 ][..152 ][..153 ][..154 ][..155 ][..156 ][..157 ][..158 ][..159 ][..160 ][..161 ][..162 ][..163 ][..164 ][..165 ][..166 ]

Table 3. Additional [..167 ]restrictions on the [..168 ]cluster formation enthalpies arising from [..169 ]the requirement that each individual

molecule is bound The cluster formation enthalpy of the i-th cluster is denoted by ∆Hi. The notation xAyN corresponds to a cluster

with x sulfuric acid and [..170 ]y ammonia [..171 ]molecules.

∆H2A > ∆H2A1N ∆H3A2N > ∆H4A2N

∆H1A1N > ∆H2A1N ∆H4A2N > ∆H4A3N

∆H2A1N > ∆H3A1N ∆H4A3N > ∆H4A4N

∆H2A2N > ∆H3A2N ∆H4A4N > ∆H5A5N

∆H3A1N > ∆H3A2N ∆H4A4N > ∆H4A5N

145removed: So for the largest clusters the upper limit corresponds to a per-molecule
146removed: -40
147removed: In this situation, all the new vibrational degrees of freedom formed in the product clusters are quite rigid, i.e. have very low entropy (?).
148removed: h!
149removed: Domain limitations for two data settings under consideration imposed to exclude non-physical parameters in parameter estimation procedure.
150removed: Data settings
151removed: Estimated parameters
152removed: Minimal value
153removed: Maximal value
154removed: Data setting 1
155removed: Base 10 logarithms of
156removed: -12
157removed: 12
158removed: evaporation rates (in s−1)
159removed: Data setting 2
160removed: Cluster formation
161removed: enthalpies (kcal mol−1) and
162removed: -400
163removed: 0
164removed: entropies (cal K−1 mol−1)
165removed: -400
166removed: 0
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[..172 ][..173 ]

2.2.2 Overview of the MCMC runs

We [..174 ]first performed DRAM parameter estimation from both steady-state and time-dependent cluster concentrations200

at 278 K, treating evaporation rates as the unknown parameters θ[..175 ][..176 ]. For the time-dependent synthetic data,

the number of output coefficients was nout =NC ×Nt + 1, where NC = 16 is the number of cluster types included into

simulations, and Nt = 41 is the number of time-step measurements available for each of the cluster types.

[..177 ]Next, we performed parameter estimation based on steady-state [..178 ]cluster concentrations at two temperatures,

278 K [..179 ]205

[..180 ]and 292 K. The number of output coefficients in this case was nout = (NC + 1)×NT , where NT = 2 denotes

the number of experiments conducted at different temperatures. We use Eq. A4 and A5 to express the evaporation rates as

functions of [..181 ]formation enthalpies, entropies and temperature:

γi+j→i,j = f(T,{∆Hk,∆Sk}k∈{i+j,i,j}). (1)

In Eq. 1, we set T = 278 K or T = 292 K. We emphasize that the rates γi+j→i,j now depend on temperature and six other210

parameters: the [..182 ]formation enthalpy ∆Hi+j and entropy ∆Si+j of the evaporating/fragmenting cluster i+ j, and the

formation enthalpies ∆Hi,∆Hj and entropies ∆Si,∆Sj of the product clusters i and j respectively. In this setting θ represents

the array of quantities ∆Hi+j, ∆Si+j, ∆Hi, ∆Hj, ∆Si, ∆Sj with i+ j ∈ {1,2, . . . ,16}. Similar approaches were applied

for the inverse problem of chemical kinetics modelled by the Arrhenius equation, where chemical reaction rates are

temperature-dependent (?).215

[..183 ]Many evaporation/fragmentation reactions have the same clusters as products, and thus several of the pairs

∆Hi,∆Si appear in [..184 ]Eq. 1 for the evaporation rates of [..185 ]multiple different reactant clusters. The formation en-

thalpies and entropies of monomers are [..186 ]defined in the context of molecular clustering to be zero[..187 ]. The number

172removed: An outline of the sampling procedure is illustrated in Figure 1 below.
173removed: Schematic representation of the study methods.
174removed: next explicitly describe what synthetic data (Yexp) and parameters (
175removed: ) which give the acceptance probability in
176removed: represent in the two study cases.
177removed: In the first study, the free parameters θ represent the evaporation rates. The data Yexp is either the time-independent
178removed: or transient cluster concentrations measured at temperature
179removed: .
180removed: In the second study, we
181removed: thermodynamic data, parametrized by
182removed: cluster
183removed: At either temperature T = 278 K or T = 292 K, the smaller clusters for certain combinations of ammonia and sulphuric acid may arise from

the evaporation of several larger clusters . This implies that
184removed: expression
185removed: different cluster types. Additionally, the Gibbs formation free energies
186removed: fixed
187removed: , and their associated
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of distinct unknown formation enthalpies and entropies [..188 ]is thus only 28[..189 ], compared to 39 unknown evaporation

rates. Furthermore, the cluster formation entropy and enthalpy values all lie within two orders of magnitude[..190 ][..191 ]220

[..192 ][..193 ]

[..194 ], compared to the evaporation rates which span 24 orders of magnitude. This makes the MCMC method more

efficient.

[..195 ]To create a reliable sample from the underlying parameter distribution, the length of the MCMC chain must be [..196

]“large enough” (??); that is, many different parameter combinations must be tested. [..197 ]In our simulations, the MCMC225

chain length typically comprised [..198 ]3 million samples. The MCMC acceptance probabilities (defined below) in each of the

cases were about 88.0%, which is a typical level of acceptance since the [..199 ]forward ACDC model (in which the evaporation

and collision rates are known) is deterministic.

In [..200 ]the MCMC simulations, all sets of parameters which produce cluster concentrations within the allotted noise level

of the data (0.001%) are kept in the chain. [..201 ]The sampling procedure is outlined in Figure 1 below. We tested that230

the MCMC chains converge to the ’true’ values (i.e., the reference parameter values from ?) when we start sampling the

chain from randomly selected initial guess.

3 RESULTS AND DISCUSSION

3.1 Identification of [..202 ]evaporation rate coefficients from steady-state data at a single temperature

188removed: do not vary in our simulations. This imposes additional constraints on possible parameter values. One can calculate that of the 39 evaporations

that are involved in the dynamics of the neutral cluster system under consideration,
189removed: distinct entropy and enthalpy values appear. Consequently, in this case the number of free parameters has been reduced from 39 to 28. This

information is summarized in Table ??. Moreover, from this table one can see that the
190removed: . This feature of the cluster formation entropies and enthalpies has the effect of reducing the
191removed: stiffness
192removed: of the differential system in
193removed: (computed via ACDC) which allows for easier integration via VODE.
194removed: For the setting above, the data Yexp are the time-independent steady-state cluster concentrations measured at temperature 278 K or 292 K. We

note that several experiments conducted at different temperatures are needed to obtain state information concerning the specific evaporation rate associated

with each temperature level (?). In this work we consider two temperatures, which is one such minimal configuration that contains information sufficient for

determination of thermodynamic data. Similar approaches were applied for the inverse problem of chemical kinetics modelled by the Arrhenius equation,

where chemical reaction rates are temperature dependent (?)
195removed: Note that to
196removed: "large enough" in an appropriate sense (??),
197removed: We remark here that in both our studies
198removed: of
199removed: “forward ”
200removed: all simulations of the algorithm given in the previous section,
201removed: Specifically, the sampled parameters of the posterior distribution represent the model evaluations which produce values within the noise level

of 0.001% of the data concentrations for each of the respective cluster types
202removed: the
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Figure 1. Schematic representation of the study methods.

[..203 ]A graphical representation of the steady-state [..204 ]cluster concentration data at 278 K, as a function of the number235

of acid molecules in the clusters, is given in Figure 2.

Next, [..209 ]we determine the base 10 logarithms of the evaporation rate coefficients from the synthetic data. Since the

noise added to the cluster concentrations results in a random bias towards an increase (or decrease) from the original values

produced from the ACDC, the estimates of parameters derived from synthetic data are likely to be biased. In order to average the

effects attributed to [..210 ]this random bias, we generated 3 sets of synthetic data by adding random increments to the original240

concentration measurements. Utilizing these data sets, three independent MCMC runs were conducted, each run containing 3

million parameter samples. An example of one of the sampled chains is depicted in Figs. B1-B2. We omit the initial one million

samples, and plot the stationary211 parts of the chains. As we observe from the plots in Figs. B1-B2, all the parameter chains

for the evaporation rates have values bounded above by an upper limit, which differs for different evaporation rates. However,

only 15 out of 39 evaporation rates are limited from below (see subfigures labelled 1-5, 7, 10, 12, 16, 18, 22, 27, 31, 33 and 35245

203removed: First, we generate synthetic
204removed: data by the method in Section 2.1, for varying initial ammonia monomer concentrations, previously summarized in Table 2; the sulphuric acid

monomer is supplied to the system at a constant rate comprising 6.3× 104 s−1 at the temperature T = 278 K. As an output, we obtain the concentrations

for all cluster types considered (listed earlier in Table 1), measured when the system has attained the steady-state. A graphical representation of the data set is

given above
209removed: from the steady-state data
210removed: the
211Here stationary means that the probability of transitioning from the current state at position j to the new state at position j+ 1 is independent of j.
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Figure 2. Steady-state cluster concentrations for the clusters containing [..205 ]sulfuric acid and a varying number of ammonia molecules,

as a function of the number of acid molecules, for [NH3] [..206 ]mixing ratios of (a) 5 ppt, (b) 35 ppt, (c) 100 ppt and (d) 200 ppt at

the temperature T=278 K. The concentrations have been amended with multivariate non-correlated Gaussian noise with standard deviation

comprising 0.001% of the original cluster concentration. The source rate of [..207 ]sulfuric acid monomers is [H2SO4] = 6.3× 104 s−1[..208

].

in Figs. B1-B2). [..212 ]Notably, all monomer evaporation rates [..213 ]are bounded from below, except for some of the rates

from the largest clusters: H2SO4 from
(
H2SO4

)
5

(
NH3

)
4

and
(
H2SO4

)
5

(
NH3

)
5
, and [..214 ]NH3 from

(
H2SO4

)
5

(
NH3

)
5
.

[..215 ]

For each evaporation [..216 ]rate, we calculate the one dimensional (that is, depending only on the evaporation rate) marginal

posterior distribution as the position-wise average of the stationary parts of the three sampled chains. This procedure is needed250

to average the bias originating from random noise. The resulting distributions are given in Figs. 3-4. We use the maximum (also

called the mode in the statistics literature) of the posterior marginal distribution function as our parameter estimate in the case

212removed: This subset of evaporation parameters is comprised of the evaporation rates of monomers, with the exception of
213removed: for
214removed: the evaporation rate of
215removed: These excluded parameters correspond to the evaporations of monomers from the largest and most stable clusters. Note that the estimated

lower limits of monomer evaporations from all the clusters except for the most stable ones are far above the 10−10 s−1 as defined for complete growth.
216removed: parameter
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when the marginal posterior distributions have precisely one maximum value. In the cases where we have multiple estimators,

we provide a range for the evaporation rate values.

All the evaporation rates larger than 10−3 s−1 are well-identified (see subfigures labelled 1, 2, 4, 5, 7, 10, 12, 16, 18, 22, 27,255

31 and 35 in Figs. 3- 4), [..217 ]as their estimated variances are well within our accepted error range of less [..218 ]than one

order of magnitude. The estimates for the remaining evaporation rates can take values within ranges spanning several orders

of magnitude, and are thus uncertain. Also, [..219 ]most of the marginal posterior distributions are non-uniform, except for the

evaporation rate of
(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
5

(
NH3

)
5
. In five cases (refer to subfigures labelled 6, 21, 28, 32 and 36

in Figs. 3- 4), the estimated parameter values are not unique[..220 ]: the marginal posterior distributions feature multiple modes.260

The results of our parameter estimation are summarized in Tabs. C1- C2 and in subfigures labelled (a) and (b) in Figure 5.

The pairwise marginal posterior distributions for the estimated evaporation rates are illustrated in Figs. B3-B6. [..221 ]The

majority of the parameters are not correlated. However, the evaporation of monomers from
(
H2SO4

)
5
NH3,

(
H2SO4

)
3

(
NH3

)
2

and
(
H2SO4

)
5

(
NH3

)
4

display non-linear inverse correlations. This implies that either H2SO4 rarely evaporates (at [..222 ]a

rate less than 10−4 s−1) and that NH3 evaporates often, or that the evaporation rates of H2SO4 and NH3 are of comparable265

magnitude[..223 ]. Additionally, it can be seen from the pairwise posteriors that most of the estimated parameters are highly

uncertain. [..224 ]

From a mathematical perspective, the existence of multiple distinct parameter estimates indicates that the problem of recov-

ering evaporation rates from the synthetic steady-state concentration data is ill-posed. [..225 ]The general solution to this issue

is to regularize the problem[..226 ], either by adding more data or information to the model[..227 ], or by reducing the number270

of possible estimates.

Based on parameter estimation results, we conclude that a single-temperature steady-state cluster concentrations are

not enough to estimate the evaporation rates with a reasonable accuracy (i.e., to obtain an upper and lower limits for the

rates that reasonably restrict the cluster kinetics involved in the molecular-level process).

217removed: in the sense that
218removed: then
219removed: notice that
220removed: ; that is
221removed: From these plots one can see that the majority of
222removed: the rate less then
223removed: in these cases
224removed: Therefore, we conclude that in the situation where we determine parameters from the synthetic steady-state data, parameter estimation is not

unique.
225removed: In these situations, one seeks to
226removed: ; that is, add
227removed: to reduce
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Figure 3. One-dimensional marginal posterior distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines

denote the baseline values from [..228 ]? used to generate the synthetic data. [..229 ]The notation xAyN corresponds to a cluster with x

sulfuric acid and [..230 ]y ammonia molecules.
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Figure 4. One-dimensional marginal posterior distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines

denote the baseline values from [..231 ]? used to generate the synthetic data. [..232 ]The notation xAyN corresponds to a cluster with x

sulfuric acid and [..233 ]y ammonia molecules.

3.2 Identification of [..234 ]evaporation rate coefficients from [..235 ]time dependent data at a single temperature275

[..236 ]

The data set for [..237 ]time-dependent cluster concentrations is much larger than the data set for steady-state cluster

concentrations[..238 ], as it contains the concentration values at multiple [..239 ]time instances. The time-dependent data also

contain information about the [..240 ]time derivatives of the concentrations[..241 ], (see C1.), which [..242 ]should contribute to

quantification of [..243 ]kinetic parameters (in this case evaporation rates). Our time-dependent cluster concentration data280

235removed: transient
236removed: First, we extend the synthetic measurement data from steady state concentrations to transient concentrations.
237removed: transient cluster concentrations at one temperature is
238removed: at one temperature, as the transient data
239removed: times instances. Also the transient data
240removed: slope
241removed: changing with time
242removed: contributes
243removed: the molecular-scale processes (such as collisions and evaporations). We thus expect that this larger data set will reduce the dimension of the

solution space for the evaporation rates. Indeed, we will show that this is the case. We generate a synthetic transient
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[..244 ]sets contain in total 656 concentration measurements (corresponding to 16 cluster types and 41 timesteps), for

each of the four ammonia mixing ratios.

From this [..245 ]time-dependent cluster concentration data set, we then conduct [..246 ]MCMC runs as described in Section

2.2[..247 ]. As in the steady-state setting, we conduct three independent MCMC runs to determine the base 10 logarithms of

the evaporation rates. One of these runs is presented in Figs. C2-C3. Again, we omit the first one million samples [..248 ]and285

merge the stationary parts of the sampled chains to obtain the posterior distributions.

[..249 ]As seen in Figs. C2-C3, [..250 ]all the chains have [..251 ]upper limits. Most of the chains are also bounded from below,

with five exceptions. [..252 ]These exceptions, with arbitrarily large magnitudes, are the evaporation rates of
(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
4

(
NH3

)
4

and
(
H2SO4

)
5

(
NH3

)
3
, and the evaporation rates of H2SO4, [..253 ](H2SO4)(NH3) and

(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
5

(
NH3

)
5
[..254 ].290

[..255 ]The one-dimensional marginal posterior distributions for the estimated parameters are shown in Figs. 6-7. [..256

]Most of the estimates are close to the [..257 ]“true” values used in the generation of the synthetic data. However, the es-

timated evaporation [..258 ]rates still feature substantial uncertainties, as their marginal posterior distributions span several

orders of magnitude (see subfigures 6, 8, 9, 11, 13, 14, 17, 21, 23-26, 30, 32-34, 37-39 in Figs. 6-7). [..259 ]The evapora-

tion rate of
(
H2SO4

)
2

(
NH3

)
2

from
(
H2SO4

)
5

(
NH3

)
3

(which corresponds to subfigure 26) has a uniform posterior distri-295

bution, corresponding to an enormous uncertainty. Further, [..260 ]for the evaporation rates depicted in subfigures 20 and

36[..261 ], we can only determine upper limits of less than 1.96× 10−5 s−1. However, [..262 ]the time-dependent data al-

lows us conclude that the evaporation processes
(
H2SO4

)
4

(
NH3

)
3
→
(
H2SO4

)
4

(
NH3

)
2

+NH3 and
(
H2SO4

)
5

(
NH3

)
5
→(

H2SO4

)
4

(
NH3

)
5

+ H2SO4 can be neglected, as they are relatively slow [..263 ]compared with competing evaporation pro-

cesses.300
244removed: set using the method in Section 2.1. The time resolution of our new synthetic data set is 1.5 minutes, which results in 656 total concentration

measurements for all the cluster type measured for four different ammonia concentrations. These data sets are illustrated in C1.
245removed: transient
246removed: analogous MCMC runs (
247removed: )
248removed: , which are the samples before the chains have obtained their stationary
249removed: It is shown
250removed: that
251removed: the
252removed: Specifically,
253removed: H2SO4NH3
254removed: have arbitrarily large magnitude
255removed: We examine the
256removed: From these plots, one sees that most
257removed: baseline values used for
258removed: parameters
259removed: Three parameters (subfigures 20, 29 and 36 in Figs. 6-7) have multimodal marginal posterior distributions. We also note that the
260removed: we can only specify that the upper limits
261removed: are
262removed: given the reliable upper estimates,
263removed: when compared with the other competing
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Pairwise marginal posterior distributions for the evaporation rates are plotted in Figs. C4-C8. [..264 ]Most of the evapo-

ration rates [..265 ]do not display substantial correlations. However, the evaporation rates of monomers from the cluster(
H2SO4

)
2
NH3 display a strong inverse linear relationship, [..266 ]indicated by the pairwise marginal posterior distribution of

the coefficients(
H2SO4

)
2
NH3→

(
H2SO4

)
2

+ NH3 and
(
H2SO4

)
2
NH3→H2SO4NH3 + H2SO4, (see Figure C4). Also, the estimated rate305

coefficients
(
H2SO4

)
2
→H2SO4 + H2SO4 and H2SO4NH3→H2SO4 + NH3 exhibit linear correlation. [..267 ]The uncer-

tainties in all the correlated parameters are relatively small (less [..268 ]than an order of magnitude). [..269 ]

In Tabs. C1-C2 we summarize the results of parameter estimation for the [..270 ]two data settings (steady-state and time-

dependent) at a single temperature. Note that the estimated upper limits for some of the small evaporation rates (less than

10−5 s−1) determined from the steady-state data can be as large as 1.55× 10−2 s−1. This is a poor estimate, since the uncer-310

tainties in the synthetic data are small. For example, see the results for parameters shown in subfigures 32 and 34 of Figure 7.

In these cases[..271 ], the identification is improved when we [..272 ]extend the data set with time-dependent measurements.

Overall[..273 ], the time-dependent data enabled us to determine the lower bounds for most of the parameters, with the excep-

tion of [..274 ]the parameters shown in subfigures numbered 26 and 29. Moreover, the additional [..275 ]time-dependent data

enabled us to reduce the uncertainties in the estimates of parameters in subfigures 15, 19 and 37. As a result, with the aid of315

time-dependent data we have improved the estimates of minimal and maximal values for the evaporation rate parameters (see

comparison of the 95 % confidence intervals plotted in Figure 5).

[..276 ]

264removed: Notice that
265removed: of monomers for
266removed: which is
267removed: Additionally, the
268removed: then
269removed: We also remark that from these plots one can see that most of the evaporation rates do not display any substantial correlations.
270removed: above-discussed
271removed: the identification has
272removed: extended
273removed: one observes that the transient
274removed: those
275removed: time dependent
276removed: In the case of the steady-state cluster concentrations we include only one value for each of the 16 cluster types considered in the study, which

were taken when the system has attained a steady state (at the end of the ACDC simulation). The transient data contain the steady-state data as subset.

Specifically, in this case we consider the concentrations measured when the system has attained the steady state together with the time-step concentration data

measured from the starting point to the end of the ACDC simulation.
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(a) (b)

(c) (d)

Figure 5. Comparison of 95 % confidence intervals (orange box plots) of base 10 logarithms of the evaporation rates determined from (a)-(b)

steady-state and (c)-(d) time-dependent synthetic data measured at temperature 278 K. [..277 ]Here blue asterisks denote the baseline values

used for creating the synthetic data (borrowed from ?). Black circle and horizontal line markers indicate the mode and the mean value of the

distribution, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure 6. One-dimensional marginal posterior distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from [..278 ]time-dependent measurements of the cluster concentrations with time resolu-

tion comprising 1.5 minutes at the temperature 278 K. Red lines denote the baseline values from [..279 ]? used to generate the synthetic data.

[..280 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..281 ]y ammonia molecules.
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Figure 7. One-dimensional marginal posterior distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the

evaporation rates (units given in s−1) determined from [..282 ]time-dependent asurements of the cluster concentrations with time resolution

comprising 1.5 minutes at the temperature 278 K. Red lines denote the baseline values from [..283 ]? used to generate the synthetic data. [..284

]The notation xAyN corresponds to a cluster with x sulfuric acid and [..285 ]y ammonia molecules.

3.3 Estimating [..286 ]formation enthalpies and entropies from steady-state concentration measurements at multiple

temperatures320

[..287 ]We determined cluster formation enthalpies and entropies [..288 ]based on two sets of [..289 ]steady-state cluster con-

centrations, [..290 ]corresponding to two temperatures: 278 and 292 K. [..291 ]These data sets are plotted in Figs. 2 and D1

for 278 K and 292 K, respectively.

[..292 ]
286removed: thermodynamic data
287removed: In this section we describe another method for regularizing our problem of estimating evaporation rates from steady-state concentration data.

We will determine the
288removed: from
289removed: synthetic,
290removed: now measured at
291removed: This data set is
292removed: We will demonstrate that reparameterization (in terms of thermodynamic data) plus the extended data set transforms our parameter estimation

problem from an ill-posed problem to a well-posed one. We use synthetic steady-state cluster concentrations generated for two temperatures to recover the
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[..293 ]As in the previous sections, three MCMC runs were conducted to average the bias attributed to random noise[..294 ].325

An example of [..295 ]the sampled chains is [..296 ]shown in Figure D2. It can be seen that all the chains are bounded, with the

exception of the formation enthalpy and entropy of the [..297 ]largest cluster (
(
H2SO4

)
5

(
NH3

)
5
).

[..298 ]The one-dimensional [..299 ]marginal posterior distributions of [..300 ]the formation enthalpies and entropies, built

from the stationary parts of the three sampled chains merged together, [..301 ]are shown in Figure 9. [..302 ]For all the clusters

except
(
H2SO4

)
5

(
NH3

)
5
, the variances of the [..303 ]estimated formation enthalpies are less than 0.46 kcal mol−1, while the330

estimated formation entropies vary at most by 5.4 cal K−1mol−1. The estimated free parameters together with the [..304 ]"true"

quantum chemistry-based values from [..305 ]? used for generation of the synthetic data are summarized in Table D1.

Although the posterior distributions of [..306 ]the formation enthalpies and entropies of
(
H2SO4

)
5

(
NH3

)
5

feature higher

uncertainties in comparison to [..307 ]those of the smaller clusters, the evaporation rates [..308 ]from
(
H2SO4

)
5

(
NH3

)
5
, as

calculated from the aforementioned posterior distributions, have low variances, see Table D3.335

[..309 ]

Additionally, strong correlations are observed between formation enthalpies [..310 ]and entropies of clusters containing the

same number n of ammonia molecules [..311 ]when n > 2, except the case of
(
H2SO4

)
5

(
NH3

)
5
.[..312 ]

[..313 ]

thermodynamic parameters. This is done to improve the identification by using the temperature dependence of the Gibbs free energies (and the evaporation

rates).
293removed: For each temperature choice, we use the methods described in Section 2 to obtain synthetic steady-state cluster concentration data. We

summarize this data in Table 2; the data sets are plotted in Figure 2 for 278 K and D1 for 292 K. Three
294removed: added to the data, as discussed in the previous section
295removed: one of
296removed: illustrated
297removed: biggest
298removed: Next we consider the
299removed: (depending on the particular cluster formation entropy or enthalpy parameters)
300removed: free parameters
301removed: see
302removed: It can be seen that for
303removed: variance for the
304removed: baseline
305removed: ?
306removed: sampled thermodynamic parameters for
307removed: the corresponding posterior distributions identified for the
308removed: for evaporations
309removed: Notice that the evaporation rates for all the molecular clusters calculated from a posterior distribution of sampled thermodynamic parameters

for the temperature 278 K are close to the baseline values from ? used for generation of the synthetic data and their variances are less than one order of

magnitude, see Figs. D6-D7.
310removed: (entropies ) of the clusters containing same number
311removed: larger then 2
312removed: Since our parameters are strongly correlated, we may alternatively consider just cluster formation enthalpies or the ratios of cluster formation

entropies and enthalpies as our free parameters.
313removed: Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the cluster formation enthalpies and entropies deter-

mined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles denote the baseline values from
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[..314 ]340

3.4 [..315 ]

[..316 ]

[..317 ]

[..318 ]

[..319 ]345

3.4 [..320 ]

[..321 ]

[..322 ]

? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies and entropies, respectively. Symbols "A", "N"

denote H2SO4 and "NH3", correspondingly.
314removed: One-dimensional marginal posterior distributions of the cluster formation enthalpies (units given in kcal/mol) and entropies (units given in cal

K−1 mol−1)) determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red lines denote the baseline

values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies and entropies, respectively. Symbols

"A", "N" denote H2SO4 and "NH3", correspondingly.
315removed: Comparison to previous evaporation rate determinations
316removed: The evaporation rates can be obtained either experimentally or computationally, when applying the Quantum Chemical (QC) methods, (?).

Experimental detection was conducted from the measurements in a flow tube (???) and in the CLOUD chamber (?????). The summary of thermodynamic

parameters obtained from different methods has previously been published in ?. These parameters can be employed to calculated the evaporation rates at

different temperatures.
317removed: In this study we determine the evaporation rates and thermodynamic data from measurements of cluster concentrations. Supplementary to the

methodology presented in ?, our first method enables to determine parameters from the time-dependent cluster concentrations measured before the system has

attained the steady state. The transient data improved the estimates for all the evaporation rates.
318removed: In the second method we identify thermodynamic parameters from the steady-state cluster concentrations measured at two different temper-

atures. This approach is similar to ?, but our model takes into account all the possible evaporation processes. In ? the thermodynamic parameters had been

determined from the New Particle Formation Rates (NPFs) measured at different temperatures. Instead of the NPFs, we employ the measurements of clus-

ter concentrations. By so doing, we find the combination of data and fitted parameters which enables to determine the evaporation rates with the variances

comprising less that one order of magnitude.
319removed: Although the transient data have improved the estimates, the temperature-dependent data have been demonstrated to yield the most accurate

estimates of the evaporation rates, when we treat cluster formation enthalpies and entropies as free parameters.
320removed: Discussion and future work
321removed: The MCMC results are not specific for the simulation box considered in the present study, but rather general. This is supported by the fact

that although the size of the system (the number of clusters included into simulations) has impact on the particle formation rates at high temperatures (> 278

K), the particle formation rates and cluster concentrations produced using different simulation boxes are qualitatively similar. Thus the changes of the ACDC

outputs due to the difference in the simulation box does not change for MCMC parameter estimation results. In ? is was shown that the 5x5 simulation box

(which is used for generation of the synthetic data) produces reasonable results with a good agreement with the measurements obtained from the CLOUD

chamber experiment. Additionally, the boundary conditions for the outgrowing clusters (the choice of the clusters that are considered as formed particles) has

only minor influence on the simulation results, given that the simulated system of clusters is defined in a reasonable way (?).
322removed: In general , the accuracy of the MCMC results increases when we include additional data. In particular, including more concentration data

measured at different ammonia concentrations will yield better estimates for the evaporation rates. The sensitivity of the estimates to the number of ammonia
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[..323 ]

[..324 ]These strong correlations are consistent with general principles of clustering thermodynamics. If a cluster has350

very strong bonds between [..325 ]its constituent molecules, then [..326 ]the formation enthalpy is very negative, and also the

intermolecular vibrational frequencies corresponding in a broad sense to vibrations involving those bonds [..327 ]are fairly

high, meaning that the entropy loss in forming the cluster is large. These intermolecular frequencies dominate the "variable

part" of the formation entropy, as the entropy [..328 ]change from the loss of translational and rotational degrees of freedom is

almost a constant factor[..329 ]. Thus, if the formation enthalpy of a cluster is very negative, so is also the formation entropy.355

Conversely, if the cluster is only quite weakly bound, the formation enthalpy is only slightly negative, and the intermolecular

frequencies can be very low, leading to a less negative (though still negative[..330 ]) formation entropy[..331 ]

[..332 ]. Evaporation rates for all the molecular clusters calculated from a posterior distribution of sampled formation

enthalpies and entropies are close to the "true” values used for generation of the synthetic data at both temperatures

(278 K and 292K) and their variances are less than one order of magnitude, see Figs. D6-D7. Thus, reparametrization360

of evaporation rates in terms of formation enthalpies and entropies, and use of data at two different temperatures, thus

transforms our parameter estimation problem from an ill-posed to a well-posed one.

concentrations will be considered in the future work. In the present study we rather focus on the question which combination of estimated parameters and

concentration data will produce an accurate estimates for the evaporation rate.
323removed: The data of steady-state concentration with two temperatures allowed us to apply two general principles of inverse problems/Bayesian esti-

mation to the problem of estimating evaporation rates. First, the two temperature data set enabled us to reformulate the problem in a numerically effective

way (in terms of enthalpy and entropy) that reduced the number of unknown parameters we sought to estimate. Second, the reformulated differential equation

describing the time evolution of the concentrations was more numerically stable than the original expression (the stiffness of the equation was reduced in the

reformulated form). This made our estimates for the rates less sensitive to small perturbations/errors.
324removed: In addition, the fact that the formation entropies and enthalpies were strongly correlated made them an effective parametrization. The strong

inverse correlations have a physical explanation. Firstly, both formation enthalpy and entropy follow from the partition function of the molecular complex, and

their functional forms are partly similar (?). Practically, if a cluster has really
325removed: the
326removed: that means
327removed: (note that these
328removed: effect
329removed: ) are fairly high, meaning that the entropy loss in forming the cluster is large. So
330removed: of course
331removed: (?).
332removed: Note that experimental data can differ from the synthetic data in the sense that they contain noise which originate from measurement instruments

and uncertainties associated with experimental conditions (e. g. , in CLOUD chamber experiments). Treating the noise inherent for experimental data will be

the topic of our future studies
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Figure 8. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the cluster formation enthalpies

and entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red

rectangles denote the baseline values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster

formation enthalpies and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia

molecules.
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Figure 9. One-dimensional marginal posterior distributions of the cluster formation enthalpies (units given in kcal/mol) and entropies

(units given in cal K−1 mol−1)) determined from steady-state cluster concentration measurements at two temperatures T=278 K and

T = 292 K. Red lines denote the baseline values from ? used to generate the synthetic data. Here the symbols ∆H and ∆S stand

for cluster formation enthalpies and entropies, respectively. The notation xAyN corresponds to a cluster with x sulfuric acid and y

ammonia molecules.
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4 Conclusions

[..333 ]

We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC) algorithm to identify cluster evap-365

oration/fragmentation rates from [..334 ]synthetic cluster distribution data[..335 ], assuming that the cluster collision rates are

known. We used the Atmospheric Cluster Dynamic Code (ACDC) [..336 ]together with evaporation rates based on quan-

tum chemistry and detailed balance to generate synthetic data for the purpose of optimizing and validating the parameter

estimation.

First, we sought to determine the cluster evaporation rates from both steady-state and time-dependent cluster concentration370

data at one temperature. [..337 ]We were only able to identify a subset of the free parameters (evaporation rates) from the

available data [..338 ]using either of these approaches.

[..339 ]Next, we used [..340 ]steady-state concentration data [..341 ]corresponding to two different temperatures. We intro-

duced a reparametrization [..342 ]which expressed the evaporation rates in terms of temperature and cluster formation en-

thalpies and entropies[..343 ]. Using steady-state concentrations at two temperatures allowed us to apply two general prin-375

ciples of inverse problems/Bayesian estimation to the problem of estimating evaporation rates. First, the two–temperature

data set enabled us to reformulate the problem in a numerically effective way (in terms of formation enthalpies and en-

tropies), which reduced the number of unknown parameters. This reduced the number of parameters we sought to identify.

[..344 ]Second, it also lessened the stiffness of the system, as the cluster formation enthalpies and entropies for our system [..345

]span a much smaller range compared to the evaporation rates. We demonstrated that steady-state concentration data at two380

different temperatures could be used to determine all the unknown formation enthalpies and entropies, and thus the evaporation

rates, to within acceptable accuracy.

In general, the accuracy of the MCMC results naturally increases when we include additional data. In particular, includ-

ing more concentration data measured at different ammonia concentrations will yield better estimates for the evaporation

rates. The sensitivity of the estimates to the number of ammonia concentrations, as well as different sulfuric acid source385

rates, will be considered in future work.
333removed: We applied a
334removed: known
335removed: and known
336removed: with quantum chemistry based evaporation rates
337removed: In this first scenario, we sought to determine the cluster evaporation rates from both steady-state and time-dependent cluster concentration

data. Due to the mathematical stiffness of the ordinary differential equations describing the time evolution of the cluster concentrations, we
338removed: . This stiffness originates from the vastly different timescales of some of the key evaporation rates
339removed: In the second scenario
340removed: only
341removed: but for
342removed: expressing
343removed: , and temperature
344removed: It
345removed: have comparable orders of magnitude
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The approach presented here can also be applied to infer evaporation rates from mass spectrometric measurements of molec-

ular cluster concentrations. This naturally requires accounting for the process of charging neutral clusters, with its associated

instrumental and data-analysis-related uncertainties. A clear conclusion of our proof-of-concept study is that steady-state

data at different temperatures is more useful for determining evaporation rates than time-dependent data at a single temper-390

ature. Moreover, reliable steady-state concentrations of clusters at various temperatures are generally easier to obtain

experimentally (e.g. in chamber experiments) compared to time-dependent concentrations. This finding demonstrates

the more general feature of modelling of the type performed here: it can be used to optimize planning of experiments,

and thus save both time and resources. Determining very low (below 10−5 s−1) evaporation rates may also require addi-

tional measurements at low vapor concentrations, which naturally require longer timescales to reach a steady state. Treating395

the uncertainties inherent in experimental data will be the topic of our future studies.

Code availability. The code is available via GitHub repository: http://doi.org/10.5281/zenodo.3766925
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A Supplementary mathematical material

A1 Cluster [..346 ]kinetics

The kinetics of cluster formation is described by Becker-Döring equations (??), which model cluster birth and death which400

arises from collisions of the smaller clusters into larger ones and evaporations from the bigger clusters into smaller ones.

Precisely, labelling the clusters by i ∈ {1,2, . . . ,N}, the time derivative of the ith cluster concentration Yi is governed by

dYi

dt = 1
2

∑
j<i

βi,(i−j)YiYi−j +
∑
j

γi+j→i,jYi+j−
∑
j

βi,jYiYj− 1
2

∑
j<i

γi→j,i−jYi + Qi−Si, (A1)

where βi,j is the collision coefficient of clusters i with j, and γi+j→i,j is the evaporation coefficient of cluster i+j into clusters

i and j, Qi is an external source term of i, and Si represents the total possible types of losses for the cluster of type i. These405

last two terms, which stand for external supply and destruction mechanisms, depend on the system under consideration.

We now specify the quantity and type of sinks and sources included in our studies. We assume that the concentration of

ammonia monomers is constant, while [..347 ]sulfuric acid monomers are supplied to the system at a constant rate comprising

Q = 6.3× 104 cm−3s−1. This settings are selected to imitate the conditions inside of the CLOUD chamber, (??). Further,

we include wall losses arising from clusters sticking on the walls of the experimental chamber, (?). These wall losses are410

parametrized by the size of the cluster

Swall,i = 10−12/(2ri + 0.3× 10−9) s−1, (A2)

where ri is the mass radius of the cluster (in cm). From Eq. A2, wall loss rates decrease with cluster size; in practise it also varies

with respect to cluster position in the chamber and time. We neglect any uncertainties attributed to the wall losses. However,

we do account for dilution losses, with size-independent value comprising Sdil,i = 9.6× 10−5s−1, which had previously been415

determined in the CLOUD chamber, (??).

Let T denote the temperature of the system of molecular clusters. Using classical kinetic gas theory, the collision rates βi,j

in Eq. A1 obey

βi,j =
√

T

(
3

4π

)1/6 [
6kB

(
1

mi
+

1

mj

)]1/2(
V

1/3
i + V

1/3
j

)2
, (A3)

where mi and Vi are respectively the mass and volume of cluster i, and kB is Boltzmann’s constant. In this paper, we assume420

that the masses and volumes are temperature-independent.

The cluster evaporation rates γi+j→i,j in Eq. A1 are given by the expression

γi+j→i,j = βi,j
Pref

kBT
exp

(
∆Gi+j−∆Gi−∆Gj

kBT

)
, (A4)

346removed: kinematics
347removed: sulphuric
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where Pref is the reference pressure and ∆Gi is the Gibbs free energy of formation for cluster i. We may further describe the

ith Gibbs free energy in terms of the cluster formation enthalpy ∆Hi and entropy ∆Si:425

∆Gi = ∆Hi−T∆Si. (A5)

We neglect here the weak temperature dependence of real cluster formation enthalpies and entropies.

A1.1 The Metropolis algorithm

We first select the flat prior distribution from which we will initially sample unknown parameters, as we wish to generate

physically reasonable parameter estimates. Therefore, we generate unknown parameters within the chosen minimum430

and maximum bounds where all the points are equally likely to be sampled. Please see Section 2.2.3 and Tabs. 3-4 for

more details. From the prior distribution, a starting guess for the parameters θold ∈Rncoef is chosen (here ncoef is the

total number of parameters).

A2 [..348 ]

[..349 ]The Metropolis algorithm then requires us to specify how to sample new parameter values θnew. This is done by435

choosing a proposal distribution. We chose a multivariate Gaussian proposal density q, defined by:

[..350]q([..351]θold,θnew)[..352]'exp[..353]

(
−1

2
[..354][..355] (θnew−θold)TΣ−1 (θnew−θold)

)
, (A6)

where [..356 ]Σ is a covariance matrix (of dimensions ncoefs×ncoefs) which specifies the scaling and spatial orientation of

the Gaussian proposal distribution. As the normalization constants are cancelled out in Eq. A9, we do not take them into

consideration.440

Next, we run the ACDC and Fortran simulations with the parameter values θnew. We collect the cluster concentration

outputs in the column-vector ymod(θnew) ∈ Rnout , where nout is the number of [..357 ]elements. The candidate vector of

parameters θnew is either accepted or rejected according to the least-squares fit of ymod(θnew) to the synthetic cluster

concentrations yexp:

SS(θnew) =

nout∑
i=1

(yexp,i− ymod,i(θnew))2

σ2
i

, (A7)445

where nout is the number of [..358 ]
348removed: Likelihood, data and cost function
349removed: The likelihood of observing the data Yexp given the parameter values θ is
356removed: nout is the number of measurements and F (θ) is the cost function. We elucidate the cost function below. In our first study in which simulations

are conducted with time-dependent data, the number of measurements is nout = 4 ∗ (Nc ∗Nt + 1), where Nc = 16
357removed: cluster types whose concentrations are measured and Nt = 41
358removed: time-step measurements available for each of the cluster types. As explained in Section 2.1, after each VODE integration, a convergence

coefficient is computed from the steady-state cluster concentrationsto ensure that the system has attained the steady-state.
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[..359 ]measurements in the [..360 ][..361 ] [..362 ]synthetic concentrations. [..363 ]

[..364]

By construction our synthetic data contains uncorrelated Gaussian measurement error, hence the likelihood of observing

the data yexp given some parameter values θ is450

p(yexp|θ)' exp(−1

2
SS(θ)). (A8)

[..365 ]The value SS(θnew) is then compared to the least-square sum from the previous step SS(θold) and accepted with

the probability

pacc(θold,θnew) = min
{

1,
p(yexp|θnew)

p(yexp|θold)

}
= min

{
1,exp

[
−1

2
(SS(θnew)−SS(θold))

]}
. (A9)

If θnew is accepted, this parameter combination is added as the next element in the chain; else the old value is replicated455

in the chain. Finally, the value SS(θold) is replaced with SS(θnew) and saved. This completes an iteration of the Metropolis

algorithm.

[..366 ]We remark here that the likelihoods p(yexp|θold) and p(yexp|θnew) in Eq. A9 characterize how closely the

outputs of the ACDC simulations with the parameters θold and θnew respectively fit the synthetic data. By definition of

the acceptance probability pacc(θold,θnew) in Eq. A9, the candidate step is always accepted if the new parameters fit the460

data at least as good as the old values (SS(θnew)≤ SS(θold)).

A1.1 The DRAM algorithm for sampling from large parameter space

Our implementation of the Delayed Rejection Adaptive Metropolis (DRAM) (??) approach to MCMC parameter estimation

modifies the above Metropolis algorithm in the following way.

First, we use the Adaptive Metropolis (AM) (?) method for updating the covariance matrix Σ of the proposal distribution465

q(θold,θnew) in Eq. A6. That is, if we have generated samples (θ0,θ1, . . . ,θn−1), the next candidate set θnew is proposed

from q(θn−1,θnew) using the empirical covariance Σ = Cov(θ0,θ1, . . . ,θn−1). Therefore the next candidate set is gener-

ated by taking a step with direction and size determined from the values of parameters previously sampled in the MCMC

359removed: In our first study,
360removed: parameter fit to the data was evaluated by the sum of squared residuals of the model outputs Ymod and the measurements, Yexp. The
361removed: cost function
362removed: (sum of squared residuals) measures how far our model outputs are from the “true” experimental outputs
363removed: Precisely,
365removed: Since concentrations of molecular clusters span a large range (from 10−5 to 109 particles per cm3) , we normalize the residuals by the

measurement error variance σ2
ji. Normalization in this way avoids overfitting to the larger concentration values . Note also that the error variance σ2

ji is

matched separately for each cluster type and every time instance. We assume that the instrument is capable of detecting all the cluster types represented in the

system at arbitrary small levels of concentration.This simplification was considered in order to illustrate the proposed approach.
366removed: When parameter estimation is conducted with steady-state cluster concentrations (as is considered in our second study) , we use the following

cost function:
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chain. This procedure is carried out after every 100 successive accept/reject iterations. To ensure computational stabil-

ity, we also apply additional scaling and regularization for the proposal covariance (see ??); please see ? for a detailed470

explanation.

Second, we carry out local adaptation of the proposal distribution using the Delayed Rejection (DR) algorithm (?). It is

implemented as follows: given n parameter sets (θ0,θ1, . . . ,θn) generated by the AM method above, a candidate θnew

is proposed from the distribution q(θn,θnew) in Eq. A6 and accepted with probability as in Eq. A9, as discussed before.

However, if the proposed θnew is rejected, instead of replicating the previous values in the MCMC chain (i.e., θn+1 = θn),475

the algorithm tests a new candidate move θnew,2 which is close to the current estimate θn. Then the second-stage

proposal θnew,2 is accepted with appropriately adjusted acceptance probability (see ?).

In summary, our application of the DRAM algorithm combines the AM procedure with a two-stage DR modification. In

the first stage, our algorithm carries out the Metropolis regime with both AM adaptation. The proposal covariance at the

initialization of DR (denoted as Σ) is computed as by AM method above, no matter at which stage of DR these points480

have been accepted in the sampling process. The covariance of the proposal for the second stage (denoted as Σ2) is

always computed as the scaled version of the first-stage proposal covariance:

[..367][..368]Σ2 = [..369]γΣ, (A10)

[..370 ][..371 ] [..372 ][..373 ][..374 ]with the scaling coefficient γ = 1/5 that was chosen to increase the number of accepted

candidate steps at the [..375 ]second stage (?).485

This DRAM parameter estimation was conducted using the ’mcmcstat’ toolbox implemented for FORTRAN (??). See

the description and the examples of usage on the web page helios.fmi.fi/~lainema/.

370removed: Now NT = 2 denotes the number of steady state configurations at different
371removed: temperatures
372removed: (not times!) and Tj stands for the measured
373removed: temperature
374removed: . In this study, the number of measurements for
375removed: likelihood given by Eq. . ?? is nout = 4 ∗ (Nc ∗NT + 1) (again Nc = 16 cluster types).
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B Estimation of the evaporation rates from steady-state data

Figure B1. Parameter chains (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation rates (units given in s−1) determined

from steady-state cluster concentration measurements at the temperature 278 K. Red lines denote the baseline values from [..376 ]? used to generate the

synthetic data. [..377 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..378 ]y ammonia molecules.
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Figure B2. Parameter chains (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation rates (units given in

s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red lines denote the baseline values from

[..379 ]? used to generate the synthetic data. [..380 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..381 ]y ammonia

molecules.
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Figure B3. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from [..382 ]? used to generate the synthetic data [..383 ]The notation xAyN corresponds to a cluster with x sulfuric acid

and [..384 ]y ammonia molecules.
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Figure B4. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from [..385 ]? used to generate the synthetic data. [..386 ]The notation xAyN corresponds to a cluster with x sulfuric

acid and [..387 ]y ammonia molecules.
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Figure B5. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from [..388 ]? used to generate the synthetic data. [..389 ]The notation xAyN corresponds to a cluster with x sulfuric

acid and [..390 ]y ammonia molecules.
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Figure B6. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 32) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from [..391 ]? used to generate the synthetic data [..392 ]The notation xAyN corresponds to a cluster with x sulfuric acid

and [..393 ]y ammonia molecules.
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Figure B7. Pairwise marginal posterior distributions (for parameter indexes ranging from 33 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from steady-state cluster concentration measurements at the temperature 278 K. Red rectangles denote

the baseline values from [..394 ]? used to generate the synthetic data. [..395 ]The notation xAyN corresponds to a cluster with x sulfuric

acid and [..396 ]y ammonia molecules.
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C Estimation of the evaporation rates from [..397 ]time dependent data

Figure C1. Time-dependent cluster concentrations. Simulated time evolution of concentrations for different cluster types at temperature T=278 K for varying

[NH3] concentration: 5 ppt, 35 ppt, 100 ppt and 200 ppt (see the legend). All the model outputs are amended with multivariate non-correlated Gaussian noise

with standard deviation comprising 0.001% of the original cluster concentration. Time resolution comprises 1.5 minutes. The source of [..398 ]sulfuric acid

monomer is [H2SO4] = 6.3× 104 s−1 in all simulations. [..399 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..400 ]y ammonia

molecules.

397removed: transient
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Figure C2. Parameter chains (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation rates (units given in

s−1) determined from [..401 ]time-dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes at the

temperature 278 K. Red lines denote the baseline values from [..402 ]? used to generate the synthetic data. The notation xAyN corresponds

to a cluster with x sulfuric acid and y ammonia molecules. 44



Figure C3. Parameter chains (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation rates (units given

in s−1) determined from [..403 ]time-dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes at

the temperature 278 K. Red lines denote the baseline values from [..404 ]? used to generate the synthetic data [..405 ]The notation xAyN

corresponds to a cluster with x sulfuric acid and [..406 ]y ammonia molecules.
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Figure C4. Pairwise marginal posterior distributions (for parameter indexes ranging from 1 to 8) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from [..407 ]time-dependent measurements of the cluster concentrations with time resolution comprising

1.5 minutes at the temperature 278 K. Red rectangles denote the baseline values from [..408 ]? used to generate the synthetic data. [..409 ]The

notation xAyN corresponds to a cluster with x sulfuric acid and [..410 ]y ammonia molecules.
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Figure C5. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the base 10 logarithm of the evaporation

rates (units given in s−1) determined from [..411 ]time-dependent measurements of the cluster concentrations with time resolution comprising

1.5 minutes at the temperature 278 K. Red rectangles denote the baseline values from [..412 ]? used to generate the synthetic data [..413 ]The

notation xAyN corresponds to a cluster with x sulfuric acid and [..414 ]y ammonia molecules.
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Figure C6. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the base 10 logarithm of the evaporation

rates (units given in s−1) from [..415 ]time-dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes

at the temperature 278 K. Red rectangles denote the baseline values from [..416 ]? used to generate the synthetic data [..417 ]The notation

xAyN corresponds to a cluster with x sulfuric acid and [..418 ]y ammonia molecules.
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Figure C7. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 32) of the base 10 logarithm of the evaporation

rates (units given in s−1) from [..419 ]time dependent measurements of the cluster concentrations with time resolution comprising 1.5 minutes

at the temperature 278 K. Red rectangles denote the baseline values from [..420 ]? used to generate the synthetic data. [..421 ]The notation

xAyN corresponds to a cluster with x sulfuric acid and [..422 ]y ammonia molecules.
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Figure C8. Pairwise marginal posterior distributions (for parameter indexes ranging from 33 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) from [..423 ]Time dependent measurements of the cluster concentrations with time resolution comprising 1.5

minutes at the temperature 278 K. Red rectangles denote the baseline values from [..424 ]? used to generate the synthetic data. [..425 ]The

notation xAyN corresponds to a cluster with x sulfuric acid and [..426 ]y ammonia molecules.
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Symbol Steady-state data (s−1) [..427 ]Time dependent data (s−1) QC (s−1)

1: 2A→ 1A 8.16× 102 8.23× 102 8.23× 102

(8.05× 102,8.31× 102)

2: 1A1N→ 1N 4.75× 103 4.74× 103 4.74× 103

(4.69× 103,4.87× 103)

3: 2A1N→ 1A 4.22× 10−4 3.30× 10−4 3.64× 10−4

(5.92× 10−11,7.27× 10−4) (1.75× 10−4,5.37× 10−4)

4: 2A1N→ 1N 1.56× 10−3 1.33× 10−3 1.21× 10−3

(8.78× 10−4,1.67× 10−3) (1.04× 10−3,1.4× 10−3)

5: 3A1N→ 1A 2.99× 101 3.02× 101 3.02× 101

(2.94× 101,3.08× 101 (3.01× 101,3.02× 101)

6: 3A1N→ 2A − 2.81× 10−6 6.09× 10−6

1.50× 10−1 (2.86× 10−9,2.76× 10−3)

7: 2A2N→ 1N 1.74× 102 1.76× 102 1.76× 102

(1.71× 102,1.79× 102)

8: 2A2N→ 1A1N 5.52× 10−4 2.11× 10−6 5.33× 10−6

< 5.16× 10−3 (2.95× 10−10,3.59× 10−4)

9: 3A2N→ 1A 3.30× 10−4 7.51× 10−4 6.07× 10−4

< 2.91× 10−3 (3.18× 10−7,1.78× 10−3)

10: 3A2N→ 1N 4.47× 10−3 4.16× 10−3 3.84× 10−3

(5.85× 10−4,5.60× 10−3) (2.86× 10−3,4.66× 10−3)

11: 3A2N→ 1A1N 9.79× 10−5 1.00× 10−5 1.64× 10−5

< 3.88× 10−3 (4.68× 10−10,7.22× 10−4)

12: 4A2N → 1A 5.50× 100 5.46× 100 5.43× 100

(4.50× 100,5.72× 100) (5.39× 100,5.51× 100)

13: 4A2N→ 2A 5.24× 10−7 1.03× 10−6 1.48× 10−6

< 2.74× 10−1 (5.66× 10−11,1.88× 10−2)

14: 4A2N→ 1A1N 2.79× 10−1 2.78× 10−6 2.80× 10−6

< 6.92× 10−1 (6.50× 10−10,1.66× 10−3)

15: 4A2N→ 2A1N 6.49× 10−2 9.04× 10−2 9.94× 10−2

< 1.02× 100 (3.66× 10−2,1.33× 10−1)

16: 3A3N→ 1N 4.62× 10−2 4.61× 10−2 4.60× 10−2

(4.50× 10−2,4.78× 10−2) (4.58× 10−2,4.62× 10−2)

17: 3A3N→ 1A1N 1.37× 10−9 6.32× 10−9 3.74× 10−9

< 3.58× 10−4 (1.05× 10−12,4.91× 10−6)

18: 4A3N→ 1A 2.08× 10−3 2.10× 10−3 2.10× 10−3

(1.79× 10−3,2.27× 10−3) (2.07× 10−3,2.12× 10−3)

19: 4A3N→ 1N 1.19× 10−5 1.96× 10−5 1.88× 10−5

< 7.29× 10−5 (1.11× 10−5,2.50× 10−5)

20: 4A3N→ 1A1N 9.29× 10−11 − 1.23× 10−8

< 2.65× 10−4 (1.81× 10−12,1.96× 10−5)

Table C1. Part 1. Evaporation rates (units given in s−1) determined from the steady-state and the [..428 ]time dependent data presented in

Figure 5-6 and Figs. 16-17, respectively. For parameters that have a posterior distribution with the clear peak and practically zero probability

density elsewhere, the mode of the distribution (bold face) is given together with the range of possible values in the parenthesis. In some of

the cases only the limits can be determined. The last column presents the baseline values from [..429 ]? used to generate the synthetic data.

[..430 ]The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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D Estimation of the cluster formation enthalpies and entropies from steady-state concentration measurements490

Figure D1. Steady-state cluster concentrations for the clusters containing [..435 ]sulfuric acid and a varying number of ammonia molecules as a function of

the number of acid molecules for [NH3] concentrations comprising (a) 5 ppt, (b) 35 ppt, (c) 100 ppt and (d) 200 ppt at temperature T=292 K amended with

multivariate non-correlated Gaussian noise with standard deviation comprising 0.001% of the original cluster concentration. The source of [..436 ]sulfuric acid

monomer comprises [H2SO4] = 6.3× 104 s−1in all the simulations. Here the symbols ∆H and ∆S stand for cluster formation enthalpies and entropies,

respectively. [..437 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..438 ]y ammonia molecules.
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Symbol Steady-state data (s−1) [..431 ]Time dependent data (s−1) QC (s−1)

21: 4A3N→ 2A1N − 4.83× 10−9 1.66× 10−8

< 2.14× 10−4 (3.36× 10−12,6.93× 10−6)

22: 5A3N→ 1A 7.88× 10−1 7.81× 10−1 7.83× 10−1

(7.56× 10−1,8.20× 10−1) (7.77× 10−1,7.86× 10−1)

23: 5A3N→ 2A 2.35× 10−8 6.34× 10−7 6.37× 10−7

( < 1.21× 10−2) (1.26× 10−11,3.35× 10−4)

24: 5A3N→ 1A1N 9.12× 10−12 1.50× 10−9 1.70× 10−9

< 3.39× 10−3 (1.02× 10−12,2.22× 10−6)

25: 5A3N→ 2A1N 7.22× 10−4 1.24× 10−5 1.85× 10−5

< 6.95× 10−3 (1.86× 10−8,5.33× 10−4)

26: 5A3N→ 2A2N 1.52× 10−8 − 3.52× 10−10

< 4.49× 10−3 < 1.25× 10−4

27: 4A4N→ 1N 3.79× 101 3.76× 101 3.75× 101

(3.70× 101,3.88× 101) (3.75× 101,3.77× 101)

28: 4A4N→ 1A1N − 9.05× 10−6 9.06× 10−6

< 5.38× 10−3 (1.52× 10−10,2.57× 10−4)

29: 4A4N→ 2A2N 2.07× 10−12 8.55× 10−11 1.33× 10−9

< 2.43× 10−3 < 1.90× 10−4

30: 5A4N→ 1A 3.87× 10−6 2.51× 10−3 1.77× 10−3

< 2.52× 10−2 (1.20× 10−6,5.86× 10−3)

31: 5A4N→ 1N 8.92× 10−2 9.03× 10−2 8.87× 10−2

(6.68× 10−2,9.74× 10−2) (8.52× 10−2,9.19× 10−2)

32: 5A4N→ 1A1N − 3.60× 10−6 7.33× 10−6

< 1.55× 10−2 (6.48× 10−12,1.04× 10−3)

33: 5A4N→ 2A1N 2.28× 10−4 1.32× 10−4 2.97× 10−5

< 1.06× 10−2 (6.46× 10−10,1.53× 10−3)

34: 5A4N→ 2A2N − 7.30× 10−9 6.42× 10−9

< 1.08× 10−2 (1.51× 10−11,3.17× 10−4)

35: 4A5N→ 1N 8.75× 102 8.88× 102 8.89× 102

(8.59× 102,9.03× 102) (8.85× 102,8.92× 102)

36: 5A5N→ 1A − − 2.23× 10−10

< 2.32× 10−4 < 1.14× 10−6

37: 5A5N→ 1N 4.96× 10−4 1.00× 10−4 1.17× 10−4

< 9.89× 10−4 (3.48× 10−5,1.85× 10−4)

38: 5A5N→ 1A1N 5.93× 10−9 1.48× 10−11 2.11× 10−11

< 5.06× 10−4 < 1.06× 10−5

39: 5A5N→ 2A2N − 2.06× 10−11 1.31× 10−11

< 3.09× 10−4 < 4.11× 10−7

Table C2. Part 2. Evaporation rates (units given in s−1) determined from the steady-state and the [..432 ]time dependent data presented in

Figure 5-6 and Figs. 16-17, respectively. For parameters that have a posterior distribution with the clear peak and practically zero probability

density elsewhere, the mode of the distribution (bold face) is given together with the range of possible values in the parenthesis. In some of

the cases only the limits can be determined. The last column presents the baseline values from [..433 ]? used to generate the synthetic data.

[..434 ]The notation xAyN corresponds to a cluster with x sulfuric acid and y ammonia molecules.
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Figure D2. Parameter chains of the cluster formation enthalpies (units given in kcal/mol) and entropies (units given in cal K−1 mol−1)

determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red lines denote the baseline

values from [..439 ]? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation enthalpies and entropies,

respectively. [..440 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..441 ]y ammonia molecules.
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Figure D3. Pairwise marginal posterior distributions (for parameter indexes ranging from 9 to 16) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from [..442 ]? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation

enthalpies and entropies, respectively. [..443 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..444 ]y ammonia

molecules.
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Figure D4. Pairwise marginal posterior distributions (for parameter indexes ranging from 17 to 24) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from [..445 ]? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation

enthalpies and entropies, respectively. [..446 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..447 ]y ammonia

molecules.
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Figure D5. Pairwise marginal posterior distributions (for parameter indexes ranging from 25 to 28) of the cluster formation enthalpies and

entropies determined from steady-state cluster concentration measurements at two temperatures T=278 K and T = 292 K. Red rectangles

denote the baseline values from [..448 ]? used to generate the synthetic data. Here the symbols ∆H and ∆S stand for cluster formation

enthalpies and entropies, respectively. [..449 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..450 ]y ammonia

molecules.
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Symbol Mode value 95% confidence interval QC Units

1: ∆H2A -17.8891 (-18.1913,-17.4941) -17.85 kcal mol−1

2: ∆S2A -33.5475 (-34.6104,-32.1575) -33.42 cal K−1 mol−1

3: ∆H1A1N -15.8751 (-16.2344,-15.5158) -16 kcal mol−1

4: ∆S1A1N -27.6984 (-28.9594,-26.4374) -28.14 cal K−1 mol−1

5: ∆H2A1N -44.8076 (-45.2922,-44.174) -45 kcal mol−1

6: ∆S2A1N -70.3501 (-72.029,-68.1545) -71.02 cal K−1 mol−1

7: ∆H3A1N -66.0006 (-66.428,-65.5732) -66.06 kcal mol−1

8: ∆S3A1N -107.5233 (-109.0059,-106.0407) -107.72 cal K−1 mol−1

9: ∆H2A2N -64.5005 (-64.9799,-64.021) -64.46 kcal mol−1

10: ∆S2A2N -104.6181 (-106.2857,-102.9505) -104.45 cal K−1 mol−1

11: ∆H3A2N -91.8512 (-93.9174,-90.2712) -92.09 kcal mol−1

12: ∆S3A2N -142.3625 (-149.4438,-136.9474) -143.18 cal K−1 mol−1

13: ∆H4A2N -115.0105 (-116.7515,-113.2696) -115.13 kcal mol−1

14: ∆S4A2N -182.938 (-188.9067,-176.9693) -183.34 cal K−1 mol−1

15: ∆H3A3N -116.3273 (-118.1437,-114.5108) -116.6 kcal mol−1

16: ∆S3A3N -177.0462 (-183.2768,-170.8156) -177.99 cal K−1 mol−1

17: ∆H4A3N -144.9757 (-147.3975,-142.554) -145.17 kcal mol−1

18: ∆S4A3N -221.6575 (-229.9554,-213.3595) -222.33 cal K−1 mol−1

19: ∆H5A3N -168.7305 (-171.0579,-166.4031) -168.79 kcal mol−1

20: ∆S5A3N -260.3509 (-268.3225,-252.3794) -260.55 cal K−1 mol−1

21: ∆H4A4N -164.1272 (-166.4394,-161.815) -164.35 kcal mol−1

22: ∆S4A4N -250.2634 (-258.1819,-242.3449) -251.03 cal K−1 mol−1

23: ∆H5A4N -191.7779 (-194.9426,-188.6133) -191.86 kcal mol−1

24: ∆S5A4N -290.7782 (-301.6196,-279.9369) -291.05 cal K−1 mol−1

25: ∆H4A5N -186.3473 (-188.639,-184.0557) -186.47 kcal mol−1

26: ∆S4A5N -296.0839 (-303.9359,-288.2319) -296.51 cal K−1 mol−1

27: ∆H5A5N -205.943 (-241.6193,-190.6532) -221.65 kcal mol−1

28: ∆S5A5N -277.4 (-,-224.8575) -332.49 cal K−1 mol−1

Table D1. Thermodynamic parameters identified from steady-state data measured at two temperatures (278 and 292 K). The last column

presents the quantum-chemistry based values from [..451 ](?) used to generate the synthetic data. Here the symbols ∆H and ∆S stand for

cluster formation enthalpies and entropies, respectively. [..452 ]The notation xAyN corresponds to a cluster with x sulfuric acid and [..453

]y ammonia molecules.
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Figure D6. One-dimensional marginal distributions (for parameter indexes ranging from 1 to 28) of the base 10 logarithm of the evaporation

rates (units given in s−1) at temperature 278 K obtained from a posterior distribution of thermodynamic parameters (cluster formation

enthalpies and entropies) determined from steady-state cluster concentration measured at temperatures 278 K and 292 K. Red lines denote

the baseline values from [..454 ]? used to generate the synthetic data. [..455 ]The notation xAyN corresponds to a cluster with x sulfuric

acid and [..456 ]y ammonia molecules.
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Figure D7. One-dimensional marginal distributions (for parameter indexes ranging from 29 to 39) of the base 10 logarithm of the evaporation

rates (units given in s−1) at temperature 278 K obtained from a posterior distribution of thermodynamic parameters (cluster formation

enthalpies and entropies) determined from steady-state cluster concentration measured at temperatures 278 K and 292 K. Red lines denote

the baseline values from [..457 ]? used to generate the synthetic data [..458 ]The notation xAyN corresponds to a cluster with x sulfuric acid

and [..459 ]y ammonia molecules.
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Symbol Steady-state data for 278 K and 292 K (s−1) QC (s−1)

1: 2A→ 1A 8.17× 102 8.23× 102

(8.03× 102,8.36× 102)

2: 1A1N→ 1N 4.76× 103 4.74× 103

(4.66× 103,4.87× 103)

3: 2A1N→ 1A 3.64× 10−4 3.64× 10−4

(3.48× 10−4,3.84× 10−4)

4: 2A1N→ 1N 1.23× 10−3 1.21× 10−3

(1.16× 10−3,1.29× 10−3)

5: 3A1N→ 1A 3.01× 101 3.02× 101

(2.93× 101,3.09× 101)

6: 3A1N→ 2A 6.12× 10−6 6.09× 10−6

(5.77× 10−6,6.47× 10−6)

7: 2A2N→ 1N 1.77× 102 1.76× 102

(1.71× 102,1.82× 102)

8: 2A2N→ 1A1N 5.33× 10−6 5.33× 10−6

(5.02× 10−6,5.64× 10−6)

9: 3A2N→ 1A 6.09× 10−4 6.07× 10−4

(5.14× 10−4,7.05× 10−4)

10: 3A2N→ 1N 3.89× 10−3 3.84× 10−3

(3.27× 10−3,4.50× 10−3)

11: 3A2N→ 1A1N 1.65× 10−5 1.64× 10−5

(1.40× 10−5,1.90× 10−5)

12: 4A2N → 1A 5.45× 100 5.43× 100

(5.25× 100,5.65× 100)

13: 4A2N→ 2A 1.49× 10−6 1.48× 10−6

(1.27× 10−6,1.72× 10−6)

14: 4A2N→ 1A1N 2.82× 10−6 2.80× 10−6

(2.37× 10−6,3.26× 10−6)

15: 4A2N→ 2A1N 1.01× 10−1 9.94× 10−2

(8.35× 10−2,1.18× 10−1)

16: 3A3N→ 1N 4.64× 10−2 4.60× 10−2

(4.47× 10−2,4.81× 10−2)

17: 3A3N→ 1A1N 3.77× 10−9 3.74× 10−9

(3.19× 10−9,4.36× 10−9)

18: 4A3N→ 1A 2.08× 10−3 2.10× 10−3

(1.86× 10−3,2.29× 10−3)

19: 4A3N→ 1N 1.87× 10−5 1.88× 10−5

(1.69× 10−5,2.05× 10−5)

20: 4A3N→ 1A1N 1.21× 10−8 1.23× 10−8

(1.09× 10−8,1.33× 10−8)

Table D2. Part 1. Evaporation rates (units given in s−1) computed from a posterior distribution of the thermodynamic parameters (cluster

formation enthalpies and entropies) which had previously been determined from the steady-state concentration measurements at temperatures

278 and 292 K. Here the mode of distribution (bold face) is given together with the range of possible values in the parenthesis. The last

column presents the quantum-chemistry-based evaporation rates used for creating the synthetic data (borrowed from ?). The notation xAyN

corresponds to a cluster with x sulfuric acid and y ammonia molecules.[..460 ]
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Symbol Steady-state data for 278 K and 292 K (s−1) QC (s−1)

21: 4A3N→ 2A1N 1.65× 10−8 1.66× 10−8

(1.30× 10−8,1.99× 10−8)

22: 5A3N→ 1A 7.98× 10−1 7.83× 10−1

(7.63× 10−1,8.43× 10−1)

23: 5A3N→ 2A 6.40× 10−7 6.37× 10−7

(5.76× 10−7,7.24× 10−7)

24: 5A3N→ 1A1N 1.71× 10−9 1.70× 10−9

(1.54× 10−9,1.88× 10−9)

25: 5A3N→ 2A1N 1.87× 10−5 1.85× 10−5

(1.66× 10−5,2.07× 10−5)

26: 5A3N→ 2A2N 3.56× 10−10 3.52× 10−10

(2.83× 10−10,4.30× 10−10)

27: 4A4N→ 1N 3.82× 101 3.75× 101

(3.69× 101,3.95× 101)

28: 4A4N→ 1A1N 8.97× 10−6 9.06× 10−6

(8.13× 10−6,1.01× 10−5)

29: 4A4N→ 2A2N 1.34× 10−9 1.33× 10−9

(1.07× 10−9,1.62× 10−9)

30: 5A4N→ 1A 1.76× 10−3 1.77× 10−3

(1.56× 10−3,1.96× 10−3)

31: 5A4N→ 1N 8.70× 10−2 8.87× 10−2

(7.68× 10−2,1.00× 10−1)

32: 5A4N→ 1A1N 7.42× 10−6 7.33× 10−6

(6.59× 10−6,8.24× 10−6)

33: 5A4N→ 2A1N 2.92× 10−5 2.97× 10−5

(2.45× 10−5,3.40× 10−5)

34: 5A4N→ 2A2N 6.40× 10−9 6.42× 10−9

(5.40× 10−9,7.40× 10−9)

35: 4A5N→ 1N 8.85× 102 8.89× 102

(8.58× 102,9.12× 102)

36: 5A5N→ 1A 5.38× 10−10 2.23× 10−10

(2.01× 10−11,2.24× 10−9)

37: 5A5N→ 1N 2.77× 10−4 1.17× 10−4

(1.09× 10−5,1.15× 10−3)

38: 5A5N→ 1A1N 5.05× 10−11 2.11× 10−11

(1.87× 10−12,2.10× 10−10)

39: 5A5N→ 2A2N 3.07× 10−11 1.31× 10−11

(1.16× 10−12,1.28× 10−10)

Table D3. Part 2. Evaporation rates (units given in s−1) computed from a posterior distribution of the thermodynamic parameters (cluster

formation enthalpies and entropies) which had previously been determined from the steady-state concentration measurements at temperatures

278 and 292 K. Here the mode of distribution (bold face) is given together with the range of possible values in the parenthesis. The last

column presents the quantum-chemistry-based evaporation rates used for creating the synthetic data (borrowed from ?). The notation xAyN

corresponds to a cluster with x sulfuric acid and y ammonia molecules.[..461 ]
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