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1 Overview

In this document we respond to the referee comments for the paper “Iden-
tification of molecular cluster evaporation rates, enthalpies and entropies by
Monte Carlo method”. These comments were provided at the public discus-
sion stage of the review process for publication in Atmospheric Chemistry
and Physics.

In Section 2 we list each of Referee’s comments. We also include our comment-
by-comment responses. Each of the referee’s comments are denoted with “C”
and our responses to the referee’s comments are denoted with “R”.

We thank the referee for his/her time, thoughtfulness, and feedback. All the
remarks and suggestions for our paper have been very helpful.

2 Referee 1 comments and our responses

Referee 1’s summary: This manuscript applies Markov Chain Monte
Carlo method to estimate cluster evaporation rates and cluster thermody-
namic parameters such as formation enthalpies and entropies while taking
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collision rates from kinetic gas theory. Cluster evaporation rates were esti-
mated from two data sets: steady-state and transient data. While the tran-
sient data can improve the estimates of the evaporation rates compared to the
steady state data, neither of them can be satisfied from both magnitude and
the marginal posterior distributions of the rates. Cluster formation enthalpies
and entropies were then estimated from steady-state cluster concentrations
at two temperatures (278 and 292 K) and the cluster evaporation rates were
inversed from the cluster Gibbs free energies (determined by enthalpies and
entropies). It turns out that the evaporation rates were greatly improved in
terms of variation and the probability distributions except for clusters con-
taining both 5 sulfuric acid and 5 ammonia. Since cluster evaporation rate
is an essential parameter that controls cluster growth, this parameter ought
to be accurately determined in order to understand atmospheric nucleation.
The scientific questions are worthy exploring and are important topics in at-
mospheric research. However, several major issues need to be fully resolved
before the manuscript is considered for publication in this journal.

1. C: Section 2: the way the authors describe simulation methods is hard
to understand. It seems that the authors wrote paragraphs in casual
ways, in particular, when describing MCMC simulations, it is very hard
to follow the logic. It is suggested that the authors use more plain
languages and better logic to rearrange section 2 in order for readers to
understand the methods and data sets the authors used or generated.

R:We have cleaned up the wording in several places in Section 2. Below
are the changes we have made.

� In section 2 just before subsection 2.1, we added ”In this section we
describe the methods used to create synthetic cluster concentra-
tion data sets. We also explain the Monte Carlo type algorithms
used to estimate the cluster evaporation rates from the data sets.”

� In line 93, added ”particle” before the word cluster.

� In line 102 we replace ”(see the Table 2)” with the sentence ”See
Table 2 for the summary of ammonia mixing ratio and the source
of sulphuric acid monomer used for the ACDC simulations”.

� Starting from line 103, rewrote the paragraph to read: ”First, we
computed the collision rates using the Eq. A3 from kinetic gas
theory. Then, we were using these values for the collision rates
along with Eq. A4 and the Gibbs free energies computed from
Eq. A5 to obtain the evaporation rates. Note that to compute
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the Gibbs free energies, we substituted the values for cluster for-
mation enthalpies and entropies given by Olenius et al. (2013b)
into Eq. A5. Additionally, we consider the losses on the CLOUD
chamber walls which depend on the cluster size computed with
Eq A5 (see Kürten (2015)) and a dilution loss of S = 9.6 × 10−5

s−1. These values for the rates and losses were substituted into
the ACDC algorithm (see McGrath et al. (2012)), which simu-
lates the time evolution of molecular cluster concentrations. The
ACDC code computes the first-order non-linear, ordinary differen-
tial system of cluster concentrations as given by Eq. A1. We then
integrate the system produced by ACDC using the Fortran ordi-
nary differential equation solver VODE (N. Brown et al. (1989)).
A detailed description of this strategy for solving the forward-
problem of finding the cluster concentration rates from Eq. A1
was published in McGrath et al. (2012). To reproduce the ex-
perimental conditions as realistically as possible, each simulation
was initialized with non-zero concentration of ammonia monomer
and no sulphuric acid. The source of sulphuric acid monomer was
supplied at a constant rate.

The above method we used for producing synthetic concentration
rates is similar to the one described in Kupiainen-Määttä (2016).
We note that unlike Kupiainen-Määttä (2016), in this paper, our
particle system is considered at various temperatures.”

� In line 110, we changed the first sentence to ”Using the above
algorithm, model configuration and parameters, we generated two
data sets.”

� In line 111, we changed the sentence ”The maximum time we run is
60 minutes in the above model configurations” to ”The maximum
time we run is 60 minutes from beginning of the simulation, in the
above model configurations”

� In line 112, we reformulated the sentence to clarify how the time-
dependent synthetic data were generated: ”In this case, it is as-
sumed that the concentrations for all the clusters are measured
under constant temperature with time resolution comprising 1.5
minutes, which comprises overall 41 time-dependent concentration
data for each of the cluster types i measured from beginning to
the end of each ACDC simulation, before the system has attained
a steady state.”

� In line 114, we added at the end of the sentence
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� In line 127, we added the sentence ”Now we describe how we es-
timate the evaporation rates from the noisy synthetic data sets
obtained by the method described in Section 2.1. We first give
a general overview of the basic Metropolis algorithm (Metropolis
(1953)), then describe a modification of the algorithm we imple-
mented in this study, and finally, in Section 2.2.3 we apply this
general framework to each of our study cases.”

� We added section ’The Metropolis algorithm’ restructured the Sec-
tion 2.2 into three sub-sections,

� We changed the sentences starting from line 129 to read The ob-
jective of MCMC in parameter estimation is to identify all the
possible parameter values which yield the best fit with the exper-
imental data. Unlike optimization algorithms that produce one
best combination of parameter values, the in the MCMC pro-
cedure all the most-probable combinations of parameter values
are estimated given the data. To obtain these combinations, the
values of parameters are generated and stored into the MCMC
”chain”. The MCMC chain will converges to the distribution con-
taining all the most-likely combinations of parameter values as
a number of sampled parameter sets (i.e., the chain length) in-
creases. The distribution formed from the chain approximates a
posterior probability density function which gives the likelihood
of observing each of the parameters given the concentration data.

� To make the MCMC workflow more logical, we rearranged the re-
maining content of Section 2.2 into 3 subsections: ”The Metropo-
lis algorithm” (Section 2.2.1), ”The DRAM algorithm” (Section
2.2.2) and ”The overview of the MCMC runs” (Section 2.2.3).
The fist section explains the basic Metropolis algorithm, the sec-
ond section gives a detailed description of the Delayed Rejection
Adaptive Metropolis algorithm used in the present study, the last
subsection explains the domain restrictions for sampled parame-
ters and parameter representation of the evaporation rates.

� After the line 132 We added subsection with the caption ’The
Metropolis algorithm’.

� Starting with line 133, we wrote the subsection describing the ba-
sic Metropolis algorithm in application to our simulation: ”First,
a prior distribution for the parameter values θ (represented in ar-
ray form) is chosen and set to be the proposed ”true” distribution
from which possible parameters are sampled. The prior is typi-
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cally selected based on the previous knowledge for the parameter
values. Then an initial guess for parameter values (denoted as θ0
or θold) is selected from the prior distribution.

Starting from the initial guess, the algorithm samples candidate
parameter values (denoted as θnew) from a proposal distribution
centred at the previous point (denoted as q(θold, θnew)). The pro-
posal density q(θold, θnew) is symmetric, which means that the
probability of step taken from the ’old’ θold to the ’new’ point
θnew is same as the probability of the reverse step (q(θold, θnew) =
q(θnew, θold)).

Then the candidate point θnew is either accepted or rejected, ac-
cording to the least-squares fit of the output to the data, which
measures the difference between the modelled Ymod and measured
Yexp cluster concentrations:

F (θnew) =
N∑
i=1

(Yexp,i − Ymod,i(θnew))2

σ2
i

, (1)

where N stands for the number of measurements in synthetic data.
We consider two sets of synthetic cluster concentrations: time-
dependent, measured at T = 278 K and steady-state, measured
for two temperatures (at T = 278 K and T = 292 K), as ex-
plained in Section 2.1. For the time-dependent synthetic data
N = NC × Nt, where NC = 16 stands for the number of clus-
ter types included into simulations, while Nt = 41 stands for the
number of time-step measurements available for each of the clus-
ter types. For the second data set, N = NC ×NT , where NT = 2
denotes the number of experiments conducted at different temper-
atures. In the formula above we scale the squared residuals by the
measurement error variance σ2

i to avoid overfitting to the larger
concentration values. The error variance σ2

i is matched depending
on cluster type, time instance and temperature. See A2 for more
details.

At each iteration of the Metropolis algorithm, the value F (θnew) is
compared to the least-square sum from the previous step F (θold).
If the new value is lower (i.e., the candidate parameters fit the data
at least as good as the the old values), then the step is accepted.
In the opposite case, when F (θnew) > F (θold), the point will be
accepted with the probability

αacc = exp

[
−1

2
(F (θnew)− F (θold))

]
. (2)
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If the candidate point is accepted, the parameter combination
θnew is added to the chain, in the opposite case the old value is
replicated in the chain. Finally, the value F (θold) is replaced with
F (θnew) and saved for the next iteration.”

In this paper we employ a variant of the Metropolis algorithm
which is more efficient at parameter sampling when the param-
eter space is large (Haario (2006)). This variant is called the
Delayed Rejection Adaptive Metropolis (DRAM), introduced in
Haario (2006). We briefly explain our approach below.

� We move the text starting from the line 134 (”We remark that to
create a reliable sample from the underlying parameter distribu-
tion..”) and ending at the end of the paragraph to Section 2.2.3
(”The overview of the MCMC runs”).

� We move the lines 142-143 to the end of the Section 2.1.

� In line 142 we insert the Section 2.2.2 ”The DRAM algorithm”.

� In line 144 we add the sentence to ”Similar to the basic Metroplois
algorithm, the DRAM is initialized with the prior distribution and
the initial guess for parameter values.”

� In line 150, we cut the word ”predefined”.

� We move the Tables 3 and 4 to Section 2.2.3, titled as ”The
overview of the MCMC runs”.

� We move the lines 143-144 to the end of the Section 2.2.2. We
insert them after the description of the DRAM algorithm (after
the line 188).

� We move the explanations of prior limits used for sampling the
evaporation rates and thermodynamic data (lines 147-154) to Sec-
tion 2.2.3.

� Starting from line 154, we changed the paragraph to “We make
our initial guess θ = θold, where the prior distribution is flat; i.e.,
all the values within the upper and lower limits that were cho-
sen for the sampled parameters are equally probable. The limits
are summarized in Table 4. We also assume that the conditional
probability distributions for the parameters given the concentra-
tion data are of Gaussian type.

Once initialized, the following iterative steps take place. From the
previous point in the MCMC chain θold, a new candidate for the
unknown parameter values, θnew, is sampled using the Gaussian
proposal distribution. We then use the algorithm in Section 2.1
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to obtain concentration outputs from the evaporation rates θnew.
In the first stage of DRAM, we chose to accept the new proposed
values θnew with probability ... ”

R:

� Changed in line 162 “... the concentrations obtained from the
ACDC and VODE simulations with parameters θold and θnew,
respectively.”

� After the paragraph 186-189 we insert the Section 2.2.3 with the
caption ”The overview of the MCMC runs”.

� At the beginning of the Section 2.2.3 we insert the paragraph ”In
our implementation of the DRAM algorithm, we impose upper
and lower limits for the parameter values. We add such domain
restrictions to exclude unphysical estimates for our parameters.
These restrictions are encoded in our prior distribution, which
we set to be a combination of so-called ”flat priors”, which are
distributions that are proportional to a constant, (see Tables 3-
4).”

� Next, we include an explanation of the prior distribution and phys-
ical limitations for the sampled parameters, which starts as fol-
lows: ”We emphasize that there are currently no theoretical prin-
ciples or experimental results which indicate possible restrictions
for even the order of magnitude of the evaporation rates.”

� After the domain restrictions, we explain the parameterization
that we use for the evaporation rates and illustrate the sampling
procedure (with Figure 1), i.e., we insert the lines 191-218.

� Next we insert the lines 134-138, starting from the sentence ”We
remark that to create a reliable sample from the underlying 135
parameter distribution...”.

� We conclude the Section 2.2.3 with the lines 132-134, where we
rephrase the sentences: ”In all simulations of the algorithm given
in the previous section, the sets of parameters which produce clus-
ter concentrations within the allotted noise level of the data are
kept in the chain. More specifically, the sampled parameters 270
of the posterior distribution represent the model evaluations which
produce values within the noise level of 0.001% of the data con-
centrations for each of the respective cluster types”.

2. C: It is quite confused that throughout the paper, the authors use iden-
tification of the rates and thermodynamic enthalpies/entropies. Is it
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better to use for example estimate or similar words?

R: It is common language to use the words ”identification/identify/determine/etc.”
in the inverse problems literature. We have changed some instances of
these words to “estimate/estimation” to suit the atmospheric audience.

3. C:For pairwise marginal posterior distributions, either for evaporation
rates or enthalpies/entropies, what criteria the authors used to create
these correlations? For example, it seems that evaporation of different
monomers from different clusters might be irrelevant.

R:We created pairwise marginal posterior distributions from the his-
tory of the sampled chains for both cases: in case of evaporation
rates and thermodynamic parameters. We observe that the evapo-
rations of different monomers are correlated for some of the cluster
types. For example, see Figure C4 and the monomer evaporations
from

(
H2SO4

)
2

(
NH3

)
1
; and Figure C7 and the monomer evaporations

from
(
H2SO4

)
5

(
NH3

)
4

which display non-linear correlations. Also the
evaporation rates for different non-monomers from different clusters
can be correlated. For example, see Figure C7, where the evaporation
rates

(
H2SO4

)
4

(
NH3

)
4
→
(
H2SO4

)(
NH3

)
and

(
H2SO4

)
5

(
NH3

)
3
→(

H2SO4

)
2

(
NH3

)
that display inverse linear correlation. However, as

the reviewer had mentioned, the evaporation of different monomers
from different clusters is irrelevant.

4. C: Section 3.4: can the authors present more details of the compari-
son instead of just some dry descriptions? For example, the authors
can add a table to summarize the knowledge up-to-date regarding the
evaporation rates from both measurements and modeling so that the
readers can be benefit from reading this paper.

C:We add a short summary paragraph regarding the evaporation rates
and how they can be obtained: ”The evaporation rates can be obtained
either experimentally or computationally, when applying the Quantum
Chemical (QC) methods, see Kürten, 2019. Experimental detection
was conducted from the measurements in a flow tube (Hanson and
Eisele, 2002; Jen et al., 2014, 2016; Hanson et al., 2017) and in the
CLOUD chamber (Kurtén et al., 2007; Nadykto and Yu, 2007; Or-
tega et al., 2012; Elm et al., 2013; Elm and Kristensen, 2017; Yu
et al., 2018). However, experimental detection is only available for
the charged clusters. The summary of thermodynamic parameters ob-
tained from different methods has previously been published in Kürten,
2019. These parameters can be employed to calculated the evaporation
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rates at different temperatures.”

5. C:Can the authors give some plausible explanation why evaporation
rates estimated from transient data seem better than those from steady-
state data?

R:The transient data is a larger data set than that of just the steady-
state data at one temperature. The extra information contained in
the transient data reduces the size of the space of allowable evapora-
tion rates, as it there are more restrictions on the possible values the
evaporation rates make take. Also the transient data contain informa-
tion about the slope of the concentrations changing with time, which
contributes to quantification of the associated processes (such as col-
lisions and evaporations). We have added the following sentences to
emphasize this point:

� Starting in line 262, we change the paragraph to “ First, we ex-
tend the synthetic measurement data from steady state concen-
trations to transient concentrations. The data set for transient
cluster concentrations at one temperature is larger than the data
set for steady-state cluster concentrations at one temperature, as
the transient data contains the concentration values at multiple
times instances. Also the transient data contain information about
the slope of the concentrations changing with time (see Figure
C1), which contributes to quantification of the molecular-scale
processes (such as collisions and evaporations). We thus expect
that this larger data set will reduce the dimension of the solution
space for the evaporation rates. Indeed, we will show that this is
the case. We generate a synthetic transient cluster concentration
data set using the method in Section 2.1. The time resolution of
our new synthetic data set is 1.5 minutes, which results in 2624
656 total concentration measurements for all the cluster type mea-
sured for four different ammonia concentrations. These data sets
are illustrated in Figure C1. ”

Then in line 267, we added: “From this transient cluster con-
centration data set, we then conduct analogous MCMC runs (as
described in Section 2.2). As in the steady-state ...”

� Here we summarize the main differences between the steady-state
and transient data as follows: ”In the case of the steady-state
cluster concentrations we include only one value for each of the
16 cluster types considered in the study, which were taken when

9



the system has attained a steady state (at the end of the ACDC
simulation). The transient data contain the steady-state data as
subset. Specifically, in this case we consider the concentrations
measured when the system has attained the steady state together
with the time-step concentration data measured from the starting
point to the end of the ACDC simulation.”

6. C:The authors claimed that the 5A5N has low variance in free energies.
However, an order of magnitude is not small for free energies and it is
substantial if this value is applied to the evaporation rates (Line 319
on p18).

R:We change the sentence in line 319 to: ”Although the posterior dis-
tributions of sampled thermodynamic parameters for

(
H2SO4

)
5

(
NH3

)
5

feature higher uncertainties in comparison to the corresponding pos-
terior distributions identified for the smaller clusters, the evaporation
rates for evaporations from

(
H2SO4

)
5

(
NH3

)
5
, as calculated from the

aforementioned posterior distributions, have low variances, see Table
D3.”

R:Note to TB: We will rather point out that the evaporation rates for
the biggest cluster calculated from a posterior distributions of thermo-
dynamic parameters feature low variances. Do you agree?

7. C:There are several rather minor comments below:

(a) P11, lines 233, do the authors mean that the lower limits of evap-
oration of a monomer from those clusters are far above the 10ˆ-10
as defined for complete growth?

(b) P11, line 240, Figures 3-4 can actually be combined to one figure
since they basically represent different parts of the same thing.
There are some figures that have similar issues.

(c) P15, Figure 5, no label for a, b, c, d.

(d) P15, line 284, how the evaporation rates of monomers for clusters
2A display inverse linear correlations in Figures C4-C8?

(e) P18, the claim that the estimated formation enthalpies vary at
most by 1 kcal mol−1, while the variance for the formation en-
tropies is less than 1 calK−1mol−1 is not right.

R:We calculated the variances of estimated parameters and the
claim will be corrected by replacing the sentence in P18 with ”It
can be seen that for all the clusters except

(
H2SO4

)
5

(
NH3

)
5

the
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variance for the estimated formation enthalpies are less than 0.46
kcal mol−1, while the estimated formation entropies vary at most
by 5.4 cal K−1mol−1.”

(f) P18, line 313 and line 321, Figure 9 should not appear before
figure 8.

(g) There are lot of typos of molecular sulfuric acid formula through-
out the manuscript and a thorough check should be made before
submitting the revision. For example, H2SO2.

(h) The references cited in the text are not followed the journal guide-
lines.

(i) Line 34 on p2, subscript; line 37, miss a comma? Line 39, “,” is
surplus.

(j) Line 54 on p3, “-“ superscript? line 59, miss a comma between
experiment and these? It is apparent an ill-sentence (line 65).

(k) Line 104 on p4, into instead of in to?

(l) Table 1, it is suggested to add a third column to indicate the
number of clusters in each row.

(m) Line 123 on p5, kinetic model?

(n) Line 369 on p23, what is question mark for?

(o) Figure D2, kkal/mol?

R:We have made changes to the document to correct for these typos.
We are very grateful to the the referee for their careful eye!
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