Supplemental materials

Exploring wintertime regional haze in Northeast China: role

of coal and biomass burning

Jian Zhang¹, Lei Liu¹, Liang Xu¹, Qiuhan Lin¹, Hujia Zhao², Zhibin Wang³, Song Guo⁴, Min Hu⁴, Zongbo Shi⁵, Dantong Liu¹, Dao Huang¹, and Weijun Li^{1*}

¹Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China

²Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, 110016, China

³Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China

⁴State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

⁵School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK

*Corresponding Email: liweijun@zju.edu.cn (W. J. Li)

Figure S1. Linear correlations between equivalent circle diameter (ECD, d) and equivalent sphere diameter (ESD, D) and atomic force microscopy (AFM) images of individual particles during the clean day and Haze-I (a) and Haze-II (b).

2. Air quality map in Northeast China

Figure S2 shows three typical air quality maps of Northeast China on 31 October, 3 November, and 4 November, suggesting that a regional haze pollution occurred in Northeast China during the sampling period.

Figure S2. Daily air quality in many cities in Northeast China on 31 October, 3 November, and 4 November 2016 during the sampling period. The data are derived from China's Air Quality Online Monitoring and Analysis Platform (https://www.aqistudy.cn/), while the maps are from OpenStreetMap contributors 2019 distributed under a Creative Commons BY-SA License

3. Meteorological fields

Figure S3. Time series of meteorological parameters at the urban and mountain sites from 31 October to 6 November 2016: (a-b) wind speed and wind direction; (c-d) temperature and relative humidity (RH); (e-f) pressure.

4. Air mass backward trajectories

Figure S4. 24-h air mass backward trajectories before arriving at Shenyang during the sampling periods.

5. Concentrations of trace gases

Figure S5. Time series of $PM_{2.5}$ and two trace gases (i.e., CO and SO₂) in Harbin city, Changchun city, Shenyang city (the urban site), and the mountain site from 1 to 5 November 2016: (a) $PM_{2.5}$; (b) CO; (c) SO₂. These data have been obtained from China's Air Quality Online Monitoring and Analysis Platform, except for the $PM_{2.5}$ at the mountain site.

6. Size distribution of individual particles

Figure S6. Size distribution of individual particles at **(a)** the urban site and **(b)** the mountain site. Analyzed particle numbers are listed on the top of each rectangle.

7. OC/EC ratios

 Table S1. The ratios of OC/EC in Northeast China and North China Plain (NCP) during winter haze days.

Sampling site	Period	OC/EC	References
Urban site	31/10-4/11/2016 (Haze-I)	8.0	This study
Urban site	4-5/11/2016 (Haze-II)	25.4	This study
Mountain site	31/10-4/11/2016 (Haze-I)	10.6	This study
Mountain site	4-5/11/2016 (Haze-II)	27.9	This study
Beijing city	16-19/1/2010	4.5	Zhao et al. (2013)
Jinan city	13-23/12/2014	5.5	Chen et al. (2017)
Tianjin city	10-12/1/2013	5.3	Han et al. (2014)

References

Chen, S., Xu, L., Zhang, Y., Chen, B., Wang, X., Zhang, X., Zheng, M., Chen, J., Wang, W., Sun, Y., Fu, P., Wang, Z., and Li, W.: Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves, Atmos. Chem. Phys., 17, 1259-1270, https://doi.org/10.5194/acp-17-1259-2017, 2017.

Han, S., Wu, J., Zhang, Y., Cai, Z., Feng, Y., Yao, Q., Li, X., Liu, Y., and Zhang, M.: Characteristics and formation mechanism of a winter haze–fog episode in Tianjin, China, Atmos. Environ., 98, 323-330, https://doi.org/10.1016/j.atmosenv.2014.08.078, 2014.

Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: Analysis of a winter regional haze event and its formation mechanism in the North China Plain, Atmos. Chem. Phys., 13, 5685-5696, https://doi.org/10.5194/acp-13-5685-2013, 2013.