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Impact of Urban Emissions on a Biogenic Environment during the
wet season: Explicit Modeling of the Manaus Plume Organic
Chemistry with GECKO-A
Camille Mouchel-Vallon et al.

We thank the reviewer for their helpful comments. Below is our detailed answer to their specific comments, followed by the

marked up manuscript.

Response to Minor Comments

Comment 1: Page 7, lines 150-159 - (a) Please clarify the tuning of the MEGAN emissions. Isoprene emissions were ad-

justed by a factor of 7 - presumably this was to make the modeled concentrations match the PTRMS measurements. (b) How5

were monoterpenes assigned to the different isomers? The PTRMS data is not a helpful guide in this case, because it cannot

differentiate e.g., limonene from a-pinene.

Answer 1: Isoprene emissions were indeed adjusted to get the modeled concentrations to match the PTRMS measurements

on the ground at T3. Total monoterpenes emission was also adjusted to match the PTRMS measurements at T3. As we mention

in the text, we speciated the monoterpenes based on data collected by Jardine et al. (2015), who used TD-GC-MS measurements10

to measure vertical profiles of 12 different monoterpenes on a mast in a remote rainforest location. We modified the text to

clarify this.

Sect. 3.2.1: [. . . ] Monoterpenes were then speciated to match concentrations measured by Jardine et al. (2015) at the

top of an Amazonian rainforest canopy with a thermal desorption-gas chromatograph-mass spectrometer (TD-GC-MS).

Based on this emission inventory, we then simultaneously optimized isoprene and total monoterpenes emissions to match

the model with isoprene and total monoterpenes measured at T3 under clean conditions. [. . . ]

Comment 2: Line 285 - I am not sure what "see 2" means.

Answer 2: We meant to refer to Sect. 2, where we explains how clean and polluted experimental data where identified. This

has been fixed in the text.15

Comment 3: Figure 7 and section 4.2.1: Line 300 states that measured SOA in the clean case ranges from 0.6 to 2.5 ug/m3.

These seem to be the extremes, not the averages of the clean periods. The authors argue that the model performs better during
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the clean period than the polluted period. However, it looks like the blue and orange model lines run about halfway between

the clean and polluted data (with the exception that the model seems to do better for the 12pm clean point). Therefore it is not

obvious that the model performs better for clean conditions than polluted.20

Answer 3: L ooking at Fig. 7, to us it looks like in the clean case between 12 pm and 4 pm, the model at least falls in the

range of the mean values ± 1 std. dev. (the vertical range on the plot depict the standard deviation of the experimental data).

This is never the case for the polluted case simulation. So even if the clean model does not match the mean experimental value,

it is still within one standard deviation of the measured data which is better than the polluted model.

Comment 4: Line 310-311 first note that organosulfates are over predicted relative to the Glausius measurements, but that25

the over prediction is consistent with the same paper. Please clarify.

Answer 4: S imilarly to the previous comment, even if the model does not match the mean value measured in Glasius et al.

(2018), it is still between the mean and the mean + 1 std. dev. (depicted by the vertical range in Fig. 9). This is what we refer

to when we mention that the model values are "in the higher range of the reported measured values".

Comment 5: Figure 9 - what does the ">CO" functional group stand for?30

Answer 5: The >CO notation designates ketone functional groups, to be differentiated from aldehyde groups (-CHO). We

made the definition of the functional groups explicit in the figure caption.

Fig. 9: [. . . ] Functional groups are abbreviated as follows: aldehyde (-CHO), carboxylic acid (-CO(OH)), hydroxy (-OH),

nitrate (-ONO2), hydroperoxide (-OOH), sulfate (-OSO3) and ketone (>CO). [. . . ]
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Abstract. The GoAmazon 2014/5 field campaign took place in Manaus (Brazil) and allowed the investigation of the interac-

tion between background level biogenic air masses and anthropogenic plumes. We present in this work a box model built to

simulate the impact of urban chemistry on biogenic Secondary Organic Aerosol (SOA) formation and composition. An organic

chemistry mechanism is generated with the Generator for Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A)

to simulate the explicit oxidation of biogenic and anthropogenic compounds. A parameterization is also included to account5

for the reactive uptake of isoprene oxidation products on aqueous particles. The biogenic emissions estimated from existing

emission inventories had to be reduced to match measurements. The model is able to reproduce ozone and NOx for clean and

polluted situations. The explicit model is able to reproduce background case SOA mass concentrations but is not capturing the

enhancement observed in the urban plume. Oxidation of biogenic compounds is the major contributor to SOA mass. A Volatil-

ity Basis Set parameterization (VBS) applied to the same cases obtains better results than GECKO-A for predicting SOA mass10

in the box model. The explicit mechanism may be missing SOA formation processes related to the oxidation of monoterpenes

that could be implicitly accounted for in the VBS parameterization.
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1 Introduction

The Amazonian rainforest is the largest emitter of biogenic primary hydrocarbons on Earth (e.g. Guenther et al., 2012). Pho-

tochemistry in this tropical region is more photochemically active than other regions throughout most of the year, which15

stimulates the oxidation of the biogenic primary compounds by oxidants such as ozone and OH radicals. This part of the world

is consequently a substantial source of Secondary Organic Aerosol (SOA) (Martin et al., 2010; Chen et al., 2015a) produced

by condensation of oxygenated secondary organic species formed from gas and aqueous phase oxidation of biogenic com-

pounds (Claeys, 2004; Carlton et al., 2009; Paulot et al., 2009). On the other hand, the city of Manaus (Brazil) is a source

of anthropogenic pollution with 2.1 million inhabitants, ca. 600000 vehicles in circulation and 78 thermal power plants in its20

close surroundings (Abou Rafee et al., 2017). Manaus is situated at the confluence of the Rio Negro and Solimões rivers that

subsequently form the Amazon River (Fig. 1). This metropolis is isolated from the rest of South American populated areas by

over 1000 km of Amazonian tropical rainforest in every direction (e.g. Martin et al., 2016). Manaus is therefore a point source

of urban pollution in a vast rainforest, making it an ideal place to study chemical interactions of biogenic and anthropogenic

compounds. The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/5) experiment was designed to25

characterize the anthropogenic perturbations to the clean air masses influenced by Amazonian natural emissions (Martin et al.,

2016). The main instrumented site (T3) was situated approx. 70 km southwest of Manaus (see Fig. 1). In addition, the US De-

partment of Energy (DOE) Gulfstream research aircraft (G-1) conducted 16 research flights to sample the Manaus plume as it

was transported downwind and over the Amazon forest (Martin et al., 2016; Shilling et al., 2018). With varying meteorological

conditions, this allowed sampling of clean background air from the Amazon basin and polluted air from Manaus (Martin et al.,30

2016).

Several studies have already shown that the overall composition of particulate matter (PM) in remote areas is distinctly

different from urban areas, with anthropogenic PM being characterized by more sulfates and hydrocarbon-like compounds,

whereas remote PM contains more oxidized organic matter (e.g. Xu et al., 2015; Budisulistiorini et al., 2016). In the Manaus

environment, biogenic molecules would interact with the chemistry resulting from anthropogenic emissions. de Sá et al. (2018)35

have shown that the majority of sub micrometer particle mass at the T3 site is secondary. Several studies have investigated

how the biogenic nature of the SOA is affected by anthropogenic influence. For instance Aerosol Mass Spectrometer (AMS)

measurements reported by de Sá et al. (2017) have shown that the contribution of epoxydiols derived from isoprene to SOA

(IEPOX-SOA) amounts to 11 to 17% of the total organic mass when the Manaus plume is sampled, compared to 19 to 26%

under background conditions. Using an Oxidation Flow reactor (OFR) and tracers for different source types, Palm et al. (2018)40

concluded that the Volatile Organic Compounds (VOC) and Intermediate Volatility Organic Compounds (IVOC) sampled

during GoAmazon2014/5 could form SOA whose origin would be dominated by biogenic sources during the dry season, and

by both biogenic and anthropogenic sources during the wet season. With a regional model study of the GoAmazon 2014/5

situation, Shrivastava et al. (2019) concluded that the higher oxidative capacity in the urban plume results in an enhancement

of biogenic SOA production.45
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Figure 1. Map of the GoAmazon field campaign instrumented sites. Measurements used in this work came from the T3 site. ©Geocover,

©IBGE.

Models need to take into account the different nature of VOCs and SOA resulting from biogenic and anthropogenic chemistry

to accurately represent their interactions. This can be done by looking at this problem with what Pankow et al. (2015) call

a “molecular view”, as opposed to the “anonymized view” followed by current 3D models. The molecular view attempts to

predict SOA mass from the known and estimated properties of individually simulated organic compounds while the anonymized

view uses hypothetical properties (e.g. volatility, solubility) of a small number of lumped compounds. In a recent review,50

Heald and Kroll (2020) have reported on the recent progress in measurements of individual organic compounds, and how

experimentalists are getting close to achieving closure on organic carbon in both gas and aerosol phases (e.g. Gentner et al.,

2012; Isaacman-Vanwertz et al., 2018). As these measurements are now able to capture elemental formulas, double bonds,

some oxygenated functional groups and aromaticity (e.g. Yuan et al., 2017), they still do not provide individual molecular

identities. From this point of view, measurements are still restricted to a “formula view”. For the GoAmazon field campaign,55

Yee et al. (2018) were able to sample and identify 30 sesquiterpenes and 40 of their oxidation products at the T3 site with

a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG, Isaacman et al., 2014) but they do not achieve the

coverage needed to approach the “molecular view”.

3D models that were run for the Manaus situation offer an anonymized view of SOA composition (Shrivastava et al., 2019)

because they rely on a Volatility Basis Set parameterization (VBS, Donahue et al., 2006). The Generator for Explicit Chemistry60

and Kinetics of Organics in the Atmosphere (GECKO-A, Aumont et al., 2005; Camredon et al., 2007) is an excellent tool
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to model atmospheric organic chemistry with a detailed molecular view. GECKO-A is an automated chemical mechanism

generator built to write the explicit chemistry of given precursors by following a prescribed set of systematic rules. This

set of systematic rules relies on experimental data when available and Structure Activity Relationships (SAR) to determine

unknown kinetic or thermodynamic constants. It has previously been run in box models to evaluate processes like secondary65

organic aerosol formation (Valorso et al., 2011; Aumont et al., 2012; Camredon and Aumont, 2006; Camredon et al., 2007) and

dissolution of organic compounds (Mouchel-Vallon et al., 2013). It was also applied to simulate chamber experiments (Valorso

et al., 2011; La et al., 2016) and urban and biogenic plumes (Lee-Taylor et al., 2011, 2015).

In this work, a box model is run to simulate the evolution of an Amazonian air mass intercepting Manaus emissions during the

wet season. Emissions of anthropogenic and biogenic primary VOCs are estimated with available data. The chemical scheme70

describing the explicit oxidation of these primary compounds is generated with GECKO-A. The resulting detailed simulation

is then used to explore the impact of Manaus emissions on the Amazonian biogenic chemistry. Comparisons with aerosol

mass spectrometer data and the VBS parameterization are carried out to identify important processes involved in biogenic

SOA formation that may not be accounted for in GECKO-A. Finally the potential for reduction of the explicit mechanism is

estimated.75

2 Experimental Data

The main instrumented site (referred to as T3 hereafter) of the GoAmazon 2014/5 field campaign was situated 70 km west of

Manaus (Fig. 1). Two aircraft were also deployed, a G-159 Gulfstream I (G-I) (Schmid et al., 2014) that flew at low altitude and

mostly sampled the boundary layer and a Gulfstream G550 (HALO) that flew higher altitudes and sampled the free troposphere

(Wendisch et al., 2016). The flight tracks are depicted in Martin et al. (2016) and Wendisch et al. (2016). The G-1 airplane80

mainly flew daytime transects of the Manaus plume between the city and the T3 site.

The detailed instrumentation deployed at T3 and in the airplanes has been described elsewhere (Martin et al., 2016). For this

study we mainly relied on ground deployed instruments briefly described here.

Ozone concentration measurements made with a Thermo Fisher Model 49i Ozone Analyzer were obtained from the Mobile

Aerosol Observing System-Chemistry (MAOS-C).85

Due to some issues with the NOx analyzer deployed at T3 by the MAOS-C during the wet season, NOx data reported here

is weakly reliable. The values reported here are only qualitative indications of NOx levels in the studied period.

OH radicals concentrations were provided by an OH chemical ionization mass spectrometer (Sinha et al., 2008, OH-CIMS).

Organic compounds in the gas phase were measured with selected reagent ion proton transfer reaction time-of-flight mass

spectrometer (SRI-PTR-ToFMS, Jordan et al., 2009a, b). Aerosol composition was monitored by a high-resolution time-of-90

flight aerosol mass spectrometer (HR-ToF-AMS) (DeCarlo et al., 2006; de Sá et al., 2018, 2019).

For the purpose of comparisons with the model, we need to be able to separate time periods representing clean and polluted

episodes. Using a fuzzy c-means clustering algorithm (Bezdek, 1981; Bezdek et al., 1984) applied to T3 measurements, de Sá

et al. (2018) were able to identify four different clusters corresponding to (i) fresh or (ii) aged (2+ days) biogenic production,
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Table 1. Box model constraints used in the clean and polluted setups

Clean Background Manaus

NO soil emission [molec cm−2 s−1](a) 8.3×109 –

Aerosol number concentration [cm−3](b) 5×102 1×104

Aerosol pH 3.0 1.5

Aerosol sulfate concentration [µg m−3](b) 0.3 0.4

Aerosol nitrate concentration [µg m−3](b) 0.05 0.1

Hygroscopicity Parameter (κ)(c) 0.15 0.15

(a)Shrivastava et al. (2019) (b)de Sá et al. (2018) (c)Thalman et al. (2017)

and air masses influenced by the (iii) northern or (iv) southern parts of Manaus. Using the timeseries contribution of these95

clusters, we labeled as background air masses that were identified as being composed of at least 50% of any clean cluster (i

or ii). Conversely, air masses that were identified by de Sá et al. (2018) as being composed of at least 50% of any polluted

cluster (iii and iv) were labeled as polluted. The clustering methods constrained the classification to only include wet season

afternoon air masses that were not exposed to rain in the previous day (see de Sá et al., 2018). These limitations match with

our model restrictions which do not include cloud chemistry, nor fire emissions that would be important during the dry season.100

For comparison with the model, experimental data were hourly averaged for each cluster.

3 Model Setup

A Lagrangian box model was built to simulate chemistry in the planetary boundary layer and the residual layer for an air

parcel traveling over the Amazonian forest and Manaus. Because experimental data compared to the model only contain air

masses that were not exposed to rain in the previous day (see Sect. 2 and de Sá et al., 2018), the model simulates biogenic105

conditions for one day, assuming the air mass was washed out by rain prior to that day. After the one day spinup, biogenic

emissions are replaced by urban emissions for one hour during the second day to represent the interaction of the air mass with

the Manaus urban area. After the simulated encounter with Manaus, the model inputs return to biogenic emissions until the

end of the second day. This simulation is defined hereafter as the “polluted” case. Another simulation is run where the box is

only subjected to biogenic emissions for two days, without any exposure to urban emissions to simulate a background case.110

This simulation is defined hereafter as the “clean” case. This section describes the box model setup, how the emissions were

defined and the chemical mechanism used for this study.
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Figure 2. Schematic depiction of the box model setup used in this work. The continuous black line shows the time evolution of the PBL

height. The dashed black line depicts the top of the residual layer box. The brown shaded area is the period when the box is subjected to

Manaus emissions. For the rest of the time period, the box is subjected to biogenic emissions (light and dark green shaded areas). The dark

green shaded area is approximately the period when the box would be over the main instrumented site T3, assuming a travel time of 4 to 6

hours.

3.1 Box model

This study relies on a box model described in this section. It includes emissions from the forest and the city, deposition and

chemical evolution of the trace gases. Daytime growth of the planetary boundary layer is also simulated, with mixing with the115

residual layer.

3.1.1 Boundary Layer

The model includes two boxes on top of each other separated by a moving boundary representing the height of the boundary

layer. The bottom box extends from the surface to the top of the planetary boundary layer (PBL). The top box extends from

the top of the planetary boundary layer to 850 m and represents the residual layer (RL) (see Fig. 2). The daytime PBL height120

evolution is parameterized according to the Tennekes (1973) approach and was calculated using the Second-Order Model for

Conserved and Reactive Unsteady Scalars (SOMCRUS, Lenschow et al., 2016) (see Fig. 2). At sunset, stratification is assumed

to quickly shrink the PBL to 50 m which results in the contents of the PBL being reallocated to the RL. During the night, the

PBL is constrained to linearly grow to reach the next morning level. The PBL height evolution is the same for each of the two

simulated days. During the day, the PBL is therefore slowly incorporating residual chemicals resulting from the previous day125

and night chemistry. Thalman et al. (2017) report PBL heights estimated from ceilometer measurements during the wet season

in the central Amazonian Forest, for polluted and background conditions. The measurements reach a maximum of 800 m at

around 3pm local time. This value was used to further constrain the PBL height evolution by scaling the SOMCRUS output to

reach this measured PBL height maximum. The growth and shrinking of the PBL dilute the expanding box and transfer gases

from the shrinking box to the expanding box. This is parameterized according to Eqs. 1 and 2:130
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dCb

dt
=





1
h

dh
dtCt− 1

h
dh
dtCb if dh

dt > 0

0 if dh
dt ≤ 0

(1)

dCt

dt
=




0 if dh

dt ≥ 0

− 1
H−h

dh
dtCb +

1
H−h

dh
dtCt if dh

dt < 0
(2)

Cb and Ct [molec cm-3] are chemical species concentrations in the PBL (bottom) and RL (top) boxes respectively. h [m]

is the variable height of the PBL and H [m] is the fixed altitude of the RL top. The first term in each equation describes the

addition of material coming from the shrinking box and the second term describes the dilution of the growing box. Following135

these equations, mixing happens in two stages: (i) the long RL entrainment into the PBL over day time and (ii) the rapid transfer

of the PBL to the RL at sunset. The box model approach assumes rapid mixing in both layers and that chemistry is applied to

well-mixed concentrations. The residual layer is also slowly mixed with the free troposphere. The free troposphere is assumed

to be a fixed reservoir of CO (80 ppb) and ozone (15 ppb, e.g. Browell et al., 1990; Gregory et al., 1990; Kirchhoff et al., 1990).

The subsidence velocity is constant and fixed at 0.1 cm s−1 (e.g. Raes, 1995).140

Temperature is assumed to follow a sinusoidal daily variation, with an average of 27 °C, an amplitude of 4 °C and a maximum

at 6 pm local time. Relative humidity is initially set at 75% at 6 am (23 °C) and is free to evolve with temperature changes

assuming water vapor concentration is constant.

3.2 Emissions

3.2.1 Biogenic Emissions145

VOC emissions from the rainforest were estimated with the Model of Emissions of Gases and Aerosols from Nature (MEGAN

v2.1, Guenther et al., 2012). Biogenic emissions on March, 13th 2014 (the golden day of the GoAmazon field campaign, see

de Sá et al., 2017) in a domain situated in the forest around Manaus were averaged to obtain total isoprene and monoterpene

hourly averaged emissions for a day typical of the wet season, without any recorded rain event. Monoterpenes were then

speciated to match concentrations measured by Jardine et al. (2015) at the top of an Amazonian rainforest canopy
::::
with

:
a
:::::::
thermal150

::::::::::::
desorption-gas

:::::::::::::::::
chromatograph-mass

:::::::::::
spectrometer

::::::::::::
(TD-GC-MS). Based on this emission inventory, we then simultaneously

optimized isoprene and
::::
total monoterpenes emissions to match the model with T3 isoprene and total monoterpenes

::::::::
measured

:
at
:::
T3

:
under clean conditions. This resulted in the need to reduce isoprene emissions by a factor of 7. Using measurements from

a similar site in Amazonia, Alves et al. (2016) reported that MEGAN 2.1 overestimated isoprene emissions by a factor of 5 on

average during the dry season. They assumed that the T3 site configuration (a clearing in the forest, near a road) could affect155

local isoprene concentrations compared to average Amazonian emissions. For instance measurements in the Amazon rainforest

by Batista et al. (2019) indicate that biogenic emissions exhibit large intermediate scale heterogeneity, with estimated emission

variations of 220% to 330%. Recent satellite based estimates of biogenic emissions also reported that MEGAN overestimates

isoprene emissions in Amazonia by 40% (Worden et al., 2019). In a similar way, monoterpenes emissions had to be reduced by
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Figure 4. Diurnal evolution of simulated traffic emissions in Manaus deduced from inventories in Manaus and Saõ Paulo. (a) NOx, SO2, CO

and total VOC daily emissions. (b) Carbon number distribution of Manaus emissions at noon. Total daily emissions are indicated for lighter

organic compounds (VOC) and less volatile compounds (IVOC). The dashed line denotes the separation between VOCs (left) and IVOCs

(right).

a factor of 8 compared to the MEGAN values. Figure 3 depicts the resulting daily biogenic emission cycle. Isoprene emissions160

dominate monoterpene emissions by approximately an order of magnitude. δ-limonene is the most emitted monoterpene (45%),

followed by trans-β-ocimene (18%) and α-pinene (17%). NO soil emissions are also accounted for with a constant flux of

8.3×109 molec cm−2 s−1 following Shrivastava et al. (2019).
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3.2.2 Manaus Emissions

The emissions used to represent the influence of Manaus are shown in Fig. 4a and were calculated following the methodology165

described in Abou Rafee et al. (2017) and Medeiros et al. (2017). Traffic emissions have been estimated from vehicle use

intensity and emission factors for CO, NOx, SO2 and VOCs depending on type of fuel use in Manaus (Abou Rafee et al.,

2017). VOC speciation is assumed to be similar to the average speciation of the vehicle fleet emissions of São Paulo, Brazil

in 2004 (Martins et al., 2006). Hourly distribution of the traffic emissions is considered to be similar to the hourly traffic

distribution in São Paulo (Andrade et al., 2015). In the past decades, Brazil has become known for pioneering the large scale170

use of ethanol based biofuels. However, due to its isolation and being distant from south Brazilian biofuel producing regions,

Manaus traffic doesn’t involve consumption of significant amounts of ethanol-based fuel.

The difference in the fuel blend used in São Paulo and Manaus can introduce errors in the traffic emissions VOC speciation.

For instance, a recent study by Yang et al. (2019) showed that the combustion of fuels with higher ethanol content emits

significantly less carbon monoxide and more acetaldehyde. Schifter et al. (2020) showed similar results, and also suggested175

that ethanol blends emit smaller amounts of simple aromatic compounds (e.g. benzene, toluene). This speciation uncertainty can

especially have an impact on oxidants concentrations. Schifter et al. (2020) reported for instance that fuels containing ethanol

would potentially produce less ozone after the oxidation of emitted organic species than fuels without ethanol. Moreover, the

lifetime of OH is likely to change depending on the speciation of emitted VOCs due to varying reactivities with respect to OH.

In the same way that the potential for ozone formation could depend on the use of ethanol fuel blends, it is also possible that180

the potential for SOA formation would depend on these fuel blends too.

This traffic emission estimate does not include Intermediate Volatile Organic Compounds (IVOC) which would mainly be

produced by diesel vehicle emissions (Gentner et al., 2012, 2017). Zhao et al. (2015, 2016) showed that the IVOC to VOC

emissions ratio lies between 4% for gasoline vehicles and 65% for diesel vehicles. Knowing that diesel vehicles account for

ca. 45% of the total driven distance in Manaus (Abou Rafee et al., 2017), we therefore assume that IVOC total emissions are185

approximately equal to 30% of total VOC emissions. To estimate the distribution of species resulting from IVOC emissions,

we assumed that the distribution in volatility is similar to the distribution used to simulate traffic emissions in Mexico City in

Lee-Taylor et al. (2011), with n-alkanes from C12 to C25 acting as surrogates for these heavier emitted organic compounds.

The resulting distribution of urban organic emissions at noon as a function of the number of carbon atoms is presented in

Fig. 4b. As reported in the Gentner et al. (2017) review, gasoline emissions have a maximum for C8 species, with no emission190

of importance above C12, whereas diesel vehicles emit species from C10 to C25, with a peak at C12. These features are present in

the emissions estimated in this work, with the gasoline peak around C6-7 and the diesel maximum at C13. Gentner et al. (2017)

also report that half of the gasoline VOC emissions are composed of linear and branched alkanes, the other half consisting of

aromatics and cycloalkanes. In our estimates of gasoline emissions (C<12) the proportion of branched alkanes is smaller, alkenes

constitute a more important fraction of emitted C4-6 species, branched cycloalkanes are missing, and aromatics constitute the195

majority of emissions of C7-10 compounds. These differences could represent differing sources of fuels or different distributions

of vehicle brands and ages. In the case of diesel emissions, Gentner et al. (2017) report that they are approximately equally
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distributed between aromatics, branched cycloalkanes, bicycloalkanes and branched alkanes whereas our method leads to diesel

emissions being only constituted of n-alkanes, which are used here as surrogate species for the entire mixture.

Choosing alkanes as surrogates for emitted IVOCs is likely to introduce uncertainties to SOA produced from their oxidation.200

Lim and Ziemann (2009) carried out multiple chamber experiments that investigated the impact of branching and rings on

alkanes SOA yields. For instance they showed that SOA yields range from a few percent for branched alkanes with 12 carbon

atoms to 80% for cyclododecane while n-dodecane has an SOA yield of ≈ 32%. La et al. (2016) simulated these experiments

with GECKO-A and they were able to reproduce this experimentally observed behavior. This means that without a detailed

inventory of emitted IVOCs, the uncertainty on the SOA yield from IVOCs is high in our version of the model. It should be205

noted that the range of measured SOA yields for structurally different compounds with the same number of carbon atoms

seems to peak for C10 to C13 alkanes. The range of observed SOA yields in Lim and Ziemann (2009) decreases after this peak.

For instance, SOA yields for C15 alkanes of various structures range from 45% to 90%. We can therefore expect the IVOCs

SOA yield to be highly sensitive to the speciation of compounds ranging from C12 to C14, but this sensitivity should decrease

for heavier molecular weight species.210

Additionally, emissions from 11 local thermal power plants (TPP) and one oil refinery located in the vicinity of Manaus were

obtained from the data presented in Medeiros et al. (2017). Based on monthly statistics of fuel use in each of the TPP and the

oil refinery, combined with emission factors of CO and NOx for each type of fuel (diesel, fuel oil, natural gas), we calculated

CO and NOx emissions for February, March and April 2014. These total emissions were then averaged over the whole surface

area of Manaus (377 km2, Abou Rafee et al., 2017). Total SO2 emissions were taken from Abou Rafee et al. (2017) and added215

to the urban emissions for the considered Manaus area.

3.3 Chemical Mechanism

3.3.1 GECKO-A

All emitted organic compounds were used as inputs to GECKO-A to automatically generate the chemical scheme used in this

study. The GECKO-A protocol has been described in detail in Aumont et al. (2005) and updated in Camredon et al. (2007),220

Valorso et al. (2011), Aumont et al. (2013), and La et al. (2016). Partitioning of low volatility compounds to the aerosol phase

is described dynamically as in La et al. (2016). Vapor pressures are estimated with the Nannoolal et al. (2008) structure activity

relationship. As isoprene first oxidations steps have been widely studied in the literature, there is no need to automatically

generate them with GECKO-A. Isoprene chemistry first two generations of oxidation were therefore taken from the Master

Chemical Mechanism 3.3.1 (Jenkin et al., 1997; Saunders et al., 2003; Jenkin et al., 2015, MCM, e.g.). With 12 biogenic225

and 53 anthropogenic precursors ranging from C2 to C25, some reductions are carried out to reduce the size of the generated

mechanisms. Species with an estimated vapor pressure below 10−13 atm are assumed to entirely partition to the aerosol phase

so quickly that a description of their gas phase oxidation is not needed (Valorso et al., 2011). Furthermore, lower yield, longer

chain species are lumped with chemically similar compounds according to a a hierarchical decision tree based on molecular

structure (Valorso et al., 2011). The resulting chemical scheme contains 23 million reactions involving 4.4 million species of230
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which 780000 can partition into the aerosol phase. The time integration in the two-box model setup takes approximately 0.5

computing hour per simulated hour on 16 cores (Computational and Information Systems Laboratory, 2017).

3.3.2 Isoprene SOA formation

GECKO-A treats SOA formation through a dynamic approach that converges towards the equilibrium defined by the Pankow

formulation of Raoult’s Law (Pankow, 1994). However it is likely that isoprene SOA (ISOPSOA) formation is not only con-235

trolled by vapor pressure (Paulot et al., 2009). Among factors that have been identified to play a role in ISOPSOA are: aqueous

phase oxidation in deliquescent aerosol (e.g. Blando and Turpin, 2000; Ervens et al., 2011; Daumit et al., 2016), organic sul-

fate/nitrate formation via interaction with the inorganic component of the aerosol (e.g. McNeill et al., 2012; Pratt et al., 2013;

Wang et al., 2018; Glasius et al., 2018; Jo et al., 2019), and accretion reactions in the bulk aerosol (e.g. oligomerization, dimer-

ization, Altieri et al., 2006; Liu et al., 2012; Renard et al., 2015). None of these processes is currently implemented in the240

GECKO-A framework. For this study we use a simplified approach based on Marais et al. (2016) allowing the representation

of ISOPSOA formation depending on the assumed composition of the inorganic aerosol. This parameterization describes the

heterogeneous reactive uptake of important isoprene oxidation products. This accounts for the diffusion of the gases to the

surface of the wet aerosol particle, their accomodation to the surface and their dissolution. The relevant parameters used here

are listed in Marais et al. (2016). Isoprene epoxides (epoxydiols and hydroxyepoxides) react in the aqueous phase to open245

their epoxide ring via acid-catalized reactions. These reactions are followed by either the nucleophilic addition of (i) H2O to

form methyltetrols or (ii) sulfate and nitrate ions to form organosulfates and organonitrates. The uptake of epoxides therefore

depends on the acidity of particles, as well as their sulfate and nitrate content. These parameters had to be constrained in the

model and were deduced from the T3 AMS measurements and literature data (see Table 1). On the other hand, isoprene ox-

idation products containing nitrate moieties (dihydroxydinitrates and isoprene nitrate) hydrolyze and form polyols and nitric250

acid.

3.4 Dry Deposition

Dry deposition is treated following the Wesely (1989) parameterization. This parameterization is a resistance model that allows

calculating dry deposition velocities based on multiple resistances defined as properties of the surfaces. The city and the forest

were respectively attributed the properties of surfaces defined as urban and deciduous forest in the Wesely (1989) paper. The dry255

deposition velocity of a given species depends on its solubility expressed by its Henry’s law coefficient. Because the solubility

of most organic compounds generated with GECKO-A is unknown, they are here estimated using the GROupcontribution

Method for Henry’s law Estimate SAR (Raventos-Duran et al., 2010).
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Figure 5. Modeled (lines, second day) time evolution of primary species concentrations in the Lagrangian box-model described in Sect. 3.1,

average experimental concentrations measured at the T3 site (dots) and in the airplane (triangles). The vertical range of the experimental

data denotes the standard deviation of measured concentrations during events identified as clean (top, blue) and polluted (bottom, orange).

The airborne data was measured during plume transects. For each transect, aircraft distance from Manaus was converted to a time separation

from Manaus assuming the plume leaves the city at 8am and arrives above T3 at 2pm.

4 Results and Discussion

4.1 Gas Phase Organics: Primary Organic Compounds and Oxidants260

Figure 5 depicts the time evolution of selected primary organic species, and compares the model with available measurements.

In the clean situations, measured isoprene mixing ratios range from 2–3 ppb at noon to 5–6 ppb at the end of the afternoon.

The sum of all monoterpenes follows a similar increasing trend in the afternoon, from 0.1 to 0.3 ppb. After adjusting biogenic

emissions rates (see Sect. 3.2.1), the model is able to reproduce these mixing ratios, with isoprene and monoterpenes being

simulated to the average of experimental values. In polluted situations, the model shows a peak of anthropogenic organic265

compounds when the plume encounters Manaus emissions between 8 and 9 am. This peak reaches 0.2 ppb and 0.3 ppb

respectively for benzene and toluene (Fig. 5). Their levels decay for the remainder of the day. Because the T3 measurement

site is situated 4 to 6 hours downwind of Manaus, measurements of benzene and toluene can be compared to decayed modeled

12



situation clean polluted GECKO−A T3 data

0.1

1.0

10.0

0 4 8 12 16 20 24
Local Hour

N
O

x
 [
p
p
b

]

10

20

30

40

50

0 4 8 12 16 20 24
Local Hour

O
3
 [
p
p
b
]

0

5.0 × 10
6

10
7

1.5 × 10
7

2.0 × 10
7

0 4 8 12162024
Local Hour

O
H

 [
m

o
le

c
 c

m
−

3
]

Figure 6. Experimental (dots, T3 site) and modeled (lines, second day) time evolution of NOx (left, note log scale), ozone (middle) mix-

ing ratios and OH radicals concentrations (right). The vertical range of the experimental data denotes the standard deviation of measured

concentrations at T3 during events identified as clean (blue) and polluted (orange).

levels after that time span. The modeled mixing ratio of benzene matches the measurements, between 0.4 and 0.6 ppb, while

modeled toluene is closer to the higher range of measurements, between 0.2 and 0.6 ppb during the afternoon. Figure 5 also270

displays airborne measurements of the same anthropogenic compounds during plume transects. The modeled mixing ratios of

benzene and toluene decay in a similar way to the concentrations measured at each plume transects. The modeled peak is not

seen by the aircraft measurements as the aircraft may not be flying close enough to the emission sources to capture it.

Pristine forest conditions are characterized in the model by low NOx emissions from the soil (8.3× 109 molec cm−2 s−1 ≈
1.5× 10−5g m−2 h−1, see Table 1). The model predicts NOx mixing ratios around 50 ppt in the afternoon. In the polluted275

case, the background air mass is exposed to a complex mixture of anthropogenic compounds emissions as well as three orders

of magnitude higher NOx emissions (≈ 1× 10−2g m−2 h−1, see Fig. 4). This leads to modeled NOx around 1 ppb in the

afternoon, after a 48 ppb peak in the city in the morning. The increase in NOx is not as important in the experimental data, but

these NOx measurements are highly uncertain, which could explain the modeled discrepancies.

Daytime ozone mixing ratios are modeled around 9 ppb in the clean situation, in the lower range of measured values. The280

higher NOx levels result in strong ozone production in the polluted plume, characterized by mixing ratios of 15 ppb at noon

and up to 51 ppb at the end of the afternoon. During this increase of ozone production, the model matches T3 measurements

around around 23 ppb at 1pm. On average, measured ozone in the polluted case is a factor of 2 higher than the clean case

while the model sees an increase by a factor of 2 to 4 between noon and 6pm. It should also be noticed that the model

completely separates clean and polluted situation, which increases the contrast for all variables compared to the classification285

of the measurements that always includes some degree of mixing (see
::::
Sect. 2). It should also be noted that the nighttime decay

of ozone can be explained by dry deposition to the forest surface.

Furthermore, VOCs in the plume are exposed to high OH concentrations, with modeled concentration reaching 1.9×107

molec cm−3 in the afternoon. In the clean background, OH concentrations only reach 2×106 molec cm−3. These clean values

are in the lower range of reported measurements at T3 Unlike the model, OH measurements averaged at T3 and identified as290

clean and polluted did not exhibit any difference between both situations (Fig. 6). In that case, there could be issues with the OH

measurements at T3. Indirect constraints have shown differences between clean and polluted situations. Liu et al. (2018) derived
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Figure 7. Experimental (circles, T3 site) and modeled (lines, second day) time evolution of SOA mass concentration. The vertical range of the

experimental data denotes the standard deviation of measured concentrations. Cases are identified as clean (blue) and polluted (orange). The

continuous lines depict the GECKO-A model run and the dashed lines depict the modeled SOA mass predicted with the VBS approach from

Shrivastava et al. (2019). The dotted lines depict modeled SOA mass predicted with the VBS approach without including aging processes

(see Sect. 4.3).

OH concentrations from isoprene and its oxidation products measurement. They showed that noontime OH concentrations vary

between 5×105 molec cm−3 in clean situations to 1.5×106 molec cm−3 in polluted events. The Shrivastava et al. (2019) 3D

model exhibits a similar OH behavior to this work with concentrations at T3 ranging from 2∼5×105 molec cm−3 (clean) to295

more than 4×106 molec cm−3 (polluted). The GECKO-A model is therefore likely to be overestimating OH concentrations in

the urban plume by a factor of 5 to 10. This could stem from either overestimating NO or underestimating VOCs emissions in

the city.

4.2 Modeled Urban Impact on SOA Mass and Composition

4.2.1 Modeled vs Measured SOA Mass Concentrations300

At the measurement site, SOA mass concentrations measured by AMS range from 0.6 to 2.5 µg m−3 in clean conditions. In

polluted conditions, SOA mass concentrations range from 1.9 to 2.9 µg m−3 (Fig. 7). In the clean case, the modeled SOA mass

is within the range of T3 measurements, increasing from 0.6 µg m−3 at sunrise to 2.16 µg m−3 at the end of the afternoon.

In the polluted situation, modeled SOA mass concentration is very similar to the clean simulation, with only a 20 minutes

delay in the start of SOA production. The maximum concentration is 2.23 µg m−3, only a 3.5% increase compared to the clean305

simulation, while experimentally this increase averaged around 56%. Because the model is unable reproduce the observed

urban SOA enhancement, in the polluted situation the model underestimates SOA mass by 10 to 45%.
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Figure 8. Modeled time evolution of particle phase organosulfates mass concentration. Cases are identified as clean (blue) and polluted

(orange). The point and vertical line depicts the average and standard deviation of measurements reported in Glasius et al. (2018) for the wet

season.

4.2.2 Organosulfates

Figure 8 depicts modeled particle phase organosulfates, with mass concentrations ranging from 104 ng m−3 in the morning to

188 ng m−3 in the evening in the clean case scenario. The polluted situation decreases late afternoon concentrations to 155 ng310

m−3. These values are in the higher range of the reported measured range of 104±73 ng m−3 in Glasius et al. (2018). This is

consistent with Glasius et al. (2018) who reported that the main source of the measured organosulfates is IEPOX heterogeneous

uptake, which is the only pathway represented in this model. Furthermore, this shows that the combination of the MCM 3.3.1

isoprene oxidation mechanism to produce IEPOX and the reactive uptake parameterization from Marais et al. (2016) is able to

predict realistic levels of organosulfates, assuming that aerosol properties are also realistic (hygroscopicity, inorganic sulfates315

and pH).

4.2.3 Modeled Organic Functional Groups

Figure 9 depicts the distribution of organic functional groups in the particle phase. In the clean case scenario, total function-

alization, defined as the number of functional groups per carbon atom, is constant around approximately 0.5. As expected for

a low-NOx situation, approximately 40% of these functional groups are hydroxy moieties and 30% of the organic functional320

groups are hydroperoxides. The remaining functional groups are dominated by carbonyls and nitrates to a lower extent. Man-

aus pollution has the direct effect of reducing total functionalization by 10% because of the contribution of long-chain primary

hydrocarbons to SOA formation in the plume. Oxidation of organics in the higher NOx environment also leads to an increase

of nitrate moieties contribution at the expense of hydroxy and hydroperoxide moieties.
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Figure 9. GECKO-A modeled time evolution of particle phase organic functionalization for the clean (left panel) and the polluted (right

panel) cases.
::::::::
Functional

::::::
groups

::
are

:::::::::
abbreviated

::
as

::::::
follows:

:::::::
aldehyde

:::::::
(-CHO),

::::::::
carboxylic

:::
acid

:::::::::
(-CO(OH)),

:::::::
hydroxy

:::::
(-OH),

:::::
nitrate

::::::::
(-ONO2),

::::::::::
hydroperoxide

:::::::
(-OOH),

:::::
sulfate

:::::::
(-OSO3)

:::
and

::::::
ketone

:::::
(>CO). The y-axis is read as the number of a given organic function per carbon atom,

i.e. in the clean case there is in total approximately one organic function for every two carbon atom.

The change in overall modeled SOA composition between clean and polluted cases is quite small. AMS measurements give325

a similar impression of a small impact of polluted situations on atomic ratios (Fig. 10), with only a slight increase of O/C ratio

(see Sect. 4.2.4). Other analyses of airborne and ground AMS data (de Sá et al., 2018; Shilling et al., 2018) similarly show that

the relative contribution of hydrocarbon-like organic aerosol (HOA) slightly increases in the polluted plume at the expense of

isoprene derived SOA. The model and the AMS data support the idea that the impact of anthropogenic emissions is mostly

seen on the total organic aerosol mass, and that all constituents of the organic aerosol phase increase approximately in the same330

way.

4.2.4 Modeled vs Measured Atomic Ratios

Figure 10 depicts simulated, ground measurements and airborne measurements of O/C and H/C atomic ratios in aerosol par-

ticles on a van Krevelen diagram. At the T3 site, experimental O/C ratios range from 0.7 to 1 in both clean and polluted

conditions while H/C ratios range from 1.2 to 1.4. Additionally airborne measurements above the T3 site report O/C ratios335

ranging from 0.35 to 0.9 and H/C ratios ranging from 1.5 to 1.9. Compiling multiple field campaigns AMS measurements,

Chen et al. (2015b) reported van Krevelen diagrams slopes (H/C vs O/C) ranging from -1 to -0.7. A linear regression over the

data points from both airborne and ground measurements (dotted line on Fig. 10) gives a slope of -1.3, close to values reported

in Chen et al. (2015b). This means that T3 air masses may be sampled at a later stage of oxidation than the airborne samples,

possibly because they were exposed to higher levels of oxidants than the higher altitude air masses.340

The modeled average particle phase O/C ratios range from 0.77 to 0.86, within the ratios measured at the T3 site. Modeled

H/C ratios are however overestimated compared to T3 site measurements, ranging from 1.89 to 1.94. Claflin and Ziemann

16



y = 2.4 − 1.3 x

GECKO − A
w dimer.

w frag.

T3

G − 1

G − 1 and T3

1.2

1.4

1.6

1.8

2

0.4 0.6 0.8 1.0
O/C

H
/C

model

GECKO−A

w/ dimerization

w/ fragmentation

situation

clean

polluted

source

G−1

T3

Figure 10. T3 site (colored triangles), airborne (black dots) and modeled (lines, afternoon of second day) van Krevelen diagrams of H/C

(y-axis) vs O/C (x-axis) average ratios in SOA. The vertical and horizontal range of the experimental data denotes the standard deviation of

measured concentrations. Cases are identified as clean (blue) and polluted (orange). Airborne data were filtered to only include measurements

taken within 20 km of the T3 site. The dotted line and the associated equation depict the linear regression obtained with all experimental

points (T3 and G-1). Modeled lines depict three different calculations (see Sect. 4.2.4): the reference calculation (continuous lines, labeled

GECKO-A), a calculation where all C10 are supposed to be dimerized (short dashes, labeled w/ dimer.) and a calcualtion where all C10 are

supposed to fragment (long dashes, labeled w/ frag.)

(2018) reported experimental evidence that the reaction of β-pinene with NO3 produces oligomers derived from β-pinene

C10 oxidation products. For instance one of the proposed mechanisms for dimerization of a C10H17O5 (H/C = 1.7) produces

a C20H30O9 (H/C = 1.5). In the GECKO-A modeled aerosol phase, after organosulfate and nitrates derived from isoprene,345

C10 compounds dominate OA composition. As examples, a C10H20O6 (H/C = 2; O/C = 0.6) and a C10H18O7 (H/C = 1.8; O/C

= 0.7) derived from limonene are the second and third most important organic species in the aerosol phase on a molecule

basis. Following the dimerization pathways suggested by Claflin and Ziemann (2018), these compounds could potentially form

C20H36O11 (H/C = 1.8; O/C = 0.55) and C20H32O13 (H/C = 1.6; O/C = 0.65) dimers respectively. Dimerization, or similar

oligomerization processes, would then possibly move the modeled van Krevelen diagram towards lower H/C ratios, closer to350

AMS measurements.

As a test, we generalized this estimation to all C10 in the aerosol phase: we replaced each C10 by the corresponding C20 and

halved its concentration. In this way, we can calculate what would H/C and O/C ratios be in the aerosol phase if aging processes
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only dimerized C10 compounds. The resulting modeled van Krevelen diagram is reported on Fig. 10 (labeled w/ dimer.). The

impact of C10 dimerization is relatively strong on O/C ratio, ranging from 0.66 to 0.78 and remaining in the range of measured355

O/C ratios at T3 site and in the aircraft. H/C ratios are only reduced to 1.88–1.94, still 50% higher than measured H/C at the

T3 site and 20% higher than airborne data.

Oppositely, GECKO-A could be missing processes that would fragment the aforementioned two C10 compounds. Fragment-

ing C10H18O7 into a C4H6O4 (H/C = 1.5; O/C = 1) and a C6H10O5 (H/C = 1.7; O/C = 0.8) species would bring the average

H/C ratio down from 1.8 to 1.6. This possibility of missing fragmentation processing means that either the modeled gas phase360

chemistry doesn’t compete enough with condensation to fragment these species, or these C10 species should be fragmented by

heterogeneous or condensed phase processes in the particles themselves, which are not accounted for by the model. It should

be noted that because the fragmented compounds are lighter, they would exhibit higher volatility. However this does not neces-

sarily mean that the SOA mass would decrease because these shorter species are still oxygenated, maybe enough to contribute

to SOA mass through solubility controlled processes in the same fashion as what is known about isoprene oxidation products.365

As another test, we also estimated what would O/C and H/C ratios be if all C10 fragmented in the aerosol phase. The resulting

modeled van Krevelen diagram is reported on Fig. 10 (labeled w/ frag.). In this case, modeled O/C ratios increase to a range of

0.88 to 0.96 and remain in the higher end of measured ratio at the T3 site. H/C are reduced further than in the dimerization test

and sit at the higher end of airborne measured H/C ratios, but they still are 45% higher than H/C ratios measured at the T3 site.

Even if they apparently cannot account for the discrepancy between modeled and measured H/C ratios, the two tests pre-370

sented here on C10 compounds in the aerosol phase show the potential importance of adding these missing processes in

GECKO-A. These simple tests are however simplifications that overlook important factors in the potential impact on SOA

composition: (i) not all C10 compounds would be affected by these processes, (ii) other compounds than C10 could react in a

similar way, (iii) trimerization, tetramerization and other accretion processes could also occur in the aerosol phase, (iv) missing

fragmentation processes could also happen in the gas phase.375

4.3 Comparison with VBS approach

Shrivastava et al. (2019) modeled this same field campaign with WRF-Chem, a chemistry transport regional model (Grell et al.,

2005) and similarly to this work they based their primary organic compounds emissions on the MEGAN inventory (Guenther

et al., 2012) for biogenic compounds, and the methodology described in Andrade et al. (2015) and data from Medeiros et al.

(2017) for anthropogenic emissions. Using a Volatility Basis Set approach (VBS) to account for condensation of low volatility380

species, and considering ISOPSOA separately with an approach similar to this work, they modeled airborne SOA mass to within

15% of airborne measurements. The VBS parameterization described in Shrivastava et al. (2019) represents the formation of

SOA as four surrogate species differing by their volatility (C? = 0.1, 1, 10 and 100 µg m−3). For biogenic SOA, isoprene

and monoterpenes produce these four surrogates from the oxidation by OH, ozone and NO3, with yields depending on NOx.

Moreover multigenerational aging is accounted for the surrogate species assigning fragmentation (i.e. increasing volatility) and385

functionalization (i.e. decreasing volatility). This aging is parameterized as a reaction of each of the SOA surrogate species
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VBSn with OH as follows:

VBSn +OH→ αfragVBSn+1 +(1−αfrag)VBSn−1 (R1)

The reaction rate is kR1 = 2× 10−11 cm3 molec−1 s−1. The branching ratio for fragmentation αfrag is determined as the ratio

of the reaction rate of peroxy radicals with NO to the sum of all peroxy radical reactions rates; it has an upper limit of 75%.390

The yields used in this VBS approach were fitted over a variety of low OA loading atmospheric chamber studies of biogenics

oxidation under high and low NOx concentrations (Shrivastava et al., 2019). More details about this VBS approach can be

found in Shrivastava et al. (2013, 2015, 2019).

In order to compare the GECKO-A model results with the VBS approach used in Shrivastava et al. (2019), additional

simulations were run where the explicit condensation of low volatility biogenic species was replaced by the formation of the395

four surrogate species used in Shrivastava et al. (2019). Fig. 7 shows the time evolution of predicted SOA mass with GECKO-

A, after replacing the original condensation of low volatility biogenic species by the VBS approach used in Shrivastava et al.

(2019) (dashed lines). In this test, the VBS modeled SOA mass is well within the range of measured values in the afternoon

for the polluted case scenario. The VBS version of the box-model is however underestimating SOA mass concentrations in the

clean situation, with only 0.5 µg m−3 during daytime compared to the measured 0.6 to 2.5 µg m−3 range. Like in Shrivastava400

et al. (2019), exposure of the background air mass to the urban increased oxidative capacity increases VBS predicted SOA mass

by almost 400%, which explains how the VBS can reach the higher polluted case SOA mass. Figure 7 also depicts the predicted

SOA mass if SOA aging is not included in the VBS model (dotted lines). Shrivastava et al. (2019) reported that SOA aging does

not have a strong effect in their simulations, which is not the case when applied in the box-model. In our simulation without

aging processes, the polluted case SOA mass concentration drops below 1.3 µg m−3 in the afternoon. However in the clean405

case scenario, the SOA mass concentration only decreases by approximately 10% when SOA aging is removed. This means

that SOA aging becomes more important in the ground case scenario when the air mass is exposed to high OH concentrations

that were not seen by the model run by Shrivastava et al. (2019): their maximum OH concentrations reach 2×106 molec cm−3

while our maximum OH concentration reach 1.6×107 molec cm−3.

Figure 11 and Table 2 attribute sources of SOA according to the GECKO-A explicit simulation and the VBS approach. In the410

clean case scenario, GECKO-A attributes most of SOA mass to monoterpene oxidation products (65% at 2pm). The remainder

is attributed to isoprene SOA, with condensation of low volatility compounds contributing in the same proportion as reactive

uptake (17% and 18% respectively). In Shrivastava et al. (2019), monoterpene oxidation products account for 45% of SOA

sources in the airborne plume. With their VBS applied to the ground situation, 28% of SOA is attributed to monoterpenes at

2pm, approximately half of the proportion predicted by the GECKO-A explicit approach. Like in the 3D model calculation,415

the VBS in the box model attributes the remainder of background SOA mass mostly to reactive uptake of isoprene oxidation

products (53% of total SOA).

In the polluted case, the explicit model predicts a slight decrease of 6% in total SOA at 2pm while measurements exhibit

an increase of 33% on average. The urban effect is strong in the VBS case than the explicit approach with a 380% increase

in mass. In the comparison with airborne measurements, the Shrivastava et al. (2019) model predicts that the city oxidants420
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Figure 11. Contribution of primary hydrocarbons categories to GECKO-A modeled SOA mass for the clean (left panel) and polluted case

(right panel).

Table 2. Contribution of primary hydrocarbons categories to modeled SOA mass at 2pm. Percentages in parentheses indicate the relative

contribution to total SOA mass.

GECKO-A VBS - aging VBS - no aging Measured(a)

SOA mass [µg m−3] clean polluted clean polluted clean polluted

Monoterpenes 1.19 (65%) 0.91 (53%) 0.18 (28%) 0.71 (30%) 0.14 (24%) 0.17 (16%) – –

Isoprene (gas) 0.31 (17%) 0.11 (6%) 0.12 (19%) 1.00 (41%) 0.09 (16%) 0.18 (17%) – –

IEPOX-SOA 0.34 (18%) 0.39 (23%) 0.34 (53%) 0.39 (16%) 0.34 (60%) 0.39 (37%) – –

biogenics 1.84 (100%) 1.41 (82%) 0.64 (100%) 2.1 (87%) 0.57 (100%) 0.74(70%) – –

anthropogenics 0 (0%) 0.32 (18%) 0 (0%) 0.32 (13%) 0 (0%) 0.32 (30%) – –

total 1.84 1.73 0.64 2.42 0.57 1.06 1.4±0.8 2.1±0.2

(a)de Sá et al. (2018)

cause the same large increase in biogenic SOA formation (up to 400%), and that this increase is due to enhanced monoterpene

oxidation. With GECKO-A at the ground site, SOA mass remains constant because of the contribution of anthropogenics which

compensates the decrease in the contribution from the condensation of isoprene and monoterpenes oxidation products by 32%.

This loss is slightly compensated for by an increase in the production of SOA via reactive uptake of isoprene oxidation products

(15% increase) because the plume favors these processes with higher sulfate load and lower pH (see Table 1). Overall biogenic425

SOA decreases by 23% with respect to the clean case. In the VBS test case, SOA mass formed from condensation of low

volatility oxidation products of isoprene and monoterpenes is enhanced in the polluted case respectively by a factor of 7 and

3. This enhancement is notably inhibited when the aging parameterization is removed from the VBS approach with a mass
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Figure 12. Smallest number of species needed to capture 90% of modeled SOA mass (left panel) with GECKO-A at each timestep (N90%,

see text) and statistical diversity D in the GECKO-A modeled particle phase (right panel, see Eq. 3).

increase due to condensation of low volatility products of isoprene and monoterpenes of respectively 100% and 21%. This

highlights the importance of modeling aging of low volatility oxidation products to explain the enhanced production of SOA430

in the urban plume.

4.4 Potential for Reduction of the Explicit GECKO-A mechanism

It is obvious that the chemical mechanisms generated with GECKO-A are too large to be implemented in 3D models. The

GECKO-A mechanisms need to be reduced to sizes manageable by 3D models, typically a few hundred species and reactions.

The VBS parameterization used for comparison in this work is fit for low OA loadings, biogenic dominated situations but it is435

unclear that it should be applied to other situations.

In this section, we are not proposing a much needed new approach to reducing explicit mechanisms with the goal of predict-

ing SOA mass concentrations, but we explore here the potential for reduction of the chemical mechanism that was generated

for this study. In other words, what is the theoretical lower limit to the number of species that should be used in a reduced

scheme to still be able to model the same SOA mass concentration time profile as the explicit model?440

To answer this, two metrics are presented in Fig. 12. The first one N90% is the smallest number of species needed in the

explicit model to capture 90% of the total SOA mass at each timestep. After sorting species by decreasing concentration, this

number is calculated by adding up these concentrations until 90% of the total modeled SOA mass is reached. The operation is

repeated at each timestep. Calculated independantly, the second one is the particle diversity D in the explicitly modeled SOA,

as defined for instance in Riemer and West (2013):445

D = expS (3)
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where S is the first order generalized entropy (also known as Shannon entropy):

S =
N∑

i=1

−pi lnpi (4)

where pi is the mass fraction of species i in the organic particle phase and N is the total number of species in the organic

particle phase. As stated in Riemer and West (2013), the diversity is a measure of the effective number of species with the450

same concentration in the organic fraction of the aerosol phase. If D = 1, the organic fraction is pure as it is composed of a

single species. Therefore, a value D�N means that of all the species contributing to modeled organic aerosol, only a few

significantly contribute to its composition. Oppositely, D =N is the maximum value reachable by D and is obtained when

the organic fraction is composed of N equally distributed species. In the case where D is close to N , only a few species are

negligible. For more details and better explanations, we refer the reader to Riemer and West (2013, esp. Fig. 1). We make455

the hypothesis here that D can be interpreted as an effective number of species derived from the informational entropy of the

modeled particle phase.

In the clean situation both metrics behave similarly, with a morning increase of the number of species until 10 am, after which

the number remains relatively constant until sunset. During daytime, on average N90% = 292 species are needed to represent

90% of the SOA mass. The calculated diversity is around 153 effective species. For the polluted situation, N90% increases460

during daytime by about a factor of 9, reaching about 2500. The calculated diversity only increases up to approximately 260

effective species. These increases in the species numbers for the polluted case are logical as the variety of precursors, and hence

secondary species that could potentially contribute to SOA, is increased by urban emissions.

The number of species needed to represent most of the modeled SOA mass in all cases seems too high to be used in 3D

models applications. Furthermore there is no guarantee that the most important species at a given timestep would be the same465

most important species at the following timestep. This suggests that reductions should not come from simply selecting species

identified as important to represent the variety of species that could arise in the interaction of biogenic air and an urban plume.

The statistical diversity calculation seems like a better approach to estimate the minimum number of species needed to

model SOA mass. As this number is directly derived from informational entropy, we suggest that the diversity represents the

number of species that would be needed to reproduce the same informational content regarding the time evolution of SOA470

mass in the explicit model. Even if the effective species numbers fall in the higher range of what would be acceptable in a 3D

model chemical mechanism, the practical construction of the mechanism remains to be explored. For instance, in the polluted

scenario, D is a factor of 9 lower than N90%. This should mean that D cannot represent a subset of the individual species from

the original mechanism, otherwise it would be expected to be equal or higher than N90% if it is supposed to reproduce the

informational content regarding SOA mass. It is therefore likely, and making this problem more complex, that each of these475

effective species is a (non) linear combination of explicit individual species.

Finally, we used in this section an entropy calculation for SOA mass: it is based only on mass fractions of the species

composing the modeled organic particles. The effective number of species displayed on Fig. 12 is therefore only meaningful

for SOA mass and properties directly linked to it. If the goal is to predict other properties, e.g. hygroscopicity, toxicity or

optical properties, assuming we find a way to calculate these with GECKO-A, the diversity defined here would not necessarily480
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be meaningful. For instance, hygroscopicity or toxicity could be driven by a handful of oxygenated species that do not matter

for the informational content regarding SOA mass. We did not explore further down this path, as this is not the subject of this

paper, but it may be possible to generalize this definition of informational diversity to properties other than mass.

5 Conclusions

An explicit chemical mechanism generated with GECKO-A was used in a box model to simulate a situation similar to the485

situation studied in Manaus during the GoAmazon 2014/5 field campaign. After scaling down the emissions generated from

the MEGAN biogenic emissions model and estimating urban emissions in Manaus, the model was able to reproduce realistic

primary organic compounds mixing ratios as well as NOx, ozone and OH concentrations.

The model is able to reproduce background SOA mass concentrations but is not able to reproduce the observed enhancement

in the polluted plume. When running a Volatility Basis Set approach that was previously applied to the Manaus case (Shri-490

vastava et al., 2019), modeled SOA mass matches measurements which suggests that the incorrect explicit model prediction

is not caused by incorrect primary organic compound emissions or oxidant levels. Modeled particle phase organosulfates are

within the range of previous measurements (Glasius et al., 2018) which suggests that isoprene oxidation and SOA formation

in the model are reasonably well simulated. In both polluted and clean situations, biogenics are identified as the main con-

tributors to SOA by both GECKO-A and the VBS parameterization. In both approaches, the majority of SOA production is495

attributed to monoterpenes oxidation and condensation of lower volatility products. Yee et al. (2018) measured and described

sesquiterpenes during GoAmazon 2014/5 for the same situations and suggested that these species may be important for model-

ing studies. However the modeling study of Shrivastava et al. (2019) estimated that the contribution of sesquiterpenes to SOA

production is less than 10%. It is more likely that physico-chemical processes involved in monoterpene SOA formation are ei-

ther unknown or missing in the explicit model. Comparison of modeled and measured elemental ratios (H/C and O/C) indicates500

that fragmentation of monoterpenes oxidation products and their condensation or reactive uptake to the condensed phase may

play an important role in understanding the sources of biogenic SOA mass. This reactive uptake may in turn involve oligomer-

ization and fragmentation processes. However, simple sensitivity tests show that these processes alone may not explain the

discrepancies between the explicit model and measurements. Because the VBS parameterization is based on multiple chamber

experiments, it could implicitly be accounting for these missing processes. Of the high diversity of monoterpenes identified in505

Amazonia (Jardine et al., 2015), only a handful of monoterpenes have been studied to the extent that we can be as confident

in model predictions of SOA formation from monoterpenes as from isoprene. Detailed mechanistic studies of monoterpene

oxidation are therefore needed for further incorporation in explicit models to better understand the nature and the magnitude

of the contribution of monoterpenes to SOA formation, as well as their response to the interaction with urban pollution (e.g.

Claflin and Ziemann, 2018).510

Even if a parameterization was implemented in GECKO-A to properly address the formation of isoprene SOA via aque-

ous phase processes (Marais et al., 2016), to explicitly treat these in a more general way, future GECKO-A developments for

mechanism generation will need to include the following: (i) aerosol thermodynamics, for instance via coupling with a model
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like MOSAIC (Zaveri et al., 2008) or ISORROPIA (Nenes et al., 1998), (ii) aqueous phase processes including explicit disso-

lution (e.g. Mouchel-Vallon et al., 2013), oxidation (e.g. Mouchel-Vallon et al., 2017), accretion reactions (e.g. Renard et al.,515

2015), and interaction with dissolved inorganic ions, (iii) explicit treatment of the fate of newly formed species like dimers or

organo-sulfates.

One could be tempted to think that since the VBS parameterization is behaving particularly well in this GoAmazon 2014/5

case, it could be the answer to predict SOA mass in larger scale 3D models. However this approach is limited by the fact that it

was fitted for low biogenic OA loading situations and was run in a limited domain regional model (Shrivastava et al., 2019). One520

possible way of building reduced mechanisms is to reduce existing detailed chemical mechanisms to sizes manageable by 3D

models (e.g. Szopa et al., 2005; Kaduwela et al., 2015). Using an information theory based approach, we provide here a lower

limit to the size of these reduced mechanisms, assuming the goal is to produce the same informational content as the explicit

mechanism. This lower limit of a few hundred species is four orders of magnitudes lower than the actual number of species

that are actually accounted for in the explicit mechanism (4×106) and shows the potential for progress in future mechanism525

reduction endeavors. Even if a direct application of this statistical approach to create a reduced mechanism would likely require

some atmospheric chemistry breakthrough, it could at least currently be used as a statistical indicator for comparing reduced

mechanisms with reference explicit mechanisms.
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