
 

Response to Referee #1: 
 
GENERAL COMMENTS 
This paper uses climate model experiments in which regional Arctic sea-ice decline is imposed, 
combined with analysis of new CMIP6 data, to better understand the dynamical mechanisms by 
which Arctic sea-ice decline may influence winter haze pollution extremes in China. The main 
new result reported is that Pacific sector sea-ice loss increases the likelihood and intensity of 
haze pollution extremes, due to anomalous transient eddy vorticity fluxes amplifying the 
negative phase of the EU pattern. 
Given the substantial impact of haze pollution extremes on public health, this study represents an 
important contribution to this research area. The variety of methods used – including targeted 
single model experiments, new CMIP6 multi-model data, and a variety of interesting diagnostics 
– is also good. The paper is generally well presented with a good quality and number of figures, 
and only minor alterations are required to the wording and structure. 
However, while this study reports potentially very interesting and impactful results, I am 
concerned about the statistical robustness of some of the conclusions and, therefore, that the 
length of the simulations (30 years) may be too short. My specific comments below explain these 
concerns in detail, which I would like to see addressed. 
Response: Thank you very much for the constructive comments and suggestions. We understand 
your concerns about the robustness of the modeling results in the manuscript. Therefore, we have 
conducted additional statistical significance tests to demonstrate that these results are robust. We 
also revised the manuscript to address your other concerns. Please see below our responses (in 
blue) to your specific comments. 
 
SPECIFIC COMMENTS 
Page 1, line 19: I found the use of the word ‘event’ a bit confusing in this study, as the extremes 
analysed are monthly extremes and ‘event’ – to me anyway – implies a shorter timescale (daily 
or weekly). It would be helpful to clarify somewhere what is meant by the term ‘event’ here, or 
to avoid using the term. 
Response: Thank you for the suggestion. Since there are many different types of climate extreme 
events such as cold extremes, heatwaves, droughts, and extreme precipitation, etc., we want to 
emphasize here that pollution-related air stagnation extremes are the major focus of this study. 
To avoid possible confusion with time scale-related interpretation, we rephrased the expression 
here to “monthly air stagnation extremes” and revised all similar expressions throughout the 
manuscript.   
 
Introduction: This paragraph is far too long, which made the structure of the introduction 
– which while good – a bit hard to follow. Breaking this up into a few paragraphs would help. 
The same goes for similarly long paragraphs in other parts of the paper (e.g. page 4 lines 9-40; 
page 9). 

Response: We have followed the suggestion to break those long paragraphs into shorter ones on 
page 2, page 4, and page 9. Please see the revised manuscript for details. 
 
Page 2, lines 32-35: This sentence is a bit misleading, as it implies that there is a scientific 



 

consensus that high-latitude climate change influences mid-latitude circulation and weather, 
when there is not (e.g. https://www.nature.com/articles/s41558-019-0662-y). There is lots of 
evidence suggesting that Arctic sea-ice loss can have an influence on mid-latitudes, but whether 
it has in the past or will in the future is more unclear 
(https://onlinelibrary.wiley.com/doi/full/10.1002/wcc.337). Would be good to rephrase the 
sentence to reflect this (e.g. ‘Given the increasing evidence that climate change – especially that 
occurring in high-latitude regions – may have an influence on middlelatitude circulation’). 
Response: We agree that there are lots of discussion and ongoing debates on this topic. 
Knowledge gaps regarding complex interactions between high-latitude and mid-latitudes and 
physical pathways behind these phenomena still exist. A few climate modeling studies have been 
conducted to narrow down the uncertainty associated with the influence of high-latitude climate 
change on mid-latitude weather extremes. Our study was motivated and inspired by these 
discussions and modeling efforts. To clarify on the current research status, we have rephrased the 
text as suggested and added more specific discussion and references in lines 2-5 of page 3: 
“Several possible dynamic pathways linking Arctic warming to midlatitude weather extremes 
have been proposed and investigated in the past few years (Barnes and Screen, 2015; Overland et 
al., 2016). However, the observational data and modeling results are sometimes contradictory 
and are open to different interpretations (Cohen et al., 2020)”. 
 
Section 2.1: I found this section jumped around a bit in terms of the definitions of the EU pattern 
and index, the MCA_Z500 pattern, and the PPI. If possible, could this be restructured so that the 
definition of each is closer to where it is originally introduced? 

Response: Thank you for the suggestion. We revised this section to more clearly describe all the 
indices used in the manuscript. Please see Section 2.1 in the revised manuscript for details. 
 
Page 3, lines 29-30: It would be helpful to properly explain and define the WSI and ATGI. 

Response: The two indices are defined and explained in lines 34-37 of page 3: 
“WSI was standardized by subtracting time-averaged climatological mean of near-surface wind 
speed over the 1981-2010 period from the monthly values at each grid cell and then dividing by 
its standard deviations in the same period. ATGI was the standardized potential temperature 
gradient field between 925 and 1000 hPa using the same method. These two indices are used to 
reflect horizontal and vertical dispersions of near-surface air pollutants, respectively.” 
 
Page 4, lines 3-5: Do you have a citation for this? 

Response: This statement is based on the similarity between MCA_Z500 and EU as well as other 
teleconnection patterns such as the East Atlantic (EA) pattern 
(https://www.cpc.ncep.noaa.gov/data/teledoc/ea_map.shtml) and the East Atlantic/Western 
Russia (EA/WR) pattern (https://www.cpc.ncep.noaa.gov/data/teledoc/eawruss.shtml) over East 
Asia in winter (e.g., January patterns), as shown in Fig. R1.  



 

 
Figure R1: 500 hPa geopotential height anomalies (unit: m) of the East Atlantic pattern (left) and 
the East Atlantic/Western Russia pattern (right) in different months. These plots are adapted 
from the NOAA Climate Prediction Center (CPC) website 
(https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml; last access: 14 February 2020). 
 
The major difference between EU and other planetary-scale teleconnection patterns is in the 
wave propagation pathways in the upstream regions such as the Atlantic and Europe, while they 
share similar configurations in the downstream regions over East Asia. All these teleconnection 
patterns can be excited by either internal variability or localized forcings (Simmons et al., 1983; 
Sardeshmukh et al., 1988; Liu et al., 2014; Lim, 2015). To clarify this, we added examples and 
references in lines 15-18 of page 4 in the revised manuscript as: 
“However, it’s worth noting that this regional MCA_Z500 pattern can also be excited by other 
large-scale teleconnection processes such as the East Atlantic pattern or the East 
Atlantic/Western Russia pattern associated with both natural variability and perturbed Rossby 
wave activity (Lim, 2015; Simmons et al., 1983).” 
  
Section 2.2: Are you able to justify using simulations of only 30 years in length? To me this 
seems rather short, especially considering my comments regarding statistical robustness below. 
Indeed, Screen et al. 2014 show that the simulated circulation response to sea-ice loss is small 
compared to internal variability (i.e. there is a low signal-to-noise ratio), and specifically that at 
least 70 year-long experiments are required to simulate a robust mid-tropospheric response 
to sea-ice loss (https://link.springer.com/article/10.1007/s00382-013-1830-9). Similarly, 
simulations submitted to PAMIP (the Polar Amplification Model Intercomparison Project) are 
required to be at least 100 years long due to this low signal-to-noise ratio (https://www.geosci-
model-dev.net/12/1139/2019/). Also, many studies using WACCM to investigate the response to 
sea-ice loss use longer simulations (e.g. England et al. 2019 use 151 years, 
https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-17-0666.1; Sun et al. 2015 use 161 years, 



 

https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-15-0169.1; Zhang et al. 2018 use 60 years, 
https://advances.sciencemag.org/content/4/7/eaat6025). 

Response: Thank you for the comment and references. Several studies, including those in your 
comment, have indicated that the signal-to-noise ratio associated with the Arctic influence on 
midlatitude weather is lower than internal variability, which motivated the long-term simulations 
in those studies to try to isolate a robust atmospheric response in the middle latitudes to Arctic 
sea ice loss and Arctic amplification. However, most, if not all, Arctic-midlatitude impact studies 
focused on the response in ensemble seasonal mean state rather than monthly extreme values in 
our case. We want to emphasize that the modeling responses could be very different in terms of 
these two metrics. This is evident by comparing the changes in ensemble mean values (Table S2 
in the Supplement) with those in extreme values (Table S3/S4 in the Supplement) of each 
sensitivity experiment. It can also be clearly demonstrated by the following conceptual changes 
in temperature distribution and their effects on extreme values (Fig. R2). In this IPCC report 
(2012), three distinct distribution changes in response to climate change have been proposed: 
shifted mean, increased variability, and changed symmetry, which suggest complex relationship 
between changes in ensemble mean and extreme values. We followed this analysis framework to 
characterize modeling responses in our climate sensitivity experiments and found the SENSr2 
results of interest fall into the “Changed Symmetry” category (as shown in Fig. S2/S3 in the 
Supplement).  

 



 

Figure R2: The effect of distribution changes on temperature extremes. Different changes in 
temperature distributions between present and future climate and their effects on extreme values 
of the distributions: (a) effects of a simple shift of the entire distribution toward a warmer 
climate; (b) effects of an increase in temperature variability with no shift in the mean; (c) effects 
of an altered shape of the distribution, in this example a change in asymmetry toward the hotter 
part of the distribution. This plot is adopted from Figure SPM. 3 in IPCC (2012). 

To evaluate statistical significance of the changes in positive extreme probability, we 
repeatedly resample a subset of modeling years in SENSr2 for 10,000 times and then use a non-
parametric kernel density estimation (KDE) function to re-estimate the probability of ECP_PPI 
(Fig. R3) positive extremes in each subset comparing with their CTRL counterpart. We try two 
different methods of resampling: without replacement and with replacement for multiple subset 
sizes (10, 15, 20, 25, 30). Sampling without replacement does not allow duplicated modeling 
years while sampling with replacement generates much more combinations and larger variances 
of subsets. Since there are numerous combinations of resampled subsets (except the subset size 
of 30 years without replacement, which has only one unique combination of all data), we plot the 
empirical probability density distributions of positive extreme probabilities using kernel density 
estimation for each subset size (similar to Fig. 8 in Screen et al., 2014). Please note that the 
actual sample size in each subset should be multiplied by 3 because we use monthly data in 
winter (Dec-Jan-Feb) rather than seasonal average to detect climate extremes. For example, the 
total sampling size for the subset of 10 years is 3 months × 10 years = 30 months. The 
autocorrelation among these winter months is low and insignificant (please see the response to 
the next question for details).  

After obtaining these empirical PDFs, we estimate the corresponding value of the CTRL 
positive extreme probability in these PDFs to test the hypothesis that the SENSr2 positive 
extreme probability is significantly larger than the CTRL run (the CTRL positive extreme 
probability is always 0.05 since the 95th percentile of CTRL data is chosen as the positive 
extreme threshold). As shown in Fig. R3 below, the chance of SENSr2 ECP_PPI positive 
extreme probability ≤ CTRL ECP_PPI positive extreme probability (0.05) is about 3% when the 
subset size exceeds 15 years (45 months) without replacement (Fig. R3a), or when the subset 
size exceeds 25 years (75 months) with replacement (Fig. R3b). Another way to demonstrate this 
is to plot the positive extreme probability estimates and their 95% percentile ranges against 
different ensemble sizes (Fig. R4; we updated Fig. S3/S4 in the supplement using the same 
method here), which suggest the same conclusion. The ensemble averaged estimates of the 
SENSr2 ECP_PPI positive extreme probability are also quite similar among different ensemble 
sizes (~0.11) and more than double of the CTRL positive extreme probability (0.05). Therefore, 
we are confident that the current modeling simulation length of 30 years is long enough to detect 
significant extreme probability changes, which is the primary research objective of this study.  



 

 
Figure R3: KDE-based probability estimates of ECP_PPI positive extremes in SENSr2 based on 
different ensemble sizes of subsets (a) without and (b) with replacement in bootstrap resampling 
(n=10,000). The p values on bottom-right corners are the probabilities of 0.05 (the CTRL 
positive extreme probability shown as the black dash line) in each PDF curve. The colored dash 
lines are ensemble averaged probabilities of SENSr2 positive extremes for each subset size. Note 
that no PDF curve is available for nsize=30 without replacement in (a) because of the uniqueness 
of the sampling combination. 
 

 
Figure R4: Comparison of KDE-based probability estimates of ECP_PPI positive extremes based 
on different ensemble sizes of subsets (a) without and (b) with replacement in bootstrap 
resampling (n=10,000). The error bars denote the 95% percentile range (2.5% to 97.5%) for 
positive extreme probability values at each ensemble size. 
 
Page 6, lines 4-6: You say that you have 90 samples when conducting this statistical test, and so I 
presume you are assuming 90 degrees of freedom. However, have you checked whether the 
MCA_Z500 and/or ECP_PPI indices are autocorrelated (e.g. between consecutive months or lag-
1), and therefore whether 90 degrees of freedom is an overestimate? 

Response: Thank you for the suggestion. We can treat each sequence of monthly data in Dec, 
Jan, and Feb as three sampling groups. The essence of this question is whether two consecutive 
groups of monthly data are independent or not. We test the lag-1 relationship in both MCA_Z500 
and ECP_PPI indices by checking the Pearson correlation coefficients between two consecutive 
monthly groups. If they are not independent from each other, then we would expect statistically 
significant correlations between these paired groups. Table R1 and Table R2 show the 
correlation coefficients for both indices and their corresponding two-tailed p-values, 



 

respectively, suggesting insignificant correlations in most MCA_Z500 pairs and all ECP_PPI 
pairs.  
Table R1: Correlation coefficients of the MCA_Z500 and ECP_PPI indices between two 
consecutive months in each modeling experiment 

r MCA_Z500 ECP_PPI 
Dec-Jan Jan-Feb Dec-Jan Jan-Feb 

CTRL 0.27 0.01 -0.02 -0.28 
SENSall 0.43 0.05 0.24 0.19 
SENSr1 0.003 0.28 -0.04 -0.03 
SENSr2 0.17 0.53 0.07 -0.17 
SENSr3 0.25 0.03 0.14 -0.23 

 
Table R2: Two-tailed p-value of the MCA_Z500 and ECP_PPI correlation coefficients between 
two consecutive months in each modeling experiment 

p-value MCA_Z500 ECP_PPI 
Dec-Jan Jan-Feb Dec-Jan Jan-Feb 

CTRL 0.15 0.95 0.90 0.14 
SENSall 0.02 0.81 0.20 0.31 
SENSr1 0.99 0.14 0.84 0.87 
SENSr2 0.37 0.003 0.72 0.37 
SENSr3 0.18 0.86 0.47 0.22 

 
Since the Pearson correlation coefficient is highly sensitive to outliers, we also plot the scatter 
plots based on the winter consecutive monthly MCA_Z500 data in SENSall and SENSr2 that 
show possible correlations. As shown in the plots, the Pearson correlations are mainly 
contributed by two MCA_Z500 outliers (in the red circle) on bottom-left corners between 
December and January in SENSall (Fig. R5a), and one MCA_Z500 outlier (in the red circle) on 
top-right corner between January and February in SENSr2 (Fig. R6b). After removing these 
outliers, the correlations would largely decrease to insignificant levels (SENSall: (r=0.13, 
p=0.52); SENSr2: (r=0.36, p=0.06) after removing the outliers in red circles). Another way to 
show the large impact of outliers on the Pearson correlation coefficients is to use the non-
parametric Kendall rank correlation as an alternative, which is more suitable for small sample 
sizes without the Gaussian distribution assumption. The Kendall rank correlation coefficients for 
these MCA_Z500 data in Dec-Jan of SENSall and Jan-Feb of SENSr2 are (r=0.16, p=0.23) and 
(r=0.26, p=0.04), respectively. Both are much smaller than the Pearson ones listed in the above 
tables. Actually, the lifetime of most severe pollution events is shorter than one month, and the 
memory effect of the atmosphere is also short. Therefore, we feel it’s acceptable to treat these 
monthly data as independent samples and the degree of freedom of 90 is considered a roughly 
accurate estimate for the statistical tests in the manuscript.  



 

 
Figure R5: Scatter plots for the MCA_Z500 and ECP_PPI indices in consecutive months of the 
SENSall experiment. (a) the paired MCA_Z500 indices in December and January; (b) the paired 
MCA_Z500 indices in January and February; (c) the paired ECP_PPI indices in December and 
January; (d) the paired ECP_PPI indices in January and February. The red circle in (a) shows the 
outliers contribute largely to the Pearson correlation coefficient. 

  



 

Figure R6: Scatter plots for the MCA_Z500 and ECP_PPI indices in consecutive months of the 
SENSr2 experiment. (a) the paired MCA_Z500 indices in December and January; (b) the paired 
MCA_Z500 indices in January and February; (c) the paired ECP_PPI indices in December and 
January; (d) the paired ECP_PPI indices in January and February. The red circle in (b) shows the 
outlier contributes largely to the Pearson correlation coefficient. 
 
Page 6, lines 36-39: Relating to the above comment, did you account for autocorrelation when 
conducting this bootstrapping method (e.g. as done in your previous paper using the moving 
blocks method https://advances.sciencemag.org/content/3/3/e1602751)? If there is 
autocorrelation it may be that the uncertainties given by the bootstrap method (Tables S3 and 
S4) may be underestimated, and therefore the statistical robustness of the differences between the 
perturbation and CTRL experiments overestimated. 

Response: As shown in our response to the previous comment, the autocorrelation in monthly 
data is negligible in most cases. Therefore, we used the standard bootstrapping method in this 
manuscript. The reason we used the moving block bootstrap method in our previous study (Zou 
et al., 2017) is that we used daily data in that study. The autocorrelation problem in these daily 
time series is much more severe than the monthly data used in this study, so the moving block 
bootstrap method was applied there. For the monthly data with less concern about 
autocorrelation, the standard bootstrap method was applied in the previous study (Zou et al., 
2017) that is the same with the practice here. 
 
Page 8, lines 21-23: It should be noted that these correlations are not statistically significant at 
most grid points (but perhaps the correlation would be significant if you used an area average?). 
Response: This figure helps to identify the Arctic sub-regions with potential influence on the 
atmospheric teleconnection as well as regional ventilation in China. If averaging SIC over those 
R2 areas with positive correlations with the EU index, the regional averaged SIC-EU correlation 
coefficient is r=0.38 (p=0.02), which is statistically significant at the 0.05 significance level. We 
added this regional averaged correlation to lines 3-4 of page 9 in the revised manuscript. 
 
Page 9, lines 20-23; Tables S3 and S4: Can you justify why you use the standard deviation here? 
The numbers in these tables for the SENSr2 experiment contain one of key results of this paper, 
suggesting that there is an increase in the likelihood and intensity of MCA_Z500 and ECP_PPI 
positive extremes in response to sea-ice loss in the R2 region. However, by using just the 
standard deviation it maybe cannot be said that the extremes in SENSr2 are significantly 
different statistically from those in CTRL. 
I may be wrong, but a 95% confidence interval seems more appropriate to test whether the 
difference is statistically robust? Since a 95% confidence interval will be larger, the 9% 3% 
figure in Table S3 for SENSr2 MCA_Z500 may not actually be significantly different from 
CTRL (5% 0%). 
Response: Thank you for the suggestion. We redid the bootstrap analysis with replacement for 
10,000 times to estimate the 95% percentile range for all the indices listed in Table S3 and Table 
S4. Please see below the updated tables (we included here for your convenience): 

Table S3. The bootstrap (nboot=10000) estimates (ensemble mean and 95% percentile range) of 
positive extreme probabilities of the MCA_Z500 and ECP_PPI indices in the WACCM 
experiments 



 

 CTRL SENSall SENSr1 SENSr2 SENSr3 

MCA_Z500 5.0% 3.7%  
(0-13.5%) 

3.3%  
(0-9.2%) 

7.5%  
(0.8-16.4%) 

4.1%  
(0-12.8%) 

ECP_PPI 5.0% 7.0%  
(0.7-16.1%) 

4.1%  
(0.4-9.2%) 

11.6%  
(5.2-18.4%) 

5.0%  
(0.2-11.0%) 

 
Table S4. The bootstrap (nboot=10000) estimates (ensemble mean and 95% percentile range) of 
positive extreme intensities of the MCA_Z500 and ECP_PPI indices in the WACCM 
experiments 

 CTRL SENSall SENSr1 SENSr2 SENSr3 

MCA_Z500 1.14  
(0.75-1.72) 

1.00  
(0.77-1.35) 

1.07  
(0.81-1.44) 

1.27  
(0.90-1.68) 

1.03  
(0.77-1.41) 

ECP_PPI 0.86  
(0.63-1.40) 

0.91  
(0.70-1.25) 

0.94  
(0.72-1.31) 

1.12  
(0.90-1.42) 

0.84  
(0.66-1.13) 

 
The new estimates don’t change our conclusion in the manuscript, suggesting significantly 
increased probability and intensity of ECP_PPI in SENSr2. This is also evident in Fig. R3b of 
the previous response. The increase in MCA_Z500 is less significant than that in ECP_PPI, 
which might be attributed to the smaller signal-to-noise ratio in large-scale dynamic processes. 
Extended climate sensitivity experiments could be conducted in the future to evaluate the 
robustness of these large-scale dynamic responses. 
 
Page 9, line 23 to page 10, line 28: Results relating to changes in the ensemble mean of the 
MCA_Z500 and ECP_PPI indices are presented and discussed as if they are statistically robust 
(e.g. ‘The differences in the MCA_Z500 and ECP_PPI responses among the four sensitivity 
experiments in extreme members and ensemble means also suggest complex relationships 
between Arctic sea ice loss and mid-latitude weather changes’). However, they are only 
statistically significant for SENSr1 ECP_PPI (p=0.04) – see Table S2. These paragraphs should 
be edited so that is clear whether the results being presented and discussed are robust or not. 
Response: We rewrote the paragraphs to clearly indicate the robustness of changes in both 
ensemble mean and extreme values of both indices. Please see below the updated paragraphs in 
Section 3.2 of the revised manuscript. 

“To examine the regional circulation and ventilation responses to these changes in the high 
latitudes, we fit the CDF and PDF curves of MCA_Z500 and ECP_PPI based on CTRL and 
SENS monthly results in winter. Figure 3 shows the CDF changes of simulated MCA_Z500 (Fig. 
3a) and ECP_PPI indices (Fig. 3b) between sensitivity and CTRL experiments. It is clear that 
both indices show more significant changes in their extreme members than in medians or 
ensemble means, especially in SENSr2 driven by SIC and SST changes in the Pacific sector of 
the Arctic (R2 in Fig. 1b). In SENSr2, the occurrence probability of MCA_Z500 positive 
extremes increases by 50% from 5.0 to 7.5% (95th percentile range: 0.8-16.4%) (Fig. 3a; Table 
S3 in the Supplement), while the ECP_PPI positive extremes increases by 132% to 11.6% (95% 
percentile range: 5.2-18.4%) (Fig. 3b; Table S3 in the Supplement). Meanwhile, the intensity of 
positive extreme values of the two indices also increases by 11% and 30%, respectively (Table 
S4 in the Supplement). The increase in the teleconnection pattern index MCA_Z500 is less 
significant than that in the regional air stagnation index ECP_PPI, suggesting a potential 



 

nonlinear relationship between large-scale circulation and regional stagnation. Only SENSr2 
shows statistically significant increases of ECP_PPI in terms of positive extreme probability and 
intensity, and the significance of such increases is independent from the fitting method being 
used (i.e., still valid with nonparametric curve fitting). The substantially increased positive 
extremes in SENSr2 contribute to the positive responses in its ensemble mean, making SENSr2 
the only sensitivity experiment with positive ensemble mean ECP_PPI (0.03, not statistically 
significant). In comparison, other SENS experiments generally show negative ensemble mean 
ECP_PPI values due to left-shifted CDF curves at most percentiles. For instance, SENSr1 is the 
only experiment showing robustly decreased ECP_PPI at all percentiles in its CDF curve (Fig. 
3b), contributing to its negative ensemble mean of ECP_PPI (-0.13) that is statistically 
significant at the 0.05 significance level (Table S2 in the supplement). This result implies an 
overall improvement of the ECP regional ventilation driven by the SIC and SST changes in the 
Barents-Kara Seas (R1 in Fig. 1b), while the ventilation responses are more random driven by 
sea ice loss in other Arctic regions.” 
 
Section 3.4: Why has only the ECP_PPI index been calculated for the CMIP6 results, and not the 
MCA_Z500 index, when both were for the WACCM results? This seems quite key, since it is 
MCA_Z500 that demonstrates a dynamical (and therefore more causal) connection between sea-
ice loss and ECP_PPI. 
Response: Thank you for the suggestion. We have now added the time series and changes of 
MCA_Z500, based on the reanalysis and CMIP6 results, in a new supplementary Figure S8 
(shown as Fig. R7 here). The MCA_Z500 projection results also show right-shifted positive 
extremes in future time periods, with the largest shift emerging during the P3 period in 
concurrence with the strongest decline of Arctic sea ice. Please see Section 3.4 in the revised 
manuscript for details. 

 
Figure R7. Historical simulations and future projections (under the SSP5-8.5 scenario) of Arctic 
sea ice and regional circulation in observational and reanalysis data and CMIP6 models. (a) time 



 

series of the Arctic SIE relative changes (unit: %; relative to 1981-2010) in preceding September 
and MCA_Z500 (unitless) in DJF of the following winter (using years of January for X-axis 
labeling). The solid lines denote observation- and reanalysis-based Arctic SIE and MCA_Z500 
from 1950 to 2019. The dashed lines denote ensemble mean and the color shading denotes ±1 
standard deviation of the 8 CMIP6 models (see Table S1 for model details) from 1950 to 2100. 
Note that the SIE time series were shifted forward by one year to align with the MCA_Z500 
data; (b) comparison of MCA_Z500 CDF curves between the NCEP reanalysis data and the 
CMIP6 models in the P1 time period from 1951 to 2000. The inset denotes the distributions of 
positive extremes (≥ 𝑀𝐶𝐴_𝑍500*+,-

./). The color shading denotes ±1 standard deviations in the 8 
CMIP6 models; (c) Same as (b) but for the comparison between P1 and P2 (2001-2050) time 
periods as well as between the NCEP reanalysis data and the CMIP6 models; (d) same as (b) but 
for the comparison between P1 and P3 (2051-2100) time periods as well as between the NCEP 
reanalysis data and the CMIP6 models. 
 
 
Figure 1, Figure S1, Figure 5 (a) and (c): It would be useful to indicate in the captions that these 
plots are for observational/reanalysis data, rather than for the sensitivity experiments conducted. 
For Figure 5 (a) and (c) specifically this is mentioned initially, but it would be clearer to say this 
in the caption after (a) and (c) as well. 

Response: We add the descriptions in the figure captions as suggested. 
 
Figure 3: In the caption it says ‘Atmospheric circulation and regional air stagnation responses to 
the Arctic sea ice forcing in the WACCM experiments’. However, what is in the figure is the 
absolute CDFs for the CTRL and SENS experiments, rather than differences between the SENS 
experiments and CTRL (what is normally defined as the ‘response’). The use of ‘response’ in the 
caption is therefore confusing and should be changed. 
Response: We change the description here to “Comparison of the statistical distributions of 
atmospheric circulation and regional air stagnation indices in the WACCM climate sensitivity 
experiments” for clarification. 
 
Figure 4: Since these plots show the difference between the SENSr2 extreme members and the 
CTRL ensemble mean, rather than the CTRL extreme members, these plots do not just show the 
effect of the sea-ice forcing imposed, but the combined effect of sea-ice loss and internal 
variability (which causes extreme events without the need for sea-ice loss). The start of the 
caption (‘Winter atmospheric response to the autumn and early winter sea ice change : : :’) 
should therefore be re-phrased. Also - presumably ‘winter’ means the ‘winter mean’ here? 
Response: Thank you for the suggestion. We rephrase the Fig.4 caption to “Atmospheric 
anomalies in WACCM SENSr2 extreme members with respect to the CTRL ensemble mean”. 
These extreme members spread in different winter months. Here the anomalies are based on the 
differences between the average of these extreme members and the CTRL average.  
In the dynamic diagnosis part, we attempt to answer the following two questions:  

(1) How does severe air stagnation occur in these SENSr2 extreme members? 
(2) Why are there more and intensified air stagnation extremes in SENSr2? 

As indicated by your comments, the extreme weather in these ensemble members could result 
from interactions between atmospheric internal variability and Arctic sea ice forcing. And we do 



 

find constructive interference between sea ice-related anomalous wave activity and the 
background flow (Fig. S7 in the supplement). Therefore, we use Fig. 4 in combination with the 
following figures (Fig. 5/6 in the revised manuscript) to answer the first question, and then use 
Fig. 5/6 and Fig. S7 in the supplement to answer the second question. Please see Section 3.3 of 
the revised manuscript for detailed analysis. 
 
Figure 5: Why is there stippling to show statistical significance in all figures except this one? 
Response: We didn’t add stippling to this figure in the previous version because it already has 3 
layers (shading, contour, and vectors). Adding stipples would further increase its complexity. In 
the revised manuscript, we update Fig. 5 in the manuscript by separating the SENSr2 extreme 
members from their CTRL counterparts and adding stipples for significance tests in each subplot 
as suggested (shown as Fig. R8 here). A new figure is also added in the supplement (Fig. S7) to 
isolate the difference between the SENSr2 extreme members and their CTRL counterparts 
directly (SENSr2extreme-CTRLcounterpart). 

 
Figure R8: Comparison of atmospheric anomalies in the NCEP reanalysis data and WACCM 
experiments. (a) reanalysis-based ensemble mean geopotential heights at 500 hPa (color shading, 
m) and wave activity flux (WAF) at 250 hPa (vectors, m2 s-2) of the 30 strongest negative EU 
months in winter (DJF) of 1951-2019 (relative to 1981-2010 climatology); (b) same as (a) but 
based on the SENSr2 extreme members (relative to CTRL ensemble mean); (c) same as (b) but 
based on the CTRL counterparts of the SENSr2 extreme members (relative to CTRL ensemble 
mean); (d) reanalysis-based vertical cross section of geopotential heights (color shading, m) and 
WAF (vectors, m2 s-2) of the ensemble mean negative EU months along the wave propagation 
path shown in (a); (e) same as (d) but based on the SENSr2 extreme members (relative to CTRL 
ensemble mean); (f) same as (e) but based on the CTRL counterparts of the SENSr2 extreme 
members (relative to CTRL ensemble mean). Note that the vertical components of WAF in (c)-
(d) were scaled up by 200 for clear illustration. The stipples denote the 0.05 significance level. 

 
Figure S4: ‘Relative changes’ to what? 



 

Response: Here the “relative changes” are changes in terms of percentages rather than absolute 
values. These percentages are calculated based on the relative concentration differences in SENS 
extreme members using the CTRL ensemble mean concentration as benchmark. For clarification, 
we rephase the Fig. S4 caption to “Spatial distributions of surface PM2.5 concentration 
percentage changes (unit: 100%) in extreme members of each sensitivity experiment relative to 
the CTRL ensemble mean result”. Fig. S4c is used for direct comparison with Fig. S5 to 
demonstrate the effectiveness of PPI. 
 
TECHNICAL CORRECTIONS 
Page 3, line 23: Perhaps refer to ‘Fig 1 (c) and (d)’ instead of just ‘Fig 1’, since not referring to 
whole figure. If there are similar instances in other parts of the paper, could you perhaps change 
these too for clarity (e.g. page 4, line 1: ‘Fig S1 (b)’ rather than just ‘Fig S1’). 

Response: Thank you for the suggestion. We change the references to specific subplots in the 
revised manuscript. 
 
Page 3, line 33: I’m not sure the definition of PM_10 would be immediately obvious to all 
readers, although I could be wrong. Perhaps consider including a very brief definition? 
Response: The definitions of PM2.5 “(particulate matter with aerodynamic diameters of 2.5 
micrometers or less)” and PM10 “(particulate matter with aerodynamic diameters of 10 
micrometers or less)” have been added after its first appearance in line 7 and line 9 of page 2. 
 
Page 6, line 11: ‘these’ should be ‘those’ 

Response: Thank you. It’s changed to “those”. 
 
Page 9, line 24: ‘of two indices’ should be ‘of the two indices’ 
Response: Thank you. It’s changed as suggested. 

 
Figures 3 and 7: ‘inlet’ should be ‘inset’ 

Response: Thank you. All typos have been changed to “inset” in the captions of Fig. 3 and Fig. 
7. 
 
Figure 6 (a) and (b): This rainbow colour scale is not colour-blind friendly, so would be hard to 
interpret for some people. Perhaps use a white to blue scale, with blue indicating stronger winds? 
Response: Thank you for the kind reminder. We change the color bar in Fig. 6a/b and line colors 
in Fig. 3 to be color-blind friendly. 
 
Tables S3 and S4: ‘MAC_Z500’ in tables should be ‘MCA_Z500’ 
Response: Thank you. The typos have been corrected. 
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