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Abstract. Horizontal and vertical variability of water vapor is omnipresent in the tropics but its interaction with cloudiness

poses challenges for weather and climate models. In this study we compare airborne lidar measurements from a summer and

a winter field campaign in the tropical Atlantic with high-resolution simulations to analyse the water vapor distributions in

the trade wind regime, its covariation with cloudiness and their representation in simulations. Across model grid spacing from

300 m to 2.5 km, the simulations show good skill in reproducing the water vapor distribution in the trades as measured by the5

lidar. An exception to this is a pronounced moist model bias at the top of the shallow cumulus layer in the dry winter season

which is accompanied by a too weak humidity gradient at the inversion near the cloud top. The model’s underestimation of

water vapor variability in the cloud and subcloud layer occurs in both seasons but is less pronounced than the moist model

bias at the inversion. Despite the model’s insensitivity to resolution from hecto- to kilometer scale for the distribution of water

vapor, cloud fraction decreases strongly with increasing model resolution and is not converged at hectometer grid spacing.10

The observed cloud deepening with increasing water vapor path is captured well across model resolution but the concurrent

transition from cloud-free to low cloud fraction is better represented at hectometer resolution. In particular, in the wet summer

season the simulations with kilometer-scale resolution overestimate the observed cloud fraction near the inversion but lack

condensate near the observed cloud base. This illustrates how a model’s ability to properly capture the water vapor distribution

does not need to translate into an adequate representation of shallow cumulus clouds that live at the tail of the water vapor15

distribution.

1 Introduction

Globally moisture fields, unlike temperature fields, are not smooth but they vary on the regional scale in particular in the lower

troposphere where water vapor values can be large. The distribution of water vapor strongly interacts with the atmospheric

circulation through the formation of clouds and convection and through radiation. This interplay has been studied in the20

tropics at the large scale (e.g., Pierrehumbert, 1995) but is less well understood in the lower tropical troposphere, where

humidity is less well quantified from observations (Nehrir et al., 2017; Stevens et al., 2017). One way to fill this gap are

airborne measurements taken during dedicated field campaigns. In this study, we use airborne lidar measurements from two
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field campaigns in the northern tropical Atlantic to analyse the vertical structure and the spatial variability of water vapor and

clouds and their representation in simulations with resolution from hecto- to kilometer scale.25

Water vapor has multiple roles in the atmosphere and is closely connected to cloudiness: The boundary layer humidity sets

the potential for deep convection and determines cloud amount (e.g., Keil et al., 2008; Vial et al., 2017). As the vertically

integrated amount of water vapor approaches its saturation value over the tropical oceans, precipitation sets in and the amount

of precipitation in deep convective regions correlates well with the decrease in subsaturation in the column (Bretherton et al.,

2004; Holloway and Neelin, 2009). The same relation is found to hold within the dry season in the shallow convective regime30

(Nuijens et al., 2009). On a process level, the vertical distribution of moisture determines the amount and distribution of

radiative cooling and can thereby drive large-scale and meso-scale circulations (e.g., Pierrehumbert, 1995; Muller and Bony,

2015; Naumann et al., 2019). Also, the humidity of cloud-free air in the vicinity of a cloud determines the strength of dilution

of in-cloud water by entrainment. The strength of this dilution is a long-standing problem in convective parameterizations,

a key ingredient of the thermostat and the iris hypothesis, and a popular tuning parameter (Ramanathan and Collins, 1991;35

Mauritsen et al., 2012; Mauritsen and Stevens, 2015).

The vertical distribution of moisture and small-scale phenomena such as the dilution of clouds by entrainment are posing

challenges to both modelling and observations. The WALES (WAter vapor Lidar Experiment in Space) lidar is capable of

profiling moisture and aerosols, and detecting cloud tops simultaneously with high accuracy and spatial resolution (Wirth

et al., 2009). High resolution in vertical profiles is of particular importance in the tropics since sharp moisture gradients at40

the trade inversion influence radiation locally (Stevens et al., 2017). Installed on an aircraft, measurements with WALES

can be undertaken in regions of particular interest. In December 2013 and in August 2016 the NARVAL (Next-generation

Aircraft Remote-sensing for VALidation) campaigns were the first tropical experiments in which an airborne water vapor

lidar participated (Stevens et al., 2019b). For the two campaigns the German research aircraft HALO (High-Altitude Long-

Range) sampled the western tropical Atlantic east of Barbados to investigate the interactions between shallow moist convection,45

moisture distribution, and radiative effects with a state-of-the-art suite of remote sensing instruments and dropsondes.

The close coupling between clouds and water vapor and the capabilities of lidar measurements in the trade wind regime

motivate the guiding questions of this study: What is the vertical structure and the spatial variability of water vapor in the

trades? How does cloudiness covary with water vapor and are models able to represent the observed relationship correctly?

In numerical weather prediction, storm resolving model (SRM) simulations with kilometer-scale grid spacing are common50

and evaluated frequently (e.g., Bauer et al., 2015). Aiming to better resolve convection with higher resolution, traditional

idealized large-eddy model (LEM) simulations lack the ability to represent the mesoscale and large-scale variability of observed

cloud fields (Nuijens and Siebesma, 2019). LEM simulations with hectometer scale grid spacing are now becoming available

on large domains with realistic boundary conditions (Heinze et al., 2017; Stevens et al., 2019b). These LEM simulations with

realistic and varying large-scale states include the interaction with the large-scale circulation and at the same time the subgrid-55

scale flow is better constrained than in coarse resolution simulations. Although simulations with hectometer grid spacing still

do not have a grid spacing fine enough to represent details of shallow convection, even kilometer-scale simulations are found to

reproduce many features, such as the daily cycle in cloud amount and precipitation, better than climate models with convective
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parameterization (Stevens et al., 2019a; Vial et al., 2019). It is an open question whether hecto- and kilometer-scale simulations

with realistic and varying large-scale states are able to represent water vapor variability and its co-variation with clouds in the60

trades and whether this ability depends on resolution.

In model simulations convection, due to its stochastic nature, is not expected to trigger in the exact same position and with

the exact same timing as in reality. Therefore comparisons between observations from line-shaped research flights and models,

where the comparison is based on co-location of the two in space and time, are often of limited use. To bypass the issue of

co-location other means of comparison are needed. We propose to compare model and observations in moisture space, i.e., we65

sort water vapor profiles from the driest to the wettest profile, to identify differences in the vertical structure of water vapor and

its change in moisture space. The depiction of humidity in moisture space is inspired by Bretherton et al. (2005), who compare

model results as a function of column-relative-humidity to illustrate the mechanisms of convective self-aggregation in radiative

convective equilibrium. In observations this technique has been first used by Schulz and Stevens (2018). With a comparison of

observations and simulations in moisture space we avoid relying on co-location but retain the ability to quantify variability at70

high spatial resolution.

This paper is organized as follows: Section 2 describes the observations and model simulations used in this paper. In Sect. 3

we focus on the case study of a research flight on 11. December 2013, which is a case of typical shallow trade wind convection

and is also used to explain our methodology in detail. In Sect. 4 we generalize the results of the case study by applying the

same methodology to a set of research flights that allow us to analyse the seasonality of the water vapor structure in the trades.75

Conclusions are given in Sect. 5.

2 Observations and model simulations

2.1 NARVAL winter and summer campaign

Two NARVAL field studies took place over the tropical Atlantic ocean east of Barbados (Stevens et al., 2019b). The first part

of the field study counts eight research flights between 10 - 20 December 2013 and the second part ten flights between 8 - 3080

August 2016. The details of the NARVAL field studies, such as the flight strategy and the instrumentation of the HALO aircraft

are described by Stevens et al. (2019b) and Konow et al. (2019). Not all data are to the same degree useful for this analysis, as

some of the long flights (e.g., the transit flights between Germany and Barbados) are not contained in the modeling domain of

the LES (see Sect. 2.3) and some other days have not been chosen to be modeled with LES. For the purpose of this study, we

limit the available lidar and microwave radiometer data by the criterium of being included in our smallest modeling domain85

(see Section 2.3). The time and domain constraints are given in Table 1.

Basic differences between the winter and the summer trades appear in the cloud layer moisture and thickness (Table 1).

While the winter situations are characterised by similar and undisturbed trade wind conditions, the summer flights encountered

a significant layer of Saharan dust on August 12 and 19, the flight on August 22 was close to the intertropical convergence zone

(ITCZ), and the flight on August 24 was close to the tropical storm Garcon (Gutleben et al., 2019).90
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Table 1. Specification of flight domains used in this study.

t in UTC domain N p in % qc in g kg−1 hc in km

NARVAL 1

11. Dec 2013 16 - 21 10.0 - 16.5 N, 58.0 - 55.0 W 531 34.2 4.0 3.0

12. Dec 2013 14-15, 19-20 14.0 - 16.5 N, 56.5 - 48.5 W 526 86.5 4.0 2.8

14. Dec 2013 14-15, 19-20 13.9 - 16.5 N, 57.2 - 48.5 W 296 48.9 4.0 2.5

15. Dec 2013 16 - 21 12.0 - 16.5 N, 57.5 - 48.5 W 668 72.8 4.0 2.7

20. Dec 2013 17 - 18 13.3 - 16.5 N, 56.0 - 51.6 W 168 70.3 4.0 3.0

NARVAL 2

12. Aug 2016 13 - 19 9.5 - 14.0 N, 55.0 - 52.0 W 1317 69.0 6.0 1.9

19. Aug 2016 13 - 17, 20 13.5 - 16.0 N, 57.0 - 48.0 W 1115 85.4 8.0 2.6

22. Aug 2016 14-15, 20-21 10.0 - 12.8 N, 58.6 - 51.0 W 279 55.9 8.0 1.8

24. Aug 2016 13 - 16 13.0 - 14.5 N, 56.5 - 44.0 W 405 51.3 9.0 1.6

t: time period of analyzed flight, N : number of valid lidar profiles, p: percentage of valid profiles, qc: water vapor mixing ratio threshold

for detecting a cloud top with WALES, hc: maximum shallow cloud top altitude

2.2 WALES lidar and HAMP radiometer

The differential absorption lidar WALES is installed pointing downwards on the HALO aircraft, measuring water vapor profiles

throughout the tropical troposphere with three on-line laser wavelength positions in the near-infrared situated on three water

vapor absorption lines of cascading strength (Wirth et al., 2009; Kiemle et al., 2017; Gutleben et al., 2019). The weakest line,

specially selected for the tropics, permits accurate profiling of very moist layers below the inversion that tops the cloud layer95

in the trades while the stronger two lines provide reliable data of the moisture jump across the inversion and the dry regions

above. Backscatter from aerosol and clouds, corrected for extinction by aerosol, is simultaneously measured by a high spectral

resolution lidar (HSRL) at 532 nm with a temporal resolution of 1 s, corresponding to a spatial horizontal resolution along the

flight route of 210 m given the typical aircraft speed of 210 ms−1 during the summer campaign and a horizontal resolution

of 240 m given an aircraft speed of 240 ms−1 during the winter campaign. Flight speed was higher in winter due to a higher100

average flight altitude. To achieve an acceptable measurement precision of typically 10 % in the cloud layer and above, the

water vapor profiles are aggregated across 12 s or about 2.5 km in the summer campaign and 2.9 km in the winter campaign.

The vertical resolution is about 250 m for water vapor and 15 m for backscatter. Water clouds quickly attenuate the lidar signal

such that valid data are only obtained above cloud top, which is visible in the backscatter signals (Fig. 1 a). Full profiles are

obtained wherever the cloud gaps are larger than 2.5 km. Due to a methodical constraint, water vapor lidar data below 200 m105

is not available. The dropsonde profiles show that humidity is relatively constant with height within this layer, which agrees

with the assumption of a well-mixed subcloud layer. To calculate the WVP, we therefore extend the measurements at 200 m

down to the surface.
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Since our focus is the cloud layer moisture variability we only use those lidar profiles where more than half of the data points

below the maximum cloud top height, which is defined by qc in Table 1, are valid. For example, on 11 December 2013, the110

cloud layer top height is 3.0 km, and only in 34 % of all lidar profiles are more than half of the data points valid below this

height (Fig. 1 a). The rest is unavailable due to clouds or laser adjustment phases. We consequently use only one third of all

profiles of this flight (Fig. 1 b). This subset still contains small gaps mainly due to clouds which we fill with the saturation value

by assuming saturation wherever the HSRL backscatter coefficient is > 10 ·10−6 m−1 sr−1 which to sufficient approximation

defines a water cloud (Kiemle et al., 2017). We deviate from this threshold only in two cases where the clouds are particularly115

small (on 12 August 2016 we use 5 ·10−6 m−1 sr−1 to compensate for the signal dilution) or large (on 24 August 2016 we use

15 ·10−6 m−1 sr−1). We fill the remaining gaps with the moisture of the nearest neighbor profile in the horizontal and call this

gap-free result a minimum estimate (WALESmin; Fig. 1 c). In a maximum estimate (WALESmax) we additionally fill all original

cloud shadows down to the lifting condensation level (LCL), i.e., missing data below lidar-detected clouds, with the saturation

value. To find the LCL, we use the lidar signals from thin boundary layer clouds as well as dropsonde profiles and auxiliary120

lidar information such as aerosol and water vapor gradients at the top of the mixed layer. The saturation humidity profiles are

calculated from the temperature profiles of nearby dropsondes. Since the thickness of the cloud cannot be determined by the

lidar and also lower clouds may exist above the LCL, the maximum estimate gives an upper bound on cloudiness and water

vapor path (WVP, defined as the vertically integrated specific humidity without contributions from liquid or ice). Likewise

the minimum estimate provides a lower bound on cloudiness and WVP. Consequently, the difference between the minimum125

and the maximum estimates characterises to a satisfying extent the uncertainty of our attempt to quantify the lidar moisture

distribution within and below the clouds while aiming to obtain a gap-free data curtain needed for the model comparisons. The

difference in WVP between WALESmax and WALESmin is at maximum 5 % (Fig. 1 d). We will show later that the uncertainty

in the measured humidity estimate is small compared to the difference between model and observation (see Section 3.2). To

obtain the cloud fraction, we apply the abovementioned HSRL backscatter coefficient threshold for water clouds onto the 1-s130

lidar backscatter curtains, use a similar min/max assumption to account for measurement and methodical uncertainties and

aggregate it into a 12-s grid along the flight direction.

To understand which part of the moisture space the WALES lidar misses in cloudy environments, we additionally make

use of the HAMP (HALO Microwave Package) radiometers, whose data is available for NARVAL 1 (Jacob et al., 2019a)

and NARVAL 2 (Jacob et al., 2019b). The nadir-viewing HAMP microwave radiometers lack vertical profile information but135

measure the WVP with 1 s (that is 210 m or 240 m) resolution along the HALO flight track also in the presence of shallow

clouds (Jacob et al., 2019c). The co-alignment of HAMP with the lidar field of view was checked by comparing the radiometer

liquid water path with the lidar cloud backscatter signals, both available at 1 s resolution. The radiometer signals are interrupted

by calibration events. Comparisons with the co-located lidar WVP reveal that those events are independent from the ambient

humidity conditions. The radiometer WVP distributions are consequently not biased, except for a slight underrepresentation of140

the moistest scenes due to signal attenuation which concerns less than 1.5 % of all WVP data.
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Figure 1. Lidar profiles of the flight on 11. December 2013: (a) atmospheric backscatter for the full flight, (b) specific humidity with lidar

gaps, (c) specific humidity of WALESmax, and (d) WVP and the difference in WVP between WALESmax and WALESmin, ∆WVP. (b-d) show

those 531 profiles where more than 50 % of the lidar data within the cloud layer and below are available. The remaining gaps in the original

data set in (b) are filled by assuming saturation in clouds, and by nearest neighbor values elsewhere, resulting in a gap-filled representation

in (c) and (d). See text for details. Note that the aspect ratio is 1:500 in (a) and 1:150 in (b) and (c).

2.3 ICON

Simulations are run with ICON (Icosahedral non-hydrostatic model; Zängl et al., 2015) with four different grid spacings

between 2.5 km and 300 m and with two different model versions: ICON-SRM and ICON-LEM. The ICON-SRM was run

with 75 vertical levels and with 2.5 km and 1.25 km nominal horizontal grid spacing. Details of the simulations are described145

by Klocke et al. (2017). The ICON-LEM (Dipankar et al., 2015; Heinze et al., 2017) was run with 150 vertical levels and

with 600 m and 300 m nominal horizontal grid spacing. Details of the simulations are described by Stevens et al. (2019b).

The effective resolution is estimated to be a factor of six to ten larger than the nominal grid spacing (Hansen, 2020). In

all simulations the parameterizations for shallow and deep convection, gravity wave drag and subgrid-scale orography are

switched off. The parameterizations for turbulence and microphysics differ between the SRM and the LEM. In addition, the150

SRM simulations apply a cloud cover parameterization while the LEM simulations use a binary approach. For this study, we

set the LEM cloud fraction to 1 if the liquid water content in a grid box is non-zero, and 0 otherwise.

The SRM runs with the coarsest grid spacing of 2.5 km cover the largest domain including the entire tropical Atlantic (10.0 S

- 20.0 N, 68.0 W - 15.0 E). The simulated domain size decreases with increasing resolution, so that the LEM run with the finest

grid spacing of 300 m has the smallest domain, which still covers an area of 800 km × 1600 km in the western part of the155

Atlantic (8.0 - 16.5 N, 60.0 - 43.5 W). For the purpose of this study, we do not analyze model output from the full simulation

6



domains of ICON at different resolutions but instead limit the domain analyzed to rectangles around those parts of the flight

paths that took place within the smallest simulated domain. Because the flight paths and time periods differ from day to day,

the analyzed domains and time periods also differ as given in Table 1. We analyse all model output in these domains instead

of selecting profiles along the flight tracks because convection is not expected to trigger at the exact same location and time in160

simulations as it does in reality. Using the domain output is consistent with the statistical rather than spatial-temporal approach

of this analysis and promotes the robustness of the results.

Initial and boundary conditions for the ICON-SRM 2.5 km simulations are taken from the European Centre for Medium-

Range Weather Forecast (ECMWF) reanalysis and vary in time except for the SST, which is fixed for each simulation day.

The simulations apply a one-way nesting of higher resolution simulations in low resolution simulations. The ICON-SRM165

simulations with 2.5 km horizontal grid spacing apply an online refinement to 1.25 km via nesting in the eastern part of the

domain and start at 0 UTC for each day of December 2013 and August 2016. They are run forward in time for 36 hours.

ICON-LEM simulations are initialized and nudged at the lateral boundaries from ICON-SRM and start at 9 UTC for selected

days to match the flight operations of the NARVAL campaign. They are run forward in time for 27 hours. Simulations are

analyzed from hourly model output starting earliest at 13 UTC (see Table 1) so that a sufficient spinup period is taken into170

account.

3 Case study: Covariation of clouds and moisture

In this section, we use one day of the first NARVAL campaign, 11. December 2013, for a detailed case study. The aim of the

case study is to introduce the central method of this study: the concept of a stretched moisture space. The stretched moisture

space is obtained by selective subsampling of the model results and thereby allows for a fair comparison between lidar data and175

model results. The case study also illustrates some prominent features of covariation of clouds and moisture, before aggregated

seasonal composites enable us to generalize the results to different regimes of water vapor structure in the trades in Section 4.

3.1 Synoptic situation and flight

We choose the 11. December 2013 for a detailed case study for two reasons: First, a regular meander flight pattern allows us

to sample a well-defined region thoroughly, which aids a comparisons with simulations (Fig. 2). Second, the conditions seem180

preferential to sample the humidity space because the flight area includes typical shallow convection over most of the area but

also approaches deeper convection with higher humidity towards the south.

The modeled cloud structures have similarities with the observed reflectance from MODIS showing organized structures of

shallow clouds in the northern three quarters of the domain (Fig. 2). With a grid spacing of 2.5 km these shallow clouds have a

too broad structure compared to observations. With higher resolution the cloud structures, not surprisingly, become finer but at185

300 m grid spacing the model misses some stratiform outflow from shallow cumulus giving the shallow convective cloud field

a less organized appearance than in satellite observations. In both simulations and in the satellite view the southern quarter

of the domain is dominated by a cirrus shield originating from deep convection just south of the domain. This cirrus shield is
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Model:

ICON-SRM at grid spacings of 2.5 km 
and 1.25 km (Klocke et al., Nat. Geosc., 2017) 
ICON-LEM at grid spacings of 600 m 
and 300 m (courtesy of Matthias Brück) 

all simulations without convective para-
meterization 

initial and boundary conditions: ECMWF 
reanalysis  
one-way nesting of higher resolution 
simulations in low resolution simulations 

ICON-SRM simulations start at 0 UTC  
ICON-LEM simulations start at 9 UTC 

Across model grid spacing from 300 m to 2.5 km, ICON shows a good skill in reproducing lidar measurements of 
water vapor variability and distribution in the tropics. An exception of this is a persistent moist model bias near 
cloud top. Cloud fraction depends strongly on model resolution but tends to agree better with observations for 
high resolution simulations.

The distribution of water vapor is closely connected to the appearance of shallow and deep convection, 
interacts with the circulation through radiation, and affects the intensity of cloud feedbacks and thus 
climate sensitivity. High horizontal and vertical variability of water vapor is omnipresent in the tropics but 
poses challenges for weather and climate mod- 
els. In this study we compare high-resolution  
simulations and airborne lidar measurements to  
help elucidate these complex interactions.  

Day 1: 
11.12.2013 
16 - 21 UTC 
10.0-16.5 N, 58.0-55.0 W 

mostly shallow cumulus, 
approaching deeper convection 
towards the south 

556 valid profiles from WALES

Day 2: 
12.08.2016 
13 - 19 UTC 
9.5-14.0 N, 55.0-52.0 W 

few and very shallow  
cumulus 

1737 valid profiles from  
WALES

Observation:

airborne water vapor lidar WALES (Kiemle 
et al., Surv. Geophys. 2017)

water vapor profiles with ~2.5 km 
horizontal and 200 m vertical resolution 

When the lidar detects a cloud or the 
signal is extinct, two different assump-
tions are made to fill clouds and cloud 
shadows in the water vapor profile. 
Minimum: clouds detected by the lidar 
are set to saturation, remaining areas are 
filled by neighboring values 
Maximum: clouds detected by the lidar 
and lidar shadows above the LCL set to 
saturation, remaining areas are filled by 
neighboring values

Both the ICON simulations and the WALES 
lidar measurements were conducted for the 
NARVAL campaigns, which took place in 
December 2013 and August 2016 in the 
Northern Tropical Atlantic east of Barbados 
(Stevens et al., Surv. Geophys., 2017).

When the lidar signal is 
extinct, we use a mini-
mum and a maximum 
estimate of water vapor.

At the top of the cloud layer 
the model is too moist, 
possibly due to artificial 
diffusion in the model.
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ixing ratio [g/kg]
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]
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Open issue

Mean qv and its first 
moments agree well 
within the different 
model resolutions and 
with observations. 
Cloud fraction and qc 
strongly decrease with 
resolution. Observed 
cloud fraction tends to 
agree better with high 
resolution simulations.

Distribution of cloud fraction 
strongly depends on model 
resolution and tends to be too 
low near cloud base.

To compare the distribution of water 
vapor and clouds all profiles are 
sorted by water vapor path (WVP).

Lidar profiles that miss more than half of the water vapor signal 
are not considered in this analysis. This distorts the direct com-
parison with simulations. We plan to subsample the simulations 
according to the observations to eliminate this potential bias.

referred to as the lower free troposphere, LFT. We speak of the triple-point level rather
than the ‘melting level’ or ‘freezing level’ as the latter are less well defined. In cases when
the shallow cumulus layer is completely suppressed, the lower free troposphere will extend
down to the top of the PBL. In disturbed conditions the shallow cumulus layer may extend
to the triple-point level.

2.1 Airborne Measurements and the Barbados Cloud Observatory

The Next-Generation Airborne Remote Sensing for Validation Studies (NARVAL) field
campaigns made use of the Germany Research Community’s HALO (High Altitude Long
Range) research aircraft (Stevens et al. 2016) to make measurements over the northern
tropical Atlantic. NARVAL has had two phases: Phase I took place in the downstream
winter trades in December of 2013; phase 2 took place in and around the vicinity of the
Atlantic ITCZ in August 2016. NARVAL-1 consisted of eight flights, with about 40 h of
flight time over the North Atlantic trades abutting the ITCZ. NARVAL-2 consisted of
roughly twice as many flight hours distributed over ten flights in, around, and across the
ITCZ. For NARVAL-1, the configuration of HALO is described by Stevens et al. (2016).
For NARVAL-2, the configuration was similar. Most relevant for this study is the
extensive deployment of dropsondes and continuous water vapor profiling using a down-
ward staring differential absorption lidar as elaborated upon below.

Airborne measurements were taken east of the Barbados Cloud Observatory (BCO),
over the ocean between 40–60!W and 5–20!N. The BCO comprises an extensive collection

z

z*

zf

T*

Fig. 1 Conceptual diagram illustrating layers of moisture, and some of the terminology, discussed in this
article. The height of the sub-cloud layer, which delineates the planetary boundary layer or PBL, is denoted
by g; the height of the trade-inversion or the hydrolapse delineating the shallow cloud layer is denoted by zi;
the height of the triple-point isotherm, T"; is denoted by z"; and the height of primary ice formation isotherm
(Tf ) is denoted by zf : For the formation of ice by homogeneous nucleation Tf ¼ $ 38 !C. The term lower free
troposphere is used to denominate the region below the height of T" and the average height of the fair-
weather cumulus layer. In the present-day tropics g is at about 600 m, the zi can be quite variable, but when
evident is typically between 2 and 3 km. z" locates at around 4.5 km

Surv Geophys
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(Stevens et al., Surv. Geophys., 2017)

ICON-LEM 300 m 
time:17:00 UTC

ICON-SRM 2.5 km 
time:17:00 UTC

	
�����������������

MODIS Aqua 
17:25 UTC

��������
������ ��������	�
���

MODIS Aqua 
17:25 UTC

ICON-LEM 300 m 
time:17:00 UTC

ICON-SRM 2.5 km 
time:17:00 UTCa) b) c) d) e)

Figure 2. Cloud cover and water vapor path (WVP) in the flight domain on 11 December 2013. Cloud cover at 17:00 UTC from (a) ICON-

LEM 300 m and (b) ICON-SRM 2.5 km; (c) MODIS Aqua corrected reflectance at 17:25 UTC overlaid with the flight path which was flown

from north to south; WVP at 17:00 UTC from (d) ICON-LEM 300 m and (e) ICON-SRM 2.5 km.

reaching further north in the model than in the satellite observations. Because the deep convective system moves towards the

south west with time and the flight itinerary is following the pattern from north to south, the lidar observations onboard the190

aircraft catch only a small amount of this regime (see Sect. 3.2).

The field of WVP shows more small-scale structure at 300 m grid spacing than with 2.5 km but changes less with resolution

than the cloud cover does. All simulation show an increase of WVP from north to south and a c-shape of low WVP in the

northern and central section of the domain. This c-shape in the modeled WVP can be surmised in a reduced presence of clouds

in the satellite view but is less well reflected in the modeled cloud cover.195

Averaging the results of the ICON-LEM 300 m simulation on squares of different side length, we analyse how the standard

deviation of the water vapor mixing ratio, qv , depends on the considered scales (Fig. 3). The analysis combines spatial and

temporal variability but the contribution from spatial variability is dominating (not shown). Coarse graining the 300-m LEM

results to 2.5 km does not change the standard deviation considerably. The relative contribution of small scales between 300 m

and 2.5 km to the standard deviation of qv is largest near cloud base and in the subcloud layer but generally well below 10 %.200

Even for a side length of 20 km the relative differences to the native grid spacing of 300 m are maximum near cloud base

(30 %) but are considerably smaller throughout the cloud layer and above (< 10 % ). Because the differences are small, for the

remainder of this analysis we show model results and observational data at their native scale (from 300 m to 2.5 km), which

aids a direct evaluation of what a simulation is able to catch without artificially reducing information by averaging.
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Figure 3. Contribution of different scales to the standard deviation of qv on 11 December 2013 from ICON-LEM 300 m. Domain and

temporal coverage are given in Table 1. Simulations with a grid spacing of 300 m have been coarsend to squares with side lengths of 2.5 km,

20 km, 100 km, and "full domain", which corresponds to a side length of about 400 km. Both spatial and temporal variability contribute

to the standard deviation except for the "full domain", which only shows temporal variability. The cloud layer ranges from cloud base at

z = 0.5 km to the highest cloud tops at z = 3.0 km.

3.2 Spanning the moisture space205

Because of its stochastic nature convection is not expected to trigger at the exact same location and time in simulations as

it does in reality. To bypass the issue of co-location, we sort water vapor profiles from the driest to the wettest profile and

compare simulations and observations in moisture space (Bretherton et al., 2005; Schulz and Stevens, 2018). Comparing

simulation results with data from HAMP, this procedure is straight forward because the HAMP dataset samples the whole

domain well. WALES on the other hand is rapidly attenuated in clouds and saturated in the wettest profiles so that a fair210

comparison to simulations needs to take into account information on which situations WALES is not able to observe. We

therefore use HAMP to span the moisture space, to quantify what WALES misses, in particular in the wet regions, and to

construct a "stretched moisture space" that enables a fair comparison between WALES and ICON. This method works well

during NARVAL because flight patterns were fixed before takeoff and hence measurements along the flight path represent

a random sample of the encountered cloud regime. The validity of this method quickly reaches its limits if flight paths are215
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adjusted to preferentially sample a feature of special interest – a trade-off to be aware of for future flight planning (e.g., in view

of EUREC4A, Bony et al., 2017).

max    min

0 27 59 81 95 100
stretched WVP percentile

max / min

a) b) c)

max / min

Figure 4. Water vapor path (WVP) on 11th of December 2013 in WVP space. (a) ICON simulations and HAMP observations of WVP are

sorted by each one’s WVP values. WALES data is plotted as co-located with HAMP. Percentages above the x axis tell how many valid

WALES measurements have been obtained in each 10 % interval of HAMP’s WVP space. (b) ICON results and HAMP data is randomly

selected according to those percentages in each 10 % interval resulting in a stretched WVP space, which is also shown as an additional x axis

in (a). In (b) WALES data is sorted by its own WVP instead of being co-located with HAMP. (c) as in (b) but for the difference to WALESmin.

Further details are discussed in the text.

We proceed as follows: All available WVP values from HAMP and the ICON simulations at different resolution are sorted

from the lowest to the highest value (Fig. 4 a). This representation corresponds to the cumulative distribution function of the

WVP but with swapped x- and y-axis compared to the common depiction. Since WALES and HAMP measure the same location220

at the same time, a co-location between those two instruments is eligible. For 11th of December 2013 WALESmin values scatter

around HAMP values with a standard deviation of 1.48 kg/m2 (1.62 kg/m2 for WALESmax), which is consistent with Jacob

et al. (2019c). Because WALES measurements attenuate quickly in clouds and for high WVP (Sect. 2), data gaps are not

randomly distributed in moisture space but instead preferentially occur where WVP is high: of the driest 10 % of HAMP

measurements 48 % have a corresponding measurement from WALES, while for the moistest 10 % of HAMP measurements225

only 3 % have a corresponding measurement in WALES. To account for this biased sampling of WALES, we randomly select

model results and HAMP according to these percentages of WALES counterparts in each 10 % interval. Then we sort all

WALES WVP by its increasing value. The resulting new moisture space of all valid WALES data points and those subsampled

from ICON and HAMP is effectively stretched in its drier part and compressed in the moister part (Fig. 4 b and lower x axis in
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Fig. 4 a). We call this new moisture space the stretched WVP space according to WALES or, in short, the "stretched moisture230

space". This stretched moisture space enables a fair comparison between WALES and ICON.

In stretched moisture space, the distribution of WVP from ICON simulation results, and WALES and HAMP measurements

overall agree well (Fig. 4 b, c). The differences between the three observational estimates, HAMP, WALESmin, and WALESmax

are small with a median of absolute difference around 0.6 kg/m2 (WALESmin vs. HAMP: 0.60 kg/m2, WALESmax vs. HAMP:

0.56 kg/m2). The differences in the distributions of WVP between simulations at different grid spacing are much smaller. This235

possibly reflects the nested modeling approach, which ensures consistent initial and boundary conditions and where domains

are nudged with a time scale of 3 h, to ensure that they do not deviate too much in the two-way setup. However, the differences

in cloud fraction are considerably larger (see Sect. 3.3), which indicates that the effect of grid spacing in the range of hecto- to

kilometer scale is small for the distribution of the WVP.

The small intra-observational and intra-model differences enable a meaningful interpretation of the difference between240

model and observation. Compared to observations the modeled variability of WVP is too small. The driest model areas are

too wet, while the wettest model areas agree well with WALES (Fig. 4 c). This underestimation of the variability in WVP can

be attributed to too low variability of moisture in the cloud layer (see Sect. 3.3). If WVP is not subsampled for valid WALES

profiles, there is also a dry model bias for very wet profiles as compared to HAMP (Fig. 4 a). Here, the wettest 15 % of HAMP’s

moisture space seem to be not well represented in the model. Two factors are expected to contribute to this deviation: On 11245

December 2013 there is a little change in the flight track near 11 N 56 W. This was made to try to fly over the deepest turret

of the towering convection and try to drop a sonde through this (Bjorn Stevens, personal communication, 2019). Hence this

flight segment is purposely biased to the moistest cell and may contribute to differences in the moist part of the space of Fig. 4

a. Also, extending the analysed model domain to south of 10 N, decreases this bias which suggests that the deep convective

system on 11 December 2013 is consistently placed too far south in all four simulations (not shown). Because both the deepest250

turret of the towering convection and in general the moistest profiles towards the south of the domain contain less valid WALES

samples than the drier profiles, this feature is much less visible in stretched moisture space and is therefore less important for

the remainder of this analysis.

3.3 Vertical distribution of water vapor and cloud fraction

With the framework of the stretched moisture space, we can now also analyse the vertical structure of water vapor and cloud255

fraction by comparing valid WALES profiles with ICON profiles that are subsampled according to percentages of the WALES

counterpart. The analysis therefore does not represent the real space as an omniscient observer would see it but only that part

that WALES is equipped to measure.

The mean water vapor mixing ratio compares well between WALES and ICON (Fig. 5 b). As for the integrated quantity

WVP, also in the vertical structure of qv there is no dependence on grid spacing. Compared to WALES the inversion is too high260

in the model, a feature that is common to all analysed days in December 2013. Both the observed and the modeled heights

of the inversion increase with increasing WVP but this increase is less pronounced in the simulations (Fig. 6 b). For the dry
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Figure 5. Profiles of (a) cloud fraction, (b) mean water vapor, qv , and its (c) standard deviation and (d) skewness for the 11. December 2013

in stretched moisture space as defined in Fig. 4.

profiles the modeled inversion is also less steep, which implies a less concentrated radiative cooling in the simulations at the

cloud layer top with possible implications for mesoscale circulations (Naumann et al., 2019).

The higher moments of the water vapor distribution do not agree as well as the mean but still capture the main features and265

the right magnitude. The two maxima of the standard deviation of qv in the cloud layer are well captured but are underestimated

by the model compared to the observations (Fig. 5 c). This is also evident from the change in bias with increasing WVP: in the

cloud layer the driest profiles tend to be too moist in the model (Fig. 6 c).

The skewness, which is defined as the ratio of the third central moment of the distribution to the 3/2 power of the variance,

is reasonably well represented from the middle of the cloud layer up to the cloud layer top (Fig. 5 d). Near cloud base the270

model simulates a negative skewness, that is, few very dry locations associated with cloud free regions, while the observations

indicate slightly positive values, that is, few very moist locations. This difference in sign between model and observations is

also found on the 14. and 15. December 2013 but not on the other days (not shown). Above cloud top between 4 km and 7 km

the modeled skewness is very large, which is caused by a single deep convective cell near the south-western corner of the

domain that dominates the skewness but has not been sampled by the lidar and is therefore not represented in the observations.275

While these properties are characteristic also for other flight days of the NARVAL campaign, a feature that is special to the

observations on 11. December 2013 is a secondary maximum at 4 km height (Fig. 5 b). This secondary maximum is evident

only in the moistest profiles (Fig. 6 b), manifests in the southern part of the domain towards the end of the flight (Fig. 1) and

is caused by a moist outflow from convectively more active regions. This feature is also reflected in higher values of standard

deviation and skewness but is absent in all three moments in the model, which misses the moist outflow (Fig. 5 c, d).280

For the mean cloud fraction, both uncertainties from observations and sensitivity to model resolution are larger than for qv

(Fig. 5 a). Typical cloud sizes obtained from the lidar are around 500 m (Gutleben et al., 2019) and hence on the order of
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Figure 6. Profiles of (a) cloud fraction, (b) water vapor and (c) the difference of water vapor to the WALESmin estimate for 11 December

2013. Each profile shows the mean for a 20-percentile range of WVP in stretched moisture space from driest profiles on the left to moistest

profiles on the right (see Fig. 4). To retain fluctuations due to a limited number of samples, as many profiles as are available from WALES

have been randomly subsampled from ICON results (here 531 samples, see Table 1). At a given height level WALESmax can be lower than

WALESmin because the sorting of profiles is done according to the column integrated WVP separately for the minimum and the maximum

estimate.

the grid spacing of the simulations. Because the contribution to overall cloud fraction scales with the size of the clouds, we

do not expect the contribution of these small clouds to dominate the overall cloud fraction. From WALES the uncertainty in

maximum cloud fraction is a factor of two (between 7.4 % for WALESmin and 15.2 % for WALESmax) but the vertical structure285
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is similar with a clear maximum in cloud fraction near cloud base and few shallow clouds deepening up to 3 km. This structure

is also represented well by the simulations, except that the cloud fraction maximum near cloud base is placed too high. We

suspect that this upward shift in cloud fraction maximum is linked to the resolution because the shift is stronger for the SRM

than the LEM simulations. Another hypothesis, which has recently been developed by Jacob et al. (2020), proposes that slight

differences in the autoconversion parameterization in the SRM and LEM might cause differences in the cloud’s vertical extent.290

A further resolution dependent feature is the value of the maximum cloud fraction, which decreases substantially by a factor

of two between 12.8 % (ICON-SRM 2.5 km) and 5.8 % (ICON-LEM 300 m) but is still close to the range of uncertainty given

by the observations. Hohenegger et al. (2019) find similar dependencies of cloud fraction on grid spacing between 2.5 km and

80 km and hypothesize that if horizontal resolution is not sufficient for proper mixing, the boundary layer grows and clouds

form higher at colder temperatures leading also to more cloudiness. The decrease in cloud fraction between the simulations295

with 600 m and 300 m grid spacing is still substantial and not converged, which is in agreement with idealized modelling

studies showing that LEM underestimates cloud fraction when the grid spacing becomes as fine as 50 m (Vogel et al., 2019).

With increasing WVP the clouds deepen from very shallow cloud tops around 1 km up to cloud tops around 3 km both in

the simulations and in observations (Fig. 6 a). Whether the maximum cloud fraction also increases with increasing WVP is

not clear: for WALESmin the maximum cloud fraction stays about constant while for WALESmax the maximum cloud fraction300

increases with increasing WVP. Cloud fraction from the LEM simulations agrees well with the WALESmin estimate but in the

SRM simulations the maximum cloud fraction increases similar to the WALESmax estimate. For features other than the height

of the maximum cloud fraction, which is shifted upward in particular in the SRM simulation, it therefore remains unclear for

this case study whether the modeled cloud fraction improves with resolution or not. For the season of August 2016 a better

representation of cloud fraction with higher resolution becomes apparent and will be discussed in the next section.305

4 Seasonal composites

In this section we generalize the results of the case study by applying the same methodology to composites of several research

flights that allow us to analyse different regimes of the water vapor structure in the trades. We combine five research flights

in December 2013 to one composite case and four research flights from August 2016 for another composite case (Table 1),

both of which represent different seasons in the trades. As for the case study in the previous section, we subsample all model310

results according to the percentages available from WALES in each 10 % bin of WVP for each flight individually. After the

subsampling we concatenate the individual flights to obtain the seasonal composite. The composite is thus weighted by the

number of valid profiles per flight (which vary from flight to flight; Table 1). The analysis in this section is discussed in the

resulting stretched moisture space.

4.1 Stretched moisture space315

Boreal winter in the northern trades near Barbados is generally characterized by a drier free troposphere compared to boreal

summer, which is characterized by more frequent disturbances, a closer proximity of deep convection associated with the
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ITCZ, and a moister free troposphere (e.g., Stevens et al., 2017). All research flights in December 2013 took place in a period

of undisturbed shallow convection (Vial et al., 2019). To analyse whether the chosen research flights characterize a meaningful

regime of water vapor structure, we test their representativeness by extending the analyzed period to the ambient days (10. to320

21. December 2013) and choosing the mean borders of their domains (12.7 - 16.5 N, 57.0 - 50.4 W). For December 2013 the

research flights represent the extended period very well (Fig. 7 a). For August 2016, we extend the period and domain in the

same way except for the southern border (11. to 25. August 2016; 13.0 - 14.3 N, 56.8 - 48.8 W). Compared to the mean border,

the southern border is shifted 1.5◦ north to avoid inclusion of deep convection from the ITCZ on a few days, where it reaches

further north. In August 2016, the extended period is several kg/m2 moister than the flight period and domain. This difference325

can be explained by two factors: On several of the flights in August 2016 dry sectors were sought out purposely biasing the

flight periods compared to the extended period (Bjorn Stevens, personal communication, 2019). This illustrates the problem

of flying toward specific features, rather than fixing a flight pattern to sample a region evenly (see also Sect. 3.2; Jacob et al.,

2019c). In addition, on 20 - 22 August 2016 the tropical cyclone Fiona runs by north of the domain and brings some very moist

air into the domain behind it on 23 August 2016 contributing to a moister extended period. Because the difference between330

the moist August flights and the dry December flights is considerably larger than the difference between the flight periods and

their extended periods, both composite cases can be seen as representative for different regimes. A good representation of the

NARVAL flights for their respective season is also found by a comparison with a 8 year long time series at the Barbados cloud

observatory in terms of cloud depth and base (Heike Konow, personal communication, 2019).

As for the case study also in the seasonal composites of the flight domains the stretched distribution of WVP agrees well335

between model and observation (Fig. 7 b-e). The uncertainty in the observational estimate as well as the sensitivity to model

resolution is small for both seasons. In December 2013 the model tends to be too moist with the largest bias up to 2 kg/m2

between the 20th and the 60th percentile and a smaller moist bias for the very low and the high WVPs. In August 2016, the

agreement is excellent. The LEM results fall almost exactly on the WALES estimate for the lower half of the stretched moisture

space and the SRM results coincide with the WALES estimate in the upper half of the stretched moisture space.340

4.2 Vertical distribution of water vapor and cloud fraction

For the December composite the vertical distribution of mean water vapor, its first moments, and the cloud fraction is very

similar to the case study on 11. December 2013 (Sect. 3). We find good agreement between model and observation both in

value and shape of the vertical profiles with a few exceptions (Fig. 8 a-d): a too high model inversion, an underestimation of

the standard deviation of qv in the cloud layer by the model, the model’s negative skewness of qv at cloud base as compared to345

a positive value in observations, and an upward shift of the modeled height of the maximum cloud fraction. One difference to

the case studies of 11. December 2013 is a stronger secondary maximum of cloud fraction near 2 km height in the simulations

with 600 m to 2.5 km grid spacing. These small stratiform cloud shields below the inversion are often present in both model

and observations (Lamer et al., 2015; Vogel et al., 2019) but are mostly removed from our analysis of the WALES data due to

their opacity. The LEM simulations with finest grid spacing (300 m) are closer to the observations in this case.350
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Figure 7. WVP as a function of WVP percentiles (a) for ICON-SRM 2.5 km and the flight period and domain in December 2013 and August

2016 (see Table 1) as well as for an extended period that includes a longer time period for a domain with mean borders (see text for details);

(b) for the flight composite in December 2013; and (c) for the flight composite in August 2016; (d,e) as in (b,c) but for the difference to

WALESmin.

Compared to the December composite the August composite is characterized by a moister free troposphere and a shallower

cloud layer (< 2 km, Fig. 8 e-h). This supports the understanding that a moister free troposphere promotes shallower cumuli

because both the entrainment of moister air into the boundary layer, which decreases surface fluxes, and a weaker radiative

cooling at the cloud layer top lead to a weaker buoyancy excess in clouds compared to their environment and therefore con-

vection remains shallower (e.g. Nuijens and Siebesma, 2019).355

For two features there is better agreement between model and observations in the August composite than in the December

composite: the moist model bias at the inversion is strongly reduced in August, and model and observations agree on a near-

zero skewness of qv near cloud base. However, the upward shift in the modeled height of the maximum cloud fraction and the

underestimation of the standard deviation of qv in the cloud layer by the model remain. Compared to the SRM simulations at

coarser resolution, the LEM simulations are better able to capture the height of the cloud maximum and the amount of cloud360

fraction except for the cloud base cloud fraction. The SRM simulations clearly overestimate the cloud fraction throughout the
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Figure 8. Profiles of (a,e) cloud fraction, (b,f) mean water vapor. qv , and its (c,g) standard deviation and (d,h) skewness for the flight

composites of (a-d) December 2013 and (e-h) August 2016 in stretched WVP space as defined in Fig. 7 b and c.

cloud layer above cloud base. Because cloud fraction is not converged in the LEM simulations, we expect an underestimation

of cloud fraction as grid spacing approaches decameter scale.

A robust feature of the December and the August composite is the observed deepening of the cloud layer with increasing

WVP from a few hundred meters for low WVP to the top of the inversion for high WVP (at 3 km in December 2013 and at365

2 km in August 2016, Fig. 9 a, d). This deepening is well captured by the simulations across resolution.

A better representation of cloud fraction with higher resolution becomes apparent for the covariation of cloud fraction with

WVP. In the August composite the LEM simulations capture the observed increase in cloud fraction from cloud-free to about

10 % (Fig. 9 d). However, the transition from cloud-free to low cloud fractions occurs too late in moisture space in the LEM.

In contrast the coarse resolution SRM simulates clearly too much cloud fraction in the driest part of the moisture space where370
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Figure 9. Profiles of (a,d) cloud fraction, (b,e) water vapor and (c,f) the difference to water vapor WALESmin for flight composites (a-c)

December 2013 and (d-f) August 2016. Each profile shows the mean for a 20-percentile range of WVP in stretched moisture space from

driest profiles on the left to moistest profiles on the right (see Fig. 7).

none is observed and overestimates cloud fraction at high WVP throughout the cloud layer above cloud base. If the low-cloud

fraction is too large, this increases the radiative cooling of the subcloud layer and can perhaps artificially promote convective

self-aggregation too strongly when it is driven by low-level radiative cooling outside deep convective regions (e.g., Muller and

Held, 2012; Hohenegger and Stevens, 2016; Wing et al., 2017).

Different from the August composite, in the December composite even for the driest part of the moisture space a distinct375

cloud fraction is observed (Fig. 9 a). Neither the SRM nor the LEM are able to capture this cloud regime but instead simulate

cloud-free conditions. While both observational estimates of cloud fraction agree well for the dry part of the moisture space,

the picture is less clear for the moist part of the moisture space. For WALESmax the maximum cloud fraction increases with

increasing WVP but for WALESmin it is close to constant. The SRM and LES results both show increasing cloud fraction with

increasing WVP but due to the uncertainty from the observational estimate, we cannot confirm this behaviour with WALES.380

Using ground based observations that are better able to estimate cloud fraction near cloud base, Nuijens et al. (2013) find that
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most of the variability in cloud fraction comes from clouds aloft and that clouds near the LCL are rather invariant with time.

Although the variability depends on the time scale considered, this and the theory of the cumulus valve mechanism (Neggers

et al., 2006; Bellon and Stevens, 2013) seem to be supported by the WALESmin estimate of a constant cloud fraction near cloud

base in moisture space, but not by WALESmax.385

Differences in the vertical distribution of water vapor between model and observations are more subtle than those in cloud

fraction. The observed rate of increase in inversion height in moisture space is well captured by the simulations (Fig. 9 b,e).

In both the model and the observations the increase in WVP is mostly accomplished by a deepening of the moist layer and to

a lesser extent by increasing moisture in the subcloud layer or above. If the increase in WVP was solely due to a deepening

of the moist layer, then the agreement in the deepening rate between observations and simulations would directly follow from390

their agreement in percentile distribution of WVP (Fig. 7). It can therefore not be seen as a fully independent feature.

In the December composite the simulated inversion is shifted upward independent of WVP, which causes a strong bias around

2 km height (Fig. 9 c). For the December and the August composite the simulated gradients at the inversion are smoother than

those observed, a well-known difficulty of simulating inversions in particular if vertical resolution is moderate. (In ICON-

LEM the vertical grid spacing is about 100 m at 2 km height, for ICON-SRM 200 m.) Because the gradient of moisture at395

the inversion plays an important role for the local radiative fluxes, the weaker gradient implies a less concentrated radiative

cooling in the simulations at the cloud layer top. Besides the too high cloud fraction at kilometer-scale resolution discussed

above, the too smooth moisture gradient at the inversion is another model feature that distorts the interaction between radiation,

subsidence and cloud development.

Model biases in qv also lead to misrepresentations in modeled cloud fraction. In the August composite in the driest 20400

percentiles of moisture space, the SRM is too moist between 500 m and 1000 m that is where there is too high cloud fraction.

For the mid-range percentiles of moisture space (between the 20 percentile and 60 percentile) the bias in modeled qv shows

a bipolar structure for both SRM and LEM: On the one hand, at the height of the observed cloud maximum the modeled qv

is slightly too low, coinciding with modeled spurious too low cloud fraction at the observed cloud base. On the other hand,

around the inversion the modeled qv is too high, coinciding with spurious cloud fraction in the SRM at a height where there405

are much less clouds observed. We suspect that the latter feature only appears in the SRM simulation and not in the LEM

simulation because the SRM applies a cloud fraction parameterization which can produce cloud cover at subsaturation. Taken

together, the model smooths qv in the inversion and thereby puts moisture too high into the inversion region where it produces

clouds in the SRM and lacks moisture below the inversion where clouds are observed but not represented in the model.

5 Conclusions410

In this study, we analyse the distribution of water vapor and clouds in the trades and how their covariation differs in observations

and high-resolution models. The NARVAL campaigns, which took place in the northern tropical Atlantic east of Barbados,

provide the opportunity to analyse the distribution of water vapor in the trade wind regime of shallow cumulus cloud fields

(Stevens et al., 2019b). In this study, we analyse five research flights from December 2013 probing the region’s dry season
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and four research flights from August 2016 probing the region’s moist season. With a horizontal resolution of 2.5 km, the415

WALES lidar during the NARVAL campaigns provides accurate measurements of the water vapor distributions primarily in

the cloud-free gaps of the shallow cumulus regime. The lidar data are compared with results from nested ICON model runs

that are available at four grid spacings from 2.5 km to 300 m and that include the area and period of the flight domains.

Because of its stochastic nature, shallow convection is not expected to trigger at the exact same location and time in simula-

tions as it does in reality. To bypass the issue of co-location but retain information on variability, we sort water vapor profiles420

from the driest to the wettest profile and compare simulations and observations in moisture space (Bretherton et al., 2005;

Schulz and Stevens, 2018). Because the signal of the WALES lidar is attenuated rapidly when encountering a cloud and there-

fore preferentially misses cloudy, high moisture profiles, information from the HAMP radiometers co-located with the lidar is

used to construct a "stretched moisture space" that enables a fair comparison between WALES and ICON.

Across model grid spacing from hecto- to kilometer scale, ICON is able to represent the observed features of the water vapor425

distribution well. In stretched moisture space it correctly captures the full range of WVP from 20 kg/m2 to 55 kg/m2, the main

features of the vertical distribution of the first three moments of water vapor, and the variability of water vapor profiles across

moisture space. An exception in the vertical distribution is a persistent moist model bias at the trade wind inversion in the dry

season, where the model simulates the inversion too high. In both seasons the model tends to smooth the moisture gradient at the

inversion too much, which is a known feature of excessive model diffusion and might also be a result of underresolving shallow430

convection with low horizontal resolution. In addition, the simulations slightly underestimate the variability of water vapor in

the cloud and subcloud layer in both seasons. Both the too smooth inversion gradient and the too weak cloud layer variability

are expected to distort the interaction between radiation, subsidence and cloud development. That there is little dependence

of these features on grid spacing and the general good agreement with observations implies no advantage of hectometer grid

spacing over kilometer grid spacing in representing the water vapor distribution in the trade wind regime.435

In contrast to water vapor, the modelled cloud fraction strongly depends on grid spacing. While the observed cloud deep-

ening with increasing moisture is captured well across model resolutions, the modeled cloud fraction strongly decreases with

increasing grid resolution. In the dry season the observational uncertainty in cloud fraction is too large to make a firm statement.

In the wet season simulations with hectometer grid spacing agree better with observations than simulations with kilometer grid

spacing. In particular, the transition from cloud-free to low cloud fraction with increasing moisture, which reflects the close440

connection between the distribution of water vapor and clouds, is better represented at hectometer resolution. Also, the height

of maximum cloud fraction, which is observed just above cloud base, is shifted upward in the model in both seasons but de-

creases with higher resolution towards the observed values. Although cloud amount and its vertical distribution is compelling at

300 m grid spacing, it is not converged yet, which is in line with idealized modelling studies showing that LEM underestimates

cloud fraction for decameter grid spacing (Vogel et al., 2019).445

In conclusion, we show that high-resolution simulations of the shallow cumulus trade wind regime with kilometer scale grid

spacing and realistic boundary conditions are able to capture the characteristics of the lower tropospheric water vapor distribu-

tion well (Heinze et al., 2017; Stevens et al., 2019a). They however have difficulties to reproduce the observed covariation of

water vapor and cloud statistics, which is improved at hectometer resolution. As has been shown for conventional climate mod-
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els, which apply a convective parameterization at much coarser resolution (e.g., Jiang et al., 2012), this means that capturing450

the water vapor distribution correctly does not imply that shallow clouds that live at the tail of the water vapor distribution are

also well represented. It remains an open question which role such shallow cloud biases in kilometer-scale simulations play for

the heat budget of the cloud layer and how they interact with the large-scale environment, e.g., in global storm resolving models

(Satoh et al., 2019). The latter question of whether and how shallow cloud biases depend on the large-scale environment also

prompts itself to be pursued further in the light of EUREC4A, which sets out for measuring the distribution of water vapor and455

clouds in conjunction with the large-scale environment (Bony et al., 2017).
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