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Abstract. Variations of the solar spectral irradiance (SSI) with the 11-year sunspot cycle have been shown to have a significant

impact on temperatures and the mixing ratios of atmospheric constituents in the stratosphere and mesosphere. Uncertainties

in modelling the effects of SSI variations arise from uncertainties in the empirical models reconstructing the prescribed SSI

data set as well as from uncertainties in the chemistry-climate model (CCM) formulation. In this study CCM simulations with

the ECHAM MESSy Atmospheric Chemistry (EMAC) model and the Community Earth System Model 1 (CESM1)–Whole5

Atmosphere Chemistry Climate Model (WACCM) have been performed to quantify the uncertainties of the solar responses in

chemistry and dynamics that are due to the usage of five different SSI data sets or the two CCMs. We apply a two-way analysis

of variance (ANOVA) to separate the influence of the SSI data sets and the CCMs on the variability of the solar response

in shortwave heating rates, temperature and ozone. The ANOVA identifies the SSI data set with the strongest influence on

the variability of the solar signal in shortwave heating rates in the upper mesosphere and in the upper stratosphere/lower10

mesosphere. The strongest influence on the variability of the solar signal in ozone and temperature is identified in the upper

stratosphere/lower mesosphere. The largest influence of the CCMs on variability of the solar responses can be identified in the

upper mesosphere. The solar response in the lower stratosphere also depends on the CCM used, especially in the tropics and

northern hemispheric subtropics and mid latitudes, where the model dynamics modulate the solar responses.

1 Introduction15

Solar ultraviolet (UV) radiation is largely absorbed in the stratosphere and mesosphere, thereby heating the middle atmosphere

and forming the ozone layer, filtering the most harmful part out of the solar spectrum and protecting life on Earth. Especially

the UV wavelengths from 120 to 380 nm are subject to variations with the 11–year solar cycle ranging between 50 and 0.5%,

whereas the respective total solar irradiance (TSI) variation is only about 0.07%. The response of the middle atmosphere to

the 11–year variations of solar activity has been addressed in numerous studies over the recent decades. Early studies were20
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confined to the lower stratosphere, using stratospheric analyses based on radiosondes (Labitzke, 1987; Labitzke and van Loon,

1988). Enhanced evidence for an effect of solar variability on middle atmospheric temperatures and constituents has been

achieved since satellite observations are available (e.g., McCormack and Hood, 1996). Modelling studies range from early

investigations with 2-dimensional atmospheric and chemistry models (Garcia et al., 1984; Haigh, 1994) and 3-dimensional

general circulation models (GCMs) (e.g., Matthes et al., 2004) to studies with advanced chemistry-climate models (CCMs)5

(SPARC CCMVal, 2010) and CCMs coupled to an ocean model, as partly used within the 5th Coupled Model Intercomparison

Project (CMIP5) (Mitchell et al., 2015; Misios et al., 2015; Hood et al., 2015).

While a good understanding of the chemical and dynamical implications of the 11–year solar cycle on the middle atmosphere

has been achieved (e.g., Gray et al., 2010, 2013; Ermolli et al., 2013), there are still discrepancies between observed responses

to the solar cycle and modelling studies, as well as between different models. As explained in the following, there are two10

major sources for the uncertainty in the modelled solar signals: differences in the model formulation such as for example

the implemented UV radiation parameterisations, photolysis schemes and dynamical characteristics of the models, and the

prescribed solar irradiance data set. The impact of the 11–year solar cycle on the atmosphere can be separated into two parts:

a) an influence via the absorption of UV-radiation by ozone and oxygen in the middle atmosphere, with the direct solar heating

response inducing a dynamical signal that propagates downward through the so-called “top-down” mechanism (Kodera and15

Kuroda, 2002), and b) an influence based on the absorption of the visible and infrared parts of the solar spectrum at the surface

(often expressed by variations in TSI), which is amplified by the so-called “bottom-up” mechanism (van Loon et al., 2007;

Meehl et al., 2009). A realistic modelling of the “top-down” effect therefore relies on prescribing spectrally resolved solar

irradiances (SSI) for the radiation and photolysis parameterisations of the applied CCMs. The SSI variation over the 11–year

solar cycle leads to a modulation of stratospheric ozone through photochemistry (e.g., Haigh, 1994; Ball et al., 2014), as well20

as variations of the heating rates in the middle atmosphere through absorption of UV-radiation (e.g., Garcia et al., 1984). It

has been shown that the spectral resolution of the radiation parameterisation has a large impact on the 11-year solar response

of the short-wave (SW) heating rates (Nissen et al., 2007; Forster et al., 2011). Both SSI dependent changes, in ozone and

in SW heating rates over the 11-year solar cycle, determine the resulting solar induced temperature signal. SPARC CCMVal

(2010) identified a large model spread in solar responses for ozone and temperature of 18 CCMVal-2 CCMs, mainly caused by25

differences in the spectral resolutions of the shortwave radiation parameterisation or the treatment of photolysis in the CCMs.

Besides their solar cycle response on the thermal structure and dynamics of the middle atmosphere, the different spectral

distribution of a SSI data set can also have an impact on the averaged middle atmospheric temperature, as was found in studies

comparing different SSI data sets. It was shown that differences in the energy distribution during the solar minimum phases of

individual SSI data sets may cause significant differences in the simulated temperatures in the middle atmosphere (e.g., Zhong30

et al., 2008; Oberländer et al., 2012). Even when scaled to the same TSI, the variable spectral distribution of energy within the

SSI data sets can cause significant changes of the simulated climatological temperatures in the middle atmosphere. As shown

in Matthes et al. (2017), climatological annual mean middle atmospheric temperatures in the tropics can be up to 1.6 K lower

when using the CMIP6 recommended SSI data set instead of NRLSSI1. Therefore, to exclude the effect of different spectral

distributions and to isolate the pure effect of the amplitude of SSI changes over the solar cycle, it is necessary to use a common35
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SSI data set for solar minimum conditions that serves as a baseline for adding the solar amplitude of the different TSI/SSI data

sets. By adding the solar amplitude, i.e. the differences of the TSI/SSI between the solar maximum and solar minimum state of

the different SSI data sets, to the reference state, the effects of the 11-year solar cycle differences in spectral distribution and

amplitude of the individual SSI data sets can be quantified in a more appropriate way than in previous work.

The aim of this study is to estimate the uncertainty of the solar cycle signal resulting from the two above described sources5

of uncertainty: the specification of the 11-year solar cycle SSI amplitude and the models’ shortwave radiation and photolysis

schemes and their dynamical characteristics. We apply different SSI data sets in two CCMs, EMAC and CESM(WACCM), as

described in Section 3 to identify regions where significant differences in the solar responses can be attributed to differences

in either the SSI data sets or the CCMs. Both CCMs have participated and their solar responses have been evaluated in the

CCMVal-2 activity (SPARC CCMVal, 2010). Here, we use five different SSI data sets that are all based on empirical or10

semi-empirical models of SSI and TSI (see Section 2 for more details). In contrast to previous studies, we use a common

observation based reference SSI spectrum for solar minimum conditions where the five SSI amplitudes are added to create the

solar maximum forcings (s. Section 3.1). After analysing the solar response of the ensemble mean and its variance in Section

4, the individual solar responses are discussed in Section 5. To separate the influence of the SSI data sets and the CCMs on the

solar responses in shortwave heating rates, temperature and ozone, a two-way analysis of variance (ANOVA) method has been15

applied. While the ANOVA is a well established method in many scientific fields, it is used here for the first time to quantify

the uncertainty of the atmospheric response to decadal solar variability. The climatological differences between both CCMs,

that are partially responsible for differences in the solar responses, are discussed in Section 5.2. In Section 6 the solar response

in total column ozone and its variability are analysed, followed by a summary and conclusions in Section 7.

2 Spectral solar irradiance data sets20

The record of observed TSI covers a relatively short period of time, since the first satellite mission to monitor TSI was launched

in 1978. The record of SSI observations is even shorter and does not cover the solar spectrum continuously, as required for

climate modelling studies. The construction of a continuous SSI data set exploiting all available space-borne measurements

was only recently addressed by the “First European Comprehensive Solar Irradiance Data Exploitation project” (SOLID)

(Haberreiter et al., 2017). In order to perform multi-decadal simulations with GCMs and CCMs covering the recent past and25

the near future, as done within CMIP5 and the Chemistry-Climate Model Initiative (CCMI), SSI and TSI data sets are needed

that are based on reconstructions with empirical models. Such models rely on SSI and TSI proxy data, which are available for

longer time periods.

The standard data set for TSI and SSI in recent model intercomparison studies like CMIP5, CCMVal-2, and CCMI was the

NRLSSI1 data set (Lean, 2000; Wang et al., 2005). This data set is known to have the lowest solar cycle variability in the30

spectral range from 200–400 nm, compared to other SSI reconstructions and measurements (Ermolli et al., 2013). This is of

particular importance for the formation of ozone and the related heating rates in the middle atmosphere (Ermolli et al., 2013).

The low variability of the NRLSSI1 data set might lead to an underestimation of simulated 11-year solar cycle effects in global
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models (Ermolli et al., 2013) and motivated the compilation of a new TSI/SSI data set to be used for CMIP6 (Matthes et al.,

2017) which is a combination of two data sets: NRLSSI2 (Coddington et al., 2016) and SATIRE (Krivova et al., 2009; Yeo

et al., 2014). In the following subsection we give a brief introduction of the SSI/TSI data sets applied in this study.

ATLAS3 based reference spectrum

The SSI data set used in this study for the solar minimum reference state between 0.1–2,395 nm is the Atmospheric Laboratory5

of Applications and Science-3 (ATLAS-3) SSI reference spectrum (Thuillier et al., 2004), obtained during the third ATLAS

mission in November 1994 near the minimum of solar cycle 22. It is a composite spectrum that comprises SSI measurements

from instruments on three space platforms, including measurements with the SOLar SPECtrum instrument (SOLSPEC) and

the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment on board of the space shuttle (see Thuillier et al., 2004,

for more details). The ATLAS-3 SSI data set covers wavelengths up to 2,395 nm only. We use the NRLSSI1 data set for10

wavelengths between 2,395–99,975 nm and the SATIRE-S data set from 99,975–165,000 nm to extend the spectrum to the

infrared and to derive the TSI for the ATLAS-3 spectrum. The extended ATLAS-3 spectrum was then scaled to obtain the

integrated TSI of 1361.05 W m−2 for November 1994, derived from Total Irradiance Monitor (TIM) TSI measurements on

NASA’s Solar Radiation and Climate Experiment (SORCE) (Kopp and Lean, 2011). The resulting compiled and scaled SSI

data set serves as a reference state for solar minimum conditions to which the solar amplitudes of all other SSI data sets have15

been added to get the respective SSI data sets for solar maximum condition.

NRLSSI

The Naval Research Laboratory (NRL) SSI models (Lean et al., 1997; Lean, 2000; Coddington et al., 2016) are based on the

empirical, wavelength-dependent relationship between sunspot darkening and facular brightening on the solar disk with SSI

changes. This relationship is decribed by indices, which are used in regression models to determine the coefficients required to20

estimate the time-varying SSI changes. The SSI changes of the empirical model are added to a quiet sun reference state, based

on the WHI (whole heliosphere interval) SSI reference spectrum and the ATLAS-1 measurements (Thuillier et al., 1998). The

TSI changes are added to a quiet Sun reference state of 1365.5 W m−2 (NRLSSI1) and 1360.45 W m−2 (NRLSSI2), based

on SORCE/TIM measurements (Kopp and Lean, 2011). The required model coefficients are determined from a multiple linear

regression of the proxy time series on the observed TSI from SORCE/TIM and observed SSI from SORCE/SOLSTICE and25

SORCE/SIM for NRLSSI2 and UARS/SOLSTICE for NRLSSI1. For facular brightening the composite MG II index of the

University of Bremen (Viereck et al., 2001) and as index for sunspot darkening the sunspot area as recorded by ground-based

observatories are used (Lean et al., 1998).

SATIRE

The SATIRE (Spectral And Total Irradiance REconstructions) model (Krivova et al., 2009; Yeo et al., 2014) for the recon-30

struction of SSI and TSI is a semi-empirical model that is based on variations of the solar surface magnetic field. The intensity
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spectra of the quiet Sun reference state, faculae, network, sunspot umbrae, and sunspot penumbrae are derived by applying a

radiative transfer code (Unruh et al., 1999; Yeo et al., 2014). The resultant SSI is given as a weighted sum of these five contri-

butions, where the weights (filling factors) are retrieved from magnetograms and continuum images that allow to estimate the

fractional solar surface that is covered by the brightening (faculae and network) and darkening (sunspot umbrae and penum-

brae) features. Two different data sets from the SATIRE model that both span a wavelength range from 115 – 160000 nm,5

SATIRE-T (telescope era) and SATIRE-S (satellite era), are used in this study. Differences between SATIRE-T and SATIRE-S

arise from the estimation of the filling factor that describes the fractional surface coverage of the quiet Sun and the brightening

and darkening features. SATIRE-S relies on full-disc magnetograms and intensity images, which allow to reconstruct TSI and

SSI back to 1974. Satire-T (Krivova et al., 2010) is intended to reconstruct the SSI/TSI in the pre-satellite era when only lower

quality data for the estimation of the state of the photosphere are available. Whereas for SATIRE-S detailed information of the10

photospheric structure can be used, it is assumed to be homogeneous for SATIRE-T. The SATIRE-T filling factors for sunspot

umbrae and penumbrae are calculated from the observed sunspot areas. The filling factors for faculae and network are derived

from the evolution of the solar photospheric magnetic flux estimated by a coarse physical model (Solanki et al., 2000). As our

study is based on the SSI/TSI data of November 1994, the most reliable reconstruction of the SATIRE model is given by the

SATIRE-S data set, however SATIRE-T is also included for comparison. The direct comparison of SATIRE-T and SATIRE-S15

for the same time frame can be beneficial for modelling studies using SATIRE-T in the pre-satellite era (e.g., the Maunder

Minimum) and comparing to simulations for present-day conditions, which also use SATIRE-T SSI.

CMIP6 data set

The SSI and TSI data sets of the NRLSSI2 and SATIRE-S/T models, introduced in the previous sections, both cover the

required time span (1850–2300) for CMIP6 simulations, and have been widely tested in modelling studies. The new recom-20

mended SSI/TSI data set for CMIP6 has been derived by averaging the NRLSSI2 reconstructions with the SSI and TSI of

SATIRE-S/T as described in detail in Matthes et al. (2017). As we only use data for November 1989 and November 1994, the

CMIP6 SSI and TSI data consists of an average of output from NRLSSI2 and SATIRE-S.

[Table 1 about here.]25

Table 1 gives an overview of the applied SSI data sets with details of their percentage solar cycle amplitude in the Lyman-α,

far-UV (FUV, 121–200 nm), UV in the Herzberg continuum (partly overlapping with the Hartley-bands) (201–242 nm), UV in

the Hartley-/Huggins-bands (243–380 nm), and the visible (381–780 nm) spectral regions. The first value (∆SSI) represents the

percentage SSI change from solar minimum to maximum relative to the solar minimum in November 1994. The second value

represents ∆SSI relative to the TSI change from solar minimum to maximum ( ∆SSI
∆TSI ) in %. Whereas ∆SSI emphasises the large30

variability of the solar irradiance at Lyman-α and in the Schumann-Runge-continuum/-bands over the 11-year solar cycle, the

∆SSI weighted by ∆TSI emphasises the large solar cycle variation of absolute energy in the UV and visible wavelengths. High

∆SSI variability in the FUV is leading to large increases in the photolysis of oxygen and water vapour in the upper mesosphere
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during solar maximum. More important for the solar response of stratospheric ozone mixing ratios are the two UV spectral

regions. While the irradiance increases in the 201–242 nm spectral region lead to more oxygen photolysis and subsequent ozone

production in the stratosphere during solar maximum, the irradiance increases between about 243–380 nm lead to more ozone

destruction through photolysis during solar maximum, further discussed in section 5.1. The NRLSSI1 and NRLSSI2 data sets

have the lowest ∆SSI
∆TSI ratio in the Hartley-/Huggins-UV-band among the SSI models used here, whereas the SATIRE-S data set5

shows the highest and has also the highest ∆SSI
∆TSI ratio in the Lyman-α, FUV, and Herzberg continuum/Hartley bands spectral

regions. Coddington et al. (2019) compare solar amplitudes of 11–year solar cycles in the satellite period produced with the

NRLSSI2 and SATIRE-S for a number of broad wavelengths bands to SSI amplitudes derived from the SOLID composite. In

the FUV spectral region they report the highest SSI amplitude for the SATIRE-S data set. Yeo et al. (2015) compare the SSI

variability of NRLSSI1 and SATIRE-S with SSI obeservations over the satellite period and report the low UV variability of10

NRLSSI compared to the SATIRE-S data set.

3 Chemistry-climate models and simulations

Two state-of-the-art CCMs have been used in this study to quantify the uncertainty of the modelled solar response related to the

11-year solar cycle. These are EMAC (ECHAM/MESSy Atmospheric Chemistry) (Jöckel et al., 2016) and CESM1(WACCM)

(Community Earth System Model 1–Whole Atmosphere Chemistry Climate Model) (Marsh et al., 2013).15

EMAC

EMAC is a CCM that includes sub-models describing tropospheric and middle atmospheric processes and their interaction with

oceans, land and human influences (Jöckel et al., 2010). It uses the second version of the Modular Earth Sub-model System

(MESSy2) to link multi-institutional computer codes. The core atmospheric model is the 5th generation European Centre

Hamburg general circulation model (ECHAM5, Roeckner et al., 2006). For the present study we applied EMAC (ECHAM520

version 5.3.02, MESSy version 2.52; Jöckel et al., 2016) in T42L47MA-resolution, i.e. with a spherical truncation of T42

(corresponding to a quadratic Gaussian grid of approx. 2.8°latitude by 2.8°longitude) with 47 hybrid pressure levels up to 0.01

hPa (∼80 km). The model setup comprises, among others, the sub-models: MECCA, JVAL, RAD/RAD-FUBRAD, QBO,

and UBCNOX. MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) (Sander et al., 2011a) provides

the atmospheric chemistry model. The chemical mechanism contains 155 species with 224 gas phase, 12 heterogeneous,25

and 74 photolytic reactions. JVAL (Sander et al., 2014) provides photolysis rate coefficients using updated rate coefficients

recommended by JPL (Sander et al., 2011b) and resolves the solar Lyman-α line and 8 spectral bands in the UV and VIS

range (178–683 nm). RAD/RAD-FUBRAD (Dietmüller et al., 2016) provides the parameterisation of radiative transfer based

in the SW on Fouquart and Bonnel (1980) and Roeckner et al. (2003) (RAD) with 4 bands from 250 to 4,000 nm. For a

better resolution of the UV-VIS spectral band RAD-FUBRAD is used for pressures lower than 70 hPa, increasing the spectral30

resolution in the UV-VIS from one band to 81 bands (Nissen et al., 2007; Kunze et al., 2014). With this updated version of

RAD-FUBRAD the single band parameterisation for the heating rates of FUV in the Schumann-Runge bands (Strobel, 1978)
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is replaced by the parameterisation based on 19 bands, as given in Strobel (1978). A further update is introduced by using 14

bands for the Chappuis bands (407.5–690 nm). The submodel QBO is used to relax the zonal wind near the equator towards

the observed zonal wind in the lower stratosphere (Giorgetta and Bengtsson, 1999). As EMAC, with an upper boundary in the

upper mesosphere, is not able to capture the thermospheric influx of NOy, the simulations presented in this study employ the

UBCNOX parameterisation (Sinnhuber et al., 2018; Funke et al., 2016) in the upper mesosphere to include NOy produced in5

the thermosphere by auroral and medium-energy electrons.

WACCM

The Whole Atmosphere Community Climate Model (version 4; Marsh et al., 2013) is an integrative part of the Community

Earth System Model suite (version 1.0.6; Hurrell et al., 2013). CESM1(WACCM) is a “high-top” CCM covering an altitude

range from the surface to the lower thermosphere, i.e. up to 5×10-6 hPa, equivalent to approx. 140 km. It is an extension of the10

Community Atmospheric Model (CAM4; Neale et al., 2013) with all its physical parameterisations. For this study the model has

been integrated with a horizontal resolution of 1.9°latitude by 2.5°longitude and 66 levels in the vertical. CESM1(WACCM)

contains a middle atmosphere chemistry module based on the Model for Ozone and Related Chemical Tracers (MOZART3;

Kinnison et al., 2007) which includes a total of 52 species with 127 gas-phase, 17 heterogeneous, and 48 photolytic reactions.

A six constituent ion chemistry model is included with 13 ionization reactions and 14 ion-neutral and recombination reactions.15

Its photolysis scheme resolves 100 spectral bands in the UV and VIS range (121-750 nm). The SW radiation module is a

combination of different parameterisations. Above approx. 70 km the spectral resolution is identical to the photolysis scheme

(plus the parameterisation of Solomon and Qian, 2005, based on the F10.7 cm solar radio flux to account for EUV irradiances).

Below approx. 60 km the SW radiation of CAM4 is retained, employing 19 spectral bands between 200 and 5,000 nm (Collins,

1998). For the transition zone (60-70 km), SW heating rates are calculated as weighted averages of the two approaches.20

CESM1(WACCM) features relaxation of stratospheric equatorial winds to an observed or idealised Quasi-Biennial Oscillation

(QBO; Matthes et al., 2010). The ionisation in the auroral regions by energetic particles is parameterised according to Roble

and Ridley (1987) using the Kp index as input parameter. To achieve a setup for low auroral activity, for WACCM the Kp index

is set to a constant value of Kp = 0.67, as this corresponds to a geomagnetic index of Ap = 3, which is used in the EMAC

submodel UBCNOX.25

3.1 CCM simulations

For both CCMs (EMAC and WACCM) time slice simulations have been performed with the same basic scenario for both

models in all simulations, except only for the prescribed SSI data set. The basic scenario consists of year 2000 conditions for

prescribed greenhouse gas mixing ratios (GHGs), ozone depleting substances (ODSs), and monthly climatological sea surface

temperatures (SSTs) and sea ice concentrations (SICs) (average from 1995 to 2004). After dismissing five or three years of30

spinup for EMAC and WACCM, respectively, 45 years of data are available from each simulation for analyses. The QBO is

included in all simulations by relaxation of the zonal wind in the tropical lower stratosphere between 90 and 10 hPa with the

strongest nudging applied from 50 to 15 hPa in EMAC. Whereas EMAC uses the time series of the observed zonal winds

7

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



(Naujokat, 1986), an idealized 28-months varying QBO is used for WACCM. The reference simulation with perpetual solar

minimum conditions, performed by each CCM, uses the ATLAS-3 based SSI reference spectrum (Thuillier et al., 2004, s.

Section 2). To our knowledge, this is the first time that this observational SSI dataset has been used to force CCM simulations.

In addition, five sensitivity simulations with perpetual solar maximum conditions of the solar cycle 22 maximum in November

1989 from five different SSI data sets have been performed by each CCM. The five spectra for solar maximum conditions are5

constructed by adding the difference of the SSI between the solar maximum in November 1989 and the near solar minimum in

November 1994 of NRLSSI1 (Lean, 2000), NRLSSI2 (Coddington et al., 2016), SATIRE-T (Krivova et al., 2010), SATIRE-S

(Yeo et al., 2015), and CMIP6-SSI (Matthes et al., 2017) to the common ATLAS-3 based observational reference SSI data

set which is defined for the solar minimum state. By this procedure we ensure that we use a common spectral distribution of

energy that only varies in the solar maximum sensitivity simulations by the genuine difference from solar minimum to solar10

maximum of each SSI data set. Table 1 summarises the resulting percentage changes for five spectral regions, and also gives

an overview of the five sensitivity simulations for solar maximum, which have been performed by WACCM and EMAC.

The solar minimum reference simulation as well as the solar maximum sensitivity simulations are performed for low auroral

activity. Due to these model configurations, the NOy changes are expected to be caused by the SSI changes from solar minimum

to solar maximum and not by variations in auroral activity.15

4 Annual mean solar response of heating rates, temperature, and ozone

To analyse the solar signal, time series of anomalies have been calculated for each simulation performed by EMAC and

WACCM using one of the five SSI data sets constructed for solar maximum conditions with respect to the time series of the

reference simulations of both models using the ATLAS-3 based SSI near solar minimum. These five anomaly fields for each

CCM can be interpreted as solar response of the model variables to SSI and TSI changes over the 11–year solar cycle. Figure 120

(left) shows the solar response of the ensemble mean, i.e. averaged over the simulations of both CCMs applying five different

SSI data sets each, in (a) shortwave heating rate (HR), (b) temperature, and (c) ozone mixing ratio. The averaged solar response

is significant at the 95% level in regions that are not masked by grey hatching. A t-test is applied to the complete concatenated

ensemble (10 simulations in each group without performing an ensemble mean of the simulations at solar maximum and min-

imum in advance). By this procedure the variability of the solar response is maintained and the regions where the significance25

reaches the 95% level are smaller compared to the results of a t-test for an ensemble average.

[Figure 1 about here.]

The solar SW heating rate response is significant throughout the middle atmosphere at pressures lower than 30 hPa with

peaks in the tropics near the stratopause (∼0.2 K day−1) and in the upper mesosphere (∼0.38 K day−1) (Figure 1a). Whereas

the solar response in the upper mesosphere is due to enhanced solar radiation in the spectral range from Lyman-α to the30

Schumann-Runge bands (absorbed by oxygen), the solar signal near the stratopause is mainly due to an increase over the

solar cycle in the Hartley and Huggins bands (absorbed by ozone). The very low standard deviation of the solar signal of

the ensemble mean throughout the stratosphere and mesosphere (except for the upper mesospheric polar regions) provides
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evidence that the primary annual mean radiative response of the middle atmosphere is a robust feature and not particularly

sensitive to the specified SSI data set or the CCM configuration.

A direct consequence of the stronger SW heating during solar maximum is a solar signal in temperature, which also peaks in

the upper mesosphere with up to 2 K and near the stratopause in the subtropics with more than 0.8 K (Figure 1b, left). This is

weaker than the more than 1 K solar temperature response derived from combined SSU/MSU4 satellite data reported by Randel5

et al. (2009), but in the same order of magnitude as reported by SPARC CCMVal (2010) for CCMs and slightly larger than

analysed by Mitchell et al. (2015) for an ensemble of CMIP5 high-top models. The secondary lower stratospheric maximum

in the solar temperature response in the tropics, which has been identified in reanalyses (e.g., Frame and Gray, 2010), is not

present in the ensemble mean. At high latitudes, the solar signal in temperature shows generally an enhanced spread between

the ensemble members which is due to the high internal dynamical variability of the polar winter atmosphere.10

The solar response in ozone mixing ratio has a first peak in the stratosphere near 7 hPa with two regions exceeding 2%,

one in the southern hemisphere (SH) extending from mid-latitudes to the subtropics and one in the northern hemisphere (NH)

extending from the subtropics to polar latitudes. The solar ozone response decreases in the upper stratosphere and lower

mesosphere, turns to negative values of up to -1.5% in the mesosphere and again to large positive values of more than 4.5% in

the upper mesosphere (Figure 1c, left). Previous studies analysing the stratospheric solar ozone response in CCMs have found15

a comparable magnitude. E.g., Hood et al. (2015) found a significant 2–3% ozone response to the solar cycle between 1979

and 2005 at a slightly higher altitude near 3–4 hPa in three out of six CCMs within CMIP5. In the upper mesosphere, the solar

ozone signal differs between the two CCMs: the negative response in EMAC appears only in a narrow layer from 0.1–0.03 hPa

in WACCM, where it strongly increases above, dominating the ensemble mean ozone response (s. Figure 2c). The negative

solar ozone signal in EMAC is due to a strong enhancement of H2O photolysis during solar maximum leading to an increase in20

HOx and enhanced catalytic ozone depletion. The divergent solar responses in ozone in the upper mesosphere between EMAC

and WACCM (Figure 2c) are further discussed in Section 5.1.

5 Uncertainty in solar response due to SSI data sets and CCMs

To quantify the uncertainty of the mean solar response emerging from the usage of different SSI data sets on the one hand

and different CCMs on the other, we apply a two-way analysis of variance (ANOVA) approach in this study (s. Appendix A25

for details). The data set to analyse consists of the annual mean solar responses from simulations using the five SSI data sets

in both CCMs, i.e. a time series with 450 years from 10 simulations with 45 years each, as shown for the ensemble average

in Figure 1 (left). The overall variance of the solar response, as expressed by its annual standard deviation (Figure 1, left,

white contours), is partitioned into a contribution arising from the applied SSI data sets and a contribution arising from the

applied CCMs. The results of the ANOVA for the solar response are shown in the middle and right columns of Figure 1. The30

coefficients of determination (Equation A6) are coloured and additional white contours are included when the values reach

or exceed the limits of the colour coding. They indicate the percentage of the solar signal variance that can be explained by

the differences between the SSI data sets or the CCMs, respectively. Superimposed grey hatching masks areas where the solar

9

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



responses are not significantly different when grouped according to the SSI data sets or the CCMs. Note that the contributions

of the variances explained by the SSI data set and the CCM in the middle and right columns of Figure 1 do not add up to 100%,

as often the random contribution to the total variance is largest.

Significant differences in the solar signal can be identified when the simulations of the ensemble mean are grouped according

to the SSI data sets (Figure 1, middle) and the CCMs (Figure 1, right). In the upper mesosphere, differences between the CCMs5

explain more than 80% of the spread in the solar ozone signal – due to the change of sign in the ozone response between

WACCM and EMAC –, more than 25% of the spread of the solar temperature signal, and up to 50% of the spread of the SW

heating rate signal at high latitudes. In contrast, between 60◦S and 60◦N up to 70% of the spread of the solar signal in SW

heating rates is explained by the different SSI data sets, due to large solar amplitude variations in the FUV between the SSI

data sets. As a result, the SSI data sets also induce a significant fraction of the variability of the solar signal in temperature10

(9%) at the mesopause.

In the upper stratosphere and lower mesosphere, the SSI data sets are responsible for a relatively large part of the variance of

the solar responses, while the CCMs explain much less variance as the radiation schemes of both models possess a sufficient

spectral resolution to capture the SW heating rate peak. The largest fractions of the SSI induced variance of the solar response

in SW heating rates (30%) and ozone (30%) peak in the subtropics, while the SSI induced variance of the temperature solar15

signal (10%) maximizes in the tropics.

In the lower stratosphere and troposphere, the SSI data sets do not contribute significantly to the variability of the solar

signal in annual mean SW heating rates, temperature, and ozone. But some significant contributions of the applied CCMs

to the variance of the solar response are found, which have similar vertical and latitudinal structures for all three variables,

peaking in the tropics between 30 and 10 hPa and in the northern subtropics to mid-latitudes between 100 and 10 hPa. The20

minor CCM contribution to the SW heating rate solar signal in the lower stratosphere (p > 10 hPa) is consistent with the CCM

induced variance contribution of ozone and seems to be related to differences in ozone transport affecting shortwave ozone

absorption.

The simulations performed with the SATIRE-T data set show considerable deviations in the solar response compared to

simulations using the other data sets, as further discussed in Section 5.1. When omitting the simulations with the SATIRE-T25

data set in the ANOVA (see Figure S1 in the supplement), less variability is explained by the SSI data set, revealing that a large

fraction of the variability attributed to the SSI data set is caused by the specific behaviour of SATIRE-T.

[Figure 2 about here.]

5.1 Differences resolved by SSI data set

The ANOVA of the ensemble mean in the previous section has shown that significant differences in the solar responses can30

be attributed to the SSI data sets mainly in the region of the most active ozone production in the upper stratosphere to lower

mesosphere, whereas significant differences attributed to the CCMs are mainly located in the upper mesosphere and lower

stratosphere, further discussed in Section 5.2. In this section, we examine the differences in the solar responses of EMAC

and WACCM arising from the use of the different SSI data sets. The atmospheric response to solar irradiance variations
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is primarily determined by radiative and photochemical processes that are represented by a variety of parameterisations in

climate models or CCMs. To separate the effects of differences in the input SSI data sets on the respective SW radiation and

photolysis schemes of EMAC and WACCM, we first present profiles for simulations applying the five individual SSI datasets,

averaged over both CCMs. Figure 2 shows vertical profiles of the solar cycle amplitude in SW heating rates, temperature,

ozone, atomic oxygen (O(3P) and O(1D)), NOy, HOx, and water vapour (H2O), averaged from 60◦S to 60◦N between 1005

hPa close to the tropopause and 0.01 hPa in the upper mesosphere. For each sub-figure, the 11-year solar response is at first

calculated as the difference between the individual solar maximum simulations and the ATLAS3 solar minimum reference

simulation for EMAC and WACCM, respectively. The differences are then grouped according to the SSI data set and averaged

over EMAC and WACCM. As in Figure 1 (left), a t-test is applied to the solar response of the complete ensemble. The 95%

confidence interval from this test is included as error bars in each panel of Figure 2. To better assess the solar responses of the10

photochemically influenced quantities shown in Figure 2, the solar responses of the photolysis rates of EMAC and WACCM

(averaged over both CCMs as for Fig. 2) are shown in Figure 3 for a single simulation time step in January at 180◦E, averaged

from 60◦S to 60◦N. The shaded areas in Figures 2 and 3 indicate the range of the solar responses between the EMAC and

WACCM ensemble means, enframed by the dotted and dashed black contours for the EMAC and WACCM ensemble means,

respectively. By comparing the CCM averaged profiles for individual SSI datasets with the SSI averaged ensemble mean for15

each CCM (shading) the relative roles of the SSI datasets and the CCMs can directly be inferred for the different quantities and

altitude regions.

The average over both CCMs shows the strongest stratospheric solar response in SW heating rates and temperatures when

using the SATIRE-S data set, whereas SATIRE-T leads to the weakest solar response throughout the middle atmosphere

(Figure 2a,b). In the upper mesosphere, these differences are a direct consequence of the magnitude of the FUV-amplitude20

over the solar cycle (s. Table 1) with SATIRE-S showing the largest and SATIRE-T showing the smallest solar signal in FUV-

heating by oxygen absorption/photolysis and subsequent temperature increase. In the stratosphere, the photochemical Chapman

cycle is more effective during solar maximum, as shown with the positive solar responses of atomic oxygen (O(1D), O(3P),

Figure 2d,e) and the photolysis rates of oxygen and ozone (JO2, JO3→O(1D), JO3→O(3P), Figure 3a,c,d). This results

in a positive solar signal in ozone, peaking in the upper stratosphere near 7 hPa (Figure 2c). The SATIRE-T solar signal in25

ozone is the weakest in this comparison, as its SSI amplitude in the FUV and 201–242 nm spectral range, important for the

photochemical ozone production, is considerably weaker (7.6% and 2.6%) than in the other SSI data sets (11.1–12.1% and

3.3–3.6%) (Table 1), whereas its SSI amplitude in the ozone-destroying UV-band (243–380 nm) is comparable to the other

SSI data sets. The two competing, wavelength dependent effects of ozone production and ozone loss in the Chapman cycle

lead to the relative weak solar ozone response in simulations using the SATIRE-T data set. Compared to the SATIRE-T-based30

simulations, the simulations using the remaining SSI data sets show solar signals in SW heating rates, temperature, and ozone,

that are relatively close to each other.

[Figure 3 about here.]
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Besides the oxygen chemistry of the Chapman cycle, ozone depleting catalytic cycles, e.g. the HOx and NOx cycles,

are involved in contributing to the solar response in ozone. Whereas the HOx catalytic cycle is the most important one

in the upper mesosphere, the NOx catalytic cycle dominates in the middle and upper stratosphere. NOy is specified as

NOy=N + NO + NO2 + NO3+ 2 N2O5 + HNO3+ HNO4 + ClNO2 + BrNO3, but in the mesosphere NOy is very close

to the active nitrogen defined as NOx = NO + NO2. For all SSI-based averages, the solar response of NOy is negative in the5

stratosphere and lower mesosphere but positive in the uppermost mesosphere above 0.03 hPa (Figure 2f). The stratospheric and

lower mesospheric decrease is consistent with Hood and Soukharev (2006) who attributed the negative solar response of NOy

in the stratosphere at low latitudes to enhanced photolysis of nitric oxide (NO) by solar FUV irradiance during solar maximum.

The major source of NO is the oxidation of nitrous oxide (N2O + O(1D)→ 2NO) in the middle stratosphere at low latitudes

where the abundance of O(1D) is sufficiently high due to the photolysis of ozone at wavelengths < 310 nm (e.g., Seinfeld and10

Pandis, 2006). The major sinks of NO are photolysis (NO + hν(183nm< λ < 193nm)→N + O) and the subsequent reac-

tion of NO with atomic nitrogen (N + NO→N2 + O) in the upper stratosphere, mesosphere and lower thermosphere (e.g.,

Minschwaner and Siskind, 1993). During solar maximum, O(1D) increases (Figure 2e) implying enhanced NO production

from N2O. However, at the same time a clear increase of the NO photolysis rates by 8 to 9% is found in the stratosphere and

mesosphere at solar maximum (Figure 3f). This increase is the result of the larger solar irradiance amplitude in the FUV in all15

applied SSI data sets (see Table 1). With enhanced photolysis at solar maximum, the NOy abundances decrease (Figure 2f).

The NOy solar response is of the same magnitude up to the lower mesosphere for all SSI data sets, except for SATIRE-T,

which due to its weaker FUV solar amplitude produces a weaker increase of the NO photolysis rates and a weaker negative

NOy solar response, respectively. The negative NOy solar response results in a slowdown of the catalytic NOx cycle of ozone

destruction, which indirectly enhances the positive solar response in ozone (Sukhodolov et al., 2016).20

There are two possible reasons for the increase of NOy in the uppermost mesosphere above 0.03 hPa during solar maximum

compared to solar minimum. EUV photoionization of neutrals increases during solar maximum, leading to an increase of elec-

tron, ion and excited species production and subsequently, NO, above about 80 km. On the other hand, the response of NOy in

the uppermost mesosphere could also reflect changes in the auroral NO production in the lower thermosphere. NO in the lower

thermosphere is mainly produced by the reaction of an excited nitrogen atom with molecular oxygen (N(2D) + O2→NO + O)25

(Marsh et al., 2004). As low auroral activity is prescribed for both the solar minimum reference and the solar maximum simu-

lations, no solar response of thermospheric NO is expected from this reaction. However, NO in the lower thermosphere is also

formed by the reaction of the ground-state of N with molecular oxygen (N(4S) + O2→NO + O). This reaction is strongly

temperature dependent and thus more effective in the warmer lower thermosphere during the solar maximum (e.g., Sinnhuber

and Funke, 2020).30

The solar response in HOx (defined as OH + HO2) (Figure 2g) is positive throughout the middle atmosphere in all CCM-

averaged SSI-simulations. In the stratosphere, HOx is mainly produced by reactions of O(1D) with H2O,CH4 or H2 (e.g.,

H2O + O(1D)→ 2OH). Increasing abundance of O(1D) (Figure 2e) during solar maximum conditions is leading to a positive

solar response in HOx mixing ratios (Figure 2g). A clear dependence of the O(1D) and HOx solar responses on the UV-

SSI amplitude is found with the largest solar signal in the simulations using the SATIRE-S SSI data set. This SSI-amplitude35
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dependence of the HOx solar signal continues in the upper mesosphere where it is mainly produced by photolysis of water

vapour at wavelengths in the Schumann-Runge bands and Lyman-α.

Despite the loss of H2O through reaction with the more abundant O(1D) during solar maximum, the H2O mixing ratios

increase during solar maximum in the stratosphere which is most pronounced when the SATIRE-S SSI data set is used (Figure

2h). While this signal is not statistically significant for the complete CCM ensemble, there is a significant solar response in the5

stratosphere for the individual simulations of WACCM. This positive solar response of H2O in the upper stratosphere and lower

mesosphere has also been identified in HALOE satellite data by Remsberg et al. (2018). It is explained by chemical reaction

of CH4 and H2 with OH, producing finally, after a reaction chain including photolytic reactions, H2O (Remsberg et al., 1984).

The positive solar signal of H2O in the lower stratosphere corresponds to the positive solar response of temperature in the TTL

region, which increases the saturation vapour pressure during solar maximum and thus counteracts the water vapour limiting10

freeze drying mechanism. This is in contrast to the results of Schieferdecker et al. (2015) who analysed water vapour from

MIPAS and HALOE satellite instruments and found an anti-correlation of a slightly time shifted 11-year solar cycle proxy

with lower stratospheric water vapour. In the upper mesosphere, the solar response in H2O is negative as a direct consequence

of the stronger water vapour photolysis during solar maximum (Figure 2h).

In summary, the analysis of CCM-averaged quantities has revealed a dependence of the solar responses on the SSI data sets,15

with solar signals for most quantities showing a clear relation to the SSI amplitude. Whereas the solar responses are relatively

close to each other in the stratosphere and lower mesosphere when using NRLSSI1, NRLSSI2, and CMIP6, clear differences

appear for SATIRE-T, which shows the smallest solar responses for all analyzed variables. SATIRE-S produces an enhanced

solar signal for HOx and H2O but agrees well with NRLSSI1, NRLSSI2, and CMIP6 for the other variables. The differences in

the SSI amplitude are responsible for 10 to 40% of the variability of the solar signal in the stratosphere and lower mesosphere.20

An even larger part of the variability of the solar signal in the stratosphere can be attributed to the SSI data set for O(3P) (60%)

and O(1D) (70%) (see Figure S2 in the supplement). In the upper mesosphere, the choice of the SSI data set has the largest

influence on the solar signal variability of the SW heating rates (70%) for which the solar amplitude of the SSI data set in the

FUV is the main driver.

[Figure 4 about here.]25

5.2 Differences resolved by CCM

Large differences in the solar signal variability explained by CCM differences have been identified by the ANOVA (Figure 1,

right) in the upper mesosphere. The range of the solar responses between the EMAC and WACCM ensemble means over the

SSI data sets, indicated by the shaded areas in Figures 2 and 3, also identifies the largest differences in the upper mesosphere.

[Figure 5 about here.]30

The changes in the chemistry and dynamics over the 11-year solar cycle are superimposed on the climatological reference

states of the CCMs, and are influenced by the climatological temperatures and abundances of photochemically active species.
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In particular the climatological temperature has a large effect on the chemistry in the middle atmosphere and lower thermo-

sphere either directly on the chemical gas phase reaction rates or indirectly, as the temperature in the tropical lower stratosphere

determines the abundance of H2O in the middle atmosphere and thereby also affects many chemical reactions. The climato-

logical background state of a CCM is determined by a number of factors, ranging from the horizontal and vertical resolutions

and the vertical model domain to the physical and chemical processes either resolved or parameterized by the models. In this5

section, we examine the uncertainty in the atmospheric solar response arising from the model specifications of the EMAC and

WACCM models, regarded here as representatives for typical state-of-the-art CCMs. For this purpose, two ensembles of five

simulations each for EMAC and WACCM have been constructed by averaging the simulations with different SSI data sets of

each model to the respective model ensemble. To achieve an overall ensemble mean representative for a mean solar state, the

reference solar minimum simulation in each model ensemble is weighted by a factor of five, to balance the five simulations10

with the SSI data sets at solar maximum in each model ensemble.

Figure 4 shows the deviations of the climatological annual mean temperature of EMAC and WACCM from the climatological

temperatures of the ERA-5 reanalysis (Hersbach et al., 2018). The ERA-5 climatology includes 37 years from 1982 to 2018

centered around the year 2000. The temperature deviations of both CCMs relative to ERA-5 are largely statistically significant

on the 95% level (all regions not masked by hatching), as estimated by a Student’s t-test.15

EMAC has a pronounced cold bias in the tropical upper troposphere/lower stratosphere region (UTLS), where WACCM

simulates slightly higher temperatures than the ERA-5 climatology. In the upper stratosphere and upper mesosphere, both

models show a cold bias over large regions, which is more pronounced in the mesosphere of EMAC. In the lower mesosphere

both CCMs show higher temperatures compared to ERA-5. At SH high latitudes, temperatures in WACCM are too low in the

stratosphere and too high in the mesosphere compared to the ERA-5 climatology (Figure 4).20

Figure 5 presents a direct comparison between the annual mean climatologies of the EMAC and WACCM ensemble means

in the middle atmosphere in terms of zonal mean differences in shortwave heating rates, temperature, ozone, atomic oxygen

(O(3P), O(1D)), NOy, HOx, and H2O. Substantially lower (by up to 1.2 K day−1) shortwave heating rates are found in the

upper mesosphere of EMAC. This bias is indicative of less effective FUV-heating from oxygen absorption in the Schumann-

Runge bands, presumably due to differences in the O2 absorption parameterisation of Strobel (1978) with 19 bands (used in25

EMAC) and the heating rates from the photolysis parameterisation based on Koppers and Murtagh (1996) (used in WACCM).

These differences in SW parameterisations between the CCMs also affect the solar response in the upper mesosphere which is

smaller in EMAC for the SW heating rates and temperatures (Figure 2a,b). They lead to the patterns of solar signal variance

explained by CCMs in Figure 1a,b (right) which resemble the structure of the anomaly pattern in SW heating rates in the

upper mesosphere (Figure 5a). By contrast, in the lower mesosphere and large areas of the stratosphere, EMAC shows higher30

shortwave heating rates, possibly an effect of the degraded spectral resolution of the SW radiation scheme in WACCM below

60 km or of the higher ozone mixing ratios in EMAC (Figure 5c). However, WACCM shows larger solar responses in ozone

mixing ratios and JO3→O(3P) photolysis rates in the lower and middle stratosphere, possibly related to the finer spectral

resolution of the photolysis scheme used in WACCM.
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The temperature deviations in the mesosphere between EMAC and WACCM (Figure 5b) are not congruent with those in

shortwave heating rates and, therefore, most likely have to be attributed to differences in dynamical heating by dissipating

planetary or gravity waves. The largest temperature differences between EMAC and WACCM are located in high southern

latitudes. The southern polar vortex is much colder in WACCM than in EMAC and the ERA-Interim reanalyses. This shows

that with the implementation of the modified gravity wave parameterisation of Garcia et al. (2017) in our WACCM simulations,5

the low temperature bias has been alleviated but still exists. Interaction between dynamics and chemistry in EMAC is leading

to higher ozone mixing ratios in the lower stratosphere over the south pole, where a less intense and warm biased south polar

vortex is avoiding more severe heterogeneous ozone depletion, compared to WACCM.

Besides the differences in the average mesospheric shortwave heating rates and temperatures between EMAC and WACCM,

there are also large differences in the chemical composition (and the associated solar signals) in this region. The odd oxy-10

gen mixing ratios in the upper mesosphere are lower in EMAC by 50% for ozone, 80% for O(3P), and more than 50%

for O(1D) (Figure 5c-e). This is partly explained by the fact that oxygen photolysis in the Schumann-Runge continuum

(O2 + hν(λ < 175.9nm)→O(1D) + O(3P)) is neglected in EMAC, because it becomes important only in the lower ther-

mosphere, which is above the upper lid of EMAC. The larger abundances of O(1D) and O(3P) in WACCM, which has a

higher upper lid than EMAC, are the result of photochemical production in the lower thermosphere and downward transport15

into the mesosphere by the residual circulation during the winter seasons, where they affect the climatological averages as well

as the solar responses of atomic oxygen, O3, and HOx. The model differences in January and July exhibit a clear enhancement

of O(1D) and O(3P) in the respective winter hemisphere of WACCM indicative for strong downward transport from the lower

thermosphere (see Figure S3 and S4 in the supplement). As a result of the larger O(1D) and O(3P) mixing ratios, the equilib-

rium of ozone producing and destroying processes leads to higher ozone mixing ratios in WACCM, apparent in the climatology20

(Figure 5c) as well as in the solar response (Figure 2c) in the upper mesosphere. Due to the larger solar responses in the mixing

ratios of O(1D) and O(3P) (Figure 2d,e), WACCM produces a strong ozone increase from solar minimum to maximum, in

contrast to EMAC, where the more intense HOx cycle at solar maximum (Figure 2g) dominates and leads to a negative solar

response. Noticeable are the higher ozone mixing ratios in the upper mesospheric high latitudes of EMAC (Figure 5c) com-

pared to WACCM which result from a less effective catalytic HOx cycle of ozone destruction during the winter seasons, due25

to much lower HOx mixing ratios in EMAC in these regions.

As already discussed for atomic oxygen in the previous paragraph, the climatologies and solar responses of chemcial species

in the upper mesosphere are strongly affected by differences in the vertical transport between WACCM and EMAC. With

an upper boundary in the lower thermosphere, WACCM is capable to simulate the downward transport of NOy by the gravity

wave driven, residual circulation from the thermosphere down to the lower mesosphere at high latitudes in the respective winter30

seasons (Figures S3 and S4 in the supplement). In EMAC we use the UBCNOX parameterisation to include NOy produced in

the thermosphere by auroral and medium-energy electrons. Nevertheless, the NOy mixing ratios are up to 60% lower in EMAC

than in WACCM in large parts of the upper mesosphere, except for northern polar latitudes where the WACCM NOy mixing

ratios are exceeded by 100% (Figure 5f). The solar response of NOy in the upper mesosphere discussed in Sec. 5.1 is much

stronger in WACCM than in EMAC, as obvious from the shaded area in Figure 2f. In WACCM, the increased NO production35
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during solar-maximum in the uppermost mesosphere and lower thermosphere is driven by the increase in EUV photoionization

and lower thermospheric temperatures as discussed in Sec. 5.1. In EMAC, the NOy mixing ratios in the uppermost four model

levels are determined by the UBCNOX parameterisation, which depends on the prescribed, constantly low Ap index, but not

on the solar UV/EUV radiation, and thus suppresses a solar signal in NOy.

Differences between EMAC and WACCM are also found in the climatological distribution of water vapour and the related5

HOx mixing ratio. In the annual mean, EMAC has less H2O than WACCM in the stratosphere and lower mesosphere – except

for the upper mesosphere, where EMAC exceeds the WACCM values (Figure 5h). The lower H2O abundance of EMAC in

the middle atmosphere is the consequence of a cold bias in the tropical UTLS region (Figure 5b), a feature of EMAC also

discussed in Jöckel et al. (2016). As a result, also HOx, which is produced by photolysis of H2O, is lower in EMAC (Figure

5g). From solar minimum to solar maximum, the abundances of H2O (Figure 2h) and the photolysis rates of H2O (Figure 3e)10

increase in the stratosphere and lower mesosphere, leading to a HOx increase by about 2–3% in both models (see also Section

5.1). The smaller solar signal of HOx in EMAC in this height region can be attributed to differences in the model climatologies

because of the lower HOx and H2O mixing ratios in EMAC. In the mesosphere, the magnitude of the solar responses of

H2O (negative) and HOx (positive) grow fast with altitude. At solar maximum, strongly enhanced H2O photolysis (Figure

3e) induces a decrease in H2O (Figure 2h) and an increase in HOx by about 11% (Figure 2g). The HOx production in the15

upper mesosphere is dominated by H2O photolysis at wavelengths in the Schumann-Runge bands and Lyman-α with the

major reaction H2O + hν(λ < 200)→H + OH (70%, Ja
H2O) and two minor reactions, producing O + 2H (12%, Jb

H2O) and

H2 + O(1D) (10%, Jc
H2O) (Nicolet, 1984). However, while the solar responses in H2O photolysis (positive) and H2O mixing

ratio (negative) further increase towards the upper mesosphere, the positive solar signal in HOx peaks near 70 km and declines

above, implying the existence of a HOx depleting process that increases with solar activity in the upper mesosphere and20

counteracts HOx production by H2O photolysis. In addition H2O declines in the upper mesosphere, limiting the potential

for HOx production. The CCMs start to deviate more strongly in the upper mesosphere, with EMAC showing a less intense

decrease of the solar signal in HOx than WACCM. This cannot be attributed to the H2O photolysis as EMAC has a larger

solar signal in H2O photolysis. The reason might be the combination of the up to 50% larger upper mesospheric H2O mixing

ratio in EMAC (Figure 5h) and the stronger solar response of WACCM in O(3P) (Figure 2d) which acts in WACCM as a25

more effective sink of HOx through reaction OH + O(3P)→H + O2. The smaller H2O mixing ratio of WACCM in the upper

mesosphere is a consequence of the larger O(1D) mixing ratios in WACCM, leading to a more effective decomposition of

water vapour through H2O + O(1D)→ 2 OH. During solar maximum this H2O decomposition is even enhanced, due to more

abundant O(1D) mixing ratios in the upper mesosphere (Fig. 2e), leading to a more pronounced negative H2O solar signal in

WACCM (Figure 2h).30

In summary, both models show for all quantities comparable solar responses to the different SSI data sets up to the lower

mesosphere near 0.1 hPa. Above, the solar signals deviate substantially, as shown for ozone, oxygen, HOx, and NOy. The

comparison of the upper mesospheric solar signals in EMAC and WACCM, as well as the differences in the climatologies in

the upper mesosphere, shows that a realistic simulation of solar cycle effects might better achieved when the residual downward

transport of thermospheric photolysis reactants is taken into account.35
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6 Solar response in total ozone

In this section we focus on the solar response in total column ozone (TCO) in our simulations and investigate to what extent

it is influenced by the applied SSI data set and by the CCM. The solar signal in TCO is the vertically integrated solar signal

in ozone mixing ratios. In the previous sections, we have identified differences in the solar signal in ozone mixing ratios

depending on the applied SSI data set (Section 5.1) as well as on the applied CCM (Section 5.2), especially in the middle to5

lower stratosphere which contributes most to the solar signal in TCO.

Hood (1997) who analysed SBUV data for a relatively short period from 1979–1993, found an annual mean solar response

of TCO in the tropics of 1–2%. For the same time period, Zerefos et al. (1997) detected a significant correlation of the solar

activity with annual mean TCO from TOMS between 40◦S and 40◦N, whereas no significant correlation was found at higher

latitudes, due to the large dynamically induced variability. Soukharev and Hood (2006) suggested that the solar response of10

TCO is mainly caused by ozone abundances in the tropical lower stratosphere. A study of Randel and Wu (2007) identified a

significant annual mean solar response in TCO between 40◦S and 60◦N in TOMS/SBUV data from 1979–2005.

[Figure 6 about here.]

[Figure 7 about here.]

The latitudinal distribution of the solar response in TCO for the 10 simulations performed for this study is shown in Figure15

6. Clear differences occur between both CCMs, with WACCM showing in general a larger solar signal in TCO at all latitudes

(Figures 6, 8). Between 40◦S and 40◦N significant solar TCO responses are simulated in both models, reaching 1.5% (3.9 DU)

for WACCM and 1.1% (3.0 DU) for EMAC in the tropics (20◦S–20◦N). The chosen SSI data set has only a very minor impact

on the solar TCO signal in both models, except for SATIRE-T. The WACCM and EMAC simulations using SATIRE-T show

the smallest solar responses in the tropics, which reflects the small solar amplitude in the UV spectral region of this SSI data20

set. At mid and high latitudes, differences in the solar TCO signals between the SSI data sets become larger, however remain

generally smaller than the differences between the models, as particular evident for high southern latitudes.

[Table 2 about here.]

The solar response in TCO at high latitudes is strongly influenced by stratospheric dynamic variability during the respective

winter seasons in both hemispheres. As a measure of this dynamic variability, we introduce in (Figure 7) the thickness of the25

stratospheric layer between the 100 and 10 hPa pressure levels. High values of the 100–10 hPa layer thickness correspond to a

warm layer and a weak polar vortex occurring in dynamically disturbed periods, such as minor or major sudden stratospheric

warmings (SSWs). The associated downward transport of air in high latitudes leads to an increase in TCO. On the other hand,

cold conditions in polar regions, represented by low values of 100–10 hPa layer thickness, can lead to enhanced chemical

ozone depletion and low TCO values (Farman et al., 1985; Rex et al., 2002; Manney et al., 2011). While the 100–10 hPa layer30

thicknesses for all 10 simulations show comparable and significantly increased values at solar maximum between 40°S and

40°N – consistent with the warming in Figure 2b –, systematic differences occur between the two models at southern high
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latitudes where EMAC simulates a colder and stronger polar vortex during solar maximum and WACCM shows a warmer and

weaker polar vortex (Figure 7). At northern polar latitudes, both models simulate warmer and weaker polar vortices at solar

maximum - except for the SATIRE-S WACCM simulation.

The high correlation between the solar responses in TCO and 100–10 hPa layer thickness at high latitudes is reflected in

Table 2 which gives the correlation coefficients between the solar maximum anomalies of the annual average 100–10 hPa layer5

thickness in the polar region (70◦–90◦) and the respective TCO anomalies for both hemispheres. The annual mean correlation

at high latitudes is mainly a result of the high correlation during the winter/spring seasons of both hemispheres, with the highest

correlation occurring in January/February/March (JFM) for the NH and in September/October/November (SON) for the SH

(for seasonal correlation coefficients see Table S1 in the supplement). More intense downwelling of ozone during episodes

of stratospheric warming events, or less intense downwelling during cold conditions in combination with a more effective10

chemical ozone depletion, are the main driver of the TCO anomalies in high latitudes in both hemispheres. Although all

anomalies shown in Figure 6 and 7 are derived for simulations during solar maximum conditions with respect to the simulation

during solar minimum conditions, a consistent, significant solar response for TCO and lower stratospheric layer thickness in

polar latitudes can not be found, implying that the derived changes at high latitudes are rather due to random internal dynamical

variability in the models than to the external solar forcing.15

In Figure 8 (top) we show the zonally averaged differences in TCO between the simulations for solar maximum and solar

minimum conditions for the average of all simulations (black contour), the EMAC- (blue contour) and WACCM-simulations

(red contour), the standard deviation (light grey shading), and the two-way ANOVA with SSI- (dark grey shading) and CCM-

treatment (hatches). The range of the standard deviation shows the largest variability of the TCO anomaly in polar regions.

As discussed above, the high latitude TCO anomaly is mainly a result of the internal, dynamic variability of the CCMs.20

Consequently in the north polar region, there is only a relatively small part of the TCO anomaly variability that can be explained

by the SSI data set (1%) or the CCM (0.6%). Only in the southern polar region, a larger but still only small fraction of the

variability can be explained by differences in the CCMs (1.4%), as there are systematic differences in the anomalies of the

lower stratospheric layer thickness and TCO between WACCM and EMAC (Figures 6, 7). As in the northern polar region, the

SSI data set can only explain a small fraction of the variability of the TCO anomaly in the southern polar region (0.8%). The25

standard deviation of the solar TCO response is considerably smaller in the tropics, where also the fraction of the standard

deviation that can be explained by either the choice of the SSI data set (22%) or the CCM (13%) is much larger, with a larger

contribution of the SSI data sets. When approaching the northern mid-latitudes the influence of the CCMs on the variability of

the solar response grows, whereas the influence of the SSI data set gets smaller. This is reflected by the pronounced minimum

of the solar TCO response in the mid-latitudes of the EMAC simulations, whereas three out of five WACCM simulations show30

a relatively large positive anomaly in this region.

The annual, global mean solar response of partial column ozone integrated for different pressure regions is shown in Figure

8 (bottom) with the same type of contour lines/shading as in Figure 8 (top). Averaged over all simulations, the largest solar

response in ozone is in the lower stratosphere. In this region, simulations performed by WACCM show a much larger solar

signal than the averaged EMAC simulations, with largest differences occurring in the lowest region with pressures higher than35
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32 hPa. In the WACCM simulations, this layer contributes 32.5% to the solar signal in TCO, whereas it is only 16.7% in the

EMAC simulations. The analysis of SBUV-SBUV/2 (Solar Backscatter Ultraviolet Radiometer) data by Hood (1997) shows

that 85% of the solar signal in TCO is from the contribution of the lower stratospheric layer (pressure > 16 hPa). The same

analysis for the CCMs gives smaller contributions from the lower stratosphere with 52.8% on average, 57.8% for WACCM,

and 45.3% for EMAC. This different behaviour of the CCMs in the lower stratosphere is also reflected in the relatively large5

fraction of the standard deviation of the solar signal that can be explained by differences between the CCMs. A larger part

of the standard deviation can be explained by differences between the SSI data sets in the middle stratosphere (16–4 hPa),

although still the largest part of the standard deviation can not be attributed to either differences between the CCMs or the SSI

data sets.

[Figure 8 about here.]10

7 Summary and conclusions

This study aimed at investigating the uncertainty in simulations of the atmospheric solar response to 11-year solar cycle vari-

ability. In particular, the effects of two sources for uncertainty, i.e. the prescribed spectral solar irradiance (SSI) data set and

potential differences in the CCM background state and configuration, were examined. For this purpose, simulations with two

CCMs, each forced with five different SSI data sets, were performed. The CCMs EMAC and WACCM are representative15

of state-of-the-art CCMs, including the prerequisites for simulating solar cycle variability, i.e. spectrally resolved shortwave

radiation and photolysis schemes. Both models contributed to the evaluation of the simulated solar signature in the SPARC

CCMVal-2 initiative (SPARC CCMVal, 2010). The SSI data sets represent the best available estimates of 11-year solar vari-

ability in electromagnetic radiation, and either have been used in previous model studies (i.e., CMIP5 or CCMVal-2) or are

recommended for current model intercomparions (i.e., CMIP6). We apply a novel approach to extract the effects of the pure20

SSI solar cycle amplitudes, as a common reference SSI distribution for solar minimum conditions was defined, based on AT-

LAS3 measurements in November 1994, and SSI data sets for solar maximum were constructed by adding the solar amplitude

of the five SSI data sets to the solar minimum reference distribution. To separate the influences of the SSI data sets and the

CCMs, respectively, on the solar responses in shortwave heating rates, temperature and ozone, a two-way analysis of variance

(ANOVA) was applied here for the first time in this context.25

Our study revealed that differences in SSI data sets provide the largest fraction of solar cycle variance in the upper strato-

sphere/lower mesosphere, contributing 30% to the SW heating rate, 30% to the ozone and 10% to the temperature solar cycle

variance. A second region with a considerable SSI induced spread in the SW heating rate solar signal up to 70% is the upper

mesosphere (except for polar latitudes), affecting also the ozone solar signal in this height region. Differences between CCMs

have a major effect in the upper mesosphere, where they explain more than 80% of the ozone, 25% of the temperature and 50%30

of the SW heating rate variability of the solar signals. CCMs add a minor contribution to the SW heating rate and ozone solar

cycle variance in the lower stratosphere.
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To isolate the causes for the contributions to the solar signal spread, a detailed analysis was performed of the solar signal

profiles of SW heating rate, temperature, ozone, different chemical compounds and photolysis rates for the five SSI-simulation

ensemble means (each including 2 CCMs) on the one hand and for the two CCM ensemble means (each including 5 SSI

data sets) on the other. The analysis of CCM-averaged quantities, involved in the radiative and photochemical processes, has

revealed a dependence of the solar responses on the SSI data sets, with solar signals for most quantities showing a clear relation5

to the SSI amplitude. Whereas the solar responses are relatively close to each other in the stratosphere and lower mesosphere

when using NRLSSI1, NRLSSI2, and CMIP6, distinct differences appear for SATIRE-T, which shows the smallest solar

responses for all analyzed variables. Weaker solar signals in temperature can be explained by a reduced solar cycle amplitude

in the 201–242 nm spectral irradiance range, mainly responsible for solar radiative heating in this height range. The ozone

increase at solar maximum in the middle and upper stratosphere is the combined result of enhanced oxygen chemistry in10

the photochemical Chapman cycle and reduced ozone destruction in the NOy catalytic cycle. The NRLSSI1, NRLSSI2, and

CMIP6 data sets produce similar solar responses in O(1D), O(3P) as well NOy at solar maximum in the stratosphere. The

solar ozone signal is considerably weaker in the SATIRE-T data set, as its SSI amplitude in the FUV and 201–242 nm spectral

ranges, important for photochemical ozone production, is considerably weaker than in the other SSI data sets, whereas its

SSI amplitude in the ozone-destroying UV-band (243–380 nm) is comparable. Positive solar responses were also derived for15

HOx and H2O throughout the middle atmosphere for all SSI data sets. In the stratosphere, where HOx is mainly produced by

reactions of O(1D) with H2O, CH4 or H2, the increasing abundance of O(1D) during solar maximum conditions is leading

to a positive solar response in HOx mixing ratios. A clear dependence of the O(1D) and HOx solar responses on the UV-SSI

amplitude was found with the largest solar signal in the simulations using the SATIRE-S SSI data set. The increase in H2O

mixing ratios with the solar cycle throughout the stratosphere, emerging for all SSI data sets, can be explained by chemical20

production in the upper stratosphere and enhanced H2O transport from the troposphere into the lower stratosphere in a warmer

UTLS at solar maximum. In the upper mesosphere, the choice of the SSI data set has the largest influence on the solar signal

variability of the SW heating rates (70%) for which the solar amplitude of the SSI data set in the FUV is the main driver.

In addition to the SSI induced spread in the solar signal, differences between the CCMs turned out to have their strongest

impact on the solar signals in shortwave heating rates, temperature and ozone in the upper mesosphere at altitudes above about25

60 km. The two CCMs used for this study are representative for the current CCM generation which consists primarily of

models with a top level in the upper mesosphere around 0.01 hPa (or 80 km altitude), as the EMAC version used in this study,

plus a few CCMs that also include the thermosphere, as WACCM with a top level at about 140 km. Resulting differences in

the radiation parameterisations and the vertical transport of substances have been identified to cause the spread in the upper

mesosphere solar signals. For example, the spread in the solar response of the upper mesosphere shortwave heating rates arises30

from an underestimation of oxygen absorption in the FUV by the parameterisation of Strobel (1978) in EMAC, reaching up

to -1.2 K day−1 compared to WACCM in the climatological annual mean. Moreover, the odd oxygen mixing ratios in the

upper mesosphere are substantially lower in EMAC than in WACCM, as EMAC – due to its lower lid – does not capture the

photochemical production of O(1D) and O(3P) in the lower thermosphere of WACCM nor their downward transport into

the mesosphere by the residual circulation during the winter seasons. As a result, solar ozone responses of opposite sign are35
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produced in the upper stratosphere where WACCM exhibits more ozone at solar maximum due to its enhanced odd oxygen

abundances, while EMAC exhibits less ozone due to its more intense HOx cycle. This shows that a realistic simulation of

solar cycle effects is better achieved when the residual downward transport of thermospheric photolysis reactants is taken into

account.

For annual mean total column ozone (TCO) a significant solar response could be identified from the southern midlatitudes5

to the northern polar region when all simulations from both CCMs are considered. In the southern high latitudes, these TCO

anomalies are the result of natural dynamical variability of the Antarctic polar vortex. Distinct differences in TCO anomalies

between the CCMs are also reflected by the relatively large fraction of the anomaly variability that can be explained by

differences between the CCMs. The usage of the SSI data set has the largest influence on the variability of the TCO solar

response in the tropics. The largest contribution to the annual mean TCO solar response is from the lower stratospheric layers10

with pressures > 16 hPa which on average contributes 53%, or when analysed separately, 58% (WACCM) and 45% (EMAC).

Both CCMs underestimate the lower stratospheric contribution to the solar response in TCO, compared to the analysis of

SBUV-SBUV/2 data by Hood (1997) who found a 85% contribution of the lower stratosphere to the TCO solar signal.

Note that the individual contributions of the SSI data sets and CCM configurations derived in our study are constrained by

the choice of the CCMs. While the possible spread of solar cycle SSI variation is very well captured in our study by considering15

the five currently usable SSI data sets, a similar coverage of the CCM induced spread cannot be achieved, given the number

and diversity of available CCMs. Thus, the CCM contribution to the variance of the solar signal are, to some extent, determined

by the specifics of the EMAC and WACCM models. For example, the CCM contribution to the solar SW heating rate signal

would increase in models applying SW radiation schemes with low spectral resolution or employing TSI scaling procedures.

Besides the ATLAS3 reference SSI dataset more recent SSI reference datasets are available such as SOLAR-ISS (Meftah20

et al., 2020, 2018), which is representative of the 2008 solar minimum. The usage of an alternative SSI reference dataset may

have an influence on the climatological state of the CCMs, as higher or lower SSI values in certain spectral bands lead to

higher or lower shortwave heating rates, thus affecting the temperature and potentially also the zonal wind of the CCMs. As the

reference SSI dataset serves as a common base state for the solar minimum of all other SSI datasets, we do not expect significant

differences in the uncertainties of the solar signals when using a different SSI reference spectrum. The quantification of the25

uncertainties of the solar responses in the CCMs is based on an exemplary solar amplitude with decreasing solar irradiances

from the maximum of solar cycle 22 in November 1989 to a state near the solar minimum in November 1994, which is

motivated by the timing of the ATLAS3 measurements. The magnitude of the applied solar amplitude in this study can be

regarded as representative for the second half of the 21st century where the solar cycles 19 to 23 showed relatively large

11–year solar cycle amplitudes. However, the individual solar cycles show different, spectrally resolved characteristics in their30

amplitudes, which also differ among the individual SSI datasets. Compared to other 11–year solar cycles, the magnitudes of

the NRLSSI1 and NRLSSI2 SSI amplitudes scale with an approximately constant factor for wavelengths from 121.5–250 nm,

and from 121.5–380 nm for SATIRE-S and SATIRE-T. An important part of the solar response in the CCMs is produced within

this spectral region and the results should be reproducible to a large degree for different 11–year solar cycles.
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Finally, as all simulations of this study were carried out under conditions of low auroral activity, only effects of 11-year

variations in solar electromagnetic radiation have been considered in this study. The impact of variations of energetic particle

precipitation for different levels of auroral activity will be subject of further studies.

8 Data availability

The data of the EMAC and CESM1(WACCM) simulations, which have been performed for this study, are available for down-5

load on request.

Appendix A: Analysis of variance (ANOVA)

A two-way analysis of variance (ANOVA) (Fisher, 1925) is applied to time series of anomaly data, i.e. a data set consisting

of the time series of the differences between the simulations performed by both CCMs for solar maximum conditions and the

respective simulation of each CCM for solar minimum conditions. It is created by using the five simulations of each CCM with10

solar maximum SSI data sets minus the simulations of each CCM with the ATLAS-3 SSI data set at solar minimum. Thus, the

complete time series consists of 450 annual mean anomalies (nt) from 10 simulations, each with a length of 45 years (n). The

total sum of squares (SSt) of this time series is calculated as

SSt =
nt∑

k=1

(xk −x)2 (A1)

with the individual annual mean solar response xk and the overall mean x. The SSt of the complete time series is further split15

by applying two treatments as

SSt = SSbA +SSbB +SSbAB +SSw. (A2)

One treatment (A) takes into consideration the applied CCM, building two groups (NA = 2), the WACCM and the EMAC solar

responses with nA = 225 elements each. The second treatment (B) takes into consideration the applied SSI data set, building

five groups (NB = 5) with nB = 90 elements each. For each treatment (K = A, B) the sum of squares between the groups (SSbK)20

are calculated as

SSbK = nK

NK∑

j=1

(xj −x)2, K =A,B, (A3)

with xj the mean solar response of each group, NK the number of groups within each treatment, and nK the number of elements

within each group. The sum of squares emerging by the interaction of the treatments (SSbAB) is calculated as

SSbAB = n

NA∑

i=1

NB∑

j=1

(xij −xi−xj −x)2, (A4)25
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with xij the mean of the individual simulations and xi, xj the mean solar responses of each group within the treatments. The

sum of squares within (SSw) is calculated as

SSw =
NA∑

i=1

NB∑

j=1

n∑

k=1

(xijk −xij)2, (A5)

with xijk the individual solar responses. By the ratios

SSbK

SSt
=R2

K ,
SSbAB

SSt
=R2

AB (A6)5

the coefficients of determination are calculated, which are a measure of the variance explained by the treatment (K = A, B) or

by the interaction between both treatments. R2
A and R2

B are shown in Figure 1. The mean sum of squares within the groups

MSSw is calculated as

MSSw =
SSw

nt−NANB
, (A7)

and the mean sum of squares between the groups MSSbK and the MSS interacting between the groups MSSbAB are calculated10

as

MSSbK =
SSbK

NK − 1
, MSSbAB =

SSbAB

(NA− 1)(NB − 1)
, (A8)

with nt−NANB the degree of freedom within the groups, NK − 1 the degree of freedom between the groups, and (NA−
1)(NB−1) the degree of freedom of the interaction between the treatments. As MSSw and MSSbK are assumed to be unbiased

estimators of the variance σ2 we can use these estimators to calculate the F-statistics as15

F =
MSSbK

MSSw
, F =

MSSbAB

MSSw
. (A9)

Author contributions. MK wrote the manuscript, performed the EMAC simulations, and the data analyses; TK performed the WACCM

simulations and contributed to the manuscript; UL initiated the study, acquired the BMBF funding, and participated in writing the manuscript;

KM, and MS initiated the study, acquired the BMBF funding, and contributed to the manuscript; TR contributed to the manuscript and the

EMAC model developement.20

Competing interests. The authors declare that they have no competing interests.

Acknowledgements. This study is supported by the German Ministry of Research (BMBF) within the nationally funded project ROMIC-

SOLIC (grant number 01LG1219). Markus Kunze acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) through grant

KU 3632/2-1. The EMAC simulations have been performed on the massive parallel supercomputing system of the North-German Supercom-

puting Alliance (HLRN). All WACCM simulations have been performed on the high performance computing facilities of the Kiel University25

(Christian-Albrechts-Universität zu Kiel).

23

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Ball, W. T., Krivova, N. A., Unruh, Y. C., Haigh, J. D., and Solanki, S. K.: A New SATIRE-S Spectral Solar Irradiance Reconstruction for

Solar Cycles 21–23 and Its Implications for Stratospheric Ozone, J. Atmos. Sci., 71, 4086–4101, doi:10.1175/JAS-D-13-0241.1, 2014.

Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D.: A Solar Irradiance Climate Data Record, Bull. Amer. Meteor. Soc.,

97, 1265–1282, doi:10.1175/BAMS-D-14-00265.1, 2016.5

Coddington, O., Lean, J., Pilewskie, P., Snow, M., Richard, E., Kopp, G., Lindholm, C., DeLand, M., Marchenko, S., Haberreiter, M., and

Baranyi, T.: Solar Irradiance Variability: Comparisons of Models and Measurements, Earth and Space Science, 34, 2019EA000 693,

doi:10.1029/2019EA000693, 2019.

Collins, W. D.: A global signature of enhanced shortwave absorption by clouds, J. Geophys. Res.: Atmos., 103, 31 669–31 679,

doi:10.1029/1998JD200022, 1998.10

Dietmüller, S., Jöckel, P., Tost, H., Kunze, M., Gellhorn, C., Brinkop, S., Frömming, C., Ponater, M., Steil, B., Lauer, A., and Hendricks, J.: A

new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51), Geosci. Model Dev., 9, 2209–2222,

doi:10.5194/gmd-9-2209-2016, 2016.

Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N. A., Tourpali, K., Weber, M., Unruh, Y. C., Gray, L., Langematz, U., Pilewskie, P.,

Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S. K., and Woods, T. N.: Recent variability of the solar spectral irradiance and its impact15

on climate modelling, Atmos. Chem. Phys., 13, 3945–3977, doi:10.5194/acp-13-3945-2013, 2013.

Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature,

315, 207–210, doi:10.1038/315207a0, 1985.

Fisher, R.: Statistical methods for research workers, Edinburgh Oliver & Boyd, 1925.

Forster, P. M., Fomichev, V. I., Rozanov, E., Cagnazzo, C., Jonsson, A. I., Langematz, U., Fomin, B., Iacono, M. J., Mayer, B., Mlawer, E.,20

Myhre, G., Portmann, R. W., Akiyoshi, H., Falaleeva, V., Gillett, N., Karpechko, A., Li, J., Lemennais, P., Morgenstern, O., Oberländer, S.,

Sigmond, M., and Shibata, K.: Evaluation of radiation scheme performance within chemistry climate models, J. Geophys. Res.: Atmos.,

116, doi:10.1029/2010JD015361, d10302, 2011.

Fouquart, Y. and Bonnel, B.: Computations of solar heating of the Earth’s atmosphere: A new parameterization, Beitr. Phys. Atmos., 53,

35–62, 1980.25

Frame, T. and Gray, L. J.: The 11-yr solar cycle in ERA-40 data: An update to 2008, J. Clim., 23, 2213–2222, doi:10.1175/2009JCLI3150.1,

2010.

Funke, B., López-Puertas, M., Stiller, G. P., Versick, S., and von Clarmann, T.: A semi-empirical model for mesospheric and stratospheric

NOy produced by energetic particle precipitation, Atmos. Chem. Phys., 16, 8667–8693, doi:10.5194/acp-16-8667-2016, 2016.

Garcia, R. R., Solomon, S., Roble, R. G., and Rusch, D. W.: A numerical response of the middle atmosphere to the 11-year solar cycle,30

Planet. Space Sci., 32, 411–423, doi:10.1016/0032-0633(84)90121-1, 1984.

Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á., and Murphy, D. J.: Modification of the Gravity Wave Parameterization in

the Whole Atmosphere Community Climate Model: Motivation and Results, J. Atmos. Sci., 74, 275–291, doi:10.1175/JAS-D-16-0104.1,

2017.

Giorgetta, M. A. and Bengtsson, L.: Potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water35

vapor in general circulation model experiments, J. Geophys. Res.: Atmos., 104, 6003–6019, doi:10.1029/1998JD200112, 1999.

24

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher,

J., Meehl, G. A., Shindell, D., van Geel, B., and White, W.: Solar influences on climate, Rev. Geophys., 48, doi:10.1029/2009RG000282,

2010.

Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman, S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged

response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res.: Atmos., 118, 13,405–13,420,5

doi:10.1002/2013JD020062, 2013.

Haberreiter, M., Schöll, M., Dudok de Wit, T., Kretzschmar, M., Misios, S., Tourpali, K., and Schmutz, W.: A new observational solar

irradiance composite, J. Geophys. Res. Sp. Phys., 122, 5910–5930, doi:10.1002/2016JA023492, 2017.

Haigh, J. D.: The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 370, 544–546,

doi:10.1038/370544a0, 1994.10

Hersbach, H., De Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Balmaseda, A., Balsamo, G., Bechtold, P., Berrisford,

P., Bidlot, J., De Boisséson, E., Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming,

J., Forbes, R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan, R., Horányi, A., Janisková, M., Laloyaux, P., Lopez, P., Muñoz-

Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational global reanalysis:

progress, future directions and synergies with NWP including updates on the ERA5 production status, Tech. Rep. 8th October, ECWWF,15

doi:10.21957/tkic6g3wm, 2018.

Hood, L. L.: The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere, J. Geophys. Res.: Atmos., 102, 1355–1370,

doi:10.1029/96JD00210, 1997.

Hood, L. L. and Soukharev, B. E.: Solar induced variations of odd nitrogen: Multiple regression analysis of UARS HALOE data, Geophys.

Res. Lett., 33, 101 029/, doi:10.1029/2006GL028122, 2006.20

Hood, L. L., Misios, S., Mitchell, D. M., Rozanov, E., Gray, L. J., Tourpali, K., Matthes, K., Schmidt, H., Chiodo, G., Thiéblemont, R.,

Shindell, D., and Krivolutsky, A.: Solar signals in CMIP-5 simulations: the ozone response, Q.J.R. Meteorol. Soc., 141, 2670–2689,

doi:10.1002/qj.2553, http://dx.doi.org/10.1002/qj.2553, 2015.

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K.,

Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins,25

W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A Framework for Collaborative Research, Bull.

Amer. Meteor. Soc., 94, 1339–1360, doi:10.1175/BAMS-D-12-00121.1, 2013.

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the

Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717–752, doi:10.5194/gmd-3-717-2010, 2010.

Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J., Frank,30

F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nützel,

M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., and Zahn, A.: Earth System Chemistry integrated Modelling

(ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model Dev., 9, 1153–1200, doi:10.5194/gmd-9-

1153-2016, 2016.

Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque,35

J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.:

Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res.: Atmos., 112,

1–24, doi:10.1029/2006JD007879, 2007.

25

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J. Geophys. Res., 107, D24, doi:10.1029/2002JD002224, 2002.

Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 38,

doi:10.1029/2010GL045777, l01706, 2011.

Koppers, G. A. A. and Murtagh, D. P.: Model studies of the influence of O2 photodissociation parameterizations in the Schumann-Runge

bands on ozone related photolysis in the upper atmosphere, Ann. Geophys., 14, 68–79, doi:10.1007/s00585-996-0068-9, 1996.5

Krivova, N. A., Solanki, S. K., Wenzler, T., and Podlipnik, B.: Reconstruction of solar UV irradiance since 1974, J. Geophys. Res., 114,

D00I04, doi:10.1029/2009JD012375, http://doi.wiley.com/10.1029/2009JD012375, 2009.

Krivova, N. A., Vieira, L. E. A., and Solanki, S. K.: Reconstruction of solar spectral irradiance since the Maunder minimum, J. Geophys.

Res.: Space Physics, 115, doi:10.1029/2010JA015431, 2010.

Kunze, M., Godolt, M., Langematz, U., Grenfell, J., Hamann-Reinus, A., and Rauer, H.: Investigating the early Earth faint young Sun10

problem with a general circulation model, Planet. Space Sci., 98, 77–92, doi:10.1016/j.pss.2013.09.011, 2014.

Labitzke, K.: Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett., 14, 535–537, 1987.

Labitzke, K. and van Loon, H.: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and

stratosphere in the northern hemisphere winter, J. Atmosph. Solar-Terr. Phys., 50, 197–206, 1988.

Lean, J., Rottman, G., Kyle, H. L., Woods, T., Hickey, J., and Puga, L.: Detection and parameterization of variations in solar mid- and15

near-ultraviolet radiation, J. Geophys. Res., 102, 29 939–29 956, doi:10.1029/97JD02092, 1997.

Lean, J. L.: Evolution of the Sun’s spectral irradiance since the Maunder Minimum, Geophys. Res. Lett., 27, 2425–2428,

doi:10.1029/2000GL000043, 2000.

Lean, J. L., Cook, J., Marquette, W., and Johannesson, A.: Magnetic Sources of the Solar Irradiance Cycle, The Astrophysical Journal, 492,

390–401, doi:10.1086/305015, http://stacks.iop.org/0004-637X/492/i=1/a=390, 1998.20

Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind, P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L.,

Poole, L. R., Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt, H., Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt,

P. F., Makshtas, A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D. W., von der Gathen, P., Walker, K. A., and Zinoviev,

N. S.: Unprecedented Arctic ozone loss in 2011, Nature, 478, 469–475, doi:10.1038/nature10556, 2011.

Marsh, D. R., Solomon, S. C., and Reynolds, A. E.: Empirical model of nitric oxide in the lower thermosphere, Journal of Geophysical25

Research: Space Physics, 109, doi:10.1029/2003JA010199, 2004.

Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in

CESM1(WACCM), J. Climate, 26, 7372–7391, doi:10.1175/JCLI-D-12-00558.1, 2013.

Matthes, K., Langematz, U., Gray, L. L., Kodera, K., and Labitzke, K.: Improved 11-year solar signal in the Freie Universität Berlin Cli-

mate Middle Atmosphere Model (FUB-CMAM), J. Geophys. Res.: Atmos., 109, doi:10.1029/2003JD004012, http://dx.doi.org/10.1029/30

2003JD004012, d06101, 2004.

Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., and Walters, S.: Role of the QBO in modulating the influence of the 11

year solar cycle on the atmosphere using constant forcings, J. Geophys. Res.: Atmos., 115, doi:10.1029/2009JD013020, d18110, 2010.

Matthes, K., Funke, B., Andersson, M. M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A. M., Dudok De Wit, T., Haberreiter, M.,

Hendry, A., Jackman, C. H. C., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. D. R., Maycock, A. A. C., Misios,35

S., Rodger, C. C. J., Scaife, A. A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., Van De Kamp, M., Verronen,

P. P. T., Versick, S., Sepp?l?, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., Van De Kamp, M., Verronen, P. P. T., Versick,

26

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



S., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., Van De Kamp, M., Verronen, P. P. T., and Versick, S.: Solar

forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, doi:10.5194/gmd-10-2247-2017, 2017.

McCormack, J. P. and Hood, L. L.: Apparent solar cycle variations of upper stratospheric ozone and temperature: Latitude and seasonal

dependences, J. Geophys. Res.: Atmos., 101, 20 933–20 944, doi:10.1029/96JD01817, 1996.

Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., and van Loon, H.: Amplifying the Pacific Climate System Response to a Small 11-Year5

Solar Cycle Forcing, Science, 325, 1114–1118, doi:10.1126/science.1172872, 2009.

Meftah, M., Damé, L., Bolsée, D., Hauchecorne, A., Pereira, N., Sluse, D., Cessateur, G., Irbah, A., Bureau, J., Weber, M., Bramstedt, K.,

Hilbig, T., Thiéblemont, R., Marchand, M., Lefèvre, F., Sarkissian, A., and Bekki, S.: SOLAR-ISS: A new reference spectrum based on

SOLAR/SOLSPEC observations, Astronomy & Astrophysics, 611, A1, doi:10.1051/0004-6361/201731316, 2018.

Meftah, M., Damé, L., Bolsée, D., Pereira, N., Snow, M., Weber, M., Bramstedt, K., Hilbig, T., Cessateur, G., Boudjella, M.-Y., Marchand,10

M., Lefèvre, F., Thiéblemont, R., Sarkissian, A., Hauchecorne, A., Keckhut, P., and Bekki, S.: A New Version of the SOLAR-ISS Spectrum

Covering the 165 – 3000 nm Spectral Region, Solar Physics, 295, 14, doi:10.1007/s11207-019-1571-y, 2020.

Minschwaner, K. and Siskind, D. E.: A new calculation of nitric oxide photolysis in the stratosphere, mesosphere, and lower thermosphere,

J. Geophys. Res.: Atmos., 98, 20 401, doi:10.1029/93JD02007, 1993.

Misios, S., Mitchell, D. M., Gray, L. J., Tourpali, K., Matthes, K., Hood, L., Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov,15

E., and Krivolutsky, A.: Solar signals in CMIP-5 Simulations: Effects of Atmosphere–ocean Coupling, Q.J.R. Meteorol. Soc.,

doi:10.1002/qj.2695, qJ-15-0113.R2, 2015.

Mitchell, D. M., Misios, S., Gray, L. J., Tourpali, K., Matthes, K., Hood, L., Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E.,

Shindell, D., and Krivolutsky, A.: Solar signals in CMIP-5 simulations: the stratospheric pathway, Q.J.R. Meteorol. Soc., 141, 2390–

2403, doi:10.1002/qj.2530, 2015.20

Naujokat, B.: An update of the observed Quasi-Biennial Oscillation of the stratospheric winds over the tropics, J. Atmos. Sci., 43, 1873–1877,

1986.

Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M.: The Mean Climate of the Community Atmosphere

Model (CAM4) in Forced SST and Fully Coupled Experiments, J. Clim., 26, 5150–5168, doi:10.1175/JCLI-D-12-00236.1, http://journals.

ametsoc.org/doi/abs/10.1175/JCLI-D-12-00236.1, 2013.25

Nissen, K. M., Matthes, K., Langematz, U., and Mayer, B.: Towards a better representation of the solar cycle in general circulation models,

Atmos. Chem. Phys., 7, 5391–5400, doi:10.5194/acp-7-5391-2007, 2007.

Oberländer, S., Langematz, U., Matthes, K., Kunze, M., Kubin, A., Harder, J., Krivova, N. A., Solanki, S. K., Pagaran, J., and Weber, M.:

The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle, Geophys. Res. Lett., 39,

doi:10.1029/2011GL049539, http://dx.doi.org/10.1029/2011GL049539, L01801, 2012.30

Randel, W., Smith, K., Austin, J., Barnett, J., Claud, C., Gillett, N., Keckhut, P., Langematz, U., Lin, R., Long, C., Mearsm, C., Miller, A.,

Nash, J., Seidel, D., Thompson, D., Wu, F., and Yoden, S.: An update of stratospheric temperature trends, J. Geophys. Res., 114, D02 107,

doi:10.1029/2005JD006744, 2009.

Randel, W. J. and Wu, F.: A stratospheric ozone profile data set for 1979-2005: Variability, trends, and comparisons with column ozone data,

J. Geophys. Res., 112, D06 313, doi:10.1029/2006JD007339, 2007.35

Remsberg, E., Russell, J. M., Gordley, L. L., Gille, J. C., and Bailey, P. L.: Implications of the Stratospheric Water Va-

por Distribution as Determined from the Nimbus 7 LIMS Experiment, J. Atmos. Sci., 41, 2934–2948, doi:10.1175/1520-

0469(1984)041<2934:IOTSWV>2.0.CO;2, 1984.

27

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Remsberg, E., Damadeo, R., Natarajan, M., and Bhatt, P.: Observed Responses of Mesospheric Water Vapor to Solar Cycle and Dynamical

Forcings, J. Geophys. Res. Atmos., 123, 3830–3843, doi:10.1002/2017JD028029, 2018.

Rex, M., Salawitch, R. J., Harris, N. R. P., von der Gathen, P., Braathen, G. O., Schulz, A., Deckelmann, H., Chipperfield, M., Sinnhuber,

B.-M., Reimer, E., Alfier, R., Bevilacqua, R., Hoppel, K., Fromm, M., Lumpe, J., Küllmann, H., Kleinböhl, A., Bremer, H., von König,

M., Künzi, K., Toohey, D., Vömel, H., Richard, E., Aikin, K., Jost, H., Greenblatt, J. B., Loewenstein, M., Podolske, J. R., Webster,5

C. R., Flesch, G. J., Scott, D. C., Herman, R. L., Elkins, J. W., Ray, E. A., Moore, F. L., Hurst, D. F., Romashkin, P., Toon, G. C., Sen,

B., Margitan, J. J., Wennberg, P., Neuber, R., Allart, M., Bojkov, B. R., Claude, H., Davies, J., Davies, W., De Backer, H., Dier, H.,

Dorokhov, V., Fast, H., Kondo, Y., Kyrö, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. J., Moran, E., Nagai, T., Nakane, H., Parrondo,

C., Ravegnani, F., Skrivankova, P., Viatte, P., and Yushkov, V.: Chemical depletion of Arctic ozone in winter 1999/2000, J. Geophys. Res.,

107, 8276, doi:10.1029/2001JD000533, 2002.10

Roble, R. G. and Ridley, E. C.: An auroral model for the NCAR thermosphere general circulation model (TGCM), Ann. Geophys., 6,

369–383, 1987.

Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin,

A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM5, Part I, Tech. Rep. No. 349,

Max-Planck-Institut für Meteorologie, Hamburg, 2003.15

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.: Sen-

sitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model, J. Climate, 19, 3771–3791,

doi:10.1175/JCLI3824.1, 2006.

Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Tarabor-

relli, D., Tost, H., and Xie, Z.-Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geosci. Model Dev., 4, 373–380,20

doi:10.5194/gmd-4-373-2011, 2011a.

Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the

MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, doi:10.5194/gmd-7-2653-2014, http://www.

geosci-model-dev.net/7/2653/2014/, 2014.

Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat,25

G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Tech. Rep. Evaluation

No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, 2011b.

Schieferdecker, T., Lossow, S., Stiller, G. P., and von Clarmann, T.: Is there a solar signal in lower stratospheric water vapour?, Atmos. Chem.

Phys., 15, 9851–9863, doi:10.5194/acp-15-9851-2015, http://www.atmos-chem-phys.net/15/9851/2015/, 2015.

Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change., John Wiley & Sons Inc., Hoboken,30

New Jersey, USA, 2 edn., 2006.

Sinnhuber, M. and Funke, B.: Energetic electron precipitation into the atmosphere, in: The Dynamic Loss of Earth’s Radiation Belts, pp.

279–321, Elsevier, doi:10.1016/B978-0-12-813371-2.00009-3, 2020.

Sinnhuber, M., Berger, U., Funke, B., Nieder, H., Reddmann, T., Stiller, G., Versick, S., von Clarmann, T., and Wissing, J. M.: NOy pro-

duction, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010, Atmos. Chem. Phys., 18,35

1115–1147, doi:10.5194/acp-18-1115-2018, 2018.

Solanki, S. K., Schüssler, M., and Fligge, M.: Evolution of the Sun’s large-scale magnetic field since the Maunder minimum, Nature, 408,

445–447, doi:10.1038/35044027, 2000.

28

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Solomon, S. C. and Qian, L.: Solar extreme-ultraviolet irradiance for general circulation models, J. Geophys. Res., 110, A10 306,

doi:10.1029/2005JA011160, 2005.

Soukharev, B. E. and Hood, L. L.: Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets

and comparisons with models, J. Geophys. Res.: Atmos., 111, 1–18, doi:10.1029/2006JD007107, 2006.

SPARC CCMVal: SPARC Report No 5 (2010) Chemistry-Climate Model Validation, in: SPARC Report on the Evaluation of Chemistry-5

Climate-Models, edited by Erying, V., Shepherd, T., and Waugh, D., WCRP-132, WMO/TD-No. 1526, 2010.

Strobel, D. F.: Parameterization of the atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation, J. Geophys.

Res., 83, 6225–6230, 1978.

Sukhodolov, T., Rozanov, E., Ball, W. T., Bais, A., Tourpali, K., Shapiro, A. I., Telford, P., Smyshlyaev, S., Fomin, B., Sander, R., Bossay,

S., Bekki, S., Marchand, M., Chipperfield, M. P., Dhomse, S., Haigh, J. D., Peter, T., and Schmutz, W.: Evaluation of simulated photolysis10

rates and their response to solar irradiance variability, J. Geophys. Res.: Atmos., 121, 6066–6084, doi:10.1002/2015JD024277, 2016.

Thuillier, G., Hersé, M., Simon, P. C., Labs, D., Mandel, H., Gillotay, D., and Foujols, T.: The Visible Solar Spectral Irradi-

ance from 350 to 850 nm As Measured by the SOLSPEC Spectrometer During the ATLAS I Mission, Sol. Phys., 177, 41–61,

doi:10.1023/A:1004953215589, 1998.

Thuillier, G., Floyd, L., Woods, T., Cebula, R., Hilsenrath, E., Hersé, M., and Labs, D.: Solar irradiance reference spectra for two solar active15

levels, Adv. Space Res., 34, 256–261, doi:10.1016/j.asr.2002.12.004, 2004.

Unruh, Y. C., Solanki, S. K., and Fligge, M.: The spectral dependence of facular contrast and solar irradiance variations, Astron. Astrophys.,

345, 635–642, 1999.

van Loon, H., Meehl, G. a., and Shea, D. J.: Coupled air-sea response to solar forcing in the Pacific region during northern winter, J. Geophys.

Res. Atmos., 112, 1–8, doi:10.1029/2006JD007378, 2007.20

Viereck, R., Puga, L., McMullin, D., Judge, D., Weber, M., and Tobiska, W. K.: The Mg II index: A proxy for solar EUV, Geophys. Res.

Lett., 28, 1343–1346, doi:10.1029/2000GL012551, 2001.

Wang, Y., Lean, J. L., and Sheeley, Jr., N. R.: Modeling the Sun’s Magnetic Field and Irradiance since 1713, Astrophys. J., 625, 522–538,

doi:10.1086/429689, 2005.

Yeo, K. L., Krivova, N. A., Solanki, S. K., and Glassmeier, K. H.: Reconstruction of total and spectral solar irradiance from 1974 to 201325

based on KPVT, SoHO/MDI, and SDO/HMI observations, Astron. Astrophys., 570, A85, doi:10.1051/0004-6361/201423628, 2014.

Yeo, K. L., Ball, W. T., Krivova, N. A., Solanki, S. K., Unruh, Y. C., and Morrill, J.: UV solar irradiance in observations and the NRLSSI

and SATIRE-S models, J. Geophys. Res.: Space Physics, doi:10.1002/2015JA021277, 2015JA021277, 2015.

Zerefos, C. S., Tourpali, K., Bojkov, B. R., Balis, D. S., Rognerund, B., and Isaksen, I. S. A.: Solar activity-total column ozone relationships:

Observations and model studies with heterogeneous chemistry, J. Geophys. Res. Atmos., 102, 1561–1569, doi:10.1029/96JD02395, 1997.30

Zhong, W., Osprey, S. M., Gray, L. J., and Haigh, J. D.: Influence of the prescribed solar spectrum on calculations of atmospheric temperature,

Geophys. Res. Lett., 35, L22 813, doi:10.1029/2008GL035993, 2008.

29

https://doi.org/10.5194/acp-2019-1010
Preprint. Discussion started: 31 January 2020
c© Author(s) 2020. CC BY 4.0 License.



List of Figures

1 Left column: Annual mean 11–year solar cycle response (shaded) and signal variance (white contours) in terms
of the solar response annual standard deviation for shortwave heating-rates (top), temperature (middle), and
ozone mixing ratios (bottom). Solar signal derived as ensemble mean over both models and all SSI data sets;
solar minimum SSI based on ATLAS3 reference state. Middle column: Percentage of signal variance (square5
of white contours of left figures) explained by systematic differences between forcing data sets (blue shading).
The white contours indicate levels of explained variance larger than the range of shading. Right column: as
middle column but for systematic differences between CCMs. The grey hatching masks areas where signal or
ratio of explained variance does not pass a test for statistical significance (p > 5 %). . . . . . . . . . . . . . . . 32

2 Annual mean 11–year solar cycle response (60◦S–60◦N) in (a) shortwave heating rates, (b) temperature, (c)10
ozone concentrations, (d) atomic oxygen (O(3P)), (e) atomic oxygen (O(1D)), (f) NOy, (g) HOx, and (h)
H2O. Solar responses are derived for an average of WACCM and EMAC simulations using five SSI data sets
at solar maximum NRLSSI1(CMIP5) (yellow), NRLSSI2 (red), SATIRE-S (blue), SATIRE-T (dark blue), and
CMIP6 (black) relative to the average of the WACCM and EMAC reference solar minimum simulations. The
shaded area indicates the range of the WACCM (black long dash contour) and EMAC (black dotted contour)15
ensemble means. The 95% uncertainty error bar is given for the model average using the CMIP6 data set,
calculated with a Student’s t test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Percentage change of the photolysis rates from solar minimum to maximum of (a) oxygen (JO2), (b) ozone
(JO3=JO3→O(1D) + JO3→O(3P)), (c) O3 producing O(1D) (JO3→O(1D)), (d) O3 producing O(3P)
(JO3→O(3P)), (e) water vapour (JH2O), and (f) nitric oxide (JNO) for a single time step at 180◦E averaged20
from 60◦S to 60◦N. Changes are derived for an average of WACCM and EMAC simulations using five SSI
data sets at solar maximum NRLSSI1(CMIP5) (yellow), NRLSSI2 (red), SATIRE-S (blue), SATIRE-T (dark
blue), and CMIP6 (black) relative to the average of the WACCM and EMAC reference solar minimum simula-
tions. The shaded area indicates the range of the WACCM (black long dash contour) and EMAC (black dotted
contour) ensemble means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425

4 Annual mean temperature deviation of EMAC and WACCM to ERA-5 climatology. (a) EMAC – ERA-5 and
(b) WACCM – ERA-5 climatology. The ensemble mean for each CCM consists of the solar minimum reference
simulation (included 5 times in the ensemble mean) and the 5 simulations of the solar maximum. The ERA-5
data consists of annual mean data from 1982 to 2018. Grey hatching masks areas where differences does not
pass a test for statistical significance (p > 5 %), for differences relative to ERA-5. . . . . . . . . . . . . . . . . 3530

5 Annual mean differences for EMAC (ensemble mean) minus WACCM (ensemble mean) (shaded) of (a) short-
wave heating rates, (b) temperature, (c) ozone mixing ratios, (d) atomic oxygen (O(3P)), (e) HOx, and (f)
NOy. The ensemble mean for both CCMs consists of the solar minimum reference simulation (included 5
times in the ensemble mean) and the 5 simulations for the solar maximum. Grey hatching masks areas where
differences do not pass a test for statistical significance (p > 5 %). . . . . . . . . . . . . . . . . . . . . . . . . 3635

6 Annual mean zonally averaged 11–year solar cycle response in total column ozone (TCO) in % for WACCM
(long dashed) and EMAC (dotted) for prescribed SSI data sets NRLSSI1(CMIP5) (yellow), NRLSSI2 (red),
SATIRE-S (blue), SATIRE-T (light blue), and CMIP6 (black). The 95% uncertainty range is given for simula-
tions with the CMIP6 data set for WACCM (light grey shaded) and EMAC (dark grey shaded). . . . . . . . . . 37

7 Annual mean zonally averaged 11–year solar cycle response in layer thickness from 100 to 10 hPa in m40
for WACCM (long dashed) and EMAC (dotted) with prescribed SSI data sets NRLSSI1(CMIP5) (yellow),
NRLSSI2 (red), SATIRE-S (blue), SATIRE-T (light blue), and CMIP6 (black). The 95% uncertainty range is
given for simulations with the CMIP6 data set for WACCM (light grey shaded) and EMAC (dark grey shaded). 38
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8 Top: Ensemble average, annual and zonal mean 11–year solar cycle response in partial column ozone in %
(solid black) and the 95% confidence interval as error bars; WACCM simulations only (solid red); EMAC
simulations only (solid blue); light grey shading denotes the standard deviation of the ensemble mean solar
response; hatched region denotes the part of the standard deviation explained by the models; dark shading
denotes the part of the standard deviation explained by the SSI data sets. Bottom: As top for annual, global5
mean 11–year solar cycle response in TCO in DU (solid black) for pressure regions as indicated on the y-axis. . 39
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solar response variance explained by SSI variance explained by CCM
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Figure 1. Left column: Annual mean 11–year solar cycle response (shaded) and signal variance (white contours) in terms of the solar
response annual standard deviation for shortwave heating-rates (top), temperature (middle), and ozone mixing ratios (bottom). Solar signal
derived as ensemble mean over both models and all SSI data sets; solar minimum SSI based on ATLAS3 reference state. Middle column:
Percentage of signal variance (square of white contours of left figures) explained by systematic differences between forcing data sets (blue
shading). The white contours indicate levels of explained variance larger than the range of shading. Right column: as middle column but for
systematic differences between CCMs. The grey hatching masks areas where signal or ratio of explained variance does not pass a test for
statistical significance (p > 5 %).
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11–year solar cycle response
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Figure 2. Annual mean 11–year solar cycle response (60◦S–60◦N) in (a) shortwave heating rates, (b) temperature, (c) ozone concentrations,
(d) atomic oxygen (O(3P)), (e) atomic oxygen (O(1D)), (f) NOy, (g) HOx, and (h) H2O. Solar responses are derived for an average of
WACCM and EMAC simulations using five SSI data sets at solar maximum NRLSSI1(CMIP5) (yellow), NRLSSI2 (red), SATIRE-S (blue),
SATIRE-T (dark blue), and CMIP6 (black) relative to the average of the WACCM and EMAC reference solar minimum simulations. The
shaded area indicates the range of the WACCM (black long dash contour) and EMAC (black dotted contour) ensemble means. The 95%
uncertainty error bar is given for the model average using the CMIP6 data set, calculated with a Student’s t test.
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11–year solar cycle response
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Figure 3. Percentage change of the photolysis rates from solar minimum to maximum of (a) oxygen (JO2), (b) ozone
(JO3=JO3→O(1D) + JO3→O(3P)), (c) O3 producing O(1D) (JO3→O(1D)), (d) O3 producing O(3P) (JO3→O(3P)), (e) water
vapour (JH2O), and (f) nitric oxide (JNO) for a single time step at 180◦E averaged from 60◦S to 60◦N. Changes are derived for an average
of WACCM and EMAC simulations using five SSI data sets at solar maximum NRLSSI1(CMIP5) (yellow), NRLSSI2 (red), SATIRE-S
(blue), SATIRE-T (dark blue), and CMIP6 (black) relative to the average of the WACCM and EMAC reference solar minimum simulations.
The shaded area indicates the range of the WACCM (black long dash contour) and EMAC (black dotted contour) ensemble means.
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Figure 4. Annual mean temperature deviation of EMAC and WACCM to ERA-5 climatology. (a) EMAC – ERA-5 and (b) WACCM – ERA-5
climatology. The ensemble mean for each CCM consists of the solar minimum reference simulation (included 5 times in the ensemble mean)
and the 5 simulations of the solar maximum. The ERA-5 data consists of annual mean data from 1982 to 2018. Grey hatching masks areas
where differences does not pass a test for statistical significance (p > 5 %), for differences relative to ERA-5.
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EMAC – WACCM
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Figure 5. Annual mean differences for EMAC (ensemble mean) minus WACCM (ensemble mean) (shaded) of (a) shortwave heating rates,
(b) temperature, (c) ozone mixing ratios, (d) atomic oxygen (O(3P)), (e) HOx, and (f) NOy. The ensemble mean for both CCMs consists
of the solar minimum reference simulation (included 5 times in the ensemble mean) and the 5 simulations for the solar maximum. Grey
hatching masks areas where differences do not pass a test for statistical significance (p > 5 %).36
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Figure 6. Annual mean zonally averaged 11–year solar cycle response in total column ozone (TCO) in % for WACCM (long dashed) and
EMAC (dotted) for prescribed SSI data sets NRLSSI1(CMIP5) (yellow), NRLSSI2 (red), SATIRE-S (blue), SATIRE-T (light blue), and
CMIP6 (black). The 95% uncertainty range is given for simulations with the CMIP6 data set for WACCM (light grey shaded) and EMAC
(dark grey shaded).
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Figure 7. Annual mean zonally averaged 11–year solar cycle response in layer thickness from 100 to 10 hPa in m for WACCM (long dashed)
and EMAC (dotted) with prescribed SSI data sets NRLSSI1(CMIP5) (yellow), NRLSSI2 (red), SATIRE-S (blue), SATIRE-T (light blue),
and CMIP6 (black). The 95% uncertainty range is given for simulations with the CMIP6 data set for WACCM (light grey shaded) and EMAC
(dark grey shaded).
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Figure 8. Top: Ensemble average, annual and zonal mean 11–year solar cycle response in partial column ozone in % (solid black) and
the 95% confidence interval as error bars; WACCM simulations only (solid red); EMAC simulations only (solid blue); light grey shading
denotes the standard deviation of the ensemble mean solar response; hatched region denotes the part of the standard deviation explained by
the models; dark shading denotes the part of the standard deviation explained by the SSI data sets. Bottom: As top for annual, global mean
11–year solar cycle response in TCO in DU (solid black) for pressure regions as indicated on the y-axis.
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Table 1. Solar cycle spectral solar irradiances changes from Nov. 1989 to Nov. 1994 relative to Nov. 1994 (∆SSI) in % and relative
contribution of SSI changes to the TSI change ( ∆SSI

∆TSI
) in % for the Lyman-α (121.5 nm), Far-UV (121–200 nm), Herzberg continuum/Hartley

bands (201–242 nm), Hartley-/Huggings-bands (243–380 nm) and visible (381–780 nm) spectral ranges.

SSI dataset

Herzberg cont. Hartley-
Lyman-α Far-UV Hartley bands Huggings-bands visible
121.5 nm 121–200 nm 201–242 nm 243–380 nm 381–780 nm

∆SSI ∆SSI
∆TSI

∆SSI ∆SSI
∆TSI

∆SSI ∆SSI
∆TSI

∆SSI ∆SSI
∆TSI

∆SSI ∆SSI
∆TSI

NRLSSI1 44.29 0.27 11.07 1.14 3.48 5.32 0.27 22.91 0.08 54.90
NRLSSI2 50.38 0.29 11.39 1.13 3.26 4.79 0.35 29.04 0.07 41.41
SATIRE-T 35.57 0.30 7.58 1.08 2.58 5.49 0.41 48.55 0.05 42.79
SATIRE-S 57.48 0.33 12.09 1.19 3.60 5.30 0.55 45.52 0.07 42.96
CMIP6 53.94 0.31 11.74 1.15 3.43 5.00 0.45 36.86 0.07 41.86
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Table 2. Correlations of annual average polar region (70◦N–90◦N) anomalies (solar maximum – solar minimum) of total column ozone
(TCO) and the layer thickness from 100 to 10 hPa. TCO change in DU per 100 m geopotential height change and the 95% confidence
interval.

EMAC WACCM
Hemisphere Correlation ∆TCO/100 m Correlation ∆TCO/100 m

CMIP6
NH 0.82 6.08±0.37 0.68 6.11±0.57
SH 0.81 7.49±0.47 0.77 6.06±0.43

SATIRE-T
NH 0.81 5.91±0.37 0.69 6.03±0.55
SH 0.82 8.02±0.48 0.76 5.38±0.40

SATIRE-S
NH 0.83 6.20±0.36 0.71 5.91±0.51
SH 0.81 7.72±0.48 0.69 5.09±0.46

NRLSSI1
NH 0.84 5.95±0.34 0.70 6.25±0.55
SH 0.82 7.26±0.44 0.76 5.94±0.44

NRLSSI2
NH 0.82 6.39±0.38 0.66 5.84±0.57
SH 0.83 7.81±0.45 0.76 5.54±0.41
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