Supplement to: Simulations of anthropogenic bromoform reveal high emissions at the coast of East Asia

Josefine Maas¹, Yue Jia¹, Birgit Quack¹, Jonathan V. Durgadoo¹, Arne Biastoch^{1,2} and Susann Tegtmeier^{1,*}

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany ²Kiel University, Kiel, Germany

*now at: Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada

Correspondence to: Josefine Maas (jmaas@geomar.de)

Figure S1: Seasonal anomaly of sea-air flux for the MODERATE scenario in boreal winter (DJF) and summer (JJA) (in pmol $m^{-2} h^{-1}$). Blue arrows show the seasonal mean surface winds from the forcing data of the simulation time period.

Figure S2: Time series of bromoform mixing ratio [ppt] in the Subtropics $(30^{\circ}N - 40^{\circ}N, 120^{\circ}E - 140^{\circ}E)$ during DJF for a) the Ziska2013-Mixed run and b) the Ziska2013-Tropics run.

Table S1: Average atmospheric mixing ratios [ppt] from Ziska2013-Mixed and Ziska2013-Tropics in the UTLS at 17 km are given as the mean and the standard deviation over the largest 90 % (referred to as mean values) and over the largest 10 % (referred to as maximum values).

	Atmospheric mixing ratio [ppt] at 17 km			
Scenario	JJA		DJF	
	90 %	10 %	90 %	10 %
Ziska2013-Mixed	0.17 ± 0.08	0.36 ± 0.05	0.19 ± 0.08	0.41 ± 0.10
Ziska2013-Tropics	0.15 ± 0.07	0.31 ± 0.02	0.16 ± 0.06	0.38 ± 0.06