1	Analysis of 24 years of mesopause region OH rotational temperature
2	observations at Davis, Antarctica. Part 1: Long-term trends.
3	
4	W. John R. French ¹ , Frank J. Mulligan ² , and Andrew R. Klekociuk ^{1,3}
5	
6	¹ Australian Antarctic Division, 203 Channel Hwy, Kingston, Tasmania, 7050, Australia
7	² Maynooth University, Maynooth, Co. Kildare, Ireland
8	³ Department of Physics, University of Adelaide, Adelaide, 5005, Australia
9	
10	Correspondence to: W. John R. French (john.french@aad.gov.au)
11 12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	

25 Abstract

26 The long term trend, solar cycle response and residual variability in 24 years of 27 hydroxyl nightglow rotational temperatures above Davis Research Station, Antarctica (68° 28 S, 78° E) is reported. Hydroxyl rotational temperatures are a layer-weighted proxy for 29 kinetic temperatures near 87 km altitude and have been used for many decades to monitor 30 trends in the mesopause region in response to increasing greenhouse gas emissions. 31 Routine observations of the OH(6-2) band P-branch emission lines using a scanning 32 spectrometer at Davis station have been made continuously over each winter season since 33 1995. Significant outcomes of this most recent analysis update are (a) a record low winter-34 average temperature of 198.3 K is obtained for 2018 (1.7 K below previous low in 2009) 35 (b) a long term cooling trend of -1.2 ± 0.51 K/decade persists, coupled with a solar cycle 36 response of 4.3 ± 1.02 K/100 solar flux units and (c) we find evidence in the residual winter 37 mean temperatures of an oscillation on a quasi-quadrennial (QQO) timescale which is 38 investigated in detail in part 2 of this work.

39 Our observations and trend analyses are compared with satellite measurements 40 from Aura/MLS version v4.2 level 2 data over the last 14 years and we find close agreement 41 (a best fit to temperature anomalies) with the 0.00464 hPa pressure level values. The solar 42 cycle response (3.4 ± 2.3 K/100sfu), long-term trend (-1.3 ± 1.2 K/decade) and underlying 43 QQO residuals in Aura/MLS are consistent with the Davis observations. Consequently, 44 we extend the Aura/MLS trend analysis to provide a global view of solar response and long 45 term trend for southern and northern hemisphere winter seasons at the 0.00464 hPa pressure 46 level to compare with other observers and models.

47

48

50 1. Introduction

51 Long-term monitoring of basic atmospheric parameters is fundamentally important 52 to understand natural, periodic and episodic variability in atmospheric processes, to provide 53 data to verify increasingly sophisticated atmospheric models and to resolve and quantify 54 perturbations due to global change on decadal to century timescales. Dynamical processes, 55 including gravity waves, tides, planetary waves, large scale circulation patterns and quasi-56 periodic teleconnections (such as the quasi-biennial oscillation (QBO), El Niño Southern 57 Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO)), changes to the chemical 58 composition and radiative balance (particularly due to anthropogenic emissions of 59 greenhouse and chlorofluorocarbon gasses) and external forcing such as the 27-day solar 60 rotation and 11-year solar activity cycle, all play significant roles (directly and through 61 interactions) in defining and perturbing the mean state of the atmosphere. Decades of well 62 calibrated measurements are required to accurately quantify variations and trends on these 63 timescales.

64 Meteorological reanalyses derived from assimilation of a vast number of surface 65 observations provide time-series for useful trend analyses in the lower atmosphere e.g. 66 (Bengtsson et al., 2004). A few satellite based data sets are now also reaching multi-decadal 67 timescales (e.g. the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite's 68 Sounding of the Atmosphere using Broadband Emission Radiometry instrument (TIMED 69 /SABER) (Mertens et al., 2003), and the Earth Observing System satellite Aura Microwave 70 Limb Sounder (Aura/MLS) (Schwartz et al., 2008), that extend observations to the upper 71 atmosphere. Of current and particular interest to climate science in the modern era are the 72 atmospheric temperature trends in response to increasing global greenhouse gas emissions, 73 principally from carbon dioxide (CO_2) . Modelling studies over many years suggest that 74 the sensitivity to CO₂ changes in the upper atmosphere, particularly at high latitudes, is

much larger than in the lower atmosphere (e.g. Roble (2000), the Canadian Middle
Atmosphere Model (CMAM) (Fomichev et al., 2007)) and the Hamburg Model of the
Neutral and Ionized Atmosphere (HAMMONIA) (Schmidt et al., 2006)).

78 Above the stratosphere, the low collision frequency means that CO_2 preferentially 79 radiates absorbed energy to space, resulting in a net cooling. Thus, the expected long-term 80 temperature trends in the mesosphere and lower thermosphere due to CO_2 are negative. 81 Ground based optical measurements of the Meinel emission bands of the hydroxyl (OH) 82 molecule produced by the exothermic hydrogen (H) – ozone (O₃) reaction (H + O₃ -> OH^{*} 83 + 3.34 eV) have been used extensively over almost six decades as a method of measuring 84 atmospheric temperature in the vicinity of the mesopause (Kvifte, 1961; Sivjee, 1992; Beig 85 et al. 2003; Beig 2006; Beig et al. 2008; Beig 2011). The emission is centred about 87 km 86 altitude and the rotational temperatures derived are representative of the kinetic 87 temperatures, weighted by the shape and width of the layer (~8 km full-width at half-88 maximum (FWHM)). Temperatures thus obtained have always been considered ambiguous 89 to the extent that they are dependent on the altitude of the emitting layer, and they are 90 weighted by the altitude profile of that layer. In the case of the OH* layer, different 91 vibrational bands are known to be weighted towards different altitude layers (von Savigny 92 et al. 2012), and on short time scales, individual bands vary in altitude with diurnal, semi-93 diurnal, annual, semi-annual and solar cycle variations (García-Comas et al., 2017; Liu and 94 Shepherd, 2006; Mulligan et al., 2009). Over long timescales (more than one solar cycle) 95 however, recent studies using satellite data (Gao et al., 2016; von Savigny, 2015) and OH Chemistry-Dynamics (OHCD) models have shown that, the OH* layer altitude is 96 97 remarkably insensitive to changes in CO₂ concentration or solar cycle variation. This 98 makes these measurements very valuable for monitoring long term changes in the 99 atmosphere.

100 This work provides an update on the solar cycle and long term trend analysis of the 101 OH rotational temperature measurements taken through each winter season at Davis 102 Research Station, Antarctica (68° S, 78° E). The dataset used here extends for 24 103 consecutive years and this analysis includes a further 8 years of measurements since the 104 previously published trend assessment using these data (French and Klekociuk, 2011). 105 Here we expand on the earlier analysis to provide a more detailed assessment of the solar 106 response, trends and variability in the Davis record in comparison with v4.2 measurements from the Microwave Limb Sounder (MLS) on the Aura satellite (Aura/MLS) and a network 107 108 of similar ground based observations (coordinated by the Network for Detection of 109 Mesospheric Change (NDMC), Reisin et al. 2014).

110 The outline of this paper is as follows. The instrumentation used and the acquired 111 rotational temperature data collection are presented in Sections 2 and 3. Analysis of solar 112 cycle response and the long-term linear trend is undertaken in Section 4 including 113 comparisons with other ground-based observers and satellite measurements. Discussion of 114 the results, summary and conclusions drawn are given in Sections 5 and 6, respectively. 115 We use the following terminology for the analysed temperature series in this manuscript. 116 From the measured temperatures and their nightly, monthly, seasonal or winter means, 117 temperature anomalies are produced by subtracting the climatological mean or monthly 118 mean (we fit solar cycle and linear trend to the anomalies), residual temperatures

additionally have the solar cycle component subtracted (used in discussion of long-term 120 trends) and *detrended temperatures* additionally have the long term linear trend subtracted 121 (used in discussion about remaining variability).

122

123 2. Instrumentation

124 A SPEX Industries Czerny-Turner grating spectrometer of 1.26 m focal length has 125 been used to autonomously scan the OH(6-2) P-branch emission spectra (λ 839-851 nm) at 126 Davis (68.6° S, 78.0° E) each winter season over the last 24 years (1995-2018). Night-time 127 observations (sun > 8° below the horizon) are only possible between mid-February (~day 128 048) and end of October (~day 300) at the latitude of Davis.

The spectrometer views the sky in the zenith with a 5.3° field-of-view and an instrument resolution of ~0.16 nm, sufficient to separate P₁ and P₂ branch lines but not to resolve their Lambda-doubling components. Observations are made regardless of cloud or moon conditions and take of the order of 7 minutes to acquire a complete spectrum.

133 Spectral response calibration has been maintained by reference to several tungsten filament 134 Low Brightness Source units (a total of 4164 scans over the 24 years at Davis) which are in turn cross referenced to national standard lamps at the Australian National Measurement 135 136 Institute (a total of 781 cross reference calibrations over 24 years). The response correction 137 accounts mainly for the fall-off in response of the cooled gallium arsenide (GaAs) 138 photomultiplier detector and amounts to 8.5% between the $P_1(2)$ and $P_1(5)$ of the OH(6-2) 139 band. The total change in spectral response correction over 24 years is less than 0.3% 140 (equates to less than 0.3 K for the $P_1(2) / P_1(5)$ ratio) despite changing the diffraction grating 141 in 2006 and four changes of the GaAs photomultiplier detector which are carefully 142 characterised over the years. The assigned annual calibration uncertainty is generally <0.3 143 K except for 1995 (1.8 K) due to calibration via a secondary calibration lamp and in 2002 144 (1.2 K) due to detector cooling problems. Further details of the instrument are contained in 145 Greet et al. (1997) and French et al. (2000).

147 3. Davis 24 year rotational temperature dataset

148 We use the three possible ratios from the $P_1(2)$, $P_1(4)$ and $P_1(5)$ emission line 149 intensities to derive a weighted mean temperature. Intensity values are interpolated to a 150 common time between consecutive spectra to reduce uncertainty associated with the 7 151 minute acquisition cycle time. The weighting factor is the statistical counting error (based 152 on the error in estimating each line intensity, taken as the square-root of the total number 153 of counts for each line). $P_1(2)$ is corrected for the ~2% contribution by $Q_1(5)$, computed 154 using the final weighted temperature. Line backgrounds are selected to balance the small auroral contribution of the N₂1PG and N $_2^+$ Meinel bands and solar Fraunhofer absorption 155 156 for spectra acquired under moonlit conditions. Correction factors account for the 157 difference in Lambda-doubling between the P-branch lines determined with knowledge of 158 the instrument line shape from high-resolution scans of a frequency-stabilized laser.

159 Langhoff et al. (1986) transition probabilities are used to derive rotational 160 temperatures as they are closest to the experimentally measured, temperature independent 161 line ratios determined for the OH(6-2) band using the same instrument in French et al., 162 2000. Recent work by Noll et al. (2020), show that these remain a reasonable choice as the 163 Langhoff et al (1986) coefficients show relatively small errors in the comparison of 164 populations from P- and R- branch lines, as well as those of van der Loo and Groenenboom 165 (2008) and Brooke et al. (2016). Other published sets (e.g., Mies, 1974; Turnbull and Lowe, 166 1989; van der Loo and Groenenboom, 2007; Brooke et al., 2016) can offset the absolute 167 temperatures derived by up to 12 K. While the choice is important for comparisons of 168 absolute temperature between observers, it does not affect the trend analysis reported here 169 (as long as the same transition probability set has been used consistently for all years) as 170 the offset is removed by subtracting the climatological mean (trends are derived from 171 temperature anomalies).

172 Selection criteria limit extreme values of weighted standard deviation (< 20 K) and 173 counting error (< 15 K), slope (< 0.06 counts/Å), magnitude (< 250 counts per second) and 174 rate of change (< 3 counts per minute) of the backgrounds and the rate of change of branch 175 line intensities (< 6%) between consecutive scans. Further details of the rotational 176 temperature analysis procedure are available in Burns et al. (2003) and French and Burns 177 (2004).

178 Of over 624,000 measurements (typically ~26,000 profiles/year), 403,437 derived 179 temperatures pass the reasonably tight selection criteria (many low signal-to-noise ratio 180 profiles taken through thick cloud or high background profiles around full moon are 181 rejected). These yield 5,309 nightly mean temperatures, where there are at least 10 valid 182 samples that contribute within ± 12 hours of local midnight (~1850 Universal Time (UT)). 183 The time series spans two solar cycles (cycles 23 and 24) with peaks in 2001 and 2014. 184 Annual mean temperatures show a dependence on solar activity (see French and Klekociuk 185 (2011) for a comparison of different measures of solar activity with the Davis OH 186 temperature data). We use the 10.7 cm solar radio flux index (F10.7; 1 solar flux unit (sfu) $= 10^{-22} \text{ W m}^{-2} \text{ Hz}^{-1}$) as our preferred measure of solar activity (F10.7 is fitted and subtracted 187 188 to examine residual variability). A plot of the nightly and winter mean temperatures with 189 the F10.7 time series used in this work is provided in Fig. 1.

191

Figure 1 (a). Davis nightly mean temperatures (grey dots; 5309 samples) and winter mean temperatures (D106-259; red points) plotted over the NRL-MSISE00 model temperature for 68°S (87 km altitude, local midnight values) for seasonal reference (Picone et al., 2002; gold line). (b). nightly mean and winter mean temperature anomalies derived by subtracting the climatological mean (see text) and (c). Daily mean F10.7 cm solar flux index (green points correspond to Davis OH temperature samples over the grey line which are all daily observations)

A climatological mean is derived from a fit to the superposition of nightly mean temperatures for all annual series (Fig. 2). The climatological mean is characterised by a rapid autumn transition (February-March) increasing at 1.2 K/day until a turn-over about 29 March (day of year D088), a slow winter decline (April-September) of -0.4 K/day that is punctuated by mid-April (~D113) and mid-August (~D227) dips corresponding to reversals in the mean meridional flow (Murphy et al., 2007), followed by a rapid spring transition (October-November) of -1.0 K/day. Subtracting the climatological mean 208 produces 5309 nightly mean temperature anomalies. Winter mean temperatures are 209 calculated over the interval from 15 April (D106) to 15 September (D259) which avoids 210 the winter to summer transition intervals and lower numbers of nightly observations due to 211 the shorter night length in March and October. A seasonal fit (annual amplitude 41.9 K, 212 semi-annual 23.0 K, ter-annual 7.5 K; green line) and the NRL-MSISE00 reference 213 atmosphere (87 km altitude, local midnight values for Davis; gold points) are also added 214 to Fig. 2 for reference and comparison. The model is limited in its representation of the 215 seasonal cycle as only annual and semi-annual terms are modeled.

216

225 4. Trend Assessment

226 4.1 Davis winter mean trends

Winter mean temperature anomalies over the 24 years of observations are plotted in Fig. 3a. The time series is fitted with a linear model containing a solar cycle term (F10.7) and long term linear trend. This model yields a solar cycle response coefficient (*S*) of 4.30 \pm 1.02 K/100sfu (95% confidence limits 2.2 K/100sfu < *S* < 6.4 K/100sfu) and a long term linear trend (*L*) of -1.20 \pm 0.51 K/decade (95% confidence limits -0.14 K/decade < *L* < -2.26 K/decade) and accounts for 58% of the temperature variability.

234 Figure 3 (a). Winter mean (D106-259) temperature anomalies (black line) for Davis 235 station (68°S, 78°E) fitted with a linear model containing a solar cycle term (F10.7cm flux) 236 and long term linear trend (orange line). Fit coefficients are 4.30±1.02 K/100sfu (95% 237 confidence limits 2.18 to 6.42 K/100sfu) and -1.20±0.51 K/decade (95% confidence limits 238 -0.14 to -2.26 K/decade) respectively and account for 58% of the temperature variability. 239 Also plotted (from 2005) are Aura/MLS temperature anomalies derived from the AMJJAS 240 means of all satellite observations within 500 km of Davis station. (b) As for (a), but with 241 the solar cycle component removed to better reveal the long term trend and quasi-242 quadrennial oscillation (QQO). OH residuals (black line) are compared with Aura/MLS 243 temperature residuals at the 0.00464 hPa level, corrected with the same solar cycle 244 component as used for the Davis OH measurements.

245 The stability of trend coefficients were tested for the presence of sampling gaps in 246 the OH temperature record. With the exception of 1999 when 2 intervals D095-126 and 247 213-249 were used to scan the OH(8-3) band and 1996 missing D176-202 all other years 248 only have more than 85% nights within the winter averaging window sampled. (ie 85% of 249 the nights have a valid nightly average temperature with at least 10 measurements that pass 250 selection criteria). A sample bias could be introduced in computing the anomalies if there 251 was a significant departure from the climatological mean in those intervals. The test 252 examined the effect on the derived coefficients by omitting individual years sequentially 253 from the model fit computation. These show the range of L and S coefficients if a data gap 254 for the entire winter interval was missing in a particular year. All coefficients derived from 255 the omitted year computations remained within the uncertainty limits of the solar cycle and 256 long-term trend coefficients when all years were included.

We report that a new record low winter-mean temperature of 198.3 K was set for the Davis measurements in 2018, which is 1.7 K below the previous minimum recorded in 2009 (200.0 K). This is not entirely due to the low solar activity in 2018 (winter mean flux of 70.4 sfu) as both 2008 (66.9 sfu) and 2009 (69.1 sfu) had lower mean flux and comparable years 1996 (70.6 sfu) was 7.4 K warmer (205.7 K) and 2007 (71.9 sfu) was 6.1 K warmer (204.4 K).

Extracting the solar cycle contribution from the time series yields the long term linear trend and residual variability plotted in Fig. 3b. It is apparent from this plot that a significant oscillation on an approximately 4-year (quasi-quadrennial) timescale remains. A least-squares fit of a sinusoid function to the data yields a period of 4.2 years and peakpeak amplitude of ~3 K. This feature will be examined in detail in Part 2 of this work (French et al., 2020).

Distributions of the nightly mean residual temperatures for each year are shown for comparison in Fig. 4. Histogram colour scale indicates the winter mean temperature from warmest year (1999; red) to coldest year (2018; blue). Distributions vary between years from sharp normal distributions (e.g., 1998, 2007, 2016), to broad flat distributions (e.g., 1996, 1997), to skewed or double peaked distributions (e.g., 2004, 2012, 2014, 2018). These differences can be attributed to the variability in large scale planetary wave activity from year to year (French and Klekociuk, 2011)

Figure 4. Histograms of nightly mean residual temperatures showing the distribution about the mean winter temperature (annotated in top right corner) coloured from red (warmest year: 1999) to blue (coldest year: 2018).

280

281 4.2 Seasonal variability in trends.

282 Seasonal trend coefficients are examined using a 60 day sliding window, and also 283 from monthly average anomalies. Figure 5 shows the seasonal variability in solar cycle and 284 long-term trend coefficients as compared to the winter mean trends (D106-259, 154 day 285 mean; red lines) derived for Fig. 3. Seasonal solar response shows a maximum in May-286 June (~5 K/100sfu) and minimum around August (~2 K/100sfu). Note that April and 287 August temperatures are affected by the characteristic dips seen in the climatological mean 288 during these months (see Fig. 2). Linear trend coefficients show maximum cooling 289 responses in April-May (~ -1.3 K/decade) and in August-October (~ -2.5 K/decade). 290 Virtually no long-term cooling trend is apparent for the midwinter months of June-July. 291

293

Figure 5. The seasonal variability in (a) solar cycle and (b) long-term trend coefficients derived using a 60 day sliding window (blue dots), and as monthly trends (grey boxes) compared to the winter mean trends (red lines) derived for Fig. 3. The green lines show the confidence limits (95%) for the trend coefficients.

299 4.3 Aura/MLS trend comparison

For comparison with the Davis trend measurements, we use version v4.2 level 2 data from the Microwave Limb Sounder (MLS) instrument on the Earth Observing System Aura satellite launched in July 2004 (Schwartz et al., 2008). Aura/MLS provides almost complete global coverage (82° S- 82° N) of limb scanned vertical profiles (~5-100 km) of temperature and geopotential height derived from the thermal microwave emissions near the spectral lines 118 GHz O₂ and 234 GHz O¹⁸O. Previous comparisons of these data with MLS v2.2 temperatures were conducted by French and Mulligan, 2010. 307 Over-plotted in Fig. 3a (extending from 2005) are the equivalent Aura/MLS mean 308 temperature anomalies computed by averaging all observations within 500 km of Davis. 309 for months April to September (AMJJAS) over altitudes 83-88 km (blue line, obtained 310 from a linear interpolation of Aura/MLS geopotential height profiles to geometric height 311 in 1 km steps) and at the 0.00464 hPa (native Aura/MLS retrieval) pressure level (green 312 line). The Aura/MLS data were selected according to the quality control recommendations 313 described in Livesey et al. (2018). Approximately 60 samples per month (~2 per day) are 314 coincident within this range. We see very close agreement to both the pressure and 315 interpolated altitude coordinates considering that at these altitudes the vertical resolution 316 (FWHM of the averaging kernel) of Aura/MLS in approximately 15 km (Schwartz et al., 317 2008), compared to the \sim 8km FWHM integration of the hydroxyl layer temperatures. The 318 Aura/MLS measurements closely follow the solar response, the long-term linear trend and 319 the magnitude and period of the quasi-quadrennial oscillation (QQO).

320 We prefer the use of Aura/MLS pressure level data for the comparison with OH 321 temperatures since it is the concentration (density) of reacting species that governs the 322 hydroxyl layer position (primarily collisional quenching with O₂ and N₂ on the bottom-side 323 of the layer, and reaction with atomic oxygen on the top-side of the layer; eg Xu et al., 324 2012). Statistically, (from a chi-squared fit to the anomalies) the closest agreement is with 325 the 0.00464 hPa pressure level and this is over-plotted on Fig. 3b corrected using the same 326 solar cycle response that was determined from the Davis OH measurements. The linear 327 long-term trend fit for Aura/MLS over 14 years is -1.43 ± 1.1 K/decade which compares 328 very well to -1.2 ± 0.51 K/decade for the 24 years of Davis OH measurements, considering 329 the seasonal variability shown above (section 4.2) and the underlying QQO residual evident 330 in both series, which has a significant effect on the fit over the different data spans.

331 We examine the QQO feature in greater detail in the second part of this work 332 (French, et al., 2020), but here, given the close agreement of Davis and Aura/MLS 0.00464 333 hPa trends in Fig. 3b, we apply the same model fit procedure to derive Aura/MLS solar 334 cycle and linear long-term trend coefficients to obtain a global picture of trends at the 335 hydroxyl layer equivalent pressure level (0.00464 hPa). Figure 6 shows global trends 336 determined by averaging Aura/MLS pressure level 0.00464 hPa temperature anomalies 337 into a $5^{\circ} \ge 10^{\circ}$ (latitude x longitude) grid, over Southern Hemisphere (SH) winter months 338 (April-September; AMJJAS; panel a) trend; panel c) solar response) compared to Northern 339 Hemisphere (NH) winter months (October-March; ONDJFM; panel b) trend; panel d) solar 340 response). Each grid box has been corrected for the solar cycle response determined from 341 a linear regression of temperature to F10.7 over the 14 years of Aura/MLS measurements. 342 The long-term linear trend (panels a) and b)) and solar cycle response (panels c) and d)), 343 for each grid box, together with their corresponding zonal means are presented. The maps 344 contain some interesting features; enhanced bands of solar activity response occur at mid-345 latitudes in both winter hemispheres although strongest in the SH (colour scales are the 346 same for each hemisphere). Minima in sensitivity to solar forcing occur over the equator 347 and the poles. Long-term trends over the Aura/MLS era are not globally uniform. While 348 the global mean trend for the SH winter [AMJJAS] is -0.31 K/decade, there are regions of 349 warming, notably around the equator, southern Africa, Europe and the Atlantic ocean and 350 strongest cooling over Antarctica and northern Canada. For the NH winter [ONDJFM] the 351 global mean is -0.11 K/decade with generally global cooling, except for warming over 352 Antarctica, Europe, southern Africa and the northern Pacific Ocean.

- 353
- 354
- 355

Figure 6. Global temperature trends (a. & b.) and solar cycle responses (c. & d.), together with their corresponding zonal means determined from 14 years of MLS v4.2 pressure level 0.0046hPa (hydroxyl layer equivalent), averaged into 5° latitude x 10° longitude grid, and

over southern hemisphere winter months (AMJJAS; panels a. & c.) compared to northern
hemisphere winter months (ONDJFM; panels b & d). The linear trend and solar cycle
response coefficients have been derived individually for each grid box from Aura/MLS
over 14 years with no lag. Station locations indicate the Aura/MLS comparison with ground
based observations of long-term trend and solar response given in Table 1.

366

367 4.4 Trend comparisons with other ground based observations

368 It is useful to compare these Aura/MLS derived solar response and trend 369 coefficients with other observations, carefully bearing in mind that these observations may 370 span different time intervals than available in the Aura/MLS measurement epoch. At Davis 371 the solar cycle response (indicated by the green point and label DAV in Fig. 6 c.) 372 determined over 24 years matches well with the zonal mean at 68° S determined from the 373 Aura/MLS measurements. Davis appears to be on the poleward boundary of the strong 374 band of solar sensitivity (~40-70° S) in the SH winter. The long-term trend at Davis is 375 marked by the green point and label DAV on panel a) in Fig 6, and as we have seen from 376 Fig. 3, agrees well with Aura/MLS.

377 Table 1 summarises the data-span, derived long term trend, and solar cycle 378 coefficients from a collection of ground-based observers. Where new results are available 379 these have been updated from Table 2 in French and Klekociuk (2011) and as compiled in 380 Beig et al. (2008). Solar cycle and long-term trend coefficients from these sites are also 381 marked on Fig 6 where possible. The majority of these observations agree well (within 382 error estimates) with the Aura/MLS zonal mean solar response and long term trends 383 evaluated here, given the different measurement epochs and geographic variability in the 384 trends coefficients shown by Aura/MLS.

- 385
- 386

			Solar	
		Trend	response	
Site	Data Span	K/decade	K/100sfu	Reference
	1002 2012	0.210.5	2 6 4 0	(1) (2014)
Longyearbyen (LYB, 78°N, 16°E)	1983-2013	-0.2±0.5	3.6±4.0	Holmen et al. (2014)
Kiruna (KIR, 68°N, 21°E)	2003-2014	-2.6±1.5	5.0 ± 1.5	Kim et al. (2017)
Yakutia (YAK, 63°N, 129°E)	1999-2013	Not Significant	4.24±1.39	Ammosov et al. (2014)
Stockholm (STO, 57°N, 12°E)	1991, 1993-1998	Not Determined	2.0±0.4	Espy et al. (2011)
Zvenigorod (ZVE, 56°N, 37°E)	2000-2016	-0.07±0.03	4.5±0.5	Perminov et al. (2018)
Wuppertal (WUP, 51°N, 7°E)	1988-2015	-0.89±0.55	3.5±0.21	Kalicinsky et al. (2016)
Fort Collins (FTC, 41°N, 105°W)	1990-2018	-2.3±0.5	3.0±1.0	Yuan et al. (2019 in press)
Granada (GRA, 37°N,3°W)	2002-2015	-0.6±2.0	3.9±0.1	Garcia-Comas et al. (2017)
Cachoeira Paulista (CAP, 23°S, 45°W)	1987-2000	-1.08±0.15	6±1.3	Clemesha at al. (2005)
El Leoncito (LEO, 32°S, 69°W)	1998-2002	Not Determined	0.92±3.2	Scheer et al. (2005)
Davis (DAV, 68°S,78°E)	1995-2018	-1.20±0.51	4.30±1.02	This Work
South Pole (SPO, 90°S)	1994-2004	0.1±0.2	4.0±1.0	Azeem et al. (2007)
	200 1 200 1	0.220.2		

Table 1. A comparison of solar cycle response and temperature trend observations from the ground-based OH observer network with updates since 2011 where available.

391 392

As some observers have found, there is a important question about a time delay in the OH layer temperature response to solar forcing via the various solar absorption mechanisms in the atmosphere. The major absorbers and altitude of solar extreme ultraviolet radiation are molecular oxygen (Schumann-Runge continuum, 80-130 km, Schumann-Runge electronic and vibrational bands, 40-95 km, Herzberg continuum, below 50 km) and ozone (Hartley-Huggins bands, below 50 km).

We have previously found a lag of around 160 days (F10.7 leads temperature) is best fit to the linear model (French and Klekociuk, 2011), others find shorter: 80 days at Longyearbyen, Svalbard (Holmen et al. 2014), or larger lags: 25 months at Maimaga station, Yakutia (Ammosov et al. 2014; Reisin et al. 2014). Recalculating the long term trends for Aura/MLS assuming a uniform global solar response (as for Davis), or with a 160 day lag and zonal mean solar response does not significantly change the warming and cooling patterns shown in Fig. 2, but the lag does reduce the cooling trend (on average by 0.16 406 K/decade for the southern hemisphere winter and 0.11 K/decade for the northern407 hemisphere winter) and increases the fit error.

408 Beig (2011a, 2011b) in their reviews of long-term trends in the temperature of the 409 mesosphere and lower thermosphere (MLT), highlight the difficulty of distinguishing 410 between the anthropogenic and solar cycle influences. In their results, mesopause region 411 temperature trends were found to be either slightly negative or zero. At that time, it was 412 believed that the solar response becomes stronger with increasing latitude in the 413 mesosphere with typical values in the range of a few degrees per 100 solar flux units in the 414 lower part of the mesosphere but reaching 4-5 K/100 sfu near the mesopause. More recent 415 studies using longer data sets (Ammosov et al. 2014; Holmen et al. 2014; Perminov et al. 416 2018) and satellite data (Tang et al. 2016) have reinforced that view.

417 Trend breaks began to appear in mesopause region temperatures in 2006 418 (Offermann et al., 2006, 2010), and these continue until now in certain locations (e.g., 419 Jacobi et al., 2015; Kalicinsky et al., 2018; Yuan et al., 2019). These can be quite varied 420 from site to site, ranging from -10 K/decade to +5 K/decade. Some of these estimates 421 simply suffer from lack of observations (measurement spans less than a solar cycle). Few 422 are longer than 2 solar cycles, but those of note are included in Table 1. OH temperature 423 trend studies in the southern hemisphere are less common. Reid et al. (2017) report MLT-424 region nightglow intensities, temperatures and emission heights near Adelaide (35° S, 138° 425 E), Australia. Five years (2001-2006) of spectrometer measurements using OH(6-2) and 426 O₂(0-1) temperature are compared with 2 years of Aura/MLS data and 4.5 years of SABER 427 data. Venturini et al. (2018) report mesopause region temperature variability and its trend 428 in southern Brazil (Santa Maria, 30° S, 54° W), based on SABER data over the period 429 2003-2014. Nath and Sridharan (2014) examined the response of the middle atmosphere 430 temperature to variations in solar cycle, QBO and ENSO in the altitude range 20-100 km

431	and 10-15° N latitude using monthly averaged zonal mean SABER observations for the
432	years 2002-2012. They found cooling trends in most of the stratosphere and the mesosphere
433	(40–90 km). In the mesosphere, they found the temperature response to the solar cycle to
434	be increasingly positive above 40 km. The temperature response to ENSO was found to
435	be negative in the middle stratosphere and positive in the lower and upper stratosphere,
436	whereas it appeared largely negative in the height range 60-80 km and positive above 80
437	km.

439 5. Discussion

440 5.1 Relationship between Davis trends and CO₂ and O₃ change.

441 Our updated trend assessment over 24 years yields a cooling rate of -1.20±0.51 442 K/decade for the mean winter [D106-259] temperatures in the hydroxyl layer above Davis. 443 A slightly greater rate of -1.32±0.45 K/decade is derived if the full year [D040-310] of 444 observations are included in the annual means. Over the same period, annual mean surface 445 CO₂ volume mixing ratios (VMRs) increased from 360.82 ppm [1995] to 408.52 ppm 446 [2018] (Mauna Loa values from Global Greenhouse Gas Reference Network 447 www.esrl.noaa.gov/gmd/ccgg/trends/), an increase of 47.7 ppm or 13.2% (19.9 ppm per 448 decade or 5.5% per decade). Qian et al. (2019) quote a CO_2 trend figure of 5.2%/decade 449 (or 5.1 % if the seasonal variation is removed before the linear trend calculated) based on 450 measurements made by TIMED/SABER from 2002-2015. If the primary factor for the 451 observed temperature trend is considered to be CO_2 radiative cooling, a coefficient of -0.06 452 K/ppmCO₂ or -0.22 K/%CO₂ is implied. This is approximately twice the value obtained by (Huang, 2018) (her Figure 2) who employed a linear scaling of the result of a doubling 453 454 of CO₂ concentration by (Roble and Dickinson, 1989). A CO₂ increase of 26.5% from 455 1960 to 2015 was accompanied by a temperature decrease of 1.4% at an altitude of 89.4 456 km near Salt Lake city, Utah (18° N, 290° E).

457 CO_2 is well mixed through the lower atmosphere with a constant VMR up to about 458 80 km. Above this height, diffusion and photolysis processes begin to have an effect, 459 reducing the VMR (Garcia et al., 2014) but these processes vary with latitude and season 460 (Rezac et al. 2015; López-Puertas et al., 2017).

In a recent summary of progress in trends in the upper atmosphere, Laštovička
(2017) identified greenhouse gases, particularly CO₂ as the primary driver of long-term
trends there. The overall effect of greenhouse gases at mesospheric altitudes is radiative

464 cooling. The important secondary trend drivers in the mesosphere and lower 465 thermosphere (MLT) are stratospheric ozone, water vapour concentration and 466 atmospheric dynamics. Temperature trends are predominantly negative, and recent 467 progress in understanding the magnitude of the cooling have arisen from confirmation 468 and quantification of the role of ozone. Lübken et al. (2013) present the results of trend 469 studies in the mesosphere in the period 1961-2009 from the Leibniz-Institute Middle 470 Atmosphere (LIMA) chemistry-transport model which is driven with European Centre 471 for Medium–Range Weather Forecasts (ECMWF) reanalysis below 40 km, and observed 472 variations of CO₂ and O₃. They find that CO₂ is the main driver of temperature change in 473 the mesosphere, with O_3 contributing approximately one third to the trend. Linear 474 temperature trends were found to vary substantially depending on the time period chosen 475 primarily due to the influence of the complicated temporal variation of ozone. Figure 3 476 of (Lübken et al., 2013) show a monotonically increasing trend in CO_2 compared with a 477 much more complicated temporal ozone variation (essentially constant until 1980, a rapid 478 decrease from 1980-1995, followed by an increase since then. Trends in ozone vary as a 479 function of both altitude and latitude, with positive trends dominating in the lower 480 stratosphere and mesosphere (Laštovička, 2017). Increases in water vapour concentration 481 are considered a secondary but non-negligible effect particularly in the lower 482 thermosphere (Akmaev et al., 2006). The trend effect of dynamics was found to be very 483 slightly negative in the mesosphere, but very small compared with the radiatively induced 484 trends. At the mesopause, the trend due to dynamics was positive and significantly larger 485 (~1 K/decade). These results were found to be in good agreement with observations from 486 lidars, Stratospheric Sounding Units (SSU) (Randall et al., 2009) and radio reflection 487 heights which have decreased by more than 1 km in the last 50 years due to shrinking in 488 the stratosphere/lower mesosphere caused by cooling.

489 The Whole Atmosphere Community Climate Model (WACCM) extended into 490 thermosphere (upper boundary ~700 km) (WACCM-X) was used by Qian et al. (2019) 491 (with the lower atmosphere constrained by reanalysis data) to investigate temperature 492 trends and the effect of solar irradiance on temperature trends on the mesosphere during 493 the period 1980-2014. The overall temperature trend in the mesopause region at 85 km 494 was statistically insignificant at -0.46 ± 0.60 K/decade. Solar irradiance effects on the 495 global average temperature are positive and decrease monotonically with decreasing 496 altitude from a value of ~3 K/100 sfu in the lower thermosphere to ~1 K/100 SFU at 55 497 km. This is readily explained by the decreasing external energy from the Sun with reducing 498 altitude. A monthly mean global average trend of 2.46 K/100 sfu is quoted for the 499 mesopause near 85 km. The mesosphere is affected by solar irradiance directly from local 500 heating through absorption of radiation, and indirectly through dynamics by its effects on 501 the geostrophic winds which control the upward propagation of gravity waves and 502 planetary waves generated in the troposphere. Zonal mean temperatures show significant 503 variability as a function of altitude, latitude and season. Qian et al. (2019) provide zonal 504 averaged temperature trend values as a function of altitude (50-110 km) and latitude for 505 each month (their Fig. 3) some of which are statistically significant. Solar cycle effects on 506 temperature are in reasonable agreement with the Davis coefficients (shown in Fig 5(a)) 507 with positive values ranging from ~3-5 K/100 sfu, the largest values occurring in July and 508 October (compare Qian et al. 2019 Fig 4.). The long-term trend is predominantly negative 509 with values in the range -1 to -3 K/decade with the largest cooling occurring in March and 510 September at the latitude and altitude of the OH temperatures measured at Davis Station. 511 WACCM-X shows slightly positive trend values in the months of February, November and 512 December at Davis Station, but OH(6-2) temperature data are not available in these months. 513 The September maximum in cooling is in reasonable agreement with the Davis514 measurements shown in Figure 5 of this work.

515 More recent results from Garcia et al. (2019) using WACCMv4 free-running 516 (coupled ocean) simulations for the period 1955-2100 using IPCC RCP 6.0 attribute the 517 changes in the trends of the temperature profile to monotonic increases in CO_2 518 concentration together with a decrease in O_3 until 1995 followed by subsequent increase. 519 Garcia et al. (2019) assign half of the stratopause negative temperature trend to ozone 520 depleting substances. At the mesopause, the global mean trend in temperature is 521 approximately -0.6 K/decade. Solar cycle signals at the mesopause are in the range 2-3 522 K/100 sfu with slightly higher values in the southern polar cap. Very large seasonal trends 523 in temperature at all altitudes are associated with the development of the Antarctic ozone 524 hole. Trends are largest in the November-December period, and teleconnections are made 525 with the upper mesosphere via GW filtering by the zonal wind anomaly in the southern 526 polar cap.

527

528 5.2 Trend breaks.

529 When analysing long-term trends, several authors (Lübken et al., 2013; Qian et al., 530 2019) emphasise the importance of specifying the length of the time period, as well as the 531 beginning and end of the period, because trend drivers can be different for different periods 532 (e.g., Yuan et al., 2019). Yuan et al. (2019) report long-term trends of the nocturnal 533 mesopause temperature and altitude from LIDAR observations at mid-latitude (41-42° N, 534 105-112° W) in the period 1990-2018. They divided their observations into two categories, 535 the high mesopause (HM) above 97 km during the non-summer months, mainly formed by 536 radiative cooling, and the low mesopause (LM) below 92 km during the non-winter months 537 generated by mostly by adiabatic cooling. This idea of the mesopause at two different

altitudes is well established (e.g., von Zahn et al., 1996; Xu et al., 2007; Thulasiraman and
Nee, 2002). Although Yuan et al. (2019) obtained a cooling trend of more than 2 K/decade
in the mesopause temperature along with a decreasing trend in mesopause height since
1990, the temperature trend is statistically insignificant since 2000.

542 Trend breaks have been reported at other mid-latitude stations (Offermann et al., 543 2006, 2010) where a discontinuity was found in the overall trend in the year 2001/2002. 544 Using some of the same data as Offermann et al. (2006), Kalicinsky et al. (2016) reported a trend break in the middle of 2008. Before the break point, there is a clear negative trend 545 546 reported to be -2.4 ± 0.7 K/decade, whereas after 2008, a large positive trend of 6.4 ± 3.3 547 K/decade is determined. Two possible explanations are suggested for the trend break: the 548 first is that it is the result of a combination of the solar cycle and a long period oscillation 549 such as the 22-year Hale cycle of the Sun. A second possible explanation of the very 550 substantial change in the trend at 2008 is a combination of the solar flux with a sensitivity 551 of 4.1 ± 0.8 K /100 SFU together with a long period oscillation 24-26 years with an 552 amplitude of about 2K. Kalicinsky et al. (2018) find support for this idea in the 553 identification of a quasi-decadal oscillation in the summer mesopause over Western Europe 554 in plasma scale height observations (near 80 km altitude) which are in anti-correlation with 555 the potential oscillation in temperature from OH* measurements. The anti-correlation in 556 the two data sets is explained on the basis of the fact that they originate below (plasma 557 scale height data) and above (OH* temperature data) the temperature minimum in the 558 mesopause region in summer. Jacobi et al. (2015) find that the long-term behavior of both 559 meridional and zonal winds at 90-95 km in northern mid-latitude stations exhibit trend 560 breaks in summer near 1999, although the winter data are well described by a single linear 561 trend over the years 1980- 2015. We find no obvious sign of a discontinuity in the trend 562 obtained in the Davis data from 1995-2018. There is no significant change in the long-term

563	trend or solar response when extending the period of study from 16 years (2005-2010
564	coefficients 4.79 ± 1.02 K/100sfu and -1.18 ± 0.87 K/decade; French and Klekociuk, 2011)
565	to 24 years (this work). Neither coefficient has changed outside the uncertainty.
566	

567 5.3 Effect of changes in the OH*-layer height 568 There is widespread acceptance that cooling of the middle atmosphere due to 569 increases in CO_2 concentration has resulted in shrinking of the middle atmosphere (e.g., 570 (Grygalashvyly et al., 2014; Sonnemann et al., 2015). This does raise the question 571 however of whether the OH* layer is fixed to a constant pressure level rather than a 572 constant altitude. There are mixed reports on this topic. In a long-term study of the 573 effects of chemistry, greenhouse gases, and the solar modulation on OH* layer trends 574 using the Leibniz Institute Middle Atmosphere (LIMA) chemistry-transport model 575 covering the period 1969 to 2009, Grygalashvyly et al. (2014) reported a downward shift 576 in the OH*-layer by about 0.3 km/decade in all seasons due to shrinking of the middle 577 atmosphere resulting from radiative cooling by increasing CO₂ concentrations. Wüst et 578 al. (2017) report a descent in the mean altitude of the OH* layer of 0.02 km/ year from 14 579 years of SABER data (2002-2015) in the alpine region of southern Europe (44-48° N, 6-580 12° E). They refer to a paper by Bremer and Peters (2008) which reports low frequency 581 reflection heights (ca. 80-83 km) between 1959 and 2006 and derive a figure of 0.032 582 km/year. 583 Sivakandan et al. (2016) have published a long-term variation paper on OH peak

emission altitude and volume emission rate over Indian low latitudes using SABER data. A weak decreasing trend of 19.56 m/year was reported for the peak emission altitude of the night-time OH*-layer. García-Comas et al. (2017) reported a slightly larger decrease of 40 m/decade in SABER OH volume emission rate weighted altitude at mid-latitudes

588 which accompanied a 0.7%/decade increase in OH intensity and a 0.6K/decade decrease

589 in OH equivalent temperature.

590 A vertical shift of the OH* layer either upward or downward gives rise to a change 591 in the emission weighted temperature which is measured by ground-based optical 592 instruments (French and Mulligan, 2010; Liu and Shepherd, 2006; von Savigny, 2015). 593 Von Savigny (2015) reported no apparent trend or solar cycle in OH emission altitude at 594 the local time of the SCIAMACHY nighttime observations in the period 2003-2011. 595 However, Teiser and von Savigny (2017) found evidence of an 11-year solar cycle in the 596 vertically integrated emission rate and in the centroid emission altitude of both the OH(3-597 1) and OH(6-2) bands in SCIAMACHY data. Gao et al. (2016) found no evidence that the 598 OH* peak heights are affected by solar cycle in 13 years of TIMED/SABER data, and 599 deduced that the solar cycle variation of temperature obtained from ground-based OH 600 nightglow observations were essentially immune from the OH emission altitude variations. Huang (2018) found no systematic response of airglow $O(^{1}S)$ green line, $O_{2}(0-1)$, or OH(8-601 602 3) VER peak heights with the F10.7 solar cycle using two airglow models OHCD and 603 MACD-90. The Huang (2018) result is supported by Gao et al. (2016) using 604 TIMED/SABER data and by von Savigny (2015) using SCIAMACHY data. These 605 confirmations of the remarkable long-term stability of the peak altitude of the OH*-layer 606 in an atmosphere with increasing CO₂ concentration and changing solar radiation are 607 essential for the use of long-term studies of mesopause region temperatures derived from 608 ground-based OH* optical measurements.

609 W

We have examined the altitude variation of the OH* layer over Davis during the

610 period 2002-2018 using the OH-B channel volume mission rate (VER) from

611 TIMED/SABER (version 2.0) sensitive in the wavelength range 1.56-1.72 μm, which

612 includes mostly the OH(4-2) and OH(5-3) bands. All VER altitude profiles between day

621

Figure 7. The trend in the mean winter OH layer altitude, derived from TIMED/SABER (version 2.0) OH-B channel volume emission rate. The slope of the best fit line is -0.02 ± 0.02 km/year, i.e., no significant change in altitude of the layer over this interval.

626 5.4 Global solar cycle and long-term trends

The long-term trend measured at Davis is well matched with the result from Aura/MLS over 14 years for the southern hemisphere winter months (AMJJAS) at the 0.00464 hPa level. Clearly though, applying the same analysis to the global temperature field reveals that trends are far from globally uniform (Fig 6). In the SH winter the most significant cooling trends are seen over the southern polar cap and northern Canada, with warming trends over southern Africa, around the equator and over Europe and Russia. NH winter cooling trends are strongest over eastern Russia and North America, but warmingtrends remain over Europe.

635 There are a number of limitations and assumptions made for these derived trends: 636 i) there are only 14 years from which to extract a solar cycle component, ii) a solar cycle 637 component is computed for each grid box. The zonal means calculated are generally within 638 2 K/100 sfu of other reported solar response coefficients, but there is a strong latitudinal 639 and seasonal dependence (strongest solar flux response in mid-latitude winter hemisphere 640 - near zero response in high latitude summer), iii) we have assumed no lag between solar 641 flux variations and the temperature response, whereas previous work for the Davis response 642 for example indicates a ~ 160 day lag is optimal at least for Davis (French and Klekociuk, 643 2011) and iv) for comparison with other hydroxyl temperature long-term trends we assume 644 the global OH layer height is well matched with the Aura/MLS 0.00464 hPa level.

To address uncertainties about the solar response coefficient (item ii above) we have recalculated the global trends assuming a fixed response for each grid box (4.2 K/100 sfu as derived from the Davis observations) and also as zonal means but for a lag of 160 days (F10.7 leads T) as previously found for Davis. This analysis determines that, by and large, the warming and cooling patterns observed in Figure 6 do not change significantly for the different solar cycle response computations.

While the WACCM-X results presented by Qian et al. (2019) are in reasonable agreement with the OH temperature behaviour measured at Davis Station, the zonally averaged pattern of solar cycle response and linear trend obtained from WACCM-X differs considerably from that obtained from analysis of the Aura/MLS data at the 0.00464 hPa level shown in Figure 6. In the Aura/MLS results, the solar response in both hemispheres in winter show a great deal more variation as a function of latitude than is evident in the WACCM-X results at 87 km (Figure 4 of Qian et al., 2019). The zonally averaged

658 Aura/MLS pattern shows maxima (~6 K/100sfu) in southern mid-latitudes in the SH winter, 659 and similarly a maximum (although a smaller peak $\sim 4 \text{ K}/100$ sfu compared to the SH 660 response) in northern mid-latitudes in the NH winter. The solar cycle response is 661 essentially zero at 82° north and south during the NH winter months, but it is of the order of 3 K/100sfu at 82° south in SH winter. The SH winter months have the largest variation 662 with a pronounced maximum in the latitude range $\sim 10^{\circ}$ S to 40° S. (The maximum also 663 shows longitudinal structure with a much broader maximum between 90° east and 90° west 664 which is centred at higher southern latitudes.) Several authors (Perminov et al., 2014; 665 666 Pertsev and Perminov, 2008) have reported that winter OH* temperatures are more 667 sensitive to the solar flux variation than summer temperatures and this agrees with the 668 Aura/MLS variation shown here.

The long term trend modelled by WACCM-X is predominantly negative or zero at the altitude of the OH layer (87 km) at all latitudes and in all months apart from February, November and December, when a positive trend of up to ~3 K/decade is present at high southern latitudes (see Fig 3. in Qian et al., 2019). Aura/MLS results also show a predominantly slight negative trend ~0.5-1 K/decade, except at the equator, and at midlatitudes in the SH winter months.

675 Solomon et al. (2018) simulated the anthropogenic global change through the entire 676 atmosphere using WACCM-X in a free-running mode (i.e., lower atmosphere below 50 677 km not constrained by ECMWF reanalysis data) using constant low solar activity 678 conditions. They find substantial cooling in the mesosphere of the order of -1 K/decade, 679 increasing to -2.8K/decade in the thermosphere. Temperature decreases were small near 680 the mesopause compared with the variation in the annual mean thus making trends there 681 somewhat uncertain. Solomon et al. (2018) conclude that inconsistent observational results 682 in the mesopause region, together with little or no global mean trends is due to the dominance of dynamical processes in controlling mesopause temperature, which exhibitssignificant inter-annual variability, even without variable solar forcing.

685 The SABER dataset (2002-2015) was used by Tang et al. (2016) to study the 686 response of the cold-point temperature of the mesopause (T-CPM) to solar activity. The 687 results showed that the T-CPM is significantly correlated to solar activity at all latitudes. 688 and the solar response becomes stronger with increasing latitude. The solar-cycle 689 dependence of the mesopause cold point temperature (T-CPM) is due to the relative 690 importance of CO₂ and NO infrared cooling (Tang et al., 2016). NO density at solar max 691 is about three times that at solar minimum. Consequently, CO_2 cooling is relatively less 692 important at solar maximum, but is the dominant cooling mechanism during solar 693 minimum.

694 Values of the solar response of T-CPM reported by Tang et al. (2016) increased 695 from 2.82 ± 0.73 K/100 sfu at 0-10° S to 6.35 ± 1.16 K/100 sfu at 60-70° S (see their Fig. 696 5(a)). Correlation coefficients of mesopause temperature with F10.7 cm solar irradiance 697 data were higher for mid-latitudes (> 0.9) than at the equator (\sim 0.7) and at higher latitude 698 (see their Fig 5(b)). The correlation coefficient found for 70° S (~0.8) is consistent with 699 the value obtained for the OH* temperatures (Figure 3(a) ($R^2 = 0.584$ or R = 0.76) obtained 700 in this work. At low latitudes, one would expect the QBO and ENSO to be significant 701 factors (see e.g., Nath and Sridharan, 2014), but at high latitudes, gravity wave activity is 702 a candidate for the missing variance. Inter-annual variations of GWs at high latitudes are 703 correlated with the strength of the polar vortex. A stronger polar vortex filters out more 704 eastward propagating GWs, thus leading to more westward GW drag, which drives stronger 705 meridional circulation (Karlsson and Shepherd, 2018).

Although the altitude of the mesospheric cold point changes with season (e.g., Yuan
et al., 2019) and tends to be higher than the centroid height of the OH* layer, the global

solar response value obtained for T-CPM (4.89 ± 0.67 K/100 SFU) is in good agreement with the solar response coefficient derived from ground-based OH* observations.

The solar response of the T-CPM in Tang et al. (2016) shows some significant differences from the results in Figure 6 (zonal mean cycle from Aura/MLS) of this work. The solar response of the T-CPM increases more or less monotonically with latitude, whereas the solar response observed by Aura/MLS maximises at higher mid-latitudes. Of course the height of the T-CPM is some 7 km higher on average as indicated in Figure 9 (b) of Tang et al. (2016).

As a final comment on the global trends, it is noted that the largest errors in the linear trend fit for the SH winter understandably occur coincident with the regions positively or negatively correlated with the QQO (not shown here). The fit can be significantly improved if the QQO component can be understood and modelled. We investigate the QQO in detail in part 2 of this work.

721

722 6. Summary and Conclusions

723 We provide updates for the long-term trend and solar cycle response derived from 724 24 years of spectrometer observations of hydroxyl airglow at Davis Research Station, 725 Antarctica (68° S, 78° E). A cooling trend in the mean winter temperatures [D106-259] of 726 -1.20 ± 0.51 K/decade (95% confidence limits -0.14 K/decade < L < -2.26 K/decade) is 727 obtained coupled with a solar cycle response coefficient of 4.30 ± 1.02 K/100sfu (95% 728 confidence limits 2.2 K/100sfu < S < 6.4 K/100sfu). The observed cooling is consistent 729 with radiative cooling due to increasing CO_2 concentrations and a rate of -0.06 K/ppmCO₂ 730 or -0.22 K/%CO₂ is implied (ignoring possible contributions of stratospheric ozone change 731 to the trend). A significant note is that a new record low winter-mean temperature was set

for the Davis measurements in 2018, with a value of 198.3 K, which is 1.7 K below the previous minimum recorded in 2009 (200.0 K). An examination of the seasonal variation in the trend fit parameters reveals very little (no significant) long-term trend occurs over the two midwinter months of June and July, but 95% significant trends of -1.5 to -2.6 K/decade during the April-May and August-October intervals. From examination of TIMED/SABER VER profiles we see no evidence that the trend results obtained can be significantly attributed to a change in the height of the OH layer.

We do not see evidence of a trend break or a change in the nature of the underlying trend after accounting for the solar cycle response in the Davis OH temperatures, however, this simple solar-cycle and linear trend model fit accounts for only 58% of the temperature variability. The remaining variability reveals evidence of a temperature oscillation on a quasi-quadrennial (~4 year period) timescale.

744 We compare our observations with Aura/MLS version v4.2 level 2 data over the 745 last 14 years when these satellite data are available and find close agreement (a best fit to 746 the variance in mean winter anomaly) with the 0.00464 hPa (native Aura/MLS retrieval) 747 pressure level values. The solar cycle response, long-term trend and underlying QQO 748 residuals are consistent with the Davis observations. Consequently, we derive global maps 749 of Aura/MLS trend and solar response coefficients for the SH and NH winter periods to 750 compare with other observers and models. Significant patterns for the zonally averaged 751 solar cycle response are maxima in southern mid-latitudes in the SH winter and in northern 752 mid-latitudes in the NH winter. Long term trends are predominantly slight negative (~0.5-753 1 K/decade), except at the equator, and at mid-latitudes in the SH winter months. 754 Comparisons are also made with the WACCM-X model and mesopause cold point 755 temperature versus solar activity study using TIMED/SABER data of Tang et al. (2016),

both of which reveal significant differences in the zonally averaged patterns of solar cycle

response and linear trend compared to the Aura/MLS data at 0.00464 hPa.

Further analysis using the datasets described here is undertaken to explore the QQO signal revealed in the residual temperatures. A second part of this paper "Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica. Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the polar mesosphere." concerns this observation.

763

764 Data Availability

All Davis hydroxyl rotational data described in this manuscript are available through the Australian Antarctic Data Centre website (ref project AAS4157) via the following link <u>https://data.aad.gov.au/metadata/records/Davis_OH_airglow</u>. The satellite data used in this paper were obtained from the Aura/MLS data centre (see https://mls.jpl.nasa.gov), the SABER data centre (see http://saber.gats-inc.com/data.php) and are publicly available.

771 Author Contribution

WJRF managed data collection, performed data analysis, prepared manuscript with

- 773 contributions from all co-authors
- FJM analysis of SABER data, manuscript editing, figures, references
- 775 ARK analysis of Aura/MLS satellite data, manuscript editing.

776

777 Competing Interests

The authors declare that they have no conflict of interest.

780 Acknowledgements

781	The authors thank the dedicated work of the Davis optical physicists and
782	engineers over many years in the collection of airglow data and calibration of
783	instruments. This work is supported by the Australian Antarctic Science Advisory
784	Council (project AAS 4157).
785	The satellite data used in this paper were obtained from the Aura/MLS data centre
786	(see https://mls.jpl.nasa.gov), the SABER data centre (see http://saber.gats-
787	inc.com/data.php) and are publicly available. We thank those teams and acknowledge the
788	use of these data sets.
789	This work contributes to the understanding of mesospheric change processes
790	coordinated through the Network for Detection of Mesospheric Change (see
791	https://ndmc.dlr.de/)
792	References
792 793	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition
792 793 794	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial
792 793 794 795	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial Phys., 68(17), 1879–1889, doi:10.1016/j.jastp.2006.03.008, 2006.
792 793 794 795 796	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial Phys., 68(17), 1879–1889, doi:10.1016/j.jastp.2006.03.008, 2006. Ammosov, P., Gavrilyeva, G., Ammosova, A. and Koltovskoi, I.: Response of the
792 793 794 795 796 797	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial Phys., 68(17), 1879–1889, doi:10.1016/j.jastp.2006.03.008, 2006. Ammosov, P., Gavrilyeva, G., Ammosova, A. and Koltovskoi, I.: Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Sp. Res.,
 792 793 794 795 796 797 798 	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial Phys., 68(17), 1879–1889, doi:10.1016/j.jastp.2006.03.008, 2006. Ammosov, P., Gavrilyeva, G., Ammosova, A. and Koltovskoi, I.: Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Sp. Res., 54(12), 2518–2524, doi:10.1016/J.ASR.2014.06.007, 2014.
 792 793 794 795 796 797 798 799 	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial Phys., 68(17), 1879–1889, doi:10.1016/j.jastp.2006.03.008, 2006. Ammosov, P., Gavrilyeva, G., Ammosova, A. and Koltovskoi, I.: Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Sp. Res., 54(12), 2518–2524, doi:10.1016/J.ASR.2014.06.007, 2014. Azeem, S. M. I., Sivjee, G. G., Won, YI. and Mutiso, C.: Solar cycle signature and
 792 793 794 795 796 797 798 799 800 	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial Phys., 68(17), 1879–1889, doi:10.1016/j.jastp.2006.03.008, 2006. Ammosov, P., Gavrilyeva, G., Ammosova, A. and Koltovskoi, I.: Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Sp. Res., 54(12), 2518–2524, doi:10.1016/J.ASR.2014.06.007, 2014. Azeem, S. M. I., Sivjee, G. G., Won, YI. and Mutiso, C.: Solar cycle signature and secular long-term trend in OH airglow temperature observations at South Pole,
 792 793 794 795 796 797 798 799 800 801 	References Akmaev, R. A., Fomichev, V. I. and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Solar-Terrestrial Phys., 68(17), 1879–1889, doi:10.1016/j.jastp.2006.03.008, 2006. Ammosov, P., Gavrilyeva, G., Ammosova, A. and Koltovskoi, I.: Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Sp. Res., 54(12), 2518–2524, doi:10.1016/J.ASR.2014.06.007, 2014. Azeem, S. M. I., Sivjee, G. G., Won, YI. and Mutiso, C.: Solar cycle signature and secular long-term trend in OH airglow temperature observations at South Pole, Antarctica, J. Geophys. Res. Sp. Phys., 112(A1), n/a-n/a, doi:10.1029/2005JA011475,

- 803 Beig, G.: Trends in the mesopause region temperature and our present understanding-an
- update, Phys. Chem. Earth, 31(1–3), 3–9, doi:10.1016/j.pce.2005.03.007, 2006.
- 805 Beig, G.: Long-term trends in the temperature of the mesosphere/lower thermosphere
- 806 region: 1. Anthropogenic influences, J. Geophys. Res. Sp. Phys., 116(A2), n/a-n/a,
- 807 doi:10.1029/2011JA016646, 2011a.
- 808 Beig, G.: Long-term trends in the temperature of the mesosphere/lower thermosphere
- 809 region: 2. Solar response, J. Geophys. Res. Sp. Phys., 116(A2), n/a-n/a,
- 810 doi:10.1029/2011JA016766, 2011b.
- 811 Beig, G., Keckhut, P., Lowe, R. P., Roble, R. G., Mlynczak, M. G., Scheer, J., Fomichev,
- 812 V. I., Offermann, D., French, W. J. R., Shepherd, M. G., Semenov, A. I., Remsberg, E.
- 813 E., She, C. Y., Lübken, F. J., Bremer, J., Clemesha, B. R., Stegman, J., Sigernes, F. and
- 814 Fadnavis, S.: Review of mesospheric temperature trends, Rev. Geophys., 41(4),
- 815 doi:10.1029/2002RG000121, 2003.
- 816 Beig, G., Scheer, J., Mlynczak, M. G. and Keckhut, P.: Overview of the temperature
- 817 response in the mesosphere and lower thermosphere to solar activity, Rev. Geophys.,
- 818 46(3), doi:10.1029/2007RG000236, 2008.
- 819 Bengtsson, L., Hagemann, S. and Hodges, K. I.: Can climate trends be calculated from
- 820 reanalysis data?, J. Geophys. Res., 109(D11), D11111, doi:10.1029/2004JD004536,
- 821 2004.
- 822 Bremer, J. and Peters, D.: Influence of stratospheric ozone changes on long-term trends in
- the meso- and lower thermosphere, J. Atmos. Sol. Terr. Phys., 70, 1473–1481, 2008.
- 824 Brooke, J. S. A., Bernath, P. F., Western, C. M., Sneden, C., Afşar, M., Li, G. and
- 825 Gordon, I. E.: Line strengths of rovibrational and rotational transitions in the X 2 Π
- ground state of OH, J. Quant. Spectrosc. Radiat. Transf., 168, 142–157,
- 827 doi:10.1016/j.jqsrt.2015.07.021, 2016.

- 828 Burns, G. B., Kawahara, T. D., French, W. J. R., Nomura, A. and Klekociuk, A. R.: A
- 829 comparison of hydroxyl rotational temperatures from Davis (69°S, 78°E) with sodium
- lidar temperatures from Syowa (69°S, 39°E), Geophys. Res. Lett., 30(1),
- doi:10.1029/2002GL016413, 2003.
- 832 Clemesha, B., Takahashi, H., Simonich, D., Gobbi, D. and Batista, P.: Experimental
- 833 evidence for solar cycle and long-term change in the low-latitude MLT region, J. Atmos.
- 834 Solar-Terrestrial Phys., 67(1–2), 191–196, doi:10.1016/j.jastp.2004.07.027, 2005.
- 835 Espy, P. J., Ochoa Fernández, S., Forkman, P., Murtagh, D. and Stegman, J.: The role of
- the QBO in the inter-hemispheric coupling of summer mesospheric temperatures, Atmos.
- 837 Chem. Phys., 11(2), 495–502, doi:10.5194/acp-11-495-2011, 2011.
- 838 Fomichev, V. I., Jonsson, A. I., de Grandpré, J., Beagley, S. R., McLandress, C.,
- 839 Semeniuk, K. and Shepherd, T. G.: Response of the middle atmosphere to CO2 doubling:
- Results from the Canadian middle atmosphere model, J. Clim., 20(7), 1121–1144,
- 841 doi:10.1175/JCLI4030.1, 2007.
- 842 French, W. J. R., Klekociuk, A. R., Mulligan, F. J.: Analysis of 24 years of mesopause
- region OH rotational temperature observations at Davis, Antarctica. Part 2: Evidence of a
- quasi-quadrennial oscillation (QQO) in the polar mesosphere., Atmos. Chem. Phys, 2020.
- 845 French, W. J. R. and Burns, G. B.: The influence of large-scale oscillations on long-term
- trend assessment in hydroxyl temperatures over Davis, Antarctica, J. Atmos. Solar-
- 847 Terrestrial Phys., 66(6–9), 493–506, doi:10.1016/j.jastp.2004.01.027, 2004.
- 848 French, W. J. R. and Klekociuk, A. R.: Long-term trends in Antarctic winter hydroxyl
- temperatures, J. Geophys. Res., 116(D4), D00P09, doi:10.1029/2011JD015731, 2011.
- 850 French, W. J. R. and Mulligan, F. J.: Stability of temperatures from TIMED/SABER
- 851 v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2)
- temperatures observed at Davis Station, Antarctica, Atmos. Chem. Phys., 10(23), 11439–

- 853 11446, doi:10.5194/acp-10-11439-2010, 2010.
- 854 French, W. J. R., Burns, G. B., Finlayson, K., Greet, P. A., Lowe, R. P. and Williams, P.
- 855 F. B.: Hydroxyl (6–2) airglow emission intensity ratios for rotational temperature
- determination, Ann. Geophys., 18(10), 1293–1303, doi:10.1007/s00585-000-1293-2,
- 857 2000.
- 858 Gao, H., Xu, J. and Chen, G.: The responses of the nightglow emissions observed by the
- 859 TIMED/SABER satellite to solar radiation, J. Geophys. Res. Sp. Phys., 121(2), 1627–
- 860 1642, doi:10.1002/2015JA021624, 2016.
- 861 García-Comas, M., López-González, M. J., González-Galindo, F., de la Rosa, J. L.,
- 862 López-Puertas, M., Shepherd, M. G. and Shepherd, G. G.: Mesospheric OH layer altitude
- at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37° N,
- 864 3° W), Ann. Geophys., 35(5), 1151–1164, doi:10.5194/angeo-35-1151-2017, 2017.
- 865 Garcia, R. R., López-Puertas, M., Funke, B., Marsh, D. R., Kinnison, D. E., Smith, A. K.
- 866 and González-Galindo, F.: On the distribution of CO2 and CO in the mesosphere and
- 867 lower thermosphere, J. Geophys. Res., 119(9), 5700–5718, doi:10.1002/2013JD021208,
- 868 2014.
- 869 Garcia, R. R., Yue, J. and Russell, J. M.: Middle atmosphere temperature trends in the 20
- th and 21 st centuries simulated with the Whole Atmosphere Community Climate Model
- 871 (WACCM), J. Geophys. Res. Sp. Phys., doi:10.1029/2019ja026909, 2019.
- 872 Greet, P. A., French, W. J. R., Burns, G. B., Williams, P. F. B., Lowe, R. P. and
- 873 Finlayson, K.: OH(6-2) spectra and rotational temperature measurements at Davis,
- Antarctica, Ann. Geophys., 16(1), 77–89, doi:10.1007/s00585-997-0077-3, 1997.
- 875 Grygalashvyly, M., Sonnemann, G. R., Lübken, F. J., Hartogh, P. and Berger, U.:
- Hydroxyl layer: Mean state and trends at midlatitudes, J. Geophys. Res. Atmos., 119(21),
- 877 12,391-12,419, doi:10.1002/2014JD022094, 2014.

- 878 Holmen, S. E., Dyrland, M. E. and Sigernes, F.: Mesospheric temperatures derived from
- three decades of hydroxyl airglow measurements from Longyearbyen, Svalbard (78°N),
- 880 Acta Geophys., 62(2), 302–315, doi:10.2478/s11600-013-0159-4, 2014.
- 881 Huang, T.-Y.: Influences of CO2 increase, solar cycle variation, and geomagnetic activity
- on airglow from 1960 to 2015, J. Atmos. Solar-Terrestrial Phys., 171, 164–175,
- doi:10.1016/J.JASTP.2017.06.008, 2018.
- Jacobi, C., Lilienthal, F., Geißler, C. and Krug, A.: Long-term variability of mid-latitude
- 885 mesosphere-lower thermosphere winds over Collm (51°N, 13°E), J. Atmos. Solar-
- 886 Terrestrial Phys., 136, 174–186, doi:10.1016/j.jastp.2015.05.006, 2015.
- 887 Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W. and Wintel,
- 888 J.: Long-term dynamics of OH * temperatures over central Europe: trends and solar
- correlations, Atmos. Chem. Phys., 16(23), 15033–15047, doi:10.5194/acp-16-15033-
- 890 2016, 2016.
- 891 Kalicinsky, C., Peters, D. H. W., Entzian, G., Knieling, P. and Matthias, V.:
- 892 Observational evidence for a quasi-bidecadal oscillation in the summer mesopause region
- 893 over Western Europe, J. Atmos. Solar-Terrestrial Phys., 178, 7–16,
- doi:10.1016/j.jastp.2018.05.008, 2018.
- 895 Karlsson, B. and Shepherd, T. G.: The improbable clouds at the edge of the atmosphere,
- 896 Phys. Today, 71(6), 30–36, doi:10.1063/PT.3.3946, 2018.
- 897 Kim, G., Kim, J.-H., Kim, Y. H. and Lee, Y. S.: Long-term trend of mesospheric
- temperatures over Kiruna (68°N, 21°E) during 2003–2014, J. Atmos. Solar-Terrestrial
- 899 Phys., 161, 83–87, doi:10.1016/j.jastp.2017.06.018, 2017.
- 900 Kvifte, G. and G.: Temperature measurements from OH bands, Planet. Space Sci., 5(2),
- 901 153–157, doi:10.1016/0032-0633(61)90090-3, 1961.
- 902 Langhoff, S. R., Werner, H. J. and Rosmus, P.: Theoretical Transition Probabilities for

- 903 the OH Meinel System, J. Mol. Spectrosc., 118, 507–529, 1986.
- 904 Laštovička, J. and Jan: A review of recent progress in trends in the upper atmosphere, J.
- 905 Atmos. Solar-Terrestrial Phys., 163, 2–13, doi:10.1016/j.jastp.2017.03.009, 2017.
- 906 Liu, G. and Shepherd, G. G.: An empirical model for the altitude of the OH nightglow
- 907 emission, Geophys. Res. Lett., 33(9), L09805, doi:10.1029/2005GL025297, 2006.
- 908 Livesey, Nathaniel J., William G. Read, Paul A. Wagner, Lucien Froidevaux, A. L.,
- 909 Gloria L. Manney, Luis F. Millán Valle, Hugh C. Pumphrey, M. L. S., Michael J.
- 910 Schwartz, Shuhui Wang, Ryan A. Fuller, Robert F. Jarnot, B. W. K. and Elmain
- 911 Martinez, R. R. L.: Earth Observing System (EOS) Aura Microwave Limb Sounder
- 912 (MLS) Version4.2x Level 2 data quality and description document Version 4.2x–3.1, , 1–
- 913 163 [online] Available from: https://mls.jpl.nasa.gov/data/v4-
- 914 2_data_quality_document.pdf, 2018.
- 915 van der Loo, M. P. J. and Groenenboom, G. C.: Theoretical transition probabilities for the
- 916 OH Meinel system, J. Chem. Phys., 126(11), 114314, doi:10.1063/1.2646859, 2007.
- 917 López-Puertas, M., Funke, B., Jurado-Navarro, A., García-Comas, M., Gardini, A.,
- 918 Boone, C. D., Rezac, L. and Garcia, R. R.: Validation of the MIPAS CO2 volume mixing
- 919 ratio in themesosphere and lower thermosphere and comparison with WACCM
- 920 simulations, J. Geophys. Res., 122(15), 8345–8366, doi:10.1002/2017JD026805, 2017.
- 921 Lübken, F.-J., Berger, U. and Baumgarten, G.: Temperature trends in the midlatitude
- 922 summer mesosphere, J. Geophys. Res. Atmos., 118(24), 13,347-13,360,
- 923 doi:10.1002/2013JD020576, 2013.
- 924 Mertens, C. J., Mlynczak, M. G., López-Puertas, M., Wintersteiner, P. P., Picard, R. H.,
- 925 Winick, J. R., Gordley, L. L. and Russell III, J. M.: Retrieval of kinetic temperature and
- 926 carbon dioxide abundance from nonlocal thermodynamic equilibrium limb emission
- 927 measurements made by the SABER experiment on the TIMED satellite, in Proc SPIE

- 4882, Remote Sensing of Clouds and the Atmosphere VII, pp. 162–171., 2003.
- 929 Mies, F. H.: Calculated vibrational transition probabilities of OH(X2Π), J. Mol.
- 930 Spectrosc., 53(2), 150–188, doi:10.1016/0022-2852(74)90125-8, 1974.
- 931 Mulligan, F. J., Dyrland, M. E., Sigernes, F. and Deehr, C. S.: Inferring hydroxyl layer
- 932 peak heights from ground-based measurements of OH(6-2) band integrated emission rate
- 933 at Longyearbyen (78° N, 16° E), Ann. Geophys., 27(11), 4197–4205,
- 934 doi:10.5194/angeo-27-4197-2009, 2009.
- 935 Murphy, D. J., French, W. J. R. and Vincent, R. A.: Long-period planetary waves in the
- 936 mesosphere and lower thermosphere above Davis, Antarctica, J. Atmos. Solar-Terrestrial
- 937 Phys., 69(17–18), 2118–2138, doi:10.1016/J.JASTP.2007.06.008, 2007.
- 938 Nath, O. and Sridharan, S.: Long-term variabilities and tendencies in zonal mean
- 939 TIMED–SABER ozone and temperature in the middle atmosphere at 10–15°N, J. Atmos.
- 940 Solar-Terrestrial Phys., 120, 1–8, doi:10.1016/j.jastp.2014.08.010, 2014.
- 941 Noll S., Winkler, H, Goussev, O, and Proxauf, O.: OH level populations and accuracies
- 942 of Einstein-A coefficients from hundreds of measured lines, Atmospheic Chem. Phys.
- 943 [online] Available from: https://doi.org/10.5194/acp-2019-1102, 2020.
- 944 Offermann, D., Jarisch, M., Donner, M., Steinbrecht, W. and Semenov, A. I.: OH
- 945 temperature re-analysis forced by recent variance increases, J. Atmos. Solar-Terrestrial
- 946 Phys., 68(17), 1924–1933, doi:10.1016/J.JASTP.2006.03.007, 2006.
- 947 Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J. and Steinbrecht,
- 948 W.: Long-term trends and solar cycle variations of mesospheric temperature and
- 949 dynamics, J. Geophys. Res., 115(D18), D18127, doi:10.1029/2009JD013363, 2010.
- 950 Perminov, V. I., Semenov, A. I., Medvedeva, I. V. and Pertsev, N. N.: Temperature
- 951 variations in the mesopause region according to the hydroxyl-emission observations at
- 952 midlatitudes, Geomagn. Aeron., 54(2), 230–239, doi:10.1134/S0016793214020157,

- 953 2014.
- 954 Perminov, V. I., Semenov, A. I., Pertsev, N. N., Medvedeva, I. V., Dalin, P. A. and
- 955 Sukhodoev, V. A.: Multi-year behaviour of the midnight OH* temperature according to
- 956 observations at Zvenigorod over 2000–2016, Adv. Sp. Res., 61(7), 1901–1908,
- 957 doi:10.1016/J.ASR.2017.07.020, 2018.
- 958 Pertsev, N. and Perminov, V.: Response of the mesopause airglow to solar activity
- 959 inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 26(5), 1049–1056,
- 960 doi:10.5194/angeo-26-1049-2008, 2008.
- 961 Picone, J. M., Hedin, A. E., Drob, D. P. and Aikin, A. C.: NRLMSISE-00 empirical
- 962 model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.
- 963 Sp. Phys., doi:10.1029/2002JA009430, 2002.
- 964 Qian, L., Jacobi, C. and McInerney, J.: Trends and Solar Irradiance Effects in the
- 965 Mesosphere, J. Geophys. Res. Sp. Phys., 124(2), 1343–1360,
- 966 doi:10.1029/2018JA026367, 2019.
- 967 Reid, I. M., Spargo, A. J., Woithe, J. M., Klekociuk, A. R., Younger, J. P. and Sivjee, G.
- 968 G.: Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a
- 969 Southern Hemisphere midlatitude site, Ann. Geophys., 35(3), 567–582,
- 970 doi:10.5194/angeo-35-567-2017, 2017.
- 971 Reisin, E. R., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr, C. S., Schmidt, C.,
- Höppner, K., Bittner, M., Ammosov, P. P., Gavrilyeva, G. A., Stegman, J., Perminov, V.
- 973 I., Semenov, A. I., Knieling, P., Koppmann, R., Shiokawa, K., Lowe, R. P., López-
- 974 González, M. J., Rodríguez, E., Zhao, Y., Taylor, M. J., Buriti, R. A., Espy, P. J., French,
- 975 W. J. R., Eichmann, K.-U., Burrows, J. P. and von Savigny, C.: Traveling planetary wave
- 976 activity from mesopause region airglow temperatures determined by the Network for the
- 977 Detection of Mesospheric Change (NDMC), J. Atmos. Solar-Terrestrial Phys., 119, 71–

- 978 82, doi:10.1016/J.JASTP.2014.07.002, 2014.
- 979 Rezac, L., Jian, Y., Yue, J., Russell, J. M., Kutepov, A., Garcia, R., Walker, K. and
- 980 Bernath, P.: Validation of the global distribution of CO2 volume mixing ratio in the
- 981 mesosphere and lower thermosphere from SABER, J. Geophys. Res., 120(23), 12,067-
- 982 12,081, doi:10.1002/2015JD023955, 2015.
- 983 Roble, R. G.: On the feasibility of developing a global atmospheric model extending from
- 984 the ground to the exosphere, pp. 53–67., 2000.
- 985 Roble, R. G. and Dickinson, R. E.: How will changes in carbon dioxide and methane
- 986 modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett.,
- 987 16(12), 1441–1444, doi:10.1029/GL016i012p01441, 1989.
- von Savigny, C.: Variability of OH(3–1) emission altitude from 2003 to 2011: Long-term
- 989 stability and universality of the emission rate-altitude relationship, J. Atmos. Solar-
- 990 Terrestrial Phys., 127, 120–128, doi:10.1016/J.JASTP.2015.02.001, 2015.
- 991 von Savigny, C., McDade, I. C., Eichmann, K. U. and Burrows, J. P.: On the dependence
- 992 of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations
- and model simulations, Atmospheic Chem. Phys., 12, 8813–8828, doi:10.5194/acp-12-
- 994 8813-2012, 2012.
- 995 Scheer, J., Reisin, E. R. and Mandrini, C. H.: Solar activity signatures in mesopause
- 996 region temperatures and atomic oxygen related airglow brightness at El Leoncito,
- 997 Argentina, J. Atmos. Solar-Terrestrial Phys., 67(1–2), 145–154,
- 998 doi:10.1016/j.jastp.2004.07.023, 2005.
- 999 Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T.,
- 1000 Fomichev, V. I., Kinnison, D., Marsh, D. and Walters, S.: The HAMMONIA chemistry
- 1001 climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2
- 1002 doubling, J. Clim., 19(16), 3903–3931, doi:10.1175/JCLI3829.1, 2006.

- 1003 Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux,
- 1004 L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J.,
- 1005 Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger,
- 1006 K., Li, J.-L. F., Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W.
- 1007 V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters,
- 1008 J. W. and Wu, D. L.: Validation of the Aura Microwave Limb Sounder temperature and
- 1009 geopotential height measurements, J. Geophys. Res., 113(D15),
- 1010 doi:10.1029/2007jd008783, 2008.
- 1011 Sivakandan, M., Ramkumar, T. K., Taori, A., Rao, V. and Niranjan, K.: Long-term
- 1012 variation of OH peak emission altitude and volume emission rate over Indian low
- 1013 latitudes, J. Atmos. Solar-Terrestrial Phys., 138–139, 161–168,
- 1014 doi:10.1016/j.jastp.2016.01.012, 2016.
- 1015 Sivjee, G. G.: Airglow hydroxyl emissions, Planet. Space Sci., 40(2–3), 235–242,
- 1016 doi:10.1016/0032-0633(92)90061-R, 1992.
- 1017 Solomon, S. C., Liu, H., Marsh, D. R., McInerney, J. M., Qian, L. and Vitt, F. M.: Whole
- 1018 Atmosphere Simulation of Anthropogenic Climate Change, Geophys. Res. Lett., 45(3),
- 1019 1567–1576, doi:10.1002/2017GL076950, 2018.
- 1020 Sonnemann, G. R., Hartogh, P., Berger, U. and Grygalashvyly, M.: Hydroxyl layer: trend
- 1021 of number density and intra-annual variability, Ann. Geophys., 33(6), 749–767,
- 1022 doi:10.5194/angeo-33-749-2015, 2015.
- 1023 Tang, C., Liu, D., Wei, H., Wang, Y., Dai, C., Wu, P., Zhu, W. and Rao, R.: The
- 1024 response of the temperature of cold-point mesopause to solar activity based on SABER
- 1025 data set, J. Geophys. Res. Sp. Phys., 121(7), 7245–7255, doi:10.1002/2016JA022538,
- 1026 2016.
- 1027 Teiser, G. and von Savigny, C.: Variability of OH(3-1) and OH(6-2) emission altitude

- 1028 and volume emission rate from 2003 to 2011, J. Atmos. Solar-Terrestrial Phys., 161, 28-
- 1029 42, doi:10.1016/J.JASTP.2017.04.010, 2017.
- 1030 Thulasiraman, S. and Nee, J. B.: Further evidence of a two-level mesopause and its
- 1031 variations from UARS high-resolution Doppler imager temperature data, J. Geophys.
- 1032 Res., 107(D18), 4355, doi:10.1029/2000JD000118, 2002.
- 1033 Turnbull, D. N. and Lowe, R. P.: New hydroxyl transition probabilities and their
- 1034 importance in airglow studies, Planet. Space Sci., 37(6), 723–738, doi:10.1016/0032-
- 1035 0633(89)90042-1, 1989.
- 1036 Venturini, M. S., Bageston, J. V., Caetano, N. R., Peres, L. V., Bencherif, H. and Schuch,
- 1037 N. J.: Mesopause region temperature variability and its trend in southern Brazil, Ann.
- 1038 Geophys., 36(2), 301–310, doi:10.5194/angeo-36-301-2018, 2018.
- 1039 Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G. and Russell III, J. M.: Variability of
- 1040 the Brunt–Väisälä frequency at the OH* layer height, Atmos. Meas. Tech., 10(12), 4895–
- 1041 4903, doi:10.5194/amt-10-4895-2017, 2017.
- 1042 Xu, J., Liu, H.-L., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J., Russell, J. M.
- 1043 and Mlynczak, M. G.: Mesopause structure from Thermosphere, Ionosphere,
- 1044 Mesosphere, Energetics, and Dynamics (TIMED)/Sounding of the Atmosphere Using
- 1045 Broadband Emission Radiometry (SABER) observations, J. Geophys. Res., 112(D9),
- 1046 D09102, doi:10.1029/2006JD007711, 2007.
- 1047 Xu, J., Gao, H., Smith, A.K. and Zhu, Y. :Using TIMED/SABER nightglow observations
- 1048 to investigate hydroxyl emission mechanisms in the mesopause region, J. Geophys.Res.,
- 1049 117, D02301, doi:10.1029/2011JD016342, 2012.
- 1050 Yuan, T., Solomon, S. C., She, C. -Y., Krueger, D. A. and Liu, H. -L.: The long-term
- 1051 trends of nocturnal mesopause temperature and altitude revealed by Na lidar observations
- 1052 between 1990 and 2018 at mid-latitude, J. Geophys. Res. Atmos., 2018JD029828,

- 1053 doi:10.1029/2018JD029828, 2019.
- 1054 von Zahn, U., Höffner, J., Eska, V. and Alpers, M.: The mesopause altitude: Only two
- 1055 distinctive levels worldwide?, Geophys. Res. Lett., 23(22), 3231–3234,
- 1056 doi:10.1029/96GL03041, 1996.