
1 **NH₃-promoted hydrolysis of NO₂ induces explosive growth in HONO**

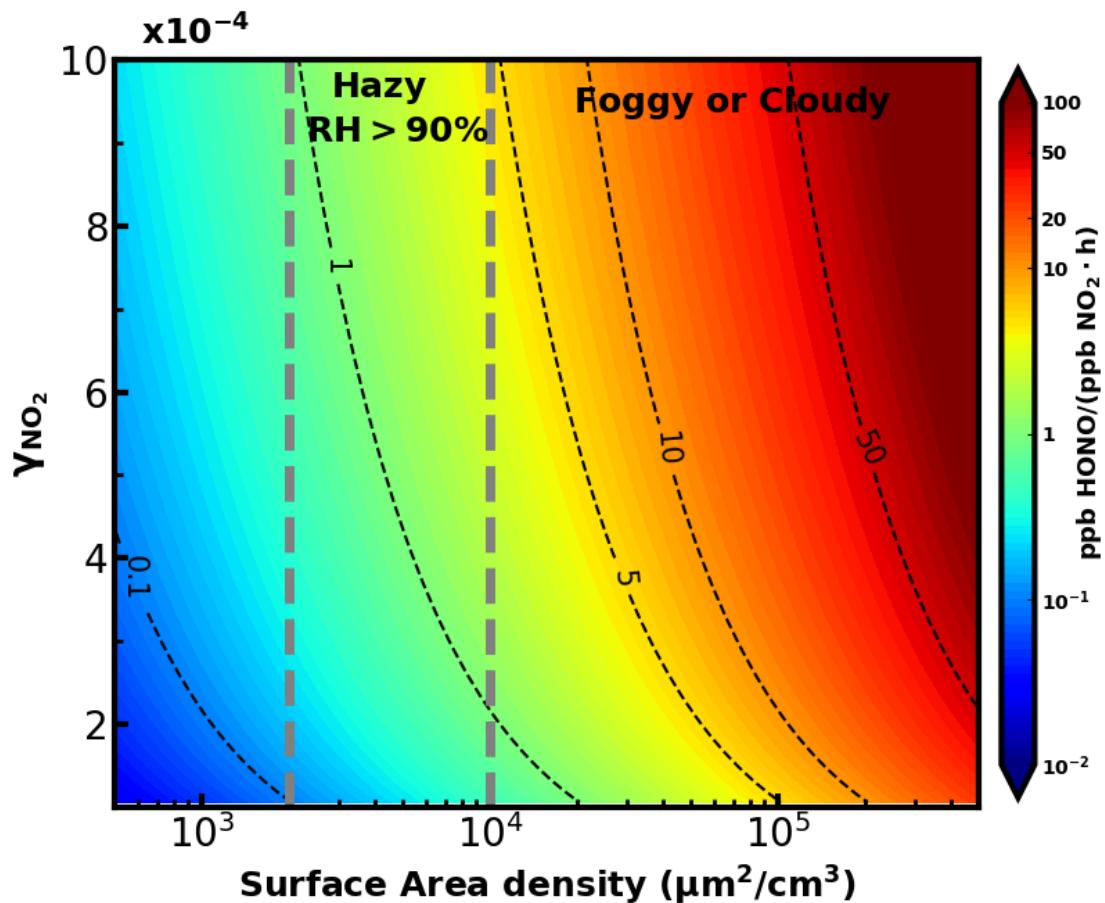
2 **W. Y. Xu¹, Y. Kuang^{2,*}, C. S. Zhao³, J. C. Tao², G. Zhao³, Y. X. Bian⁴, Y. L. Yu³,**
3 **C. Y. Shen³, L. L. Liang¹, G. Zhang¹**

4 ¹ State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric
5 Chemistry, Institute of Atmospheric Composition, Chinese Academy of
6 Meteorological Sciences, Beijing, 100081, China.

7 ² Institute for Environmental and Climate Research, Jinan University, Guangzhou,
8 China.

9 ³ Department of Atmospheric and Oceanic Sciences, School of Physics, Peking
10 University, Beijing, China

11 ⁴ State Key Laboratory of Severe Weather, Chinese Academy of Meteorological
12 Sciences, Beijing, 100081, China


13 Corresponding author: Ye Kuang (kuangye@jnu.edu.cn)

14

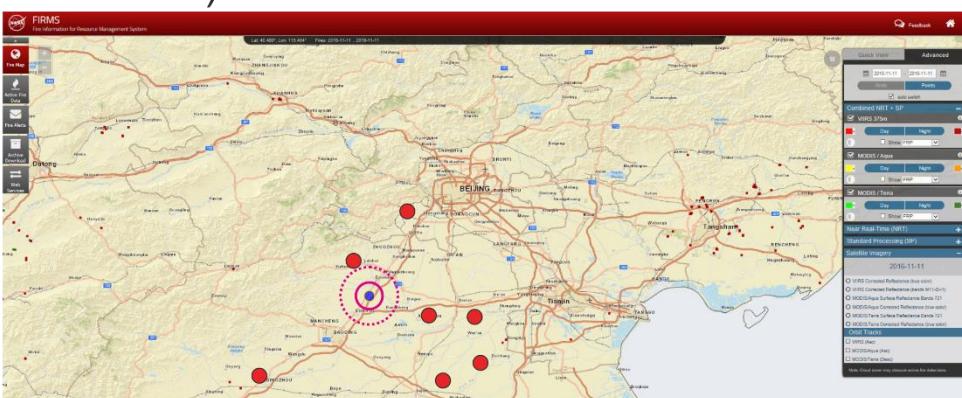
15

16

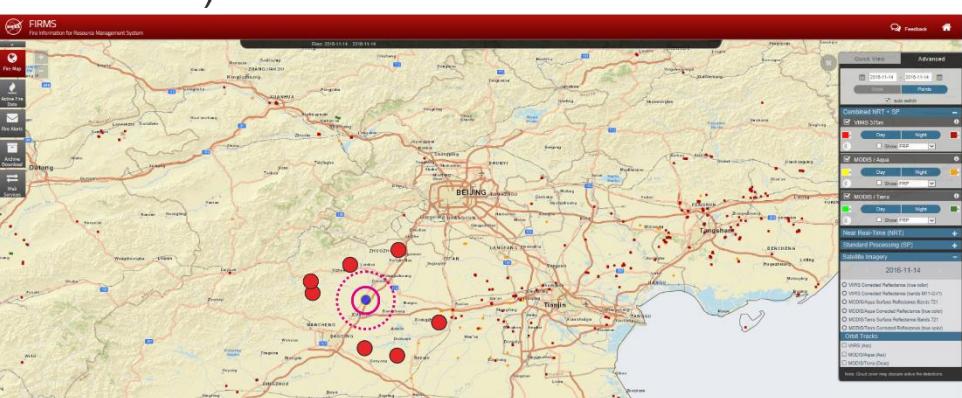
17

18

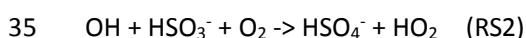
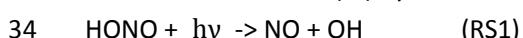
19 **Figure S1.** The production rate of HONO under different conditions and with different values of reactive
 20 NO_2 uptake coefficients (γ_{NO_2}), the γ_{NO_2} range is from Li et al. (2018). The surface area density range of
 21 fog is calculated based on the fog droplet size distribution measured on the North China Plain (Shen et
 22 al.).


23

24


a) 2016-11-04–2016-11-05

b) 2016-11-11



c) 2016-11-14

25

26 **Figure S2.** Fire spots maps (large red dots: fire spots closest to the station, bright and
27 red dots: VIIRS, yellow and orange dots: MODIS Aqua, bright and dark green dots:
28 MODIS Terra) produced by NASA's Web Fire Mapper (<https://firms.modaps.eosdis.nasa.gov/firemap/>), respectively for the 4th–5th, 11th and 14th Nov. 2016. The blue dot
30 shows the location of the Gucheng site, while the pink solid and dashed line circles
31 respectively cover areas within 10 and 20 km distance.
32

33 Indirect oxidation of S(IV) by HONO:

36 $\text{OH} + \text{RH} + \text{O}_2 \rightarrow \text{RO}_x + \text{HO}_2$ (RS3)
37 $\text{HO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{OH}$ (RS4)
38 $\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$ (RS5)
39 $\text{HSO}_3^- + \text{H}_2\text{O}_2 \rightarrow \text{HSO}_4^- + \text{H}_2\text{O}$ (RS6)

40

41 Li, L., Hoffmann, M. R., and Colussi, A. J.: Role of Nitrogen Dioxide in the
42 Production of Sulfate during Chinese Haze-Aerosol Episodes, Environmental science
43 & technology, 10.1021/acs.est.7b05222, 2018.

44 Shen, C., Zhao, C., Ma, N., Tao, J., Zhao, G., Yingli, Y., and Kuang, Y.: Method to
45 Estimate Water Vapor Supersaturation in the Ambient Activation Process using
46 Aerosol and Droplet Measurement Data, Journal of Geophysical Research:
47 Atmospheres, 0, doi:10.1029/2018JD028315.

48