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General Comments:  

The manuscript explores scaling relations for the mean turbulent kinetic energy dissipation rate in a 

stationary and planar homogeneous stably stratified atmospheric flow.   The motivation for the work is 

that uncertainty in the mean turbulent kinetic energy dissipation rate causes non-trivial uncertainties in 

closure modeling of stratified atmospheric flow properties, especially relaxation time scales needed in 

numerous closure schemes and numerical simulations.  The analysis is elegant and easy to follow, and 

the results are insightful.  The outcome of the scaling analysis is supported by both field measurements 

and direct numerical simulations (DNS) of a stratified Couette flow.   All in all, the work certainly 

warrants publication with minor revisions in Atmospheric Chemistry and Physics. 

 

Minor Comments: 

- p.1, Line 14:  “Over years the problem” should be “Over the years, the problem of …” 
- p.1, Line 15: “ the process of dissipation which takes place” should be “….that takes place” 
- p.2, line 1: drop ‘topical’ 
- p.2, line 11 g is the gravitational acceleration, reads better. 
- p.2, line 22 – there are font inconsistencies in the stability parameter usage.  For example L, the 
Obukhov length, is capital whereas  z/l is used throughout – it should be z/L.  Same issue on p.3, line 2. 
 
-The coefficient Cu in equation (8). 
According to the Kansas experiment, the stability correction function applied to the mean velocity 

gradient for unstable conditions is 𝜙𝑚 = (1 − 16
𝑧

𝐿
)

1/4
. 

If the stability correction function for stable conditions is expressed as equation 8, 𝜙𝑚 = 1 + 𝐶𝑢
𝑧

𝐿
, then 

continuity of 𝜙𝑚 is guaranteed as the flow transitions from unstable to stable and vis-a-versa around 
𝑧

𝐿
= 0.  However, the Kansas experiment did suggest that 𝜙𝑚  is not only continuous but also smooth 

around 
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On the stable side, 1 + 𝐶𝑢
𝑧

𝐿
 remains valid for small |

𝑧

𝐿
|.  Hence, the Kansas data as well as the continuity 

condition on 𝜙𝑚 leads to a 𝐶𝑢 = 4 not 2.  Please comment. 
 
-The value of 𝑅∞: It was shown elsewhere (e.g. Katul et al., 2014) that   

𝑅∞ =
1

1 +
1

𝐴𝜋

𝐶𝑇
𝐶𝑜

, 

where  𝐴𝜋 = 1 − 3/5 is a constant linked to the isotropization of the production term (fast part) 

correcting the original Rotta model (slow part) and is derived from Rapid Distortion Theory (RDT) in 

homogeneous turbulence, 𝐶𝑇 = 0.8 is the Kolmogorov-Obukhov-Corrsin constant associated with the 

temperature spectrum in the inertial subrange, and 𝐶𝑜 = 0.65 is the Kolmogorov constant associated 



with the vertical velocity energy spectrum within the inertial subrange.  Inserting those accepted 

constants yields 𝑅∞ = 0.25, slightly higher than 0.2 (but still within reasonable range).  So, the comment 

here is a suggestion: It is worth noting that 𝑅∞ can be derived from well-established phenomenological 

constants of turbulence in the inertial subrange.   

 

Page 4, lines 27-28: It is worth showing a 1:1 comparison of the mean turbulent kinetic energy 
dissipation rate estimates from the spectrum and from the residual of the TKE budget.  This additional 
figure is valuable because it allows an independent ‘diagnostic’ of how well the assumptions of 
stationary and planar homogeneous flow in the absence of subsidence and other flux transport terms 
manifest themselves as errors in the TKE budget assumptions used here. 
 

Page 6, Equation (20) is really the main result as it shows how the turbulent potential energy and the 
turbulent kinetic energy play a role in shaping the mean turbulent kinetic energy dissipation rate with 
stability.  May be worth expanding this connection in the conclusion. 
 
Figure 3 – worth adding the best-fit line from the Kansas data as well.  After all, the TKE budget used 
here leads to: 
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  where 𝐶𝑢 = 4. 


