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Abstract. Over the years, the problem of dissipation rate of turbulent kinetic energy (TKE) in stable stratification remained 

unclear because of the practical impossibility to directly measure the process of dissipation that takes place at the smallest 15 

scales of turbulent motions. Poor representation of dissipation causes intolerable uncertainties in turbulence-closure theory 

and, thus, in modelling stably stratified turbulent flows. We obtain theoretical solution to this problem for the whole range of 

stratifications from neutral to limiting stable; and validate it via (i) direct numerical simulation (DNS) immediately detecting 

the dissipation rate and (ii) indirect estimates of dissipation rate retrieved via the TKE-budget equation from atmospheric 

measurements of other components of the TKE-budget. The proposed formulation of dissipation rate will be of use in any 20 

turbulence-closure models employing the TKE budget equation and in problems requiring precise knowledge of the high-

frequency part of turbulence spectra in atmospheric chemistry, aerosol science and microphysics of clouds. 

1 Introduction 

Until present, dependence of dissipation rate, 𝜀𝐾 , of turbulent kinetic energy (TKE), 𝐸𝐾 , on static stability remained 

insufficiently understood that caused principal difficulties in turbulence-energetics/closure theory and intolerable 25 

uncertainties in comprehending and modelling stably-stratified turbulent flows. Traditionally, the dissipation rate is 

parameterised in terms of a turbulent length-scale, 𝑙𝑇 , as 𝜀𝐾~𝐸𝐾
3/2

/𝑙𝑇 . This solves the problem in neutrally stratified 

boundary-layer flow, when the only length-scale is distance over the surface, 𝑧, so that 𝑙𝑇~𝑧. However, in stratified flows, 

one more length-scale appears, namely the Obukhov length scale, 𝐿, so that the ratio 𝑙𝑇/𝑧 becomes an unknown function of 

𝑧/𝐿. To define this function we combine observational evidence with theoretical analyses. We employ the steady-state TKE 30 

budget equation to retrieve data on dissipation versus stability from uncountable data on wind profiles in moderately stable 
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stratified atmospheric surface layers; supplement this information with our own direct numerical simulation of turbulence in 

stably stratified Couette flow; and combine the collected empirical knowledge with asymptotic analysis of the TKE equation. 

The analyses reveals perfect equivalence of our asymptotic formulation of the velocity profile in extremely stable 

stratification and well-known log-linear velocity profile in moderately stable stratifications typical of the atmospheric 

surface layer – up to the coincidence of empirical dimensionless constants. This very lucky empirical finding yields universal 5 

formulation of dissipation rate versus static stability, valid over the whole range of stratifications from neutral to extremely 

stable. The formulation is applicable to any stationary and horizontally homogeneous stably stratified sheared flows and can 

be used within any turbulence-closure model equipped with TKE budget equation. 

For certainty, we consider the dissipation rate of TKE in terms of dry atmosphere, where the fluctuation of buoyancy, 

𝑏 = 𝛽𝜃, is proportional to fluctuation of potential temperature, 𝜃; 𝛽 = 𝑔/𝑇0 is the buoyancy parameter; 𝑔 is the gravitational 10 

acceleration; and 𝑇0  is reference value of absolute temperature. Since Kolmogorov (1942), 𝜀𝐾  is expressed through the 

dissipation length-scale 𝑙𝑇 or time-scale, 𝑡𝑇: 

𝜀𝐾 =
𝐸𝐾

𝑡𝑇
=

𝐸𝐾
3/2

𝑙𝑇
 .            (1) 

This formulation is not hypothetical but just defines the scales 𝑡𝑇 and 𝑙𝑇, so that Eq. (1) merely expresses one unknown, 𝜀𝐾, 

through another, 𝑡𝑇 or 𝑙𝑇. In neutrally stratified boundary-layer flows, the only principal length-scale is the height over the 15 

surface, 𝑧; so that 𝑙𝑇 is proportional to 𝑧, which yields 

𝑙𝑇 = 𝐶𝑙𝑧,  𝜀𝐾 =
𝐸𝐾

3/2

𝐶𝑙𝑧
 ,           (2) 

where 𝐶𝑙 is dimensionless constant to be determined empirically. 

Stratification involves the Obukhov length-scale: 

𝐿 =
𝜏3/2

−𝛽𝐹𝑧
 ,            (3) 20 

where 𝜏 is absolute value of vertical turbulent flux of momentum 𝛕 = (𝜏, 0), and 𝐹𝑧 is vertical turbulent flux of potential 

temperature (Obukhov, 1946). The restraining effect of stable stratification on turbulence is characterised by the 

dimensionless height, 𝑧/𝐿; gradient Richardson number: 

Ri =
𝛽𝜕Θ 𝜕𝑧⁄

(𝜕𝐔 𝜕𝑧⁄ )2 ;            (4) 

or flux Richardson number: 25 

Ri𝑓 =
𝛽𝐹𝑧

𝛕∙𝜕𝐔 𝜕𝑧⁄
 ,            (5) 
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where 𝜕𝐔 𝜕𝑧⁄  and 𝜕Θ 𝜕𝑧⁄  are vertical gradients of mean wind velocity, 𝐔 = (𝑈, 𝑉), and mean potential temperature, Θ. Then 

the dimensionless dissipation rate, 𝜀𝐾𝑧/𝐸𝐾
3/2

, is no longer a constant but depends on stratification (𝑧/𝐿, Ri or Ri𝑓). Until 

recently, practically nothing was known about this dependence beyond the interval of stratifications covered by observations 

in atmospheric surface layer: 0 < Ri < 0.2, which corresponds to 0 < 𝑧/𝐿 < 10. 

2 Dissipation rate in steady-state, stably stratified sheared flows 5 

We consider horizontally homogeneous stationary boundary-layer flow in semi-space 𝑧 > 0  as idealised model of 

atmospheric surface layer. Here, the familiar TKE budget equation expresses the dissipation rate, 𝜀𝐾 , through 𝜏, 𝐹𝑧  and 

𝜕𝑈 𝜕𝑧⁄ : 

𝜀𝐾 = 𝜏
𝜕𝑈

𝜕𝑧
+ 𝛽𝐹𝑧 = 𝜏

𝜕𝑈

𝜕𝑧
(1 − Ri𝑓) .          (6) 

With increasing static stability, Ri𝑓 obviously increases but (because 𝜀𝑇 > 0) remains limited, which is why it must tend to a 10 

finite limit: Ri𝑓 → 𝑅∞ < 1. Atmospheric data and results from direct numerical simulation (DNS) demonstrated below in 

Figures 2 and 3 confirm such behaviour and yield quite certain estimate of 𝑅∞ = 0.2. 

Then, substituting 𝑅∞  for Ri𝑓  in Eq. (5) yields asymptotic expression of the velocity gradient in extremely stable 

stratification: 

𝜕𝑈

𝜕𝑧
→

1

𝑅∞

𝜏1/2

𝐿
≡

𝜏1/2

𝐿
(

𝑘

𝑅∞

𝑧

𝐿
)  at  

𝑧

𝐿
→ ∞ .         (7) 15 

Here, von Karman constant, 𝑘, is inserted in numerator and denominator just to highlight consistency of Eq. (7) with well-

known Monin-Obukhov Similarity Theory (MOST) by Monin and Obukhov (1954) formulation of the velocity-gradient at 

weakly and moderately stable stratifications typical of atmospheric surface layers: 

𝜕𝑈

𝜕𝑧
=

𝜏1/2

𝑘𝑧
(1 + 𝐶𝑢

𝑧

𝐿
) ,           (8) 

where 𝐶𝑢 = 2 is well-established dimensionless empirical constant (e.g., Monin and Yaglom, 1971, Garratt, 1992, Stull, 20 

1997). Originally, Eq. (8) was derived as the first term in the Taylor expansion of dimensionless velocity gradient, Φ𝑀 =

(𝑘𝑧/𝜏1/2) 𝜕𝑈 𝜕𝑧⁄ , considered in MOST as universal function of 𝑧/𝐿. Subsequently, it was revealed that Eq. (8) with 𝐶𝑢 = 2 

is valid over the whole range of 𝑧/𝐿 observed in atmospheric surface layers, 0 < 𝑧/𝐿 < 10, which corresponds to quite 

small gradient Richardson numbers: 0 < Ri < 0.2 (Monin and Yaglom, 1971). By this means, Eq. (8) with 𝐶𝑢 = 2 based on 

massive atmospheric data for moderately stable stratifications yields at 𝑧/𝐿 → ∞ precisely the same limit as Eq. (7) with 25 

𝑘/𝑅∞ = 2 obtained from conventional value of 𝑘 = 0.4 and new estimate of critical flux Richardson number 𝑅∞ = 0.2 

obtained from topical DNS and selected atmospheric data for unusually stable stratifications (Figure 2). This lucky 

coincidence just means that Eq. (8) with 𝐶𝑢 = 𝑘/𝑅∞ hold true in any stable stratification: 
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𝜕𝑈

𝜕𝑧
=

𝜏1/2

𝑘𝑧
(1 +

𝑘

𝑅∞

𝑧

𝐿
)  at  0 < 𝑧/𝐿 < ∞ .         (9) 

Then, substituting Eq. (9) for 𝜕𝑈 𝜕𝑧⁄  into Eqs. (5) and (6), yields simple relations linking Ri𝑓 with 𝑧/𝐿: 

Ri𝑓 =
𝑘𝑧/𝐿

1+𝑘𝑅∞
−1𝑧/𝐿

 ,  
𝑧

𝐿
=

𝑅∞

𝑘

Ri𝑓

𝑅∞−Ri𝑓
 ,          (10) 

and exact formulation of the TKE dissipation rate as dependent on static stability: 

𝜀𝐾 =
𝜏3/2

𝑘𝑧
[1 + 𝑘(𝑅∞

−1 − 1)
𝑧

𝐿
] =

𝜏3/2

𝑘𝑧

1−Ri𝑓

1−Ri𝑓/𝑅∞
 .        (11) 5 

It is worth noting that 𝑅∞ can be derived from well-established phenomenological constants of turbulence in the inertial 

subrange (Katul et al., 2014). The actual value in this case is slightly higher (𝑅∞ = 0.25) but still within reasonable range. 

To comprehensively validate the above analyses, we performed direct numerical simulation (DNS) of stably stratified 

Couette flow, namely, the plain-parallel flow between two horizontal plates separated in the vertical by distance 𝑑, and 

moving with constant velocity in opposite directions. To assure accuracy of numerical simulations, we employed two DNS 10 

codes: INM-RAS, and IAP-RAS. Despite being two different codes developed separately having different spatial and 

temporal schemes, resolutions and statistical averaging our DNS have shown quite consistent results which can be 

considered as a cross-validation. For the detailed description of the numerical models used see Mortikov (2016), Mortikov et 

al. (in press) and Druzhinin et al. (2016). 

In our DNS total (turbulent + molecular) fluxes of momentum, 𝜏, and potential temperature, 𝐹𝑧, are practically equal to the 15 

turbulent fluxes elsewhere beyond narrow near-wall sublayers where molecular transports dominate. In Couette flow these 

fluxes are constant with height, as in surface-layer flows. Similarly, flux-profile relations linking 𝜏 and 𝐹𝑧  with vertical 

gradients of mean velocity, 𝜕𝑈 𝜕𝑧⁄ , and potential temperature, 𝜕Θ 𝜕𝑧⁄ , as well as the budget equations for turbulent energies, 

in particular Eq. (6), are the same as in surface layer flows. The only difference is in geometry of domains illustrated in 

Figure 1. 20 

Following Obukhov (1942), we distinguish between “absolute geometry” characterised by usual height over the surface, 𝑧, 

and “internal geometry” characterised in Couette flow by specific vertical coordinate, 𝑧̃, dictated by conformal mapping of 

the Couette-flow domain (0 < 𝑧 < 𝑑) into semi-space: 

𝑧̃ =
𝑑

𝜋
sin

𝜋𝑧

𝑑
  in Couette flow (0 < 𝑧 < 𝑑) .         (12) 

This coordinate reflects equal influences of lower and upper walls on a fluid flow. 25 

In semi-space, the “internal geometry” coincides with “absolute geometry”: 𝑧̃ = 𝑧. Thus, vertical structure of Couette flow in 

terms of 𝑧̃ coincides with vertical structure of the surface-layer flow in terms of 𝑧, which allows showing in the same 

framework the genuine dissipation rate: 𝜀𝐾 = 𝜈〈(𝜕𝑢𝑖 𝜕𝑥𝑘⁄ )(𝜕𝑢𝑖 𝜕𝑥𝑘⁄ )〉, where 𝜈  is kinematic viscosity, calculated from 

DNS together with 𝜀𝐾 = 𝜏 𝜕𝑈 𝜕𝑧⁄ + 𝛽𝐹𝑧 retrieved from atmospheric observations assuming the steady-state TKE budget. 



5 

 

In Figures 2-4 we show our DNS data together with data from observations in atmospheric surface layer provided the 

estimates of dissipation rate (Figure 3): 

• via the Kolmogorov –5/3 power law from measured spectra of TKE in the inertial subrange (Pearson et al., 2002), and  

• via the steady-state TKE budget Eq. (6) from measured turbulent fluxes of momentum, 𝜏, and potential temperature, 𝐹𝑧, 

together with vertical gradient of wind velocity, 𝜕𝑈 𝜕𝑧⁄ . 5 

In these figures DNS data are shown by heavy coloured dots; and atmospheric data, by light grey symbols. 

Figure 2 shows flux Richardson number, Ri𝑓 = 𝛽𝐹𝑧(𝛕 ∙ 𝜕𝐔 𝜕𝑧⁄ )−1, versus dimensionless height, 𝑧̃/𝐿 in Couette flow or 𝑧/𝐿 

in atmospheric surface layer. Black curve is plotted after Eq. (10) taking conventional value of von Karman constant: 

𝑘 = 0.4 and our estimate of the maximal flux Richardson number: 𝑅∞ = 0.2 resulted from best fit of Eq. (10) to DNS data. 

Notably, total (turbulent + molecular) fluxes of momentum, 𝜏, and potential temperature, 𝐹𝑧, in Couette flow are constant 10 

across the flow which assures very certain specification of Ri𝑓 and 𝐿, and makes our DNS most suitable for calibrating the 

theory. We recall that Eqs. (10) and (11) are relevant to the well-developed turbulence regime where molecular transports are 

negligible, so that turbulent fluxes practically coincide with total fluxes. In our DNS, it is so except for narrow transition 

layers dominated by molecular transport near the lower and upper walls: 0 < 𝑧̃ < 50𝜈/𝜏1/2. Data from these layers are 

indicated by dark grey points. Light grey symbols show atmospheric data from the following sources: research observatory 15 

Tiksi in East Siberia (Grachev et al., 2018) near the Arctic Ocean coast; offshore oceanographic platform in the Black Sea 

(Repina et al., 2009); and acoustic soundings over arid-steppe in Republic of Kalmykia in Southern Russia (Vazaeva et al., 

2017). In spite of inevitable heterogeneity, non-stationarity and other side effects, atmospheric data correlate quite well with 

DNS data. 

Figure 3 shows dimensionless dissipation rate, 𝜀𝐾𝑧/𝜏3/2 , versus 𝑧/𝐿  after Eq. (11) and atmospheric data, and 𝜀𝐾𝑧̃/𝜏3/2 20 

versus 𝑧̃/𝐿 after DNS in Couette flow. All notations are the same as in Figure 2. The theoretical curve plotted after Eq. (11) 

with 𝑘 = 0.4 and 𝑅∞ = 0.2 is fully consistent with experimental data except for narrow transition layer 0 < 𝑧̃ < 50𝜈/𝜏1/2, 

where Eq. (11) is irrelevant. Hence, Figure 3 justifies the stability dependence of dissipation rate, Eq. (11), and provides 

additional confirmation to empirical estimate of 𝑅∞ = 0.2.  

In Figure 2 we use as argument Ri𝑓 =
𝛽𝐹𝑧

𝛕∙𝜕𝐔 𝜕𝑧⁄
, where turbulent fluxes (disregarding molecular contributions in the transition 25 

layer) appear in both numerator and denominator. Hence uncertainties in both fluxes are somehow compensated. This is not 

the case in Figure 3 (𝜀𝐾𝑧/𝜏3/2 vs. 𝑧/𝐿): the dissipation rate in the numerator is just total dissipation, whereas the momentum 

flux in denominator disregards the molecular contribution. This just causes ugly looking (but only natural) dark gray points 

on the left side of Figure 3. 
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3 Turbulent length-scales and general criterion of stratification 

The concept of TKE dissipation rate is directly related to definition of turbulent time-scale, 𝑡𝑇 ≡ 𝐸𝑘/𝜀𝐾, and length-scale, 

𝑙𝑇 ≡ 𝐸𝐾
1/2

𝑡𝑇 = 𝐸𝐾
3/2

/𝜀𝐾. Then Eq. (11) defines 𝑙𝑇 as function of 𝑧/𝐿: 

𝑙𝑇 ≡ 𝐸𝐾
1/2

𝑡𝑇 =
𝐸𝐾

3/2

𝜀𝐾
= 𝑘𝑧 (

𝐸𝐾

𝜏
)

3/2

[1 + 𝑘(𝑅∞
−1 − 1)

𝑧

𝐿
]

−1

 .       (13) 

It has asymptotic limits: 5 

𝑙𝑇 → 𝑘(𝐸𝐾/𝜏)0
3/2

𝑧~𝑧  at  𝑧/𝐿 → 0  and  𝑙𝑇 →
𝑅∞

1−𝑅∞
(

𝐸𝐾

𝜏
)

∞

3/2

𝐿~𝐿  at  𝑧/𝐿 → ∞ ,     (14) 

where the limits of 𝐸𝐾/𝜏 in neutral stratification and extremely stable stratification are dimensionless constants [current 

estimates based on our DNS: (𝐸𝐾/𝜏)0 ≈ 4 and (𝐸𝐾/𝜏)∞ ≈ 11]. The length-scale similar to Eq. (13) was already revealed as 

inherent to spectra of turbulence in unstably stratified boundary-layer flows (Glazunov, 2014). 

We emphasise that 𝑙𝑇  is the scalar characterising turbulence as a whole. Contrastingly, turbulent mixing in different 10 

directions is characterised by the mixing-lengths vector 𝑙𝑇𝑖 ≡ 𝐸𝐾𝑖
1/2

𝑡𝑇  (𝑖 = 1, 2, 3)  with generally different stream-wise 

(𝑖 = 1), transverse (𝑖 = 2) and vertical (𝑖 = 3) components. We emphasise principal difference between scalar length-scale 

and vector mixing-length. In literature, the words “turbulent length-scale” and “turbulent mixing-length” are often used as 

interchangeable. This cause intolerable confusion as different components of the mixing length differently depend on static 

stability (Zilitinkevich et al., 2013). 15 

The above analyses are done for the simplest surface-layer (or Couette) flow, where dimensionless height 𝑧/𝐿 (or 𝑧̃/𝐿) plays 

the role of criterion quantifying the effect of stratification on turbulence. Luckily, our major result [Eqs. (11) and (13)] is 

extended to a wide range of stratified turbulent flows. We recall that stratified turbulence is characterised, besides 𝐸𝐾 , by 

turbulent potential energy (TPE), 𝐸𝑃 =
1

2
𝛽〈𝜃2〉 𝜕Θ 𝜕𝑧⁄⁄ ; and quantify the effect of stratification on turbulence by the “energy 

Richardson number” defined as 20 

Ri𝐸 =
𝐸𝑝

𝐸𝐾
 .            (15) 

In contrast to traditional criteria, such as Ri (Eq. 4), Ri𝑓 (Eq. 5), or 𝑧/𝐿, the energy Richardson number criterion is valid in 

heterogeneous and non-stationary flows, for any mechanisms of generation of turbulence (including breaking waves, 

oscillating grid, etc.) and in flows with complex geometry. 

Expressing the dissipation rates of TKE and TPE in the steady state through the dissipation time scale, 𝑙𝑇 ≡ 𝐸𝐾
3/2

/𝜀𝐾, the 25 

budget equations for TKE and TPE become 

𝐸𝐾 = 𝑡𝑇(−𝛕 ∙ 𝜕𝐔 𝜕𝑧⁄ + 𝛽𝐹𝑧) ,          (16) 
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𝐸𝑃 =
1

2

𝛽〈𝜃2〉

𝜕Θ 𝜕𝑧⁄
= −𝐶𝑃𝑡𝑇𝛽𝐹𝑧 ,          (17) 

where 𝐶𝑃  is dimensionless universal constant quantifying the difference between dissipation rates of TKE and TPE 

(Zilitinkevich et al., 2013). Equations (16) and (17) in combination with Eq. (10) yield the following relations linking Ri𝐸 

with Ri𝑓 or 𝑧/𝐿: 

Ri𝐸 =
𝐶𝑝

Ri𝑓
−1−1

=
𝐶𝑃𝑘𝑧/𝐿

1+(𝑅∞
−1−1)𝑘𝑧/𝐿

 .          (18) 5 

Figure 4 shows Ri𝐸 versus 𝑧/𝐿 or 𝑧̃/𝐿 (like in previous figures) after our DNS and atmospheric observations. Theoretical 

curve is plotted after Eq. (18) taking 𝑘 = 0.4, 𝑅∞ = 0.2 and empirical estimate of dimensionless constant 𝐶𝑃 = 0.62 just 

obtained from the best fit of Eq. (18) to DNS data. Experimental data clearly demonstrate asymptotic limit: 

Ri𝐸 → 𝑅𝐸∞ =
𝐶𝑝

𝑅∞
−1−1

= 0.155  at  𝑧/𝐿 → ∞ ,         (19) 

Then, using Eq. (18) to express 𝑧/𝐿 through Ri𝐸, Eq. (11) in terms of Ri𝐸 becomes: 10 

𝜀𝐾 = 𝜀𝐾(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) (1 −
Ri𝐸

𝑅𝐸∞
)

−1

 ,          (20) 

where 𝜀𝐾(𝑛𝑒𝑢𝑡𝑟𝑎𝑙)  is dissipation rate in neutral stratification. In the surface layer 𝜀𝐾(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) = 𝜏3/2/𝑘𝑧 ; but generally 

𝜀𝐾(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) depends on concrete energy-generation mechanisms and geometry of flow. 

There is essential advantage of Ri𝐸  as criterion of stratification in numerical modelling. Turbulent fluxes are usually 

calculated through the diagnostic down-gradient formulations: 𝛕 = −𝐾𝑀 𝜕𝐔 𝜕𝑧⁄  and 𝐹𝑧 = −𝐾𝐻 𝜕Θ 𝜕𝑧⁄ , where 𝐾𝑀  is eddy 15 

viscosity and 𝐾𝐻 is eddy conductivity. Then, finite-difference approximation of the gradients causes uncertainties in 𝛕, 𝐹𝑧 

and, hence, the Obukhov length, 𝐿 [Eq. (3)], flux Richardson number, Ri𝑓 [Eq. (5)], and gradient Richardson number, Ri [Eq. 

(4)]. Contrastingly, TKE and TPE are defined from the prognostic budget equations accounting for turbulent diffusion that 

smooths the energies and assures quite certain calculation of Ri𝐸. 

4 Concluding remarks 20 

The dissipation rate of TKE, 𝜀𝐾, as dependent on static stability over years remained uncertain because of impossibility of 

direct measurement of 𝜀𝐾. Admittedly, 𝜀𝐾 can be retrieved via the TKE budget equation from the measured turbulent fluxes, 

𝜏 and 𝐹𝑧, and mean-velocity gradient, 𝜕𝑈 𝜕𝑧⁄ , and also via the Kolmogorov –5/3 power law from the measured spectra of 

TKE in the inertial subrange. However, these methods are justified only in stationary and horizontally homogeneous flows 

and require fully controlled conditions. These necessities, practically unachievable in atmospheric experiments, make 25 

estimates of 𝜀𝐾  from atmospheric observations rather uncertain. Wide spread of atmospheric data is clearly seen in our 

figures. Moreover, available atmospheric data cover only weakly to moderately stable stratifications typical of the surface 
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layer. To avoid these difficulties, we performed topical DNS of the steady-state, stably stratified turbulent Couette flows up 

to the strongest attainable stratifications; combined direct data from DNS with data retrieved from atmospheric observations; 

and employed theoretical analysis to reveal asymptotic behaviour of the mean velocity gradient and dissipation rate in 

extremely stable stratification: at 𝑧/𝐿 → ∞, where 𝐿 is the Obukhov length-scale. 

By providential coincidence, the formulations happen to be precisely the same in asymptotic limit 𝑧/𝐿 → ∞ and in weakly 5 

stable stratifications 0 < 𝑧/𝐿 < 10  typical of atmospheric surface layer. This yields simple analytical formulations of 

dimensionless velocity gradient, (𝑘𝑧/𝜏1/2) 𝜕𝑈 𝜕𝑧⁄  , and dissipation rate, (𝑘𝑧/𝜏3/2)𝜀𝐾, as universal functions of 𝑧/𝐿 [Eq. (9) 

and Eq. (11)] across the whole range of stratifications from neutral to extremely stable. 

Universal analytical formulation of (𝑘𝑧/𝜏1/2) 𝜕𝑈 𝜕𝑧⁄  versus 𝑧/𝐿 yields the single-valued relations linking 𝑧/𝐿 as criterion 

of stratification in the surface-layer flow or 𝑧̃/𝐿  as the same criterion in Couette flow with alternative criterions: flux 10 

Richardson number, Ri𝑓 [Eq. (5)], and the newly introduced “energy Richardson number”, Ri𝐸 [Eq. (13)], applicable to any 

turbulent regimes. This opens prospects for extending the obtained dependence of dissipation rate on static stability to any 

stably stratified turbulent flows. 
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Figure 1: Usual height, 𝒛, and vertical coordinate, 𝒛̃, defined by Eq. (12) characterising “absolute” and “internal” geometry of the 

domain, respectively. Left panel shows semi-space, 𝒛 > 𝟎, where 𝒛̃ =  𝒛. Right panel shows the layer between two horizontal walls, 

𝟎 < 𝒛 < 𝒅, where 𝒛̃ coincides with the distance from nearest surface in its close vicinity, but essentially depends on the distances 

from both surfaces in central part of the domain. 5 
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Figure 2: Flux Richardson number, 𝐑𝐢𝒇, in stable stratification versus 𝒛̃/𝑳 in Couette flow or versus 𝒛/𝑳 in atmospheric surface 

layer. Empirical data used for the calibration are obtained in two series of DNS runs employing INM-RAS code (red dots) and 

IAP-RAS code (blue dots). Atmospheric data are taken from Arctic coastal observatory Tiski (light grey diamonds), Black sea 

offshore platform (light grey squares) acoustic soundings in Kalmykia steppe (light grey stars). Dark grey dots belong to very 5 
narrow near-surface layer: 𝟎 < 𝒛̃ < 𝟓𝟎𝝂/𝝉𝟏/𝟐. Black solid line shows Eq. (11) with conventional value of von-Karman constant, 

𝒌 = 𝟎. 𝟒, and new empirical vale of 𝑹∞ = 𝟎. 𝟐 just obtained from the best fit of Eq. (10) to DNS data from elsewhere beyond the 

layer 𝟎 < 𝒛̃ < 𝟓𝟎𝝂/𝝉𝟏/𝟐, where molecular transports are significant and Eq. (10) is not necessarily relevant. 
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Figure 3: Dimensionless dissipation rate in stable stratification 𝜺𝑲𝒛̃/𝝉𝟑/𝟐  versus 𝒛̃/𝑳 in Couette flow or 𝜺𝑲𝒛/𝝉𝟑/𝟐  versus 𝒛/𝑳 in 

atmospheric surface layer. Empirical data are from the same sources as in Figure 2. Black solid line shows Eq. (11) with 𝒌 = 𝟎. 𝟒 

and 𝑹∞ = 𝟎. 𝟐. Dark grey dots belong to very narrow near-surface layer: 𝟎 < 𝒛̃ < 𝟓𝟎𝝂/𝝉𝟏/𝟐 , where molecular transports are 

significant and Eq. (11) is not relevant. 5 
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Figure 4: Energy Richardson number, 𝐑𝐢𝑬 = 𝑬𝒑/𝑬𝑲 , versus 𝒛̃/𝑳 in Couette flow or versus 𝒛/𝑳 in atmospheric surface layer. 

Empirical data are from the same sources as in Figures 2 and 3. Black solid line shows Eq. (16) with 𝒌 = 𝟎. 𝟒, 𝑹∞ = 𝟎. 𝟐, and 

𝑪𝑷 = 𝟎. 𝟔𝟐. 


