
 

Reply to Reviewer 1 

This study evaluates the uncertainties associated with geophysical approaches to derive 
surface PM2.5, based on satellite AOD and modeled PM2.5/AOD. The authors go through a 
very detailed evaluation of all the potential factors, using ground-based observations of 
PM2.5, AOD, aircraft observations of aerosol extinctions/composition, and atmospheric 
soundings of RH over the Northeast United States. The analysis is very comprehensive, the 
paper is well written and I commend the authors for presenting the results in a succinct 
way on the figures.  
 
Reply: We would like to thank the reviewers for their time and effort to review our manuscript. 
We have revised the manuscript following the reviewers’ suggestions. 
 
One suggestion that I have for the authors is to present a figure with time series of the daily 
variations in PM2.5, AOD, and PM2.5/AOD. The manuscript only contains barplots of the 
biases and Pearson correlation coefficients, and there would be value for the reader to see 
the actual timeseries. I found Figure 1 very interesting in terms of displaying the 
contributions of different factors to spatial variability in satellite-derived PM2.5. Something 
similar to illustrate the controlling factors for the daily variability would be valuable.  
 
Reply:  
That is a great point. We added a figure showing the temporal variability of regional average 
AODMAIAC, PM2.5_CMAQ/AODCMAQ, and PM2.5_MAIAC (Figure 2). Similar to Figure 1, we show 
that the temporal variability of PM2.5_MAIAC is mainly driven by the variability in 
PM2.5_CMAQ/AODCMAQ.  
 
We have added the following discussions in the revised manuscript: 
 
The temporal variability in PM2.5_MAIAC is also mainly driven by variability in 
PM2.5_CMAQ/AODCMAQ (R = 0.61), with little temporal correlation between regional average 
AODMAIAC and PM2.5_MAIAC (R = 0.05, Fig. 2). At short time scales, the daily variability in 
regional average PM2.5_MAIAC shows stronger correlation with PM2.5_CMAQ/AODCMAQ in all 
seasons except for JJA, when PM2.5_MAIAC are driven by variability in both AODMAIAC (R = 0.5) 
and PM2.5_CMAQ/AODCMAQ (R = 0.4, Fig. 2). Summertime AODMAIAC is higher than wintertime 
AOD by 50%, while summertime PM2.5_MAIAC is lower than in winter by 46%. Previous studies 
also found inconsistent seasonal cycles in AOD and PM2.5 (Ford et al., 2013; Kim et al., 2015). 
We attribute the opposite seasonal cycle in PM2.5_MAIAC and AODMAIAC to three factors: 1) weak 
boundary layer ventilation in winter that leads to sharp vertical gradients of aerosol distribution 
(Kim et al., 2015); 2) higher RH in summer that leads to larger hygroscopic growth; 3) model 



overestimates of PM2.5 (especially OC) in wintertime and underestimates of PM2.5 in 
summertime, leading to an overestimate of the winter-to-summer decrease in 
PM2.5_CMAQ/AODCMAQ (see section 3.3).  
 

 
Figure 2 Regional 10-day running average of (a) MAIAC AOD (AODMAIAC, blue); (b) CMAQ 
modeled PM2.5/AOD relationship (PM2.5_CMAQ/AODCMAQ, red); and (c) satellite derived PM2.5 
(PM2.5_MAIAC, green). The numbers on the upper left corner show the Pearson correlation 
coefficients (R) of PM2.5_MAIAC with PM2.5_CMAQ/AODCMAQ (red) and AODMAIAC (blue). 
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Reply to Reviewer 2 

This is a very well written paper that explores sources of random and systematic bias on 
estimates of ground-level PM2.5 derived from satellite based AOD measurements and the 
ratio of AOD and PM2.5 from a regional air quality model.  

The paper provides a review of the literature in this area, and then uses MODIS MAIAC 
data and the CMAQ model to make PM2.5 estimates. Comparisons are made to Aeronet 
ground based measurements, and field measurements from the DISCOVER- AQ campaign. 
They carefully evaluate errors that originate from satellite AOD errors and from the 
modeled PM2.5/AOD relationship.  

The methodology, analysis, and data sources are all clearly described. The figures are well 
formulated and clear. I found the conclusions to be very clearly written and supported by 
the details in the manuscript.  

Reply: We would like to thank the reviewers for their time and effort to review our manuscript. 
We have revised the manuscript following the reviewers’ suggestions. 

There is one area where the authors should consider revisions. I think the hygroscopicity is 
an important element, and perhaps does not come across that way given that the details of 
the models for RH dependent particle growth are in supplementary material, and the 
statistics for RH are calculated like all the others. I would argue that factors like MEE and 
mass can be shown in box and whisker plots, but not the RH. The change of mass and 
extinction is very non-linear in RH. If the model says the RH is 90% and the field 
measurements say it is 60%, the situation is very different then if the model says RH is 60% 
and the observations say it is 30%. Can the analysis focus on the error due to RH errors that 
lead to substantial errors in the estimated aerosol growth - separate out high RH cases? This 
error source will be very seasonal and regional. Figure 8 hints at this, but the discussion still 
treats RH as if it is a factor that can be aggregated and treated like other linear factors, and 
I disagree.  

Reply: That’s a good point. We agree that RH errors should lead to larger uncertainties to satellite 
derived PM2.5 at high RH. To address the reviewer’s concern, we have added a figure showing the 
impacts of model bias of RH on the derived PM2.5_MAIAC (∆PM2.5_RH) as a function of observed 
near-surface RH (Figure 9d). However, we’d like to argue that it is not possible to entirely separate 
out high RH cases because RH varies vertically, and the impacts of model biases of RH on the 
PM2.5_MAIAC reflect the biases of RH integrated across all vertical layers. In Figure 9d, we use near 
surface radiosonde observations of RH (averaged over the first vertical layer in the model) to 
categorize the environment as humid or dry, with the limitation that it may not represent the 
conditions at higher altitudes. 
 
We’ve added the following discussion in the revised manuscript: 
 



The hygroscopic growth factor is nonlinearly correlated with RH, which increases more rapidly at 
high RH (> 80%) than at low to median RH (<80%, Fig. S2). Compared with median RH 
conditions, model RH errors lead to more than double ∆PM2.5_RH (-6.4 µg/m3 versus 3 µg/m3) 
when observed near-surface RH > 80% (Fig. 9d).  At RH > 95%, we find that the ∆PM2.5_RH can 
be as large as -20 µg/m3 (Fig. 9d).  

 

 
Figure 9 (a) DJF and (b) JJA average vertical profiles of the CMAQ modeled vs. observed RH at 
6 atmospheric soundings over the Northeast USA, and the modeled extinction vs. that calculated 
by replacing modeled RH with observed values. The gray area shows the difference in extinction 
two profiles, with the total area being the difference in AOD. (c) Box plots showing the impacts 
of model bias of RH on the derived PM2.5_MAIAC (∆PM2.5_RH) in four seasons of 2011, which are 
calculated by comparing the PM2.5_MAIAC minus the one calculated using observed RH. (d) Box 
plots show the influence of model RH biases on the derived PM2.5_MAIAC (∆PM2.5_RH) as a function 
of observed near-surface RH.   
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Abstract 

Health impact analyses are increasingly tapping the broad spatial coverage of satellite aerosol 

optical depth (AOD) products to estimate human exposure to fine particulate matter (PM2.5). We 

use a forward geophysical approach to derive ground-level PM2.5 distributions from satellite AOD 

at 1 km2 resolution for 2011 over the Northeast USA by applying relationships between surface 5 

PM2.5 and column AOD (calculated offline from speciated mass distributions) from a regional air 

quality model (CMAQ; 12 × 12 km2 horizontal resolution). Seasonal average satellite-derived 

PM2.5 reveals more spatial detail and best captures observed surface PM2.5 levels during summer. 

At the daily scale, however, satellite-derived PM2.5 is not only subject to measurement 

uncertainties from satellite instruments, but more importantly, to uncertainties in the relationship 10 

between surface PM2.5 and column AOD. Using 11 ground-based AOD measurements within 10 

km of surface PM2.5 monitors, we show that uncertainties in modeled PM2.5/AOD can explain more 

than 70% of the spatial and temporal variance in the total uncertainty in daily satellite-derived 

PM2.5 evaluated at PM2.5 monitors. This finding implies that a successful geophysical approach to 

deriving daily PM2.5 from satellite AOD requires model skill at capturing day-to-day variations in 15 

PM2.5/AOD relationships. Overall, we estimate that uncertainties in the modeled PM2.5/AOD lead 

to an error of 11 µg/m3 in daily satellite-derived PM2.5, and uncertainties in satellite AOD lead to 

an error of 8 µg/m3. Using multi-platform ground, airborne and radiosonde measurements, we 

show that uncertainties of modeled PM2.5/AOD are mainly driven by model uncertainties in aerosol 

column mass and speciation, while model representation of relative humidity and aerosol vertical 20 

profile shape contribute some systematic biases. The parameterization of aerosol optical properties, 

which determines the mass-extinction efficiency, also contributes to random uncertainty, with the 

size distribution the largest source of uncertainty, and hygroscopicity of inorganic salt the second. 
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Future efforts to reduce uncertainty in geophysical approaches to derive surface PM2.5 from 

satellite AOD would thus benefit from improving model representation of aerosol vertical 

distribution and aerosol optical properties, to narrow uncertainty in satellite-derived PM2.5. 

Keywords:  PM2.5, aerosol optical depth, CMAQ, DISCOVER-AQ, aerosol size distribution, 

aerosol hygroscopic growth.  5 
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1 Introduction 

Exposure to ambient fine particulate matter (PM2.5) is estimated to cause more than 8 

million attributable deaths worldwide in 2015 (Burnett et al., 2018), and is associated with an 

increase in the risk of cardiovascular and respiratory disease (Dominici et al., 2006; Peng et al., 

2009). Evidence is emerging that exposure to PM2.5 has adverse health effects even at low 5 

concentrations (Crouse et al., 2012; Shi et al., 2015). Early studies relied on the nearest ground-

based monitors to estimate PM2.5 exposure (e.g. Dockery et al., 1993; Laden et al., 2006), but lack 

of resolution of spatial and temporal gradients in population exposure may lead to substantial 

errors in health impact analyses.  

Satellite remote sensing, which fills a spatial gap in ground-based networks, is playing an 10 

increasingly important role in PM2.5 exposure assessment (Cohen et al., 2017; Jerrett et al., 2017). 

Aerosol optical depth (AOD), a measure of the sum of light extinction by aerosols within the 

atmospheric column, is retrieved from a number of satellite instruments. The Moderate Resolution 

Imaging Spectroradiometer (MODIS) on board Terra and Aqua has provided twice-daily global 

AOD data for nearly two decades, and the Multi-Angle Implementation of Atmospheric Correction 15 

(MAIAC) product has refined the spatial resolution retrieved from MODIS to 1 km (Lyapustin et 

al., 2011; 2012; 2018), offering the potential to reveal aerosol spatial variability within urban cores 

(Hu et al., 2014). A big challenge to inferring near-surface PM2.5 from column AOD retrieved from 

satellite instruments is to describe accurately the non-linear and spatiotemporally varying 

relationship between PM2.5 and AOD, which depends on aerosol chemical composition, vertical 20 

profiles, aerosol optical properties and the ambient environment (Griffin et al., 2012). Approaches 

to link satellite AOD with PM2.5 exposures are often classified into two categories: statistical (e.g. 

Di et al., 2016; Hu et al., 2014; Kloog et al., 2014) and geophysical (e.g. van Donkelaar et al., 
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2010; 2006). A two-stage process is also used with a geophysical approach followed by a statistical 

approach (e.g. van Donkelaar et al., 2015; de Hoogh et al., 2016; Shaddick et al., 2017). 

Statistical approaches fit an optimized relationship between ground-based PM2.5 and 

satellite AOD along with other predictors (e.g. land use, meteorology, traffic density etc.) using 

methods such as multiple linear regression (e.g. Gupta and Christopher, 2009; Lee et al., 2016), 5 

geographic regression (Hu et al., 2014), generalized additive models (e.g. Kloog et al., 2014), or 

machine learning (Di et al., 2016). In regions with high monitor density, the statistical methods 

generally agree better with ground-based observations than PM2.5 derived with geophysical 

approach, but statistical methods rely on the availability of ground-based monitors to train the 

statistical model, and are thus limited to regions with dense monitoring networks.  10 

The geophysical approach that has been applied to AOD is a process-based forward 

approach that uses chemical transport models to explicitly simulate the spatially and temporally 

varying relationship between column AOD and PM2.5 (van Donkelaar et al., 2006). The satellite-

derived PM2.5 is calculated by taking the product of satellite AOD with the modeled ratio of PM2.5 

to AOD (van Donkelaar et al., 2006): 15 

                          	"#$.&_()* = ,-.()*×
012.3_45678

9:;45678
           (1) 

This geophysical approach has the advantage of broad spatial coverage that is not limited by the 

availability of in-situ measurements (van Donkelaar et al., 2006), and thus has been integral for 

studying the global burden of disease attributable to ambient air pollution (Cohen et al., 2017). 

Van Donkelaar et al. (2010) estimate global annual average PM2.5 using AOD observed from both 20 

MODIS and MISR (Multiangle Imaging Spectroradiometer) by PM2.5-AOD relationships from a 

global chemical transport model (GEOS-Chem). They estimate an overall uncertainty of around 
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25% for annual average satellite-derived PM2.5, but the uncertainty of the geophysical approach 

on short-time scales is expected to be larger (van Donkelaar et al., 2012). 

The overall uncertainty in deriving surface PM2.5 with the geophysical approach consists 

of uncertainty in the satellite AOD as well as the modeled PM2.5/AOD. First, satellite observations 

of AOD are subject to uncertainties due to the viewing geometry, the presence of clouds and snow, 5 

and choices involved in modeling optical aerosol and surface properties (Superczynski et al., 2017; 

Toth et al., 2014). Second, since the relationship between PM2.5 and AOD is non-linear and 

multivariate, modeled PM2.5/AOD is subject to model uncertainties in aerosol vertical distributions, 

aerosol speciation and the ambient environment. Third, even if a model simulates accurately the 

aerosol mass distribution, calculating AOD in models generally requires assumptions regarding 10 

the aerosol size distribution, aerosol species density, refractive index and hygroscopic growth 

factors, all of which are sources of uncertainties (Curci et al., 2015). The ability of a particle to 

scatter and absorb light largely depends on its size, which varies significantly in nature (Stanier et 

al., 2004). As resolving the size distribution is computationally expensive (Adams, 2002), aerosols 

are typically assumed to follow a certain distribution (e.g. log-normal), which can introduce error. 15 

Moreover, aerosol water uptake (hygroscopicity) affects the aerosol size and optical properties, but 

the representation of hygroscopic factors in models varies considerably (Chin et al., 2002; Curci 

et al., 2015; Drury et al., 2010). The hygroscopic growth factor for organic carbon (OC) is 

especially uncertain, varying by organic species, and is poorly represented in models (Ming et al., 

2005; Jimenez et al., 2009; Latimer and Martin, 2018). The impacts of these uncertainties on 20 

aerosol radiative forcing have been studied extensively, but their impacts on deriving surface PM2.5 

from satellite-based column AOD have not yet been quantified. 
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Here, we estimate PM2.5 distributions over the Northeast USA for 2011 using a geophysical 

approach that combines MAIAC AOD data with modeled PM2.5/AOD relationships simulated with 

a regional air quality model (CMAQ). Compared to the global GEOS-Chem model used by van 

Donkelaar et al. (2016), CMAQ has finer spatial resolution (12 × 12 km2) and a locally refined 

emission inventory (see Sect. 2.2). We use an ensemble of surface (AQS, AERONET, IMPROVE, 5 

CSN), aircraft (DISCOVER-AQ) and radiosonde (IGRA) measurements to evaluate different 

sources of uncertainties in satellite-derived PM2.5, especially at the daily scale. To evaluate the 

sensitivities of satellite-derived PM2.5 to the parameterization of aerosol optical properties, we 

conduct a series of sensitivity tests in an offline AOD calculation package (FlexAOD). The 

overarching goal of the comprehensive uncertainty analysis is to assess the relative importance of 10 

each uncertain factor, thereby advancing the process-level understanding of the relationship 

between satellite AOD and surface PM2.5 air quality.    

2 Data and methods 

2.1 Satellite AOD products 

We use the high-resolution (1 km) daily AOD products retrieved from the MODIS 15 

instruments onboard the Terra and Aqua satellites with the MAIAC algorithm, which applies time 

series analysis and image processing techniques (Lyapustin et al., 2011; 2018a, b). The spatial 

resolution of MAIAC (1 km) is finer than the conventional MODIS Dark Target and Deep Blue 

AOD products (10 km). The MAIAC algorithm improved upon the earlier Dark Target retrieval 

algorithm (MOD04) by explicitly including bi-directional reflectance (rather than the 20 

parameterized Dark Target approach), which improves accuracy over brighter surfaces, with 

similar accuracy over dark and vegetated surfaces (Lyapustin et al., 2011).  
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Using the quality flags provided, we filtered out pixels with or adjacent to cloud, snow or 

ice. We follow the approach of Hu et al. (2014) to combine daily MAIAC AOD from Terra 

(overpasses around 10:30 AM local time) and Aqua (overpasses around 1:30 PM local time). For 

the pixels where both Terra and Aqua have valid data, we take the average to reflect the mean 

daytime AOD. For pixels where only one instrument has valid data, AOD may be biased 5 

accordingly towards morning or afternoon conditions. We find, on average, Terra-MAIAC AOD 

is higher than Aqua-MAIAC AOD by 0.005 (about 5% of the annual average AOD) over the 

Northeast USA in 2011, reflecting diurnal variations of AOD (Green et al., 2012) and potential 

calibration differences (Levy et al., 2018). To account for these differences, we fit two linear 

equations (R = 0.87) between Terra-MAIAC (AODT) and Aqua-MAIAC AOD (AODA):  10 

,-.< = 0.84,-.9 + 0.019   (2) 

	,-.9 = 0.88,-.< + 0.005   (3) 

We use Eq. (2) and (3) to predict the AOD from the other instrument when one of them is missing, 

and then take the average. We find little seasonal variation in the linear relationship.  

2.2 CMAQ model 15 

The Community Multiscale Air Quality Modeling System (CMAQ) is a regional 

multipollutant air quality model developed and maintained by the U.S. Environmental Protection 

Agency (EPA). We use the CMAQ (v5.0.2) model simulations for 2011 conducted at New York 

State Department of Environmental Conservation (NYSDEC) for air quality planning purposes. 

The simulations are conducted for the eastern USA with 12 km horizontal resolution and 35 20 

vertical layers extending up to 50 hPa.  The meteorological fields to drive CMAQ are provided by 

annual Weather Research and Forecast (WRF) v3.4 model simulations over continental United 

States. Chemical boundary conditions are from the GEOS-Chem (2° × 2.5°) global chemical 
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transport model (Bey et al., 2001, version 8) generated by EPA. The emission inventory is based 

on the 2011 National Emission Inventory (NEI) and processed through the Sparse Matrix Operator 

Kernel Emissions (SMOKE; (Houyoux et al., 2000)). Biogenic emissions are generated with the 

Biogenic Emissions Inventory System (BEIS) v3.61 (Pierce et al., 2002). Prescribed burning and 

wildfire emissions are computed using the SmartFire 2 (Raffuse et al., 2009). Mobile emissions 5 

are produced from the EPA’s MOtor Vehicle Emission Simulator (MOVES) 2014a (US EPA, 

MOVES2014a). The gas-phase chemical mechanism is CB05, and the aerosol module is AERO6. 

Appel et al. (2013; 2017) provide details on the calculation of total PM2.5 mass and speciated 

aerosol mass, as well as model evaluation. 

2.3 Offline AOD calculation 10 

We calculate hourly AOD from the CMAQ model (AODCMAQ) offline from the archived 

hourly, three-dimensional, speciated aerosol (i.e. sulfate, nitrate, ammonium, black carbon, 

organic carbon, sea salt, soil dust) distribution and meteorological fields (i.e. relative humidity, 

hereafter RH) using the Flexible Aerosol Optical Depth (FlexAOD) post-processing tool. 

FlexAOD was originally developed to calculate aerosol optical properties for the GEOS-Chem 15 

model. It is based on the NASA Codes for Computation of Bidirectional Reflectance of Flat 

Particulate Layers and Rough Surfaces (Mishchenko et al., 1999). We adapt FlexAOD to CMAQ 

by matching the aerosol speciation with GEOS-Chem based on Appel et al. (2013). Under the 

assumption of spherical particles, aerosol optical properties are calculated based on Mie theory. 

Given size distributions for each aerosol species, aerosol light extinction (EXTl) at a given model 20 

layer is calculated as follows (Curci, 2015): 

   DEFG =
H
I

J7,6LM,NOPQ8,R
S7,6LM,RTR

U
VWX #V,G       (4) 
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where i refers to the species, N is the number of aerosol species (N = 5: sulfate-nitrate-ammonium 

(SNA), OC, black carbon (BC), dust, sea salt), YZ,[S\,] is the Mie extinction efficiency of species 

i averaged over the dry size distribution, _̂`8,V is the hygroscopic growth factor of species i at 

given RHl, aV is aerosol density of species i, Mi,l is the aerosol mass of species i at layer l, and 

bZ,[S\,V is the dry effective radius. AODCMAQ is then calculated as the vertical integral of EXTl across 5 

all model layers: 

    ,-.c19J = DEFG
d
GWX ef         (5) 

We use the recommended values of Drury et al. (2010) for aerosol density. The refractive index 

(m) in the default run is adapted from the Optical Properties of Aerosols and Clouds (OPAC) 

database (Hess et al., 1998). As CMAQ does not explicitly simulate the size distribution of aerosols, 10 

we assume log-normal distributions for all species except for dust (assumed to be a gamma 

distribution). The effective radius (re), or the area-weighted mean radius of log-normal size 

distribution can be derived as: 

        bZ,[S\,V = bgh
(32Gj

2kl)       (6) 

where r0 is the specific modal radius, ng is the geometric standard deviation. For the aerosol size 15 

distribution and density, we follow the recommended values of Drury et al. (2010) in the default 

run. We apply the single parameter κ to represent the hygroscopic growth of SNA and organic 

carbon, as developed by Petters and Kreidenweis (2007) based on the κ-Kohler theory, which is 

the most commonly used function in the literature (Brock et al., 2016; Snider 2016). The 

hygroscopic growth factor can be simplified as a function of parameter κ and RH (Snider et al., 20 

2016):  

                                 ^ op = (1 + q _`
Xggr_`

)X/H    (7) 
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Koehler et al. (2006) suggest κ for SNA (κSNA) ranges from 0.33 to 0.72, with a mean of 0.53. The 

hygroscopic growth factor of organic carbon (κoc) varies with species and is correlated with the 

age of organics (Duplissy et al., 2011). Duplissy et al. (2011) and Jimenez et al. (2009) suggest κ 

for organic carbon typically ranges from 0 to 0.2. We apply κSNA = 0.53, and κoc = 0.1. For black 

carbon and sea salt, we apply the hygroscopic growth factors reported in Chin et al. (2002). In 5 

addition to the default values, we test the sensitivities of the derived PM2.5 to uncertainties in 

aerosol optical property parameterization by varying each parameter across a range of values 

reported in the literature, as specified in Table 1.  

2.4 Ground-based observations 

AErosol RObotic NETwork (AERONET) is a federated instrument network that provides 10 

ground-based information about aerosols including AOD, derived from sun photometer 

measurements of direct solar radiation (Holben et al., 1998). We use Level-2 (cloud screened and 

quality assured) daily average data from 13 sites over the Northeast USA. We also include 

observed AOD from the Distributed Regional Aerosol Gridded Observation Networks 

(DRAGON)-USA 2011 field campaign, co-located with the DISCOVER-AQ aircraft campaign. 15 

The DRAGON campaign provides extensive sun photometer measurements of AOD at 38 sites 

along the flight path of DISCOVER-AQ from July 1 to August 15, 2011, which were incorporated 

into the AERONET database. To allow direct comparison with AODMAIAC and AODCMAQ, 

AERONET AOD measurements at 0.44 µm and 0.675 µm were interpolated to 0.55 µm using the 

Angstrom exponent (the first derivative of AOD with wavelength, on a logarithmic scale) provided. 20 

We use ground-based measurements of daily 24-hour average PM2.5 from 152 EPA Air 

Quality System (AQS) sites over the Northeast USA. Of the 152 sites, 13 sites have AERONET 

sites within 10 km (about the resolution of CMAQ). We consider these 13 sites as “co-located” 
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and use them to evaluate uncertainties in modeled PM2.5/AOD relationships. We also use AQS 

aerosol speciation data at 54 sites which include the Chemical Speciation Network (CSN) and the 

Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility monitoring 

network.   

To evaluate the modeled vertical profile of ambient RH, we use ground-based soundings 5 

from 6 radiosonde sites over the Northeast USA. Aggregated daily data at 0:00 and 12:00 UTC are 

acquired from the NOAA Integrated Global Radiosonde Archive (IGRA), and modeled vertical 

profiles are sampled concurrently with radiosonde observations. We use the RH data calculated 

from vapor pressure, saturation vapor pressure and ambient air pressure (Durre and Yin, 2008).  

2.5 NASA DISCOVER-AQ 2011 Field Campaign  10 

The NASA DISCOVER-AQ (Deriving Information on Surface conditions from Column 

and Vertically Resolved Observations Relevant for Air Quality) aircraft campaign over Baltimore-

Washington, D.C. in July 2011 provides extensive, systematic, concurrent measurements of 

aerosol chemical, optical, and microphysical properties. The NASA P-3B aircraft performed 14 

flights which include 247 profiles (typically extending from 0.4 to 3.2 km above the surface) over 15 

six DRAGON sites (Crumeyrolle et al., 2014). We use the simultaneous measurements of aerosol 

composition (SNA, OC, BC), scattering, absorption, and extinction coefficients at dry (RH<40%), 

ambient and wet (RH>80%) environments. To reduce the random uncertainties of individual 

observations and to allow direct comparison with CMAQ and ground-based observations, we 

aggregate the daily aircraft profiles horizontally to six locations corresponding to the six sites, and 20 

vertically to CMAQ model layers, and then sample CMAQ modeled values consistently with 

observations.  
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3 Results and Discussion 

3.1 Deriving surface PM2.5 from satellite observations 

We derive satellite-based PM2.5 (hereafter PM2.5_MAIAC) over the Northeast USA for 2011 

by taking the product of daily average CMAQ modeled PM2.5/AOD relationships 

(PM2.5_CMAQ/AODCMAQ) with MAIAC AOD (AODMAIAC, Eq. (1)). These unconstrained PM2.5 5 

estimates (Fig. 1) are independent of surface observations. As PM2.5_MAIAC is determined as the 

product of observed AODMAIAC and modeled PM2.5_CMAQ/AODCMAQ, the spatial patterns of 

PM2.5_MAIAC will be affected by the spatial variations of both AODMAIAC and 

PM2.5_CMAQ/AODCMAQ. Fig. 1a) shows the summertime average (JJA) AODMAIAC at 1km 

resolution overlaid with AERONET observed AOD. While we find high AOD over some 10 

populated urban areas such as New York City (NYC), high AODMAIAC is also found over central 

New York State (NYS), away from major anthropogenic sources. In CMAQ, PM2.5 (PM2.5_CMAQ) 

occurs over regions with major anthropogenic sources such as NYC. AODCMAQ also shows a 

latitudinal dependence, with higher AOD at lower latitudes, which reflects 1) relatively high 

emissions of aerosol and its precursors from anthropogenic and biogenic sources over MD, PA and 15 

NYC; and 2) latitudinal variations of RH that affect aerosol hygroscopic growth. The modeled 

PM2.5_CMAQ/AODCMAQ varies spatially (one standard deviation (SD) is 45 µg/m3 per unit of AOD), 

mainly driven by the spatial variations of PM2.5_CMAQ (R = 0.86).  We find the overall spatial pattern 

of satellite-derived PM2.5 correlates more strongly with modeled PM2.5_CMAQ/AODCMAQ (R = 0.97) 

than observed AODMAIAC (R = 0.8), suggesting that the large-scale spatial variability reflects 20 

modeled rather than satellite-based distributions, at least under our framework for the Northeast 

USA in summer. The temporal variability in PM2.5_MAIAC is also mainly driven by variability in 

PM2.5_CMAQ/AODCMAQ (R = 0.61), with little temporal correlation between regional average 
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AODMAIAC and PM2.5_MAIAC (R = 0.05, Fig. 2). At short time scales, the daily variability in regional 

average PM2.5_MAIAC shows stronger correlation with PM2.5_CMAQ/AODCMAQ in all seasons except 

for JJA, when PM2.5_MAIAC are driven by variability in both AODMAIAC (R = 0.5) and 

PM2.5_CMAQ/AODCMAQ (R = 0.4, Fig. 2). Summertime AODMAIAC is higher than wintertime AOD 

by 50%, while summertime PM2.5_MAIAC is lower than in winter by 46%. Previous studies also 5 

found inconsistent seasonal cycles in AOD and PM2.5 (Ford et al., 2013; Kim et al., 2015). We 

attribute the opposite seasonal cycle in PM2.5_MAIAC and AODMAIAC to three factors: 1) weak 

boundary layer ventilation in winter that leads to sharp vertical gradients of aerosol distribution 

(Kim et al., 2015); 2) higher RH in summer that leads to larger hygroscopic growth; 3) model 

overestimates of PM2.5 (especially OC) in wintertime and underestimates of PM2.5 in summertime, 10 

leading to an overestimate of the winter-to-summer decrease in PM2.5_CMAQ/AODCMAQ (see section 

3.3).  

While at larger spatial scales, PM2.5_CMAQ/AODCMAQ contributes more to the spatial and 

temporal variability in PM2.5_MAIAC than AODMAIAC, at smaller scales, over which we assume the 

spatial variability of PM2.5/AOD is homogenous, incorporating fine-resolution satellite data 15 

reveals stronger spatial gradients (e.g., enhancements along industrial corridors) than PM2.5_CMAQ 

(Fig. 1b). In addition to refining spatial resolution, satellite-derived PM2.5 can correct model 

summertime biases in PM2.5. Observed AOD from AERONET and PM2.5 from AQS indicate an 

overall underestimate in both AODCMAQ (Fig. 1c; normalized mean bias (NMB) = -44%) and 

PM2.5_CMAQ (Fig. 1d; NMB= -17%) in summer. We find PM2.5_CMAQ/AODCMAQ is overall consistent 20 

with the observed PM2.5/AOD sampled at co-located AQS-AERONET sites (NMB = 0.9%) as the 

ratio largely cancels out the model underestimates in both PM2.5 and AOD. AOD distributions 

retrieved from MODIS (AODMAIAC) agree better with AERONET AOD than AODCMAQ (NMB = 
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5%, Fig. 1f), though we find small low biases at two sites in New York City and at most DRAGON 

sites over Maryland. Our derived distribution of PM2.5_MAIAC is thus closer to PM2.5 observed at 

AQS sites than PM2.5_CMAQ (NMB = 4.7% vs. 44% for PM2.5_CMAQ, Fig. 1g). However, the 

PM2.5_MAIAC distribution is wider than observed at AQS: the lowest 5% is 5 versus 7 µg/m3 for 

PM2.5_MAIAC vs. AQS PM2.5, and the highest 5% is 16 versus 13 µg/m3. We find that PM2.5_MAIAC 5 

is biased high over New York City, coastal regions of Massachusetts, on the borders of upstate 

New York, and northern Vermont. Evaluation of PM2.5_MAIAC in other seasons show larger biases 

and uncertainties (Fig. S1). In the following sections, we examine sources of uncertainties and 

biases in satellite-derived PM2.5. We quantify the uncertainties in terms of bias (systematic) and 

random uncertainty. The bias uncertainty is linked to the overall accuracy, while the random 10 

uncertainty reflects random fluctuations in the measurements or the imprecision of the model 

resulting from imperfect modeling assumptions and simplifications. 

3.2 Evaluation of satellite observed AOD products 

AODMAIAC in general agrees well with AERONET observations (spatial R= 0.83, temporal 

R = 0.85, MB = -0.01, and RMSE =0.07). The performance of AODMAIAC evaluated at Northeast 15 

US AERONET sites is consistent with the evaluation of Superczynski et al. (2017) over North 

America (R = 0.82, MB = -0.008). We find, however, that AODMAIAC in winter (December-

January-February, DJF) is biased high by 49% (MB = +0.02) on average. The wintertime 

overestimate is likely due to residual snow contamination which is below the detection limit, even 

though we applied a stringent data quality filter to remove pixels flagged as snow. We find the 20 

wintertime overestimate is most evident over northern latitudes (e.g. AERONET sites in 

Massachusetts, NMB ranges from 80% to 180%), where snow occurs more often. The NMB of 

AODMAIAC are 15% in MAM, -5% in JJA, and 17% in SON respectively, though the quantile range 
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of the error is large, suggesting that single observations have large random uncertainties (Fig. 3). 

Taking the 1σ standard deviation of the normalized biases as a metric of random uncertainty, we 

estimate the uncertainties of daily satellite observations to be around 80% in DJF, 60% in MAM 

and SON, and 50% in JJA. Spatial and/or temporal averaging can reduce these random errors of 

satellite observations, which is evidenced as the smaller spread of errors than for monthly averages 5 

at the same spatial resolution, or daily data at coarser (10km) resolution, but it does not reduce the 

overall MB between AODMAIAC and AODAERONET (Fig. 3). We find that spatially averaging 

AODMAIAC to 10 km leads to an overall increase of AODMAIAC. Temporal averaging, on the other 

hand, leads to an overall decrease in AODMAIAC except for DJF, leading to smaller positive MB in 

SON (7%) and MAM (7%), but larger negative MB in JJA (-8%) and positive MB (67%) in DJF.  10 

3.3 Evaluation of modeled PM2.5/AOD relationships  

Three factors contribute to the overall uncertainty in the modeled PM2.5/AOD relationship: 

1) PM2.5_CMAQ; 2) AODCMAQ; 3) the relation between 1) and 2). We evaluate uncertainties of the 

three factors at 13 paired AQS-AERONET sites (within 10 km of each other; about the resolution 

of CMAQ). Figure 4 shows the distribution of the biases of modeled daily PM2.5_CMAQ, AODCMAQ 15 

and PM2.5_CMAQ/AODCMAQ compared with observations. Generally, PM2.5_CMAQ biases vary 

seasonally: from +42% in DJF to -39% in JJA on average. In contrast, AODCMAQ biases show 

weaker seasonality. The normalized MBs of AODCMAQ are 3% in DJF, -16% in MAM, -7% in JJA 

and -20% in SON. On the daily scale, biases of AODCMAQ are weakly correlated with the biases of 

PM2.5_CMAQ (R = 0.14), suggesting model biases in AOD do not necessarily reflect biases in 20 

modeled PM2.5. This is in contrast with prior analysis of annual means where emission biases drive 

similar biases in AOD and PM2.5 (van Donkelaar et al., 2013). The better accuracy of emissions in 

the Northeast USA than elsewhere in the world allows processes other than emissions to be more 
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important for the Northeast USA. We find the seasonal biases in modeled PM2.5 are retained in the 

PM2.5_CMAQ/AODCMAQ ratio, which exceeds the biases of PM2.5_CMAQ in DJF, MAM and SON. As 

both PM2.5_CMAQ and AODCMAQ are biased low in JJA, the modeled PM2.5/AOD bias (-20%) is 

smaller than that of PM2.5_CMAQ (-39%). Biases in PM2.5_CMAQ and AODCMAQ are oppositely signed 

in fall, leading to the largest mean biases of modeled PM2.5/AOD (+74%). The spread of the biases 5 

of PM2.5_CMAQ/AODCMAQ is larger than that of PM2.5_CMAQ and AODCMAQ, with the standard 

deviation ranging from 50% in JJA to 100% in SON.  

3.4 Relative importance of satellite AOD versus modeled PM2.5/AOD to uncertainties in 

satellite-derived PM2.5  

We have shown that both satellite AOD and modeled PM2.5/AOD are subject to large 10 

uncertainties at the daily time-scale. To directly compare the relative importance of the biases of 

satellite AOD vs. model PM2.5/AOD on the satellite-derived PM2.5, we scale the biases of modeled 

PM2.5/AOD with daily AODMAIAC, so that the biases are expressed in units of PM2.5 (µg/m3): 

 ∆"#$.&_9:; = ,-.19u9c − ,-.9w_:Uw< ×
012.3_xyz{

9:;xyz{
      (8) 

We then scale the biases of AODMAIAC
 with the daily modeled PM2.5/AOD relationship: 15 

 ∆"#$.&__ZG =
012.3_xyz{

9:;xyz{
− 012.3_z{|

9:;z}P~�}Ä
×,-.19u9c       (9) 

We can also interpret ∆PM2.5_AOD and ∆PM2.5_Rel as the changes in derived PM2.5 if we use ‘true’ 

observed AOD or PM2.5/AOD instead of AODMAIAC or modeled PM2.5/AOD. As shown in Fig. 5a, 

mean biases caused by modeled PM2.5/AOD are +9.2 µg/m3 in DJF, +2.8 µg/m3 in MAM, -3.3 

µg/m3 in JJA, and +7.7 µg/m3 in SON respectively, which introduces larger biases to the derived 20 

PM2.5 than the MAIAC satellite product in all seasons (7.6 µg/m3 in DJF, +1.3 µg/m3 in MAM, -

0.7 µg/m3 in JJA, and 0.9 µg/m3 in SON). Using the root mean squared ∆PM2.5_AOD to quantify 

the random uncertainty, satellite AOD contributes an overall random error of 8.3 µg/m3 to daily 
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satellite PM2.5_MAIAC with the smallest error in JJA (5.1 µg/m3) and largest error in DJF (13.2 

µg/m3), while modeled PM2.5/AOD contributes an error of 10.8 µg/m3 (root mean squared 

∆PM2.5_Rel) with smallest error in JJA (6.5 µg/m3) and largest error in SON (15.2 µg/m3). The 

spread of the biases is larger for modeled PM2.5/AOD than that for MAIAC AOD except for DJF. 

Our findings are consistent with Ford and Heald (2016), who use a higher-resolution (nested) 5 

version of the GEOS-Chem model and MODIS Dark Target AOD (Collection 6) to estimate two 

times larger uncertainties in surface PM2.5 resulting from modeled PM2.5/AOD relationships than 

in satellite AOD. 

At the daily time scale, both ∆PM2.5_AOD and ∆PM2.5_Rel show large day-to-day variability: 

the 1n standard deviation is 10.5 µg/m3 for daily ∆PM2.5_AOD and 8.3 µg/m3 or daily ∆PM2.5_Rel. 10 

Next, we evaluate the dependence of the biases of satellite-derived PM2.5 (denoted as ∆PM2.5_MAIAC, 

evaluated with AQS observed PM2.5) on ∆PM2.5_Rel versus ∆PM2.5_AOD by evaluating the Pearson 

correlation coefficients (R). Overall, ∆PM2.5_MAIAC is more strongly correlated with ∆PM2.5_Rel (R 

= 0.85) than that with ∆PM2.5_AOD (R = 0.53), indicating the uncertainties of modeled PM2.5/AOD 

are a more important driving factor to the uncertainties of daily satellite-derived PM2.5, which 15 

could explain 72% variance (R2) in ∆PM2.5_MAIAC. In JJA, however, ∆PM2.5_MAIAC is moderately 

correlated with both ∆PM2.5_AOD (R = 0.48) and ∆PM2.5_Rel (R = 0.49), suggesting uncertainties of 

modeled PM2.5/AOD and satellite AOD contribute equally to the uncertainties of satellite-derived 

PM2.5. We note that there is no statistically significant correlation between ∆PM2.5_Rel and 

∆PM2.5_AOD, with R ranging from -0.4 in SON to 0.23 in JJA, which suggests that the errors caused 20 

by modeled PM2.5/AOD and by satellite AOD are independent of each other.   
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3.5 Factors leading to uncertainties in modeled PM2.5/AOD relationship  

Uncertainties in the modeled PM2.5/AOD relationship mainly reflect uncertain aerosol 

speciation, aerosol vertical profiles, ambient RH, and parameterizations for aerosol optical 

properties including aerosol density, size distribution, refractive index and hygroscopic growth. 

Here we quantify the uncertainties from each factor and evaluate their impacts on the derived PM2.5.   5 

3.5.1 Aerosol speciation 

Aerosol optical properties vary with chemical composition. Model biases in the aerosol 

composition also affect the overall representation of particle hygroscopicity. For the same PM2.5 

abundance, variations in the aerosol composition may alter the particle optical properties especially 

hygroscopicity, and consequently the PM2.5/AOD relationship. Fig. 6a compares the modeled 10 

aerosol composition with ground-based observations averaged for each season. High biases in 

PM2.5_CMAQ in winter are largely due to model overestimates of OC by a factor of three, and low 

biases in summer are due to a combination of underestimated SNA and OC. As a result, CMAQ 

overestimates the fraction of OC by about 20% in DJF, 15% in MAM, and less than 10% in other 

seasons, while underestimates the fraction of SNA by 5% to 20% in all seasons.  15 

To estimate the impacts of model biases in aerosol speciation on AODCMAQ and 

PM2.5_MAIAC, we keep the total aerosol mass the same, and redistribute AOD (AODCMAQ_ir) of each 

species i based on observed fraction of each species (i.e. SNA, OC, EC, soil dust; sea salt was 

excluded due to the limited ground-based measurements and its negligible contribution): 

  ,-.c19J_VS =
01R_5ÅÇ

01Ä~Ä_5ÅÇ
× 01Ä~Ä_xyz{

01R_xyz{
×,-.c19J_V          (10) 20 

where PMTOT_obs and PMTOT_CMAQ are the total aerosol mass from observations and CMAQ 

respectively, which are reconstructed by summing up SNA, OC, EC and soil dust. Next, we 

estimate the uncertainty due to speciation as the differences in derived PM2.5_MAIAC (∆PM2.5_spe) 



 20 

using the redistributed AODCMAQ_ir instead of the original AODCMAQ, shown in Fig. 6b. As SNA 

generally has the largest mass extinction efficiency, a low bias in SNA leads to an overall 

underestimate of AODCMAQ, and therefore an overestimate of PM2.5_MAIAC, which is largest in 

winter (MB = 2.2 µg/m3, SD = 2.6 µg/m3) and smallest in summer (MB = 0.7 µg/m3, SD = 3.0 

µg/m3). The estimated biases due to speciation show similar seasonal cycles as the modeled 5 

PM2.5/AOD biases (Fig. 4), suggesting that aerosol speciation errors contribute to the seasonality 

in modeled PM2.5/AOD biases. Overall, model-observation discrepancy in speciation causes an 

error (root mean squared ∆PM2.5_spe) of 4.0 µg/m3. On a daily basis, the correlation (R) between 

∆PM2.5_spe and ∆PM2.5_MAIAC is over 0.5 for all seasons except JJA, which means model biases in 

speciation alone can explain more than 25% variance (R2) in ∆PM2.5_MAIAC. Biases in speciation 10 

in JJA have relatively smaller impacts on the derived PM2.5, which contribute less than 1 µg/m3 

MB and shows weak correlation with ∆PM2.5_MAIAC (R = 0.15).   

3.5.2 Aerosol vertical profile 

A caveat on the results in the Sect. 3.5.1 is that we assume the model errors in speciation 

are constant across all vertical layers, as AQS sites only provide observations near the surface. The 15 

DISCOVER-AQ aircraft campaign measured vertical variations in aerosol composition, although 

spatial and temporal coverage is limited. Figure 7a compares the modeled and observed vertical 

distributions of SNA, OC and BC averaged over the DISCOVER-AQ campaign. We do not discuss 

sea salt and dust here since they contribute a negligible portion of the total aerosol mass in this 

region. Both model and observations show SNA contributes more than half of the total aerosol 20 

across all vertical layers (Fig. 7). Aircraft observations show SNA decreases gradually with altitude 

with a nearly constant vertical gradient, while SNACMAQ is well mixed below 1.5 km, and starts to 

decline at the same rate as SNAaircraft above 1.5 km (Fig. 7). CMAQ underestimates SNA below 



 21 

1.5 km, but overestimates SNA at higher altitudes. The positive model bias of SNA at higher 

altitudes may be due to excessive vertical transport, or overestimation of RH (Sect. 3.4.3) and 

consequently overestimation of SO2 oxidation rate and aerosol water uptake. OC, on the other 

hand, is biased low at all altitudes, which is likely due to inaccurate treatment of the production of 

secondary organic aerosol (Zhang et al., 2009). The newer version of CMAQv5.1 shows higher 5 

SOA concentration in summer with the introduction of new SOA species (Appel et al., 2017). BC 

is generally low during the campaign (typically lower than 0.3 µg/m3). BCCMAQ generally agrees 

well with BCaircraft, though BCCMAQ tends to overestimate BC between 1 km and 3 km. Figure 7b 

compares CMAQ modeled and observed total aerosol mass (SNA + OC + BC) averaged during 

the campaign. CMAQ modeled aerosol mass is on average biased low below 2 km, and biased 10 

high at higher altitudes (Fig. 7b).   

Next, we evaluate how the vertical distribution of aerosols relates to extinction. Figure 7c 

compares the modeled and observed average vertical extinction profiles. We find, consistent with 

the biases in mass, a low bias in the modeled extinction profile below 2 km, and high bias above 

(Fig. 7c). The biases in extinction and the biases in mass have the same signs for more than 80% 15 

of data pairs, are strongly correlated (R = 0.85). This suggests that the aerosol vertical profile of 

extinction is mainly indicative of mass distribution. However, column AOD measures the vertical 

integral of light extinction by aerosols, which means the modeled AOD biases would be 

proportional to modeled surface PM2.5 biases only if the biases in extinction are constant across all 

vertical layers. Since the biases of extinction change sign at higher altitude, the AOD biases reflect 20 

the competing effects of negative biases near the surface and positive biases at high altitudes, 

which lead to an overall negative bias of PM2.5/AOD relationship, consistent with the negative 

NMB of PM2.5/AOD in July shown in Fig. 4.  
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To explore the causes of the model-observation discrepancy in extinction and the resulting 

impacts on the satellite-derived surface PM2.5, we calculate the vertical extinction profile in 

CMAQ by replacing the modeled aerosol mass distribution (SNA, OC, BC), or total mass 

extinction efficiency (MEE, total aerosol mass/extinction), or RH respectively with those of the 

aircraft observations, as shown in Fig. 8a. Replacing the modeled aerosol mass with observations, 5 

we find a decrease in extinction at high altitudes (above 2.5 km) and increase at low altitudes 

(below 2.5 km), but replacing the aerosol mass alone does not explain all of the model-observation 

differences. At high altitudes, only replacing the modeled total mass extinction efficiency without 

changing the mass captures the observed extinction. We attribute the model overestimate of 

extinction to model overestimation of extinction efficiency at high altitudes. A major contributor 10 

to the model overestimate of total MEE is its excessive RH at high altitudes, which leads to an 

overestimate of the hygroscopic growth. Replacing RH with observations largely corrects the high 

biases aloft, but does not correct the low biases below 2 km remain (Fig. 8a). At lower altitudes, 

the model low biases are due to model underestimates of both aerosol mass and total MEE. Model 

underestimates of MEE are likely due to: 1) uncertain optical properties; 2) other aerosols or gases 15 

(e.g. NO2, O3) or liquid clouds that can scatter or absorb light.  

Figure 8b shows the biases of PM2.5_MAIAC due to model uncertainties in vertical profiles of 

aerosol mass or MEE or RH, estimated by calculating the changes in PM2.5 when we replace the 

model vertical profiles with observations. Since the aircraft altitude ranges from 0.3 to 3.4 km, we 

use modeled values for the layers below 0.3 km and above 3.4 km while attempting to minimize 20 

the discontinuity at both boundaries through vertical interpolation.  As SNA and OC contribute 

most to extinction, we also evaluate the biases of vertical profiles of SNA and OC separately. We 

find that replacing modeled aerosol mass with observed mass leads to small positive biases in 



 23 

PM2.5_MAIAC (MB = 0.05 µg/m3, SD = 4.3 µg/m3), due to the combined effects of negative biases 

from SNA (MB = -2.5 µg/m3, SD = 4.7 µg/m3) and positive biases from OC (MB = +1.9 µg/m3, 

SD = 4.3 µg/m3).  

We further separate the model-observation discrepancy in the vertical profiles as 

differences in total column mass versus in vertical profile shape by 1) keeping the modeled vertical 5 

distribution but adjusting the mass of each species uniformly so that the total column mass is equal 

to observation; 2) keeping the total column mass the same as in the model but redistributing the 

aerosol based on the observed vertical profiles. We find that redistributing the aerosol vertical 

profile leads to a positive mean bias in PM2.5_MAIAC (MB = 1.1 µg/m3, SD = 4.9 µg/m3), while the 

model-observation discrepancy in column mass leads to a negative mean bias (MB = -0.6 µg/m3, 10 

SD = 3.6 µg/m3) (Fig. 8b). The positive biases in the profile shape are mainly attributed to model 

biases of the vertical profile of SNA (MB = 1.2 µg/m3, SD = 5.0 µg/m3), which shows a larger 

fraction of SNA at higher altitude where aerosol is less effective at scattering light due to lower 

RH. The negative MB of column mass reflects a combination of negative biases of SNA (MB = -

4.1 µg/m3, SD = 5.6 µg/m3) due to model overestimates of SNA column mass, and positive bias 15 

of OC (MB = 6.7 µg/m3, SD = 4.4 µg/m3) due to model underestimate of column mass of OC.  

Model biases in mass extinction efficiency lead to a small positive MB of 0.6 µg/m3.  

Using the observed PM2.5/AOD acquired from paired AQS-AERONET sites, we estimate 

that model biases in modeled PM2.5/AOD lead to a negative MB of -0.9 µg/m3 with large day-to-

day variability (SD = 9.8 µg/m3) during the DISCOVER-AQ campaign, reflecting the model biases 20 

from different sources as discussed above. Next, we evaluate which factor drives the daily 

variability in the modeled PM2.5/AOD biases the most by evaluating R value between the estimated 

biases in modeled PM2.5/AOD versus that attributed to individual factors. We find model bias in 
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aerosol mass is the most deterministic factor for the biases in modeled PM2.5/AOD (R = 0.82, Fig. 

8c). Model biases in aerosol mass can be due to either biases in column mass or vertical profile 

shape. We find model biases in modeled PM2.5/AOD are more dependent on the biases in aerosol 

column mass (R = 0.79), instead of vertical profile shape. Model biases in mass extinction 

efficiency show moderate correlation with model biases of PM2.5/AOD (R = 0.56). While model 5 

uncertainties in RH lead to an overall negative bias (MB = -1.7 µg/m3, SD = 7.4 µg/m3) to 

PM2.5_MAIAC, they are negatively correlated with model biases of PM2.5/AOD (R = -0.25). 

3.5.3 RH 

Figure 8 suggests model biases in RH contribute a negative bias to the derived PM2.5_MAIAC 

during the DISCOVER-AQ aircraft campaign. Here we evaluate the impacts of modeled RH 10 

(RHCMAQ) biases on derived PM2.5 throughout the year using six atmospheric soundings over the 

Northeast USA. We only assess the impacts of RH on the optical properties (i.e. hygroscopic 

growth) of aerosols. Comparing RHCMAQ with observed RH (RHobs), RHCMAQ is overall biased 

high with the largest biases in winter. To evaluate the resulting impacts on AODCMAQ, we re-

calculate the extinction using observed ambient RH from the soundings instead of RHCMAQ in Eq. 15 

(4). Replacing RHCMAQ with RHobs decreases extinction by ~50% on average from the surface to 

5km in both JJA and DJF (black lines in Fig. 9a and b). As AOD is the vertical integral of extinction, 

the total area between EXTsonde and EXTCMAQ (gray shading in Fig. 9a and b) indicates the 

differences in AOD due to differences in RH. The differences in RH below 3km in DJF, MAM and 

SON contribute more than 80% to the total differences in AOD. In JJA, the contribution from 20 

higher versus lower altitudes is similar, despite small model RH biases below 2 km.   

We evaluate how the model-observation discrepancy in RH affects the derived PM2.5 by 

calculating the changes in PM2.5_MAIAC (∆PM2.5_RH) if EXTsonde is used instead of EXTCMAQ. As 
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expected, model errors in RH lead to a negative bias in derived PM2.5_MAIAC of 3 µg/m3 on average 

(Fig. 9c). The negative biases in PM2.5_MAIAC due to RH are largest in spring (-3.5 µg/m3), and 

smallest in summer (-1.6 µg/m3). The hygroscopic growth factor is nonlinearly correlated with RH, 

which increases more rapidly at high RH (> 80%) than at low to median RH (<80%, Fig. S2). 

Compared with median RH conditions, model RH errors lead to more than double ∆PM2.5_RH (-5 

6.4 µg/m3 versus 3 µg/m3) when observed near-surface RH > 80% (Fig. 9d).  At RH > 95%, we 

find that the ∆PM2.5_RH can be as large as -20 µg/m3 (Fig. 9d). Despite the large impacts of model 

errors of RH at humid conditions, there is no significant correlation between ∆PM2.5_RH and 

∆PM2.5_MAIAC (R = 0.18, evaluated at nearby sites within 10 km), suggesting that uncertainty in 

RH is not a main contributor to the random uncertainties in satellite-derived PM2.5. 10 

3.5.4 Uncertainties in the parameterization of aerosol optical properties 

In previous sections, we demonstrated that the satellite-derived PM2.5 depends on the 

accuracy of the model simulation. Even with a perfect simulation, satellite-derived PM2.5 will be 

sensitive to the parameterization of aerosol optical properties, which would affect the mass-

extinction efficiency. We evaluate the uncertainties associated with the parameterization of aerosol 15 

optical properties by varying each parameter (Table 1), and calculate the corresponding changes 

in the derived PM2.5_MAIAC. Figure 10 shows the range of uncertainty in annual average PM2.5_MAIAC 

due to uncertain aerosol size distributions, hygroscopicity, refractive index and aerosol species 

density. 

The size of a particle is a defining characteristic of aerosol light extinction (Mishchenko et 20 

al., 1999). To evaluate model sensitivities to the uncertainties in size distribution, we vary the r0 

of SNA from 0.05 to 0.15 with a 0.02 increase each time, to cover the range of values reported in 

the literature. For OC, we calculate AODCMAQ with r0 = 0.02, 0.06, 0.09 and 0.12 µm, all values 
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used in previous studies (Hess et al., 1998; Chin et al., 2002; Highwood, 2009; Drury et al., 2010). 

Annual average PM2.5_MAIAC could vary by up to 5 µg/m3 (32%) with the choice of modal radius 

of either rSNA or rOC, which is the largest source of uncertainty among the four parameters (Fig. 

10).  We find that AODCMAQ reaches a maximum with rSNA = 0.07 µm (reff  = 0.12 µm), and 

minimum with rSNA = 0.05 (reff  = 0.15 µm), while PM2.5_MAIAC reaches a maximum with rSNA = 5 

0.05 (reff  = 0.09 µm), and minimum with rSNA = 0.11 (reff  = 0.19 µm), suggesting the impacts of 

size distribution are nonlinear and non-uniform (Fig. S3). Mie scattering of a particle tends to be 

most effective when the particle’s diameter is near the wavelength of interest (0.55 µm). As 

hygroscopic particle growth also affects the size distribution, depending on ambient RH and the 

hygroscopic growth factor, reducing (or increasing) the dry effective radius could either move the 10 

bulk aerosol size closer to or further from 0.55 µm, and thus either increase or decrease the 

extinction. For OC, as the effective radius and the hygroscopic growth factor are smaller than for 

SNA, increasing the modal radius leads to more effective scattering, thus larger AODCMAQ and 

smaller PM2.5_MAIAC. Relative to the default rOC = 0.09 µm assumed by Drury et al. (2010), using 

the rOC (0.02 µm) recommended by Chin et al. (2002a) increases PM2.5_MAIAC by 5 µg/m3 (32%) 15 

on average, worsening the positive biases of PM2.5_MAIAC. Increasing rOC to 0.12 µm as 

recommended by Highwood et al. (2009) has little effect, decreasing PM2.5_MAIAC by 2% on 

average. 

The uncertainty of hygroscopicity lies in two aspects: (1) the function shape and (2) the 

parameters. Figure S2 compares the κ function shape with the hygroscopic growth factors used by 20 

the IMPROVE network (Hand and Malm, 2006), the default algorithm used to calculate AOD 

online in CMAQ, with that proposed by Chin et al. (2002) (Table 1). Using the DISCOVER-AQ 

aircraft data to evaluate the parameterization of hygroscopic growth, we find that the κ parameter 
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best characterizes the observed hygroscopic growth factor (Fig. S2c). Latimer and Martin (2018) 

similarly found that implementing a κ formulation instead of hygroscopic growth based on OPAC 

improved the GEOS-Chem representation of mass scattering efficiency. Thus, we choose the κ 

parameter to represent the hygroscopic growth factor, and the uncertainty estimate here only 

reflects uncertainties in the κ parameter. In practice changes in aerosol composition could have 5 

even larger effects on hygroscopicity than uncertainties in κ as discussed in Sect. 3.5.1.   

To test the sensitivity of satellite derived PM2.5 to uncertainties in the  κ parameter , we 

compute AODCMAQ using the low (0.33) and high end of κ (0.72) for SNA as suggested by Koehler 

et al. (2006). As the hygroscopic properties of inorganic salts are relatively well-known, the range 

of uncertainty for f(RH) of SNA is 30% at most (Fig. S2b). OC, on the other hand, is composed of 10 

thousands of species with distinct hygroscopicities. Assuming κOC ranges from 0 (non-

hygroscopic) to 0.2 (Jimenez et al., 2009; Duplissy et al., 2011), the range of f(RH) of OC can be 

as large as a factor of 2 at high RH>96% (Fig. S2a). Despite the larger uncertainty of κoc, we find 

the overall impacts of the uncertainties of κoc on the derived PM2.5 (0.3 µg/m3, 2% of annual 

average PM2.5_MAIAC) are smaller than that of κSNA (1.6 µg/m3, 11% of annual average PM2.5_MAIAC). 15 

The small impacts of κoc reflect the relatively small portion and the less hygroscopic nature of OC. 

For single observations, varying κSNA leads to a maximum increase in PM2.5_ MAIAC by 20% and a 

maximum decrease by 28%. Varying κoc increases PM2.5_ MAIAC by 10% or decrease PM2.5_ MAIAC 

by 18% at most. The overall impact of the uncertainties of κSNA ranks second among the four 

parameters for SNA, while κOC has the smallest impacts on the derived PM2.5 (Fig. 10).  20 

The refractive index (m) determines the Mie extinction efficiency, which is subject to 

uncertainties mostly due to the lack of measurements (Kanakidou et al., 2005). mSNA in OPAC 

(default value) is slightly different from that recommended in Chin et al. (2002) and Highwood 
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(2009). Moise et al. (2015) suggest mOC varies by species, with its real part ranging from 1.37 to 

1.65. We calculated another version of AODCMAQ by varying the real part of mSNA and mOC using 

the lowest and highest values reported in the literature. We find the annual average PM2.5_MAIAC 

decreased by 0.8 µg/m3 (6%) using the high end of mR_SNA, while increased by 1.3 µg/m3 (9%) on 

average using the low end. Though mR_OC has a wider range of uncertainty, its impacts on 5 

PM2.5_MAIAC (-4% to +6%) are smaller than that of mR_SNA. While the overall impacts on 

PM2.5_MAIAC due to uncertainties of mR_SNA are generally within 10% for single observations, 

PM2.5_MAIAC can change by more than 20% under SNA dominated and high RH environments. The 

overall uncertainty due to mR_OC is generally within 5% for single observations, with a few cases 

(<10% of the total data) where the relative change in PM2.5_MAIAC can exceed 10%. 10 

As aerosol density (a) is assumed to be constant for each species, varying a has the same 

effect on the extinction of given species. We vary the aerosol density of SNA from 1.65 to 1.83 

g/cm3 based on the uncertainty estimate from a laboratory study of Sarangi et al. (2016), which 

translates to an uncertainty of -3% to 7% for AODSNA, and the aerosol density of OC from 1.2 to 

1.78 g/cm3 following Park et al. (2006), which translates to an uncertainty in AODOC  ranging from 15 

-8% to 37%. We find aerosol species density, in general, contributes least to the overall uncertainty 

in satellite-derived PM2.5. Varying aoc across the range in Table 1 increases annual average 

PM2.5_MAIAC by 0.9 µg/m3 (6%) or decreases it by 0.6 µg/m3 (3%) at most. As the aerosol density 

of inorganic salt is less uncertain, varying asulf leads to negligible changes in annual average 

PM2.5_MAIAC at both high (0.7 µg/m3, 5%) and low (-0.5 µg/m3, -2%) ends. 20 

4 Conclusions 

We derive surface PM2.5 distributions from satellite observations of AOD (MAIAC 

products) at 1 km resolution for 2011 over the Northeast USA using a geophysical approach that 
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simulates the relationship between surface PM2.5 and AOD with a regional air quality model 

(CMAQ) and offline AOD calculation package (FlexAOD). We find that the fine spatial resolution 

of MAIAC AOD reveals more spatial detail (“hot spots”) including over populated urban areas or 

along major roadways. While the geophysical approach has shown promise for mapping the PM2.5 

exposure at seasonal to annual scales (van Donkelaar et al., 2010; 2016), we show that estimating 5 

PM2.5 from satellite AOD at the daily scale is not only subject to large measurement uncertainty in 

satellite AOD products, but more importantly, to uncertainty in daily variations of the relationship 

between surface PM2.5 and column AOD. We take advantage of multi-platform in situ observations 

available over the Northeast USA to quantify different sources of uncertainties in the satellite-

derived PM2.5, with a particular focus on the daily scale. We use observed AOD from AERONET 10 

sun photometers to quantify uncertainties in satellite and modeled AOD; co-located AQS PM2.5 

and AERONET sites to evaluate modeled PM2.5/AOD relationships; IMPROVE and CSN aerosol 

speciation data to evaluate model uncertainties of aerosol composition; atmospheric soundings to 

evaluate modeled RH, as well as their impacts on PM2.5 derivation. To assess the uncertainties 

associated with aerosol vertical profiles, we use the extensive concurrent measurements of 15 

extinction and aerosol composition available from the NASA DISCOVER-AQ 2011 campaign 

over Baltimore-Washington, D.C. Finally, we estimate intrinsic uncertainties associated with the 

model parameterization of optical properties, by testing sensitivities of satellite-derived PM2.5 to 

variations in each individual parameter across ranges reported in the literature using FlexAOD. 

As the relationship between surface PM2.5 and column AOD is non-linear and 20 

spatiotemporally heterogeneous, satellite AOD alone is unable to fully resolve the spatial and 

temporal variability of ground-level PM2.5. We find that large-scale spatial and temporal variability 

of satellite-derived PM2.5 correlates more strongly with the variability in modeled PM2.5/AOD than 
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with satellite derived AOD. At the daily scale over the Northeast USA, modeled PM2.5/AOD 

introduce larger mean biases to satellite-derived PM2.5 than the satellite retrievals. Uncertainties in 

modeled PM2.5/AOD explain more than 70% variance in the uncertainties of satellite-derived 

PM2.5, suggesting that the precision of daily satellite-derived PM2.5 depends on the capability of 

models to simulate the day-to-day variability of the relationship between PM2.5 and AOD. 5 

Uncertainties in modeled PM2.5/AOD relationships can be attributed to several factors, 

including uncertain model aerosol speciation, vertical profiles, RH, and the parameterization of 

aerosol optical properties. We find that seasonally varying biases in modeled PM2.5/AOD reflect 

biases in aerosol speciation, particularly OC, which is overestimated in the cold season, and 

underestimated by CMAQ in the warm season. Biases in aerosol composition in turn affect aerosol 10 

hygroscopicity. The CMAQ model generally overestimates RH, especially above 2 km, 

contributing to an overall negative bias to satellite-derived PM2.5, particularly for more humid 

conditions. Using concurrent measurements of vertical profiles of aerosol extinction and 

composition available from the DISCOVER-AQ 2011 aircraft campaign, we show that the aerosol 

extinction is indicative of mass distributions. Biases in modeled extinction, however, vary with 15 

altitude, such that model biases in vertically integrated column AOD do not necessarily reflect 

model biases in surface PM2.5. We find that model uncertainties in column mass and in the mass-

extinction efficiency drive the variability in overall uncertainty in modeled PM2.5/AOD, while RH 

and aerosol vertical profile shape contribute some systematic bias. 

Even with a model that perfectly simulates the distribution of aerosols, calculating AOD is 20 

subject to additional uncertainties in aerosol size distributions, hygroscopic growth factors 

refractive indices and aerosol density. Our uncertainty analysis involving a series of sensitivity 

tests in FlexAOD indicates that for SNA, the uncertainties in size distributions contribute most to 
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uncertainty in the derived PM2.5 (32%), followed by the hygroscopicity parameter κ (11%), 

refractive index (9%), and aerosol density (5%). For OC, size distribution is also the largest source 

of uncertainty in the derived PM2.5 (32%). Despite the large uncertainty of the hygroscopicity of 

OC, its impact on the satellite-derived PM2.5 is negligible (2%), even smaller than uncertainties 

associated with the refractive index and aerosol density (6% each).  5 

Based on this uncertainty analysis, we identify opportunities and directions to develop the 

applications of satellite-derived PM2.5 using the geophysical approach, especially at finer spatial 

and temporal scales. Van Donkelaar et al. (2016) found that calibration with ground-based PM2.5 

measurements improves the performance of satellite-based PM2.5 at the annual scale, although 

such calibration is more challenging at short time scales (van Donkelaar et al., 2012). As the 10 

uncertainties in satellite-derived PM2.5 reflect multiple factors, calibration targeting specific 

sources of uncertainty would help further refine the geophysical approach. Additional collocated 

measurements of both PM2.5 and AOD would be valuable to further evaluate the relationship 

between surface PM2.5 and satellite AOD (Snider et al. 2015). Routine measurements of aerosol 

vertical profiles would aid uncertainty attribution and likely lead to improved models and thereby 15 

reduce the overall uncertainty in satellite-derived PM2.5. Quantifying source-specific uncertainties 

would not only facilitate future model improvement, but more importantly, benefit applications of 

the satellite-derived PM2.5 products to health studies. 
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Tables 

Table 1: Optical properties used to calculate AODCMAQ in FlexAOD. Values in square brackets 
represent the range of uncertainties for each parameter, which we used for in FlexAOD 
sensitivity tests to quantify their impacts on the satellite-derived PM2.5.  
 5 

 Sulfate OC BC Sea Salt Dust 
Modal radius a 

(r0, µm) 
0.11b [0.05 c ~ 
0.15] 

0.09b [0.02 d ~ 
0.12c] 

0.02b 0.40b  

Geometric standard 
deviation a 

(n_g) 

1.6b  1.6b  1.6b  1.5b  

Aerosol density (⍴, 
g/cm3) 

1.7 b [1.65, 1.83]e 1.3b [1.2, 1.78]f 1.0b 2.2b  

Refractive Index 
(m) at 550 nm 

1.53g [1.43d, 
1.6c] – i0.006 g 

1.53g [1.37, 
1.65]h – i0.008 

1.75 – i0.44g 1.5 – i10-8 g 1.53 – 
i0.0055g 

Hygroscopic 
growth factor 

(f) at RH = 90% 

1.77 [1.58, 1.96]i 1.24j [1.0k, 
1.41j] 

1.4d 2.4d 1.0d 

1.8d 1.6d 1.4d 2.4d 1.0d 
5.1k 1.0k 1.4d 2.4d 1.0d 

Note: 
a. Assuming log-normal distributions for all aerosol species except for dust. The effective radius is 

calculated as: rÑ = rge
(32Üá

2àâ).   
b. Drury et al. (2010). 
c. Highwood et al. (2009).   10 
d. Chin et al. (2002) 
e. Sarangi et al., (2016) 
f. Park et al., (2006) 
g. OPAC (Hess et al., 1998) 
h. Moise et al., (2015)  15 
i. κ parameter (Petters and Kreidenweis, 2007). The hygroscopic factor (f) is calculated as: f RH =

(1 + κ éè
Xgg-éè

)X/H following Snider et al. (2016), where κ = 0.53 in the default run, κ = 0.33 for 
the low end, κ = 0.72 for the high end.  

j. Calculated from κ parameter equation, where κ = 0.1 in the default run, κ = 0.2 for the high end 
(Jimenez et al., 2009; Duplissy et al., 2011). 20 

k. Empirical hygroscopic growth factors used by the revised IMPROVE algorithm (Hand and 
Malm, 2006) to calculate light extinction (http://vista.cira.colostate.edu/Improve/the-improve-
algorithm/). The revised IMPROVE algorithm assumes no hygroscopic growth for OC.  



 44 

Figures 

 

Figure 1 Summertime (JJA) average: (a) MAIAC AOD (AODMAIAC); (b) satellite-derived PM2.5 
(PM2.5_MAIAC); (c) CMAQ model AOD (AODCMAQ); (d) CMAQ model PM2.5 (PM2.5_CMAQ); (e) 
CMAQ modeled PM2.5/AOD (PM2.5_CMAQ/AODCMAQ) ratio overlaid with ground-based 5 
observations (AERONET, AQS, co-located AERONET and AQS sites) over the Northeast USA 
with zoom-in maps over the New York City region in the upper left corner. (f) Density plot of AOD 
showing the distribution of MAIAC, CMAQ and AERONET observed AOD sampled at 
AERONET sites. (g) Density plot of PM2.5 showing the distribution of satellite-derived, CMAQ 
and AQS observed PM2.5 sampled at AQS sites.  10 
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Figure 2 Regional 10-day running average of (a) MAIAC AOD (AODMAIAC, blue); (b) CMAQ 
modeled PM2.5/AOD relationship (PM2.5_CMAQ/AODCMAQ, red); and (c) satellite derived PM2.5 
(PM2.5_MAIAC, green). The numbers on the upper left corner show the Pearson correlation 
coefficients (R) of PM2.5_MAIAC with PM2.5_CMAQ/AODCMAQ (red) and AODMAIAC (blue). 5 
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Figure 3 Distribution of normalized biases of AODMAIAC evaluated at 52 AERONET (including 
DRAGON, only available for JJA) sites in four seasons of 2011 over the Northeast USA using 
daily MAIAC AOD at 1 km resolution, 10 km resolution, and monthly average MAIAC AOD 5 
composite (only including days when both satellite and AERONET measurements are available) 
at 1 km resolution. The box shows the quantile range (IQR) while the whiskers extend to show the 
rest of the distribution with outliers (points that are either 1.5×IQR or more above the third quantile 
or below the first quantile) removed. The red triangles show the seasonal mean normalized biases. 
Note that the normalized bias is an asymmetric metric, where model overestimates are unbounded 10 
whereas model underestimates are bounded by -100%, therefore the mean of normalized biases is 
typically higher than the median of the normalized biases. 
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Figure 4 As in Fig. 3 but for daily PM2.5_CMAQ, AODCMAQ, and PM2.5_CMAQ/ AODCMAQ in each 
season of 2011 evaluated at 11 co-located AQS-AERONET sites over the Northeast USA.  
  

 5 
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Figure 5 (a) Box plots comparing the distribution of biases in daily PM2.5_MAIAC due to 
observational uncertainties in AODMAIAC (green, ∆PM2.5_AOD) versus model uncertainties in 
PM2.5_CMAQ/AODCMAQ (blue, ∆PM2.5_Rel), evaluated consistently at 11 co-located AQS-AERONET 
sites over the Northeast USA. (b) Pearson correlation coefficient between the biases in daily 5 
satellite-derived PM2.5 (∆PM2.5_MAIAC, evaluated with AQS observations) and the biases in 
PM2.5_AOD attributed to observational uncertainties in AODMAIAC (∆PM2.5_AOD) versus model 
uncertainties in PM2.5_CMAQ/AODCMAQ (∆PM2.5_Rel). ∆PM2.5_AOD is calculated by multiplying the 
biases of AODMAIAC with daily modeled PM2.5/AOD relationships (Eq. (8)). ∆PM2.5_Rel is 
calculated by multiplying the modeled PM2.5/AOD biases with daily AODMAIAC (Eq. (9)). The red 10 
triangles show the seasonal mean biases. 
 
 

 

  15 
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Figure 6 (a) Seasonal average PM2.5 speciation from CMAQ vs. AQS observations in 2011 
evaluated at 54 CSN and IMPROVE sites. (b) Box plots showing the distribution of estimated 
biases of daily satellite-derived PM2.5 due to model biases in PM2.5 speciation (∆PM2.5_spe) by 
season for 2011. Red triangles show the seasonal mean biases. (c) Pearson correlation coefficient 5 
between the biases in PM2.5_MAIAC (∆PM2.5_MAIAC) and ∆PM2.5_spe.  
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Figure 7 Campaign-mean vertical profiles of: (a) aerosol composition, (b) total mass 
(SNA+OC+BC), and (c) extinction from CMAQ vs. observations from the DISCOVER-AQ 2011 5 
Baltimore-Washington D.C. campaign. (d) Campaign-mean vertical profile of the model-to-
observation ratio of extinction (RatioEXT), total aerosol mass (RatioMass) and RatioEXT/RatioMass. 
Aircraft observations are first aggregated to match model layers, and corresponding model values 
are sampled concurrently with the time of observations. CMAQ modeled extinction is estimated 
with FlexAOD using the default parameters in Table 1. The shading in (b) and (c) shows the 10 
standard deviation of the day-to-day variability.  
  



 51 

 

Figure 8 (a) Campaign-mean vertical profiles of extinction calculated from CMAQ speciated 
aerosol fields using FlexAOD, and that calculated by replacing modeled speciated aerosol mass 
(Mass), total column mass (Column), vertical profile shape (Profile), total mass extinction 
efficiency (MEE), relative humidity (RH) with that observed during DISCOVER-AQ 2011 5 
Baltimore-Washington D.C. campaign. EXTamb is the aircraft observed vertical extinction profile. 
(b) Box plots of the distribution of biases of PM2.5_MAIAC attributed to each factor shown in (a), 
and the biases of PM2.5_MAIAC attributed to modeled PM2.5/AOD (Rel). Red triangles show the 
mean biases. (c) Pearson correlation coefficient between the biases in modeled PM2.5/AOD 
relationships and the biases in modeled PM2.5/AOD attributed to individual factors shown in (b).  10 
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Figure 9 (a) DJF and (b) JJA average vertical profiles of the CMAQ modeled versus observed RH 
at 6 atmospheric soundings over the Northeast USA, and the modeled extinction versus that 
calculated by replacing modeled RH with observed values. The gray area shows the difference in 
extinction two profiles, with the total area being the difference in AOD. (c) Box plots showing the 5 
impacts of model bias of RH on the derived PM2.5_MAIAC (∆PM2.5_RH) in four seasons of 2011, 
which are calculated by comparing the PM2.5_MAIAC minus the one calculated using observed RH. 
(d) Box plots show the influence of model RH biases on the derived PM2.5_MAIAC (∆PM2.5_RH) as a 
function of observed near-surface RH.   
  10 
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Figure 10 Uncertainties in annual average satellite-derived PM2.5_MAIAC due to uncertainties of size 
distribution, hygroscopicity, refractive index and aerosol species density of sulfate-nitrate-
ammonium (SNA; blue) and organic carbon (OC; green) sampled over AQS sites. The circle shows 5 
the annual average satellite-derived PM2.5_MAIAC using the default parameters to calculate 
AODCMAQ in FlexAOD (Table 1). The error bars represent the range of PM2.5_MAIAC using different 
values for each parameter. The labels indicate the corresponding minimum or maximum parameter 
values that produce the range shown in PM2.5_MAIAC. The horizontal line at 15 µg/m3 indicates the 
annual average PM2.5_MAIAC calculated using default values for each aerosol optical property in the 10 
base FlexAOD.  
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