Anonymous Referee #1

Review of "Open fires in Greenland: an unusual event and its impact on the albedo of the Greenland Ice Sheet" by N. Evangeliou and co-authors. General comments.

N. Evangeliou and co-authors present a paper dealing with the atmospheric emission of black carbon by peat fires in Greenland during an extreme event in August 2017. They estimate the total amount of BC released in the atmosphere and its impact on the atmospheric radiative balance and snow albedo. The authors conclude that none of those impact are really significant. I found the paper lacking a focused scientific objective and finally it will have a limited interest for the scientific community. The methodology is sound but many of the assumptions must be clarify. The validation exercise is too qualitative while the dataset can be used for quantitative assessment. The conclusion that peat fire in Greenland could be of a significant importance for climate is not really supported by the findings of this paper.

Response: We agree that the methodology and parts of the discussion needed lots of improvement and we have made substantial effort with numerous changes in all parts of the manuscript according to both reviewers' suggestions (please see manuscript with Track Changes).

However, we do not agree with this description of our work. The validation is qualitative because no direct measurements of BC concentrations exist from this event occurring in a particularly data-sparse region, and also few satellite data document the event. The only data we found are Lidar data from CALIPSO that confirmed the presence of the plume where our model predicted it. Could the reviewer suggest, in concrete terms, which dataset could be used for quantitative assessment?

The reviewer says, "The conclusion that peat fire in Greenland could be of a significant importance for climate is not really supported by the findings of this paper." This is NOT a conclusion, but a logical probability, considering that 25% of Greenland's surface is permafrost that is rich in peat. We now show this more clearly in the updated version of our manuscript. In addition, NASA's satellites show an increasing trend of fires in thawed permafrost over Greenland (<u>see new supplementary figure S1 or attached</u> Fig. R1) and our simulations showed that 30% of the emissions were deposited in the Greenland Ice Sheet (Lines 388-391).

We disagree with the comment of the reviewer that this paper will have a limited interest for the scientific community. We present some statistics from the ACP Discussions website.

In the Discussions page of the journal (<u>https://www.atmos-chem-phys-discuss.net/discussion_papers.html</u>), at the time that we started writing this response (22-05-2018), there are 30 papers in open discussion (ACPD) that were published the same time as ours (March 2018). If we calculate the average views and downloads we get **302±100 (min: 199 – max: 570)**, while our paper's visibility is **293**.

Furthermore, although media coverage does not converge with scientific quality, the present study was selected for a press conference on "Shape of things to come? The 2017 wildfire season" during the EGU 2018 conference (https://client.cntv.at/egu2018/pc5).

Specific comments.

Abstract

Line 43. Your conclusion doesn't support this fact and it's not scientifically based. **Response**: Line 43 states "If the expected further warming of Greenland produces much larger fires in the future, this could indeed cause substantial albedo changes and thus lead to accelerated melting of the Greenland Ice Sheet." This sentence is NOT a conclusion, but a logical hypothesis (if). We have slightly rephrased the sentence, so it now reads: "If the expected future warming of the Arctic produces more fires in Greenland, this could indeed cause albedo changes and thus contribute to accelerated melting of the Greenland Ice Sheet." Finally, in order to prove that this is not pure speculation but a solid hypothesis, we support it with references (see last paragraph in conclusions).

Introduction.

The introduction is missing a comprehensive literature review on Arctic peat ecosystem and fire occurrence to better understand why those particular fires have been studied. **Response**: We have focused our introduction on peatlands and fires in Greenland and think that a more comprehensive literature review on Arctic peat ecosystems in general is out of scope of this paper. After all, this paper studies the impact of fires in Greenland on BC concentration and deposition in Greenland, not on future scenarios of fire occurrence, permafrost melt or such.

Line 83-84. Provide evidence of the significance of this event compared to other events. **Response**: Our statement that "... the fires ..., probably represent the largest fires that have occurred on Greenland in modern times.", is now supported by a new plot of the number of MODIS active fire detections (MODIS MCD14DL) over Greenland (<u>see new</u> **supplementary Figure S1 or attached Fig.R1**).

Method

L89-118. This section is very important as it is the starting point for the estimation of the BC amount released by fires. However the methodology used (eg. which sensor, when, spatial resolution, who and how has done the estimation, . . .) is unclear. On Line 241, we can read that the burnt surface area comes from GlobeCover 2009. So finally, what is your point?

<u>Response</u>: Line 241 has been corrected. We appreciate the reviewer for this constructive comment.

As regards to the methodology, we have done a few corrections to explain better what has been done, also giving specifications of the products we used (lines 97-99). In our opinion, detailed explanations on the calculations are not needed, since the method has been already published in the relevant literature and used in many other previous cases. As we explain in the manuscript, the burned area was mapped using severity levels of dNBR index. The methodology of its application is described in details in Lutes et al. (2006) (pp. 201-270), which is **attached**. There is another paper describing how dNBR was calibrated in field - Escuin et all, 2008 (see reference in the manuscript). Since the index is sensitive to any disturbances, we applied a manually delineated fire perimeter to increase the accuracy of mapping.

You should rewrite this section with a detailed comment of Table 1 and explain how it compares to active fire mapping. Line 118 needs clarification based on quantitative information.

<u>Response</u>: Line 94 explicitly says that the location of the active fires were downloaded from NASA's website. So, what is shown in Table 1 has been confirmed with NASA's active fires (also shown in supplements' Figure S1 and attached Fig.R1).

Regarding to the severity levels (Line 118), qualitative information is given in Key and Benson (2006) together with all the details of the methodology used. The same methodology has been used to map the Chernobyl fires (see: Evangeliou et al., 2014; 2015; 2016)

The comment to confirm Line 118 based on quantitative information is too generic and we do not really understand what the reviewer wants us to do.

L155 Explain how you get this number and provide a range of possible values **Response**: Line 155 says "In contrast, tropical peatlands can have deep burn depths of 40–50 cm and release an average of 300–450 t C ha⁻¹ (Page et al., 2015; Reddy et al., 2015)."

It should be obvious that this range of values was reported by Page et al. (2015) and Reddy et al. (2015).

If the reviewer means the average amount of organic fuel available for combustion that we used for the Greenland fires (100 t C ha⁻¹), it has been taken from Smirnov et al. (2015). In this paper, it was assumed that for peat-bog fires, the average amount of fuel available for combustion (including the soil organic matter) is up to 120 t/ha supported from measurements from IPCC (2006).

L180. Provide reference for BC density and size distribution. Peat fires emits large amount of organic carbon. The possible impact of the mixing state of BC and POM on aerosol size distribution, optical properties and residence time should be discuss in this paper.

<u>Response</u>: We agree that fires also emit large quantities of organic carbon (OC). However, the impact of OC on the albedo of the ice sheet is probably small, although it probably enhances the BC effect, since OC can also be slightly absorbing (e.g., brown carbon). But given the lack of information on the optical properties of the emitted OC, we think an additional analysis of OC would not be very meaningful.

With respect to BC density and size distribution, a reference was added in Line 214 of the updated manuscript. We have now also performed a sensitivity study on the impact of different particle size distributions on the deposition of BC over Greenland's Ice Sheet and discuss it in section 3.2. A detailed analysis of residence times of BC has been already presented by Grythe et al. (2017) [reference in the manuscript] and in Evangeliou et al. (2018) [reference under editorial check in ACP Discussions].

L200 and discussion section 3.3

The apportionment between emission from peat fires and other sources remains unclear for me. The methodology is not same as the one use for assessing impact of peat fire. The figure 4 is not really useful while other figures are in the supplement material. **Response**: Lagrangian models such as the one used in our work (FLEXPARTv10) can run forward in time (like CTMs or climate models) using specific emissions that can be taken from an existing inventory (for example ECLIPSE, see: http://www.iiasa.ac.at/web/home/research/researchPrograms/air/Global_emissions.html). Moreover, Lagrangian models have the advantage that they can also run backward in time, from a specific point or region for which the user wants to calculate concentrations. What is produced then is the footprint emission sensitivity (or footprint), which is simply the residence time of the computational particles (in sec) in each grid-cell of the model. Then, by multiplying this footprint with a given emission inventory (e.g. ECLIPSE) given in kg/m²/s and dividing with the altitude of the lowest vertical level in the model, one obtains surface concentrations again. Notice that forward and backward calculations are equivalent, so the methodology is not different. However, depending on the setup, the computational efficiency can be much higher in backward mode, and that is also the reason we used it to assess the impact of emissions outside Greenland.

For FLEXPART that we used in this study, a comparison between forward and backward simulations can be found in Seibert and Frank (2004).

We calculate average concentrations of surface BC in four compartments of Greenland based on ECLIPSE emissions. ECLIPSE includes all anthropogenic sources, while we calculate biomass burning emissions using global MODIS-satellite hot spot data (Giglio et al., 2016) and GFAS (references in the manuscript). Everything is well documented in the associated references.

Figure 4 has been replaced by Figure S4 as suggested.

L204 and section 4.2

The methodology and the discussion section on RF computation must be improved and clearly states how you deal with both surface albedo and atmospheric effect of BC on the radiative balance. Figure 7 is confusing as it deals with both BOA, TOA, time series and geographical distribution as the same time.

Response: We have re-written and re-structured the whole chapter, both in the Methodology and analysis of the Results (see manuscript with Truck Changes). Our perception is not to present in detail methods that have been documented in previous publications. For RF calculations we used the uvspec model from the libRadtran radiative transfer software package (http://www.libradtran.org/doku.php) (see references in the manuscript: Emde et al., 2016; Mayer and Kylling, 2005). Snow albedo was calculated with the SNICAR model (http://snow.engin.umich.edu/info.html) in a two-layer configuration (see references in the manuscript: Flanner et al., 2007, 2009). These are open source codes that have been used by many groups worldwide. Figure 7 has been improved as suggested.

L218 and section 4.1 along with Figures 5 and 6. The validation exercise is really too qualitative and based on visual inspection of satellite data that are not really used scientifically. AERONET data can provide detailed information on aerosol optical properties and radiative forcing. CALIOP data products give aerosol extinction profiles which can be used in the RF computations.

<u>Response</u>: The reason the validation exercise is so qualitative is that we have no clear observations of the Greenland fire plume. The AERONET data show impacts of the forest fires burning outside Greenland. Only at one site, the AERONET data show an AOD increase that is partly (but not exclusively) due to the Greenland fires.

L466 Your last bullet point is rather speculative and not supported by the findings of the paper.

<u>Response</u>: This is true and we have now corrected it. The last bullet is NOT ALL OF IT a conclusion, but rather a comment and therefore, we now show it as a comment (not bulleted) below the bullet. We further support what we say in the sentence with references.

REFERENCES

- Lutes, Duncan C.; Keane, Robert E.; Caratti, John F.; Key, Carl H.; Benson, Nathan C.; Sutherland, Steve; Gangi, Larry J. 2006. FIREMON: Fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-164-CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. (ATTACHED)
- Key, C. H. and Benson, N. C.: Landscape assessment: Sampling and analysis methods, USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-164-CD, (June), 1–55, doi:10.1002/app.1994.070541203, 2006.
- Evangeliou, N., Balkanski, Y., Cozic, A., Hao, W. M. and Møller, A. P.: Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: A new nuclear disaster about to happen?, Environ. Int., 73, 346–358, doi:10.1016/j.envint.2014.08.012, 2014.
- Evangeliou, N., Balkanski, Y., Cozic, A., Hao, W. M., Mouillot, F., Thonicke, K., Paugam, R., Zibtsev, S., Mousseau, T. A., Wang, R., Poulter, B., Petkov, A., Yue, C., Cadule, P., Koffi, B., Kaiser, J. W., Møller, A. P. and Classen, A. T.: Fire evolution in the radioactive forests of Ukraine and Belarus: Future risks for the population and the environment, Ecol. Monogr., 85(1), 49–72, doi:10.1890/14-1227.1, 2015.
- Evangeliou, N., Zibtsev, S., Myroniuk, V., Zhurba, M., Hamburger, T., Stohl, A., Balkanski, Y., Paugam, R., Mousseau, T. A., Møller, A. P. and Kireev, S. I.: Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment., Sci. Rep., 6, 26062 [online] Available from:

http://www.nature.com/srep/2016/160517/srep26062/full/srep26062.html, 2016.

- Smirnov, N. S., Korotkov, V. N. and Romanovskaya, A. A.: Black carbon emissions from wildfires on forest lands of the Russian Federation in 2007–2012, Russ. Meteorol. Hydrol., 40(7), 435–442, doi:10.3103/S1068373915070018, 2015
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4: Agriculture, Forestry and Other Land Use (IPCC, 2006) [in Russian].
- Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4(1), 51–63, doi:10.5194/acp-4-51-2004, 2004.
- Giglio, L., Descloitres, J., Justice, C. O. and Kaufman, Y. J.: An enhanced contextual fire detection algorithm for MODIS, Remote Sens. Environ., 87(2–3), 273–282, doi:10.1016/S0034-4257(03)00184-6, 2003.

Anonymous Referee #2

General comments :

This work investigates the quantification of emissions of black carbon (BC) from intense fires on peat lands in Western Greenland during summer 2017 and their impacts on albedo reduction and radiative forcing. The authors conclude that those impacts of BC deposition of the Greenland Ice Sheet are almost negligible, which turns out to be a scientific result for the community. This study is interesting and sound for ACP. I have nevertheless several criticisms requiring a careful and revision and in-depth improvements both in the methodology, often unclear, and in the discussion of the results before the paper is suitable for publication in ACP.

Response: We acknowledge the reviewer's comments and his effort to improve this manuscript. We have tried to follow his suggestions to correct the manuscript and have basically re-written parts of the manuscript (please see manuscript with Track Changes).

Specific comments :

L1-2 : The title seems to indicate that the main focus of the paper is the quantification of the reduction in albedo due to open fires in Greenland. Only ten lines in the paper really focus on the modification of the albedo due to BC deposition. The title should reflect the main findings of the paper : quantification of BC emissions of this unusual event, transport of the plume, deposition.

Response: We agree; we have changed the title to "Open fires in Greenland in summer 2017: transport and deposition of BC and impact on the Greenland Ice Sheet"

L41-44 and L496-500 : I find a bit strange to conclude both abstract and conclusion by something purely speculative and that does not match the main results of the paper. **Response**: We admit that this is probably an extreme formulation and we have changed it to a weaker statement. We would like to draw attention that this statement is not a conclusion, but a logical hypothesis. To further show that it's not a conclusion, we now support the paragraph with references (see last paragraph in conclusions).

L83-84 : "the largest fires". Give maybe statistics or cite a climatological study to support this assertion.

<u>Response</u>: We have plotted the annual number of active fires from NASA's MODIS product in supplements' Figure S1 (or Fig.R1) starting from first year that satellite data were available (2001).

L111 : The authors should give more details about the procedure applied on the data. "Additional classification" is too vague. **Response**: The statement has been removed!

L130 : "assuming a 6h persistence". How is this hypothesis justified ? Is it confirmed b observations or by other studies ?

<u>Response</u>: Well, this is confirmed by previous studies (Kaiser et al., 2012 – reference in the paper). We chose a persistence model similar to what is done in Kaiser et al. (2012) and used a time of the same order of magnitude with the mean return time of MODIS in the afternoon (peak time of fire) ~ 4h. For a description of the persistence model that was used, please see line 8 - page 9852 of Paugam et al. (2015).

L161 : Say clearly that the only variable computed in this study from measurements is the burned area A. The other factors are based on assumptions or provided by previous studies.

<u>Response</u>: Corrected. This is now explicitly mentioned in Line 184.

L181 : Those values suggest that aerosols are not only composed of BC (which is a reasonable assumption). How do the authors justify this size distribution ? It has indeed a huge influence on the deposition efficiencies (both sedimentation and wet removal) and on the calculation of aerosol optical properties. Both the radiative forcings and reduction of albedo on snow surfaces will be sensitive to this assumption on the size distribution. I suggest that the authors perform a sensitivity study on the influence of those parameters.

<u>Response</u>: After rapid coagulation, more than 90% of the mass of BC after fires is present in sizes between $0.1 - 1 \mu m$ in the atmosphere. This has been highlighted by many experiments/measurements and is now well justified in section 3.2.

However, we have followed the suggestion of the current reviewer and performed a sensitivity study using different size distribution of the BC particles produced from the 2017 fires in Greenland and we calculated the uncertainty on the deposited mass of BC due to different size distribution. We present and discuss the results at the end of section 3.2. The effect of different size distribution on residence times has been already studied by Grythe et al. (2017) [reference in the manuscript] and the different deposition coefficients in Evangeliou et al. (2018) [reference under editorial check in ACP Discussions].

The calculated uncertainty from this sensitivity test ranges from 10%-30% in 86% of the Sheet's surface to up to 50% in the rest of the Sheet's surface.

L200 : "a simple emission scheme". What does it mean? Why don't the authors use the same methodology for all fires ?

<u>Response</u>: We appreciate reviewer's comment here. This was a typo error and we have updated this part of the methodology.

L200-201 : Those emission factors should depend on the type of soil and vegetation. Which maps have been used here ? Which values for emission factors have been finally chosen ? The reader should be able to reproduce the results of this study ; without such assumptions, it is impossible.

<u>Response</u>: Corrected; See previous comment.

Sect. 2.4 : Do the authors calculate radiative forcing assuming refractive index of BC only? The choice of the refractive index should be done in accordance with the size distribution (L181), which probably reflects an internal mixture of aerosols. **Response**: The radiative forcing was calculated using the refractive index of BC only. We agree with the reviewer that BC was likely present as an internal mixture with other aerosol components (especially OC). However, we did not simulate OC and therefore used only the refractive index of BC. This will lead to an underestimation of the atmospheric effects of BC, since internal mixing with OC will likely enhance the BC absorption, and there may also be other absorbing components in the aerosol. However, we think that as an order of magnitude estimation of the atmospheric effects, our

assumption should be sufficient. Furthermore, the more important impact of BC on the albedo is less (or not) sensitive to the mixing state of the aerosols.

L226 : "we display" : where ? **Response**: We substituted 'display' with 'used'.

L292 : "a small portion of the emitted BC". Please quantify it. **Response**: We have quantified the portion that lifted up in this particular day (≈516 kg).

L334 : "due to the generally dry weather when the fires were burning". It can be also ascribed to the fact that dry deposition mostly occurs in the quasi-laminar sublayer close to the surface. Aerosols are quickly deposited close to the sources before being injected at higher altitudes and being transported away from sources. **Response**: Thanks for this comment. We have included it in the manuscript.

L365 : "the anthropogenic contribution is larger". For the sake of clarity, the authors might write that the anthropogenic is relatively larger in Southern Greenland in contrast to Northern Greenland but remains lower than the biomass burning contribution. **Response**: Comment was added to the manuscript.

L367 : "the BC concentrations that are calculated here for the studied fire period are relatively high compared to those reported previously". I am not sure this is always true. The authors should also quote more recent studies, e.g. Polashenski et al. (2015), Legrand et al. (2016) or Thomas et al. (2017), who have reported higher events of biomass burning BC deposition over Greenland. If the BC deposited on snow/ice surfaces is much larger in those studies, it also suggests higher surface BC concentrations.

<u>Response</u>: We thank the reviewer for providing the references and have added them to the previous section. Please see Line 425-426 for Polashenski et al (2015) and Legrand et al. papers.

However, the Thomas et al. paper is using another unit (g/m^2) and without knowing the density of the samples no conversion to ng/g (units used in the present) can be applied.

L378 and L389 : "dosages". Do you mean concentrations / mixing ratios ? **<u>Response</u>**: They are dosages of concentrations. It is now explained in the last paragraph of section 3.3 and in the caption of the respective Figure.

L397-398 : BC particles are probably not the main contributors to AOD in this region for two reasons : the BC loadings are rather low in comparison to other aerosol compounds and the diameter of BC-containing particles is much smaller than the wave- length (0.5 um). A better proxy of the temporal evolution of the integrated BC would be the absorbing AOD (AAOD), which is also often provided at AERONET stations. The AAOD/AOD would be also a good indicator of the contribution of BC to the total AOD (even if BC is not the only absorbing component). This should be shown on Fig. 5. **Response:** The reviewer has a very good point here and we tried to retrieve AAOD data as he suggested.

Though in Kangerlussuaq and Thule no AAOD Level 2 data are available for July-September 2017, while in Narsarsuaq AAOD Level 2 data are available for 2 September 2017 (when the fires had been already extinguished). In Andrews et al. (2017) paper is stated that "One obvious limitation of the AERONET inversion retrievals is that the uncertainty of the derived SSA becomes very large at low values of AOD (Dubovik et al., 2000). To minimize the effects of this uncertainty, the AERONET Level 2 data invalidate all absorption-related values if the AOD at wavelength 440 nm (AOD440) is below 0.4 (Dubovik et al., 2000, 2002; Holben et al., 2006)." In page 6043 of the same paper it is stated that "It should be noted that AERONET does not recommend the use of absorption-related parameters (e.g., SSA, AAOD and complex index of refraction) at AOD440 below 0.4." In our case, except for the characteristic peak of AOD that is attributed to the N. American fires, all the other AOD values were below 0.4.

Sometimes researchers use AAOD LEV 1.5 data, but these get high uncertainty (see Andrews et al, 2017). In page 6051 of the Andrews et al. (2017) paper is also stated that "Using the sum-of-squares propagation of errors to calculate the uncertainty in AAOD for both high and low AAOD cases results in an AAOD uncertainty of approximately 0.015 for both high- and low-AOD cases ... An AAOD uncertainty value of 0.015 suggests an uncertainty of about 60% in AAOD for AOD440 D0.5 and more than 140% uncertainty in AAOD for AOD440 < 0.2."

Therefore, we do not think that these uncertain LEV1.5 AAOD measurements should be plotted instead of AOD here. However, if the reviewer or the editor disagree, we have retrieved them and we could use them in a next step. Besides, we only used AOD as an indicator for the presence of the plume, and for that purpose it should be sufficient.

L401-407 : How do the authors explain the significant AOD enhancement at the beginning of September observed at Narsarsuaq station ?

Response: As the reviewer can see, in the attached **Fig.R2** we present the biomass burning BC from GFAS (upper panel) in the beginning of September and the footprint emission sensitivity from the Narsarsuaq station (bottom panel) on September 3rd. We observe that the highest footprint emission sensitivity is located exactly at the place where GFAS emissions are the highest (Canada). Therefore, we have a clear indication that the increase that the reviewer mentioned is due to the Canadian wildfires.

L422 : "was not studied". Does it mean that the transport of those North American fire plumes was not correctly captured by FLEXPART ? It is indeed impossible to see on Fig. 6d as the vertical scale is not appropriate.

<u>Response</u>: Here, we wanted to state that the existence of the N. American fires in the attenuated backscatter measurements that we get from CALIOP was not further studied. The study of the N. American fires is beyond the scope of this paper. We have used a better formulation in the manuscript now.

Sect. 4.2 : The authors should remind that they calculated only the forcing due to the Greenland fires, which is itself small compared to the North American or Eurasian fires. It should also be said explicitly that the calculated radiative forcing values does not include semi-direct nor indirect effects, which may be dominant here. **Response**: We have rewritten the first part of the section to include the information requested by the referee.

L436 : "cloudless conditions". I do not understand the purpose of this. It is only an ideal simulation, which is not commented in the paper afterwards. What does it bring to the discussion ?

Response: The IRF for cloudless conditions is compared against IRF including clouds in the subsequent lines. IRF for cloudless conditions was included, as they show the potential maximum effect of the forcing. The results presented show that the clouds reduce both the TOA and BOA IRF.

L440-442 : It is not clear if the given values refer to the total radiative forcing of BC. What are the relative contributions of the direct radiative forcing of BC and of the radiative forcing of BC deposited on snow surfaces ? The authors also give the values without any uncertainty, but a lot of assumptions have been done to retrieve the BC emissions, the BC size distribution, the BC optical properties. Each of those hypothe- sis would lead to a range of values of IRF.

<u>Response</u>: The given values refer to the total instantaneous radiative forcing, that is including both the effect of atmospheric BC and BC deposited on the snow. The latter dominates the IRF contributing between 85 to 99 % depending on BC amount. This has been clarified in the manuscript.

The composition of the BC from the fire is not known. Hence average BC optical properties were adopted. We have subsequently performed an uncertainty analysis using realistic variations in BC optical properties. This uncertainty analysis is included in the supplementary material and referred to in the manuscript.

We have also performed a sensitivity study and estimated the uncertainty of the BC deposition over Greenland due to the use of different size distribution of BC particles (see answer to previous comments).

L 442: "Fig 7c depicts the temporal behaviour..." Does it represent calculations in cloudy conditions ?

<u>Response</u>: It is the cloudy conditions that are shown. This information has been added both in the text and the figure caption. The temporal behaviour is shown in Fig 7d. This typo has been corrected as well.

L443-444 : I don't see how this information (blue line) can be useful. The location of the pixel where the maximum IRF is found likely varies with time. Besides the analysis of this figure is not done in text. I recommend to remove it.

Response: We have removed the blue line from the plot. The idea of plotting the TOA max IRF was to show that the single pixel maximum and area averaged RFs peak at different times. However, we agree with the reviewer that this information was perhaps not so useful.

L448-455 : If the authors want to be able to compare their results to global studies, as it is done here, they need to multiply the value of RF by the area of the simulation domain to obtain a forcing value in watts, and then divide it by the surface area of the Earth to obtain an equivalent global radiative effect in mW/m2 that could be compared to results for global studies.

Response: The cited value from Skeie et al. (2011) is not a global value, but a value representative for the Greenland ice sheet (Fig 17 of Skeie et al., 2011). It is this value we are comparing against. The values from Myhre et al (2013) are included in order to give the reader a global value to compare against. This has been clarified in the text. It is clear that, on a global scale, the obtained RF values are negligible.

L453-455 : What about the impact of North American and Eurasian fires, whose plumes reach Greenland during the studied period ?

Response: These plumes are not the focus of the present study. Similar plumes have been studied before, so we don't think focusing on these plumes would provide a lot of new information beyond what has been published before. More technically, we only estimate the impact of these plumes using backward calculations, whereas RF calculations would require forward calculations. We think this is out of scope of the present paper.

What we have done, instead, is to calculate the impact of the N. American fires in the surface concentrations of BC over Greenland (see section 3.3). This proved that the BC concentrations from the N. American fires in August 2017 are more than 1 order of magnitude higher compared with those produced from the Greenland fires of August 2017 (see updated Figure 4).

L456-457 : What is the albedo reduction due to BC deposition that can be ascribed to Greenland fires / to fires outside Greenland / to anthropogenic sources ? If the goal of the paper is indeed to focus on the impact of the Greenland fires, quantifying this effect and comparing it to the relative contribution of the different sources would be really valuable for the paper. The authors should also compare their albedo reduction values to previous studies, e.g. Polashenski et al. (2015).

<u>Response</u>: We now compare our results to those of Polashenski et al. (2015) in section 4.2. The detailed study of the fires outside Greenland and from anthropogenic sources is beyond the scope of this paper. Notice that the albedo effects can't be done on the basis of the backward calculations done for the other sources and would require totally new forward simulations. However, giving the range of surface BC concentrations over Greenland (section 3.3 and Figure 4) is already enough to conclude that the event that we studied in the current paper has minor effects on the albedo or RF compared to BC from the N. American fires or from anthropogenic sources simply because of the different magnitude and duration of these fires.

Sect. 5 : The conclusions may be more quantitative.

For example : L478-479 : the ratio of BC deposition from the different sources can be given

<u>Response</u>: We have not quantified how big the deposition from anthropogenic and biomass burning sources is, and we have removed this sentence from the manuscript.

L481-483 : the AOD enhancement can be precised **Response**: Corrected.

L488 : "albedo change due to the BC deposition". Which sources have been considered ? **Response**: Corrected. It is the albedo change due to BC deposition from the Greenland fire of 2017.

L496-500 : Remove this purely speculative sentence. The opposite could also be said, given the findings of the paper.

Response: These lines state that "The very large fraction of the BC emissions deposited on the Greenland Ice Sheet (30% of the emissions) makes these fires very efficient climate forcers on a per unit emission basis. If the expected future warming of the Arctic (IPCC, 2013) produces more fires in Greenland in the future (Keegan et al., 2014), this could indeed cause substantial albedo changes and thus contribute to accelerated melting of the Greenland Ice Sheet."

We do not understand why this is speculative. A fraction of 30% deposition on the Greenland ice sheet is substantial, much higher than from any other source type and source region, so – on a per unit mass basis – the forcing due to albedo change is efficient, even if it is small overall. The second sentence can perhaps be considered somewhat speculative, but we have now reformulated it and, moreover, we support it with references. Furthermore, it is not presented as a conclusion, so it should be very clear to the reader to what extent this sentence is speculative. We nevertheless consider it important enough to keep it.

The choice of the figures kept in the manuscript is rather strange. Most useful figures relevant for the discussion have been displaced to the Supplementary Material. I recommend to move them to the main paper.

Response: We have moved the figure with the calculated dosages to the manuscript (Fig. 4), as the dosages are discussed more in the text. We have now placed back to the supplements (Fig. S5) the figure of the footprint emission sensitivities that are not the main focus of the paper. We are willing to put more figures in the manuscript in a next step, if the reviewer point into this direction. The only reason for using limited number of figures was that this paper was intended to be short.

Fig. 2a: Are those values averaged over the simulation domain ? over Greenland ? I had hard time to figure out how those values could be realistic. I think there is either a issue with the unit or a mistake in the calculation. Shouldn't it be ng/m3 or ng/kg instead of ug/m3 ? The total concentrations of BC in the domain should be calculated as the volume average of the grid cell concentrations, not the sum over all grid cells in the domain...

<u>Response</u>: We thank the reviewer for this comment that we have now corrected. We now present the average vertical concentrations over Greenland from the 2017 fires in pg/m3 in the updated Figure 2.

Fig 2b : Here again, there is an issue with the unit. The color bar indicates ug/m2 (which is probably right), but the caption says ng/m2. Which one is correct ? **Response**: We also appreciate reviewer's help to correct this mistake. The error was in the legend and it has now been updated.

Fig. 4 : It is extremely difficult to see the colored grid cells an read their values. Please improve the quality of this figure.

<u>Response</u>: Quality of the figures has been set to 300 dpi. This should solve the problem.

Fig. 5 : Does the altitude represent agl or amsl ? The orography in Greenland is not flat. **Response**: It is agl altitude and we now clarify it in the legend.

Fig 5 : Why do you keep the contribution of fires burning outside Greenland but exclude the BC contribution of anthropogenic sources ? According to Fig. 4, their contribution is absolutely not negligible and they might modify the time series of column-integrated BC in Greenland.

Response: We thank the reviewer for this comment. We tried to put also anthropogenic BC in these time-series. Column-ntegrated anthropogenic BC is very low and a stacked

line does not show anything in the time-series and that's the reason that we decided not to present it. We have added a small comment in the legend.

Fig. 6 : it would be better to use the same scale for longitude and altitude on panels (b) and (d).

Response: The reason that we did not use the same scale for longitude and altitude in these two figures is due to the small aerosol structure at high altitudes seen in the CALIOP data. We thought that this is likely due to the N. American fires that were burning at the same time with the Greenland ones. This is visible from the AOD measurements at many of the Greenland stations where large increases in AOD were observed.

In a previous comment for the AOD increase in the Narsarsuaq station at the beginning of September, we provided relevant footprint emission sensitivities and biomass burning emissions from CAMS_GFAS (see Figure R2). They explicitly show that the largest footprint was found in Canada in areas with large biomass burning emissions. However, since we do not study the impact of the N. American fires in detail, the sentences about the presence of N. American fire plumes at high altitudes in section 4.1 are rather speculative and we have removed them. We have also corrected Figure 6, as the reviewer suggested and for this, we acknowledge him.

Fig. 7c : Is the snow albedo reduction plotted for 31 August or for the full period ? **Response**: The snow albedo reduction due to BC deposition from the beginning of the fires until 31 August is plotted in Figure 7c (please see last paragraph of section 4). Legend has also been updated.

Table 1 : This table is not commented nor anlyzed in text. We can notice changes in the sources of RS data at different periods, which should be detailed in the methodology section.

Response: In line 105 we state that we used different RS data to better delineate fire perimeters and define burn severity. Which day each RS tool was used is shown by pointing to Table 1. In addition, discussion of the results presented in Table 1 is presented in section 3.1 and 3.2.

Legrand, M., et al. (2016), Boreal ïn A, re records in Northern Hemisphere ice cores: A review, Clim. Past, 12(10), 2033–2059.

Polashenski, C. M., J. E. Dibb, M. G. Flanner, J. Y. Chen, Z. R. Courville, A. M. Lai, J. J. Schauer, M. M. Shafer, and M. Bergin (2015), Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow zone: Implications for MODIS C5 surfacereïn[°]C'ectance,Geophys.Res.Lett.,42,9319–9327,doi:10.1002/2015GL065912. Thomas, J. L., et al. (2017), Quantifying black carbon deposition over the Green- land ice sheet from forest fires in Canada, Geophys. Res. Lett., 44, 7965–7974, doi:10.1002/2017GL073701.

Technical comments :

L350 : "adopted". Do you mean "adapted" ? <u>**Response</u>**: In this sentence we think that "adopted" fits better. We just used active fires from MODIS; we did not adapt anything.</u>

L394 : Replace "for validating" by "to validate".

<u>Response</u>: Corrected.

L485 : Replace "attenuation" by "attenuated" **Response**: Corrected.

L512 : Please write "Brent Holben" in two words. **Response**: Corrected.

REFERENCES

- Holben, B. N., Eck, T. F., Slutsker, I., Smirnov, A., Sinyuk, A., Schafer, J., Giles, D., and Dubovik O.: AERONET's Version 2.0 quality assurance criteria, http://aeronet.gsfc.nasa.gov/new_web/Documents/AERONETcriteria_final1.pdf, 2006.
- Andrews, E., Ogren, J. A., Kinne, S., and Samset, B.: Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements, Atmos. Chem. Phys., 17, 6041-6072, https://doi.org/10.5194/acp-17-6041-2017, 2017.
- Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.: Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements, J. Geophys. Res., 105, 9791–9806, 2000.
- Paugam, R., Wooster, M., Atherton, J., Freitas, S. R., Schultz, M. G., and Kaiser, J. W.: Development and optimization of a wildfire plume rise model based on remote sensing data inputs – Part 2, Atmos. Chem. Phys. Discuss., 15, 9815-9895, https://doi.org/10.5194/acpd-15-9815-2015, 2015.

Fig. R 1. Annual number of active fires over Greenland during the last 17 years as seen from NASA's MODIS satellite (product MSC14DL).

Fig. R 2. Biomass burning emissions of BC from GFAS (upper panel) in the beginning of September and the footprint emission sensitivity from the Narsarsuaq station (bottom panel) on September 3rd. The highest emission probability fits exactly to the place where the highest emissions occurred.

1	Open fires in Greenland in summer 2017: transport and	Nikolaos Evangeliou 25/5/2018 09:53
2	deposition of BC and impact on the Greenland Ice Sheet	Deleted: Open fires in Greenland: a unusual event and its impact on the albedo of the Greenland Ice Sheet
3		
4	Nikolaos Evangeliou ^{1,*} , Arve Kylling ¹ , Sabine Eckhardt ¹ , Viktor Myroniuk ² ,	
5	Kerstin Stebel ¹ , Ronan Paugam ³ , Sergiy Zibtsev ² , Andreas Stohl ¹	
6		
7	¹ Norwegian Institute for Air Research (NILU), Department of Atmospheric and Climate	
8	Research (ATMOS), Kjeller, Norway.	
9	² National University of Life and Environmental Sciences of Ukraine, Kiev, Ukraine.	
10	³ King's College London, London, United Kingdom.	
11		
12	* Corresponding author: N. Evangeliou (<u>Nikolaos.Evangeliou@nilu.no</u>)	

Deleted: Open fires in Greenland: an unusual event and its impact on the albedo of the Greenland Ice Sheet

17 Abstract

18 Highly unusual open fires burned in Western Greenland between 31 July and 21 August 19 2017, after a period of warm, dry and sunny weather. The fires burned on peat lands that 20 became vulnerable to fires by permafrost thawing. We used several satellite data sets to 21 estimate that the total area burned was about 2345 hectares. Based on assumptions of typical 22 burn depths and BC emission factors for peat fires, we estimate that the fires consumed a fuel amount of about 117 kt C and produced BC emissions of about 23.5 t. We used a Lagrangian 23 olaos Evar eliou 19/6/2018 15:29 24 particle dispersion model to simulate the atmospheric BC transport and deposition. We find Deleted: the 25 that the smoke plumes were often pushed towards the Greenland Ice Sheet by westerly winds and thus a large fraction of the BC emissions (7 t or 30%) was deposited on snow or ice 26 27 covered surfaces. The calculated BC deposition was small compared to BC deposition from 28 global sources, but not entirely negligible. Analysis of aerosol optical depth data from three 29 sites in Western Greenland in August 2017 showed strong influence of forest fire plumes 30 from Canada, but little impact of the Greenland fires. Nevertheless, CALIOP lidar data showed that our model captured the presence and structure of the plume from the Greenland 31 Andreas Stohl 16/6/2018 17:59 32 fires. The albedo changes and instantaneous surface radiative forcing in Greenland due to the Deleted: very effectively fire BC emissions were estimated with the SNICAR model and the uvspec model from the 33 34 libRadtran radiative transfer software package. We estimate that the maximum albedo change 35 due to the BC deposition was about 0.006, too small to be measured. The average Andreas Stohl 16/6/2018 18:00 instantaneous surface radiative forcing over Greenland at noon on 31 August was 0.03 W m⁻², 36 with locally occurring maximum values of 0.63 W m⁻². The average value is at least an order 37 38 of magnitude smaller than the radiative forcing due to BC from other sources. Overall, the 39 fires burning in Greenland in summer of 2017 had little impact on BC deposition on the 40 Greenland Ice Sheet, causing almost negligible extra radiative forcing. This was due to the in a global context – still rather small size of the fires. However, the very large fraction of the 41 42 BC emissions deposited on the Greenland Ice Sheet makes these fires very efficient climate Deleted: further forcers on a per unit emission basis. If the expected future warming of the Arctic produces 43 Nikolaos Evangeliou Deleted: Greenland 44 more severe fires in Greenland, this could indeed cause albedo changes and thus contribute to aos Evangeliou 24 accelerated melting of the Greenland Ice Sheet. The fires burning in 2017 may be a harbinger 45 Deleted: much larger of such future events. 46 Deleted: the future

47

Deleted: by satellites or other means

Nikolaos Evangeliou 25/5/2018 11:12 2018 11:09 2018 15.21 Nikolaos Evangeliou 25/5/2018 11:12 Nikolaos Evangeliou 25/5/2018 11:11 Deleted: substantial Nikolaos Evangeliou 25/5/2018 11:11 Deleted: lead Andreas Stohl 16/6/2018 18:03 Deleted: changes

58 1 Introduction

59 In August 2017 public media reported unprecedented fire events in Western Greenland (BBC News, 2017; New Scientist Magazine, 2017). These events were documented with 60 airborne photographs (SERMITSIAQ, 2017) and satellite images (NASA, 2017b) and raised 61 62 public concerns about the effects of climate change and possible impacts of soot emissions on 63 ice melting. Historically, wildfires have occurred infrequently on Greenland, because threequarters of the island is covered by a permanent ice sheet and permafrost is found on most of 64 65 the ice-free land (Abdalati and Steffen, 2001). Permafrost, or permanently frozen soil, lies 66 under a several meters thick "active" soil layer that thaws seasonally. But in certain areas, where the permafrost layer starts melting, it can expose peat, a material consisting of only 67 68 partially decomposed vegetation that forms in wetlands over the course of hundreds of years 69 or longer. Peatlands, also known as bogs and moors, are the earliest stage in the formation of 70 coal. Globally, the amount of carbon stored in peat exceeds that stored in vegetation and is 71 similar in size to the current atmospheric carbon pool (Turetsky et al., 2014). When peatlands 72 dry, they are often affected by fires burning into the peat layers. Peat fires are difficult to 73 extinguish and they often burn until all the organic matter is consumed. Smoldering peat fires 74 already are the largest fires on Earth in terms of their carbon footprint (Turetsky et al., 2014). 75 For Greenland, it has been suggested that degradation of peat will accelerate towards 2080 76 (Daanen et al., 2011) and that the area affected by the fires in August 2017 is particularly 77 vulnerable to permafrost thawing (Daanen et al., 2011).

78 Fires in the high northern latitudes release significant amounts of CO₂, CH₄, N₂O and 79 black carbon (BC), and their emissions are often transported into Arctic regions (Cofer III et 80 al., 1991; Hao et al., 2016; Hao and Ward, 1993; Shi et al., 2015). BC is the most strongly light-absorbing component of the atmospheric aerosol (Bond et al., 2013) and is formed by 81 82 the incomplete combustion of fossil fuels, biofuels, and biomass. It is important due to its 83 human health (Lelieveld et al., 2015) and climate impacts (Sand et al., 2015), and its 84 atmospheric lifetime of 3-11 days (Bond et al., 2013) facilitates transport over long distances 85 (Forster et al., 2001; Stohl et al., 2006). BC from mid-latitude sources can thus reach remote areas such as the Arctic. BC absorbs solar radiation in the atmosphere and has a significant 86 impact on cloud formation. It also decreases surface albedo when deposited on ice and snow 87 88 and can accelerate melting processes (Hansen and Nazarenko, 2004). This raises particular 89 concerns about the effect of fires burning in the immediate vicinity of the Greenland Ice 90 Sheet. If a large fraction of the BC emitted by such fires is deposited on the ice, these fires

Andreas Stohl 16/6/2018 18:05 Deleted: s

92 may be extremely effective in further enhancing the already accelerating melting of the

93 Greenland Ice Sheet (AMAP, 2017). BC emissions from such high latitude fires may also

94 have a substantial effect on the albedo of sea ice.

95 Here we study transport and deposition of BC over the Greenland Ice Sheet from the

96 fires that occurred in Western Greenland in August 2017, which <u>likely represent the largest</u>
97 fires that have occurred on Greenland in modern times (Figure S 1). Since the fires occurred

98 in an area entirely lacking ground-based observations, we use satellite data and a Lagrangian

99 atmospheric dispersion model for our study.

100 2 Methods

101 **2.1 Definition of burned area**

102 Remote sensing has been useful for delineating fire perimeters, characterizing burn severity and planning post-fire restoration activities in different regions. The use of satellite 103 104 imaging is particularly important for fire monitoring in remote areas due to difficult ground 105 access. The method that is presented in this section has been already used to calculate burned 106 area in the highly-contaminated radioactive forests of Chernobyl (Evangeliou et al., 2014, 107 2015, 2016). Coordinates of fire locations (hot spots) were downloaded from FIRMS (Fire 108 Information for Resource Management System) (NASA, 2017a). For the mapping of the 109 burned area, Sentinel 2A images were used. To delineate fire perimeters and define burn 110 severity precisely, we used Landsat 8 Operational Land Imager (OLI) (resolution: 30×30 m) 111 together with Sentinel 1A (resolution: 30×30 m) and Sentinel 2A images (resolution: 30×30 112 m) (see Table 1) by applying the differenced Normalized Burn Ratio (dNBR) (Key and

113 Benson, 2006):

$$dNBR = NBR_{pre-fire} - NBR_{post-fire}$$
(Eq

115 Normalized burn ratios for pre- $(NBR_{pre-fire})$ and postfire $(NBR_{post-fire})$ images from

116 Sentinel 2A can be calculated using radiances for near- and shortwave infrared bands (bands 8

117 (NIR) and 12 (SWIR2) at 0.835 μ m and 2.202 μ m, respectively):

118
$$NBR = \frac{1000 \cdot (NIR - SWIR2)}{NIR + SWIR2}$$
(Eq. 2)

119 The methodology of applying a dNBR index to assess the impact of fires has been used in

120 forests of the Northern and Western USA (French et al., 2008; Key and Benson, 2006) and

121 elsewhere (Escuin et al., 2008; Sunderman and Weisberg, 2011).

Andreas Stohl 16/6/2018 18:09
Deleted: probably

Deleted: of the Arctic

eliou 23/5/2018 10:0

Vikolaos Evan

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Table 1

4

1)

125 The burned severity mosaics were created using Sentinel 2A images corrected for atmospheric scattering (see Chavez, 1988). Pre- and post-fire images were used to create 126 127 cloudless mosaics for the area where the Greenland fires burned. A Maximum Value 128 Composite (MVC) procedure (Holben, 1986) was used to select pixels from each band that 129 were not cloud covered and have a high value of Normalized Difference Vegetation Index (NDVI). To avoid spurious burn severity values, manually delineated fire perimeters were 130 131 applied and all areas outside were classified as unburned. We have used common dNBR 132 severity levels (Key and Benson, 2006) that are presented in Figure 1. The occasionally dense 133 cloud cover was the main obstacle in reconstructing fire dynamics. As an independent source of information, active fires from MODIS satellite product MCD14DL (Giglio et al., 2003) are 134

135 plotted in Supplemental Information (SI) Figure S 2.

136 2.2 Injection altitudes, assumptions on biomass consumption and emissions137 factors

138 Injection heights into the atmosphere of the emitted smoke were simulated with version 139 2 of the Plume Rise Model (PRM) (Paugam et al., 2015) which is implemented in the Global 140 Fire Assimilation System (GFAS) emission inventory (Rémy et al., 2017). The model 141 (hereafter referred to as PRMv2) is a further development of PRM (Freitas et al., 2006, 2010) 142 and has already been used in previous studies of fire events (Evangeliou et al., 2015, 2016). 143 The model simulates a profile of smoke detrainment for every single fire, from which two 144 metrics are extracted: (i) a detrainment layer (i.e. where the detrainment rate is > 50% of its 145 global maximum) and (ii) an injection height (InjH, the top of the detrainment layer). Instead 146 of using the GFAS product, which uses the same statistics as in the PRMv2 InjH calculation, 147 we ran the model for every detected fire assuming a 6 h persistence and using the same 148 conversion factor as Kaiser et al. (2012) to estimate the biomass consumption. PRMv2 mass 149 detrainment profiles are then time integrated and extracted at $1^{\circ} \times 1^{\circ}$ spatial resolution with a 150 500 m vertical mesh to estimate the 3D distribution of biomass burning smoke injection into the atmosphere. Figure S 3, (SI) shows for all fires recorded in the MODIS fire product 151 (Justice et al., 2002) during the fire period (31 July - 21 August 2017) the horizontal 152 153 distribution of the median height of the emitted smoke and its integration over the longitude 154 (right panel). Fires in Greenland showed a maximum injection height of around 2 km, but according to PRMv2 the majority of the emissions (90%) remained below 800 m. Low 155 156 injection heights mostly inside the daytime planetary boundary layer are quite typical for 157 smoldering fires including peat fires (Ferguson et al., 2003) such as those burning in

Nikolaos Evangeliou 28/5/2018 14:03 Deleted: Additional classification rules were imposed t Andreas Stohl 16/6/2018 23:00 Deleted: map burn severity more precisely Nikolaos Evangeliou 28/5/2018 14:03 Deleted: due to the sensitivity of NBR to changes in vegetation and soil moisture. M Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 1 Nikolaos Evangeliou 18/6/2018 09:31 Deleted: These confirm our results.

Andreas Stohl 16/6/2018 23:06 Deleted: burned Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 3

Andreas Stohl 16/6/2018 23:07 Deleted: biomass

168 Greenland (see below). For modeling the dispersion of BC released from the Greenland fires,

169 the emission profiles from PRMv2 were ingested into the Lagrangian particle dispersion

170 model FLEXPART (see section 2.3).

171 Wildfires in boreal peatlands in the Canadian Arctic and in Alaska typically have (shallow) burn depths of 1–10 cm and consume 20–30 t C ha⁻¹ (Benscoter and Wieder, 2003; 172 Shetler et al., 2008). The consumed carbon is often re-sequestered in 60-140 years after the 173 174 fire (Turetsky et al., 2011; Wieder et al., 2009). Given that fire return intervals can be as short 175 as 100-150 years in sub-humid continental peatlands (Wieder et al., 2009), and may exceed 176 2000 years in humid climates (Lavoie and Pellerin, 2007), northern peatlands are generally resilient to wildfire (Magnan et al., 2012). For example, in peatlands of Northern Russia, 177 organic matter available for combustion has been estimated to be 121.8 t C ha⁻¹ for forested 178 lands and 21.3 t C ha⁻¹ for non-forested lands (Smirnov et al., 2015). Accordingly, a severe 179 wildfire that burned within an afforested peatland in the Scottish Highlands during the 180 181 summer of 2006 had a mean depth of burn of 17.5±2.0 cm (range: 1-54 cm) and a carbon loss of 96±15 t C ha⁻¹ (Davies et al., 2013). In contrast, tropical peatlands can have deep burn 182 depths of 40-50 cm and release an average of 300-450 t C ha⁻¹ (Page et al., 2015; Reddy et 183 184 al., 2015). In the present study, we assume an average amount of organic fuel available for combustion for the Greenland peat fires of August 2017 of 100 t C ha⁻¹, guided by values 185 186 suggested elsewhere (Smirnov et al., 2015).

187 Estimation of the emissions of BC $_{\star}E_{BC}$ (kg), was based on the following formula 188 (Seiler and Crutzen, 1980; Urbanski et al., 2011) using the calculated burned area \underline{A} (ha) and a 189 number of assumptions:

 $E_{BC} = A \times FL \times \alpha \times EF$ Eq. 1

191 Here, *FL* is the mass of the fuel available for combustion (kg C ha⁻¹); α is the dimensionless 192 combustion completeness, which was adopted from Hao et al. (2016) for litter and duff fuels 193 (50%) and *EF* is the emission factor of BC (kg kg⁻¹) that was adopted from Akagi et al. 194 (2011) for peatland fires (0.0002 kg kg⁻¹). Fuel consumption is calculated as the product of 195 burned area, fuel loading and combustion completeness ($A \times FL \times \alpha$).

196 **2.3 Atmospheric modeling**

190

The emissions of BC obtained from Eq. 1 were fed to the Lagrangian particle dispersion
model FLEXPART version 10.2 (Stohl et al., 2005) to simulate BC transport and deposition.
This model was originally developed for calculating the dispersion of radioactive material

Andreas Stohl 16/6/2018 23:09 Deleted: , which

_	Andreas Stohl 16/6/2018 23:11
	Deleted: The
	Andreas Stohl 16/6/2018 23:13
	Moved (insertion) [2]
()	Andreas Stohl 16/6/2018 23:14
	Deleted:
()	Andreas Stohl 16/6/2018 23:11
	Deleted: from peat fires in Greenland were calculated fromus
1	Nikolaos Evangeliou 28/5/2018 14:04
	Deleted: ing
$\left(\right)$	Andreas Stohl 16/6/2018 23:13
	Formatted: Font:Italic
()	Andreas Stohl 16/6/2018 23:14
	Deleted: where E_{BC} is the BC emission from the fire (kg); A is the burned area (ha);
	Andreas Stohl 16/6/2018 23:13
	Moved up [2]: E BC

209 from nuclear emergencies, but since then it has been used for many other applications (e.g., 210 Fang et al., 2014; Stohl et al., 2011, 2013). The model has a detailed description of particle 211 dispersion in the boundary layer and a convection scheme to simulate particle transport in 212 clouds (Forster et al., 2007). The model was driven by hourly $0.5^{\circ} \times 0.5^{\circ}$ operational analyses 213 from the European Centre for Medium-Range Weather Forecasts (ECMWF). Concentration and deposition fields were recorded in a global domain of $1^{\circ} \times 1^{\circ}$ spatial resolution with three 214 215 hourly outputs. To capture the spatiotemporal variability of BC over the Greenland Ice Sheet, a nested domain with $0.05^{\circ} \times 0.05^{\circ}$ resolution was used. The simulations accounted for wet 216 and dry deposition, assuming a particle density of 1500 kg m⁻³ and a logarithmic size 217 distribution with an aerodynamic mean diameter of 0.25 µm and a standard deviation of 0.3 218 219 (Long et al., 2013). The wet deposition scheme considers below-cloud and in-cloud 220 scavenging separately based on cloud liquid water and cloud ice content, precipitation rate 221 and cloud depth from ECMWF, as described in Grythe et al. (2017).

222 To compare BC concentrations in Greenland due to the emissions of the Greenland fires 223 to those due to BC emissions occurring elsewhere, we used the so-called "retroplume" mode 224 of FLEXPART for determining the influence of other sources. For only a few receptor points, 225 this mode is computationally more efficient than forward simulations. Computational 226 particles were tracked 30 days back in time from four receptor regions; Northwestern (-62°E to -42°E, 72°N to 83°N), Southwestern (-62°E to -42°E, 61°N to 72°N), Northeastern (-42°E 227 228 to -17°E, 72°N to 83°N) and Southeastern Greenland (-42°E to -17°E, 61°N to 72°N). The 229 retroplume mode allowed identification of the origin of BC through calculated footprint 230 emission sensitivities (often also called source-receptor relationships) that express the 231 sensitivity of the BC surface concentration at the receptor to emissions on the model output 232 grid. If these emissions are known, the BC concentrations at the receptor can be calculated as 233 the product of the emission flux and the emission sensitivity. Also, detailed source 234 contribution maps can be calculated, showing which regions contributed to the simulated concentration. For the anthropogenic emissions, we used the ECLIPSE (Evaluating the 235 236 CLimate and Air Quality ImPacts of ShortlivEd Pollutants) version 5 (Klimont et al., 2017) 237 emission data set. For the biomass burning emissions outside Greenland, we used operational 238 CAMS GFAS emissions (Kaiser et al., 2012).

239 2.4 Radiative forcing calculations

240 The radiative forcing (RF) of the emitted BC was calculated using the uvspec model from the

241 libRadtran radiative transfer software package (http://www.libradtran.org/doku.php)

Andreas Stohl 16/6/2018 23:20 Deleted: In t Andreas Stohl 16/6/2018 23:21 Deleted: , c Andreas Stohl 16/6/2018 23:21 Deleted: a Andreas Stohl 16/6/2018 23:21 Deleted: were tracked 30 days back in time. We used four receptor regions

Deleted: global MODIS-satellite hot spot data (Giglio et al., 2003) and a simple emission scheme (Stohl et al., 2007), with emission factors for BC adopted from Andreae and Merlet (2001) and Akagi et al. (2011)

Andreas Stohl 17/6/2018 14:48 Formatted: Indent: First line: 0 cm

252 (Emde et al., 2016; Mayer and Kylling, 2005). The radiative transfer equation was solved in 253 the independent pixel approximation using the DISORT model in pseudo-spherical geometry. 254 with improved treatment of peaked phase functions (Buras et al., 2011; Dahlback and 255 Stamnes, 1991; Stamnes et al., 1988). Radiation absorption by gases was taken from the Kato 256 et al. (1999) parameterization modified as described in the libRadtran documentation and 257 Wandji Nyamsi et al. (2015). External mixture of aerosols was assumed, i.e. BC was treated 258 in isolation of other aerosol types that may also have been present in the plume. This 259 assumption likely leads to underestimates of the radiative impacts of BC in the atmosphere as 260 coating, for example, can enhance the radiative effects of BC. However, these assumptions should have little impact on the more important albedo calculations (see below).For snow-261 262 covered surfaces, deposited BC was assumed to reside in the uppermost 5 mm. Below 5 mm 263 the snow was assumed to be without any impurities. The albedo of the snow was calculated 264 with the SNICAR model (http://snow.engin.umich.edu/info.html) in a two-layer configuration 265 (Flanner et al., 2007, 2009). 266

266We calculated both the bottom of the atmosphere (BOA) and top of atmosphere (TOA)267instantaneous radiative forcing (IRF) due to the Greenland fires at 1°×1° resolution. The IRF268includes both the effects of atmospheric BC and BC deposited on the snow. Note that the IRF269does not include any semi-direct nor indirect effects. We also calculated IRF for both270cloudless and cloudy conditions. IRF for cloudless conditions indicates the maximum271possible effect of BC due to the fires irrespective of the actual meteorological situation, while272IRF for cloudy conditions is representative of the actual conditions. For the latter, liquid and273ice water clouds were adopted from ECMWF.

- 274
- 275 **2.5 Remote sensing of the smoke plume**

276 To confirm the presence of BC from fires in Greenland and elsewhere in the atmosphere 277 over Greenland, we used the AERONET (AErosol RObotic NETwork) data (Holben et al., 1998). AERONET provides globally distributed observations of spectral aerosol optical depth 278 279 (AOD), inversion products, and precipitable water in diverse aerosol regimes. We chose data from three stations that were close to the 2017 fires and for which cloud-free data exist for 280 most of the simulated period, namely Kangerlussuaq (50.62°W-66.99°N), Narsarsuaq 281 282 (45.52°W–61.16°N) and Thule (68.77°W–76.51°N). Their locations are shown in Figure S 2. We used Level 2.0 AOD data (fine and coarse mode AOD at 500 nm and total AOD at 400 283 nm) from the AERONET version 3 direct-sun spectral deconvolution algorithm (SDA version 284

Andreas Stohl 17/6/2018 14:43 Moved (insertion) [3] Andreas Stohl 17/6/2018 14:42

Deleted: Liquid water and ice water clouds were adopted from ECMWF operational analysis data. No aerosols except those emitted from the Greenland fires were included. As such, the RF calculations represent a maximum estimate of the effect of BC from the Greenland fires.

Andreas Stohl 17/6/2018 14:43

Moved up [3]: The radiative transfer equation was solved in the independent pixel approximation using the DISORT model in pseudo-spherical geometry with improved treatment of peaked phase functions (Buras et al., 2011; Dahlback and Stamnes, 1991; Stamnes et al., 1988). Radiation absorption by gases was taken from the Kato et al. (1999) parameterization modified as described in the libRadtran documentation and Wandji Nyamsi et al. (2015).

...[1]

Andreas Stohl 17/6/2018 14:45

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 2 Nikolaos Evangeliou 30/5/2018 15:47 Deleted: display Nikolaos Evangeliou 21/6/2018 19:22 Deleted: at 00 nm

308 4.1) product (downloaded on 20/06/2018) for the simulated period (31 July to 31 August
309 2017).

310 To examine in particular the vertical depth of the smoke, we used data from the 311 CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-312 Aerosol Lidar and Infrared Pathfinder Satellite Observations) platform (Winker et al., 2009). 313 CALIOP provides profiles of backscatter at 532 nm and 1064 nm, as well as the degree of the 314 linear polarization of the 532 nm signal. For altitudes below 8.3 km lidar profiles at 532 nm 315 are available with a vertical resolution of 30 m. We have utilized the level 1 data products 316 (version 3.40) of total attenuated backscatter at 532 nm. This signal responds to aerosols (like 317 BC) as well as water and ice clouds, which in most cases can be distinguished based on their 318 differences in optical properties. The data were downloaded via ftp from the ICARE Data and 319 Services Center (http://www.icare.univ-lille1.fr/).

320 3 Results

321 **3.1** Indications of early permafrost degradation and fuel availability

Table 1, reports burned areas in August 2017 calculated for Greenland. In total, 2345 hectares burned between 31 July and 21 August 2017 (Figure 1). We estimate that about 117 kt of carbon were consumed by these fires. The area burned is not large compared to the global area burned each year of 464 million hectares, or the areas burned in boreal North America (2.6 million hectares) or boreal Asia (9.8 million hectares) (Randerson et al., 2012), but still highly unusual for Greenland.

328 It is not yet known how these fires started. Fires on carbon-rich soils can be initiated by 329 an external source, e.g. lightning, flaming wildfire and firebrand, or self-heating. The fires 330 burned relatively close to the town of Sisimut, so it is quite possible that humans started the 331 fires. Self-heating is another possibility as porous solid fuels can undergo spontaneous 332 exothermic reactions in oxidative atmospheres at low temperatures (Drysdale, 2011; 333 Restuccia et al., 2017b). This process starts by slow exothermic oxidation at ambient 334 temperature, causing a temperature increase, which is determined by the imbalance between 335 the rate of heat generation and the rate of heat losses (Drysdale, 2011). Fire initiated by self-336 heating ignition is a well-known hazard for many natural materials (Fernandez Anez et al., 337 2015; Restuccia et al., 2017a; Wu et al., 2015) and can also occur in natural soils (Restuccia 338 et al., 2017b). Southwestern Greenland was under anticyclonic influence during the last week

Nikolaos Evangeliou 21/6/2018 19:07 Deleted: 15 Nikolaos Evangeliou 21/6/2018 19:07 Deleted: 11 Nikolaos Evangeliou 21/6/2018 19:07 Deleted: 2017

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Table 1 Nikolaos Evangeliou 23/5/2018 10:36 Deleted: over Nikolaos Evangeliou 23/5/2018 10:36 Deleted: from GlobCover 2009 (Global Land Cover Map at 300 m resolution) (Arino et al., 2008) Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 1

of July and according to the MODIS ESDIS worldview tool, direct sunshine occurred for eight consecutive days before the fires started at the end of July 2017. It might be possible that this long period of almost continuous insolation at these latitudes in July heated the soil enough to self-ignite. In any case, the continuous sunshine had dried the soil, making it susceptible to fire.

353 The fact that these fires were burning for about three weeks but spread relatively slowly 354 compared to above-ground vegetation fires indicates that the main fuel was probably peat. 355 The predominant vegetation in Western Greenland varies from carbon-rich Salix glauca low 356 shrubs (mean canopy height: 95 cm), mainly at low altitude south-facing slopes with deep 357 soils and ample moisture, to dwarf-shrubs and thermophilous graminoid vegetation (Arctic 358 steppe) at higher altitudes (Jedrzejek et al., 2013). In addition, the observed smoke was nearly 359 white, indicating damp fuel, such as freshly thawed permafrost, which produces smoke rich in 360 organic carbon (OC) aerosol (Stockwell et al., 2016). Notice that while OC is not strongly 361 absorbing, it may contain some absorbing brown carbon, which would add to the albedo 362 reduction of snow by BC. On the other hand, BC emission factors are relatively low for peat 363 fires (see Akagi et al., 2011).

Literally no fires should be expected in Greenland, since there is little available fuel as it has been suggested by global models and validated by observations (Daanen et al., 2011; Stendel et al., 2008); the only way to provide substantial amounts of fuel in Greenland is permafrost degradation. However, it has been suggested that significant permafrost loss in Greenland may occur only by the end of the 21st century (Daanen et al., 2011; Stendel et al., 2008). The fires in 2017 might indicate that significant permafrost degradation has occurred sooner than expected.

371 **3.2** Transport and deposition of BC in Greenland

372 We estimate that about 23.5 t of BC were released from the Greenland fires in August 373 2017 (Table 1). According to the FLEXPART model simulations, these emissions were 374 transported and deposited as shown in Figure 2, Due to the low injection altitude of the 375 releases within the boundary layer, transport was relatively slow and thus most BC initially 376 remained quite close to its emission source. Slow transport was also favored by mostly 377 anticyclonic influence during the first half of August. It seems that even though katabatic 378 winds from the Greenland Ice Sheet occasionally transported the plume westwards, most of 379 the time the large-scale circulation pushed the plume back towards Greenland. Consequently, 380 a large fraction of the emitted BC was deposited in Southwestern Greenland. On 3 August a

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Table 1 Andreas Stohl 17/6/2018 00:12 Deleted: following the prevailing atmospheric circulation Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 2

385 small portion of the emitted BC (\approx 516 kg) was lifted higher into the atmosphere and was 386 transported to the east and deposited in the middle of the Ice Sheet over the course of the 387 following two days (4 and 5 August). From 5 to 8 August, when the fires were particularly 388 intense, BC was transported to the south, where most of it was deposited at the southern part 389 of the Ice Sheet and close to the coastline. At the same time, another branch of the plume was 390 moving to the north depositing BC over Greenland's western coastline up to 80°N_xAround 10 391 August, the plume circulated north- and then eastwards in the northwestern sector of the anti-392 cyclone and BC was deposited to the northern part of the Ice Sheet until 13 August. From 393 around 16 August, a cyclone approached from the northwest and the smoke was briefly 394 transported directly eastwards along the southern edge of the cyclone. Strong rain associated 395 with the cyclone's frontal system appears to have largely extinguished the fire by 17 or 18 396 August, although smaller patches may have continued smoldering for a few more days before 397 they also died out. The exact fire behavior after 16 August is difficult to determine because of 398 frequent dense cloud cover. However, satellite imagery on 21 August shows no smoke 399 anymore in the area where the fires had burned.

400 The total deposition of BC from the fires in Greenland is shown in Figure 2b. About 9 t 401 of the 23.5 t of BC emitted (or about 39%) were deposited over Greenland, About 7 t (30% of 402 the total emissions) were deposited on snow or ice covered surfaces. Most of the rest was 403 deposited in the Baffin Bay between Greenland and Canada and in the Atlantic Ocean.

404 With 30% of the emissions deposited on snow or ice surfaces, Greenland fires may have 405 a relatively large efficiency for causing albedo changes on the Greenland Ice Sheet. By 406 comparison, the respective BC deposition on snow and ice surfaces over Greenland from 407 global emissions of BC was only 0.4% (39 kt) of the emissions. Even the total deposition of 408 BC in the Arctic (>67°N) was only about 3% (215 kt). This indicates the high relative 409 potential of Greenland fires to pollute the cryosphere (on a per unit emission basis), likely also giving them a particularly high radiative forcing efficiency. Considering that the 410 411 projected rise of Greenland temperatures is expected to result in further degradation of the 412 permafrost (Daanen et al., 2011) and, hence, likely resulting in more and larger peat fires on 413 Greenland, this constitutes a potentially important climate feedback which could accelerate 414 melting of the glaciers and ice sheet of Greenland and enhance Arctic warming.

We also calculated the concentration of the deposited BC in Greenland snow (Figure 3) by taking the ratio of deposited BC and the amount of water deposited by rain or snow fall during the same time period (31 July to 31 August 2017). As expected, BC snow Andreas Stohl 17/6/2018 00:15 Deleted: , while a Andreas Stohl 17/6/2018 00:15 Deleted: on

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 2 Andreas Stohl 17/6/2018 00:17 Deleted: from the Greenland fires in summer 2017 Andreas Stohl 17/6/2018 00:17 Deleted: , which is about 39% of the fires' total emissions

Nikolaos Evangeliou 21/6/2018 20:0 Deleted: Figure 3

426	concentrations show the same general patterns as the simulated deposition of BC with the				
427	highest concentrations obtained close to the source. High BC in snow concentrations were				
428	also computed in some regions of the Ice Sheet due to relatively intense precipitation events.				
429	By contrast, dry deposition of BC over the Ice Sheets was low (Figure 3). Dry deposition was				
430	responsible for a major fraction of the deposition only in regions where the plume was				
431	transported during dry weather, and in most of these regions total deposition was low. A				
432	notable exception is the region close to the fires, where dry deposition was relatively				
433	important due to the generally dry weather when the fires were burning. It can be also				
434	ascribed to the fact that dry deposition occurs in the quasi-laminar sub-layer close to the				
435	surface. A fraction of the aerosols can be quickly deposited close to the sources before the				
436	they are transported to higher altitudes and away from the sources (Bellouin and Haywood,				
437	2014). The average calculated concentration of BC on the Ice Sheet was estimated to be <1 ng				
438	g ⁻¹ , but in some areas snow concentrations reached up to 3 ng g ⁻¹ . These higher values are				
439	substantial considering that measured concentrations of BC in snow typically range up to 16				
440	ng g^{-1} in most of Greenland (Doherty et al., 2010) or from $1 - 17$ ng g^{-1} in summer 2012 and				
441	<u>3–43 ng g⁻¹ in summer 2013 (Polashenski et al., 2015) and up to 15 ppb (ng g⁻¹) during</u>				
442	preindustrial times (from 1740 to 1870) on average (Legrand et al., 2016).				
443	It has been reported that the size of rapidly coagulated BC particles produced by				
444	different types of fires ranges between 0.1 to 10 µm, but more than 90% of the BC mass lies				
445	between 0.1 and 1 µm (e.g., Conny and Slater, 2002; Long et al., 2013; Zhuravleva et al.,				
446	2017 and many others). Therefore, we have chosen to simulate the Greenland fires with an				
447	aerodynamic mean diameter of 0.25 µm for BC and a logarithmic standard deviation of 0.3				
448	(see section 2.3). To examine the sensitivity of deposition of BC in the Greenland Ice Sheet				
449	from the Greenland fires of 2017 to the particle size distribution used in the model, we				
450	simulated the same event for BC particles with aerodynamic mean diameters of 0.1, 0.25, 0.5,				
451	1, 2, 4 and 8 µm and calculated the relative standard deviation of the deposition of BC				
452	normalized against the aerodynamic mean diameter of 0.25 µm that was our basic assumption				
453	(Figure S 4). The use of different size distributions for the BC particles produced from the				
454	2017 fires created a relative uncertainty on the deposited mass of BC in the Greenland Ice				
455	Sheet, which ranges from 10%–30% in 86% of the Sheet's surface to up to 50% in the rest of				
456	the Sheet's surface. As expected, the calculated uncertainty is sensitive to the use of larger				
457	particles for BC; though BC particles larger than 1 µm are rather rare in peat fires (Hosseini et				
458	al., 2010; Leino et al., 2014).				

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 3

Andreas Stohl 17/6/2018 00:24 Deleted: mostly Andreas Stohl 16/6/2018 11:02 Deleted: Aerosols are Andreas Stohl 16/6/2018 11:03 Deleted: being Andreas Stohl 16/6/2018 11:02 Deleted: injected at Andreas Stohl 16/6/2018 11:02 Deleted: being transported

Andreas Stohl 17/6/2018 00:26 Deleted: during Andreas Stohl 17/6/2018 00:26 Deleted: produced Andreas Stohl 17/6/2018 00:26 Deleted: to

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 4

469 **3.3** Impact from other emissions in Northern Hemisphere

470 In summertime 2017, intense wildfires were reported in British Columbia, Western 471 Canada (NASA, 2017c), and fires also burned at mid latitudes in Eurasia, as is typical during 472 spring and summer (Hao et al., 2016). Previous studies of wildfires have shown that the 473 produced energy can be sufficient to loft smoke above the boundary layer by supercell 474 convection (Fromm et al., 2005) even up to stratospheric altitudes (Leung et al., 2007). As a 475 result, BC can become subject to long-range transport over long distances (Forster et al., 476 2001; Stohl et al., 2007). To examine the impact of these fires in Greenland, average footprint 477 emission sensitivities were calculated for four compartments of Greenland (Northwestern, Southwestern, Northeastern and Southeastern Greenland) for the period 31 July to 31 August 478 479 2017 and the results are shown in Figure S 5, together with the active fires in the Northern 480 Hemisphere from 10 July to 31 August 2017 adopted from the MODIS satellite product (MCD14DL) (Giglio et al., 2003). As can be seen in Figure S 5, fires in Alaska might have 481 482 affected BC concentrations in Greenland, as the corresponding emission sensitivities are the 483 highest in North America. On the contrary, BC emitted from fires in Eurasia seems to have affected Greenland less. 484

485 Using gridded emissions for BC, the contribution of both biomass burning and 486 anthropogenic sources to surface BC concentrations in the four different regions over 487 Greenland (Northwestern, Northeastern, Southwestern and Southeastern Greenland, Figure S 488 (1) was calculated (see section 2.3). Fires affected the northern part of Greenland more than the southern part with an average concentration of about 30 ng m⁻³, almost twice the 489 respective average for Southern Greenland (≈16 ng m⁻³). About one third of the BC originated 490 491 from wildfires in Eurasia and the rest from North America where the year 2017 appears to 492 have been a particularly high fire year. The anthropogenic contribution to surface BC over 493 Greenland was only about 14% to 50% of the total contribution from all biomass burning 494 sources (Figure S 6), similar to what has been suggested previously for the Arctic in summer 495 (Winiger et al., 2017). The anthropogenic contribution is larger in Southern Greenland, than in 496 Northern Greenland, due to the shorter distance from the main emission areas of North America and Western Europe, but it remains lower than the biomass burning 497 contribution. The BC concentrations that are calculated here for the studied fire period (31 498 499 July to 31 August 2017) are relatively high compared to those reported previously. For 500 instance, von Schneidemesser et al. (2009) observed an annual average BC concentration of 20 ng m⁻³ at Summit (Greenland) in 2006, while Massling et al. (2015) reported a summer 501

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 5

Andreas Stohl 17/6/2018 00:45 Deleted: shown Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 5

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 6 Nikolaos Evangeliou 6/6/2018 17:53 Deleted: Figure 4

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 6 Nikolaos Evangeliou 6/6/2018 17:54 Deleted: Figure 4 Nikolaos Evangeliou 31/5/2018 11:36 Deleted: In contrast to biomass burning, t Andreas Stohl 17/6/2018 00:48 Deleted: , Andreas Stohl 17/6/2018 00:48 Deleted: contrast to

average BC concentration of 11 ng m⁻³ at station Nord (Greenland) between May 2011 and
August 2013. We attribute this to more active fires during <u>2017</u> than in <u>previous</u> years.

514 To compare how important Northern Hemispheric biomass burning emissions were for the air over Greenland, we present time-series of surface BC concentrations in Northwestern, 515 516 Northeastern, Southwestern and Southeastern Greenland from the fires in Greenland and from 517 all the other wildfire emissions occurring outside Greenland (North Hemisphere) for the same 518 period of time (Figure 4). The calculated dosages (concentrations summed over a specific 519 time period) for the same time period were also computed. The fires in Greenland affected 520 mainly its western part with concentrations that reached up to 4.8 ng m⁻³ (Southwestern Greenland on 10 August) and 4.4 ng m⁻³ (Northwestern Greenland on 12 August), while BC 521 522 concentrations in the eastern part remained significantly lower (Figure 4). These 523 concentrations are substantial considering that the observed surface BC concentrations in Greenland in summer are usually below 20 ng m⁻³ (Massling et al., 2015). Surface BC due to 524 wildfires occurring outside Greenland was also low most of the time in the studied period (up 525 to 10 ng m⁻³ at maximum) except for a large peak between 19 and 23 August that mainly 526 527 affected Northern Greenland (Figure 4). The concentrations during this episodic peak were as 528 high as 27 ng m⁻³. During the same period, the contribution from anthropogenic emissions was also a few ng m⁻³ (Figure 4). BC dosages for the simulation period (31 July - 10 August 529 530 2017) in Western Greenland due to the Greenland fires were about one order of magnitude 531 smaller than dosages from fires elsewhere but of the same order of magnitude as BC 532 originating from anthropogenic emissions.

533 4 Discussion

534 4.1 A validation attempt

There are few observations available that can be used to validate our model results. We 535 536 use the AERONET and CALIOP data for some qualitative comparisons. Contours of 537 simulated vertical distribution of BC and column-integrated simulated BC from fires inside and outside Greenland are plotted together with time-series of measured AOD (fine and 538 539 coarse mode AOD at 500 nm and total AOD at 400 nm) for the AERONET stations 540 Kangerlussuaq, Narsarsuaq and Thule (Figure 5). It can be seen that observed AOD variations 541 were in very good agreement with the variation of simulated column-integrated BC from fires 542 outside Greenland (mainly in Canada), confirming that the transport of these fire plumes was 543 well captured by FLEXPART. Good examples are the peaks at Kangerlussuaq on 24 August,

Nikolaos Evangeliou 31/5/2018 11:39				
Deleted: the study period				
Nikolaos Evangeliou 31/5/2018 11:39				
Deleted: other				
Andreas Stohl 17/6/2018 00:49				
Deleted: (see Figure S 1)				

Deleted: Figure 4 Nikolaos Evangeliou 6/6/2018 17:51 Deleted: Figure S 4

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 4 Nikolaos Evangeliou 6/6/2018 17:52 Deleted: Figure S 4

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 4 Nikolaos Evangeliou 6/6/2018 17:52 Deleted: Figure S 4 Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 4 Nikolaos Evangeliou 6/6/2018 17:52 Deleted: Figure S 4

Nikolaos Evangeliou 1/6/2018 15:58 **Deleted:** for Nikolaos Evangeliou 1/6/2018 15:58 **Deleted:** ing Nikolaos Evangeliou 21/6/2018 19:21

Deleted: at a wavelength of

Nikolaos Evangeliou 21/6/2018 20:09 **Deleted:** Figure 5Figure 5

at Narsarsuaq on 19 August and at Thule on 21 August (Figure 5) that are attributed to the Canadian fires. The simulated contribution of the Greenland fires to simulated BC burdens was negligible by comparison, except at Kangerlussuaq in the beginning of August when the Greenland fire emissions were the highest. This station is less than 100 km away from where the fires burned, but not in the main direction of the BC plume transport. It seems the period of simulated fire influence corresponds to a small increase of the observed AOD values of up to 20% (Figure 5).

566 To validate the smoke plume's vertical extent, we used the CALIOP data. These data 567 were only available from 5 August 2017 onward and frequent dense cloud cover inhibited lidar observations at the altitudes below the clouds. High aerosol backscatter was only found 568 569 in the close vicinity of the fires. Figure 6a shows NASA's ESDIS view of the plume on 14 570 August 2017 at 6 UTC (available: https://worldview.earthdata.nasa.gov/?p=ge ographic&l=MODIS Aqua CorrectedReflectance TrueColor(hidden),MODIS Terra Correc 571 tedReflectance TrueColor, MODIS Fires Terra, MODIS Fires Aqua, Reference Labels (hidd 572 573 en),Reference Features,Coastlines&t=2017-08-14&z=3&v=-

574 54.13349998138993,66.35888052399868,-50.32103113049877,69.08420005412792), where 575 a clear smoke signal was recorded. A CALIOP overpass through the edge of the plume allows 576 studying its vertical structure. Increased attenuated backscatter is found below ~1.5 km above 577 sea level between 52°E and 51°E (Figure 6b; black line denotes the orography). Figure 6c 578 (red line), shows that the CALIOP overpass transects directly the simulated plume of the 579 Greenland fires. Notice that the simulated plume also agrees very well with the smoke as seen 580 in NASA's ESDIS picture (Figure 6a). The vertical distribution of simulated BC as a function 581 of longitude is illustrated in Figure 6d. It corresponds very well to the vertical distribution of 582 aerosols observed by CALIOP (Figure 6b). In particular, the smoke resides at altitudes below 583 1.5 km and at exactly the same location both in the simulations and observations.

584 **4.2** Radiative forcing and albedo effects

585 BOA IRF for noon on 31 August 2017 is depicted in Figure 7, both for cloudless (Fig. 586 7a) and cloudy conditions (Fig. 7b). This day is shown because almost all BC emitted by the 587 fires had been deposited before, thus giving a high IRF via albedo reduction due to BC 588 contamination of snow. For the cloudless conditions, the IRF is largest over ice close to the 589 fire site and at locations with relatively large BC deposits. The maximum IRF is 1.82 W m⁻², 590 while the average for Greenland is 0.05 W m⁻². For the IRF including clouds the maximum 591 BOA (TOA) RF is 0.63 W m⁻² (0.59 W m⁻²), and the average 0.03 W m⁻² (0.03 W m⁻²).

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 5Figure 5 Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 5Figure 5 Andreas Stohl 17/6/2018 01:06 Deleted: in ngeliou 21/6/2018 20:09 Nikolaos Eva Deleted: Figure 6Figure 6 Andreas Stohl 17/6/2018 01 Deleted: The structure of the plume can be identified in the CALIOP curtain by its i Andreas Stohl 17/6/2018 01:13 Deleted: (black line denotes the orography of the area) Nikolaos Evangeliou 20/6/2018 14:00 Deleted: white line in Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 6Figure 6 Nikolaos Evangeliou 20/6/2018 14:01 Deleted: Another cloud of enhanced attenuated backscatter is evident at 4-5 km altitude between 50.5°E and 48.5°E. This midtropospheric plume was not studied but is likely due to aerosol transport from the North American fires. These large wildfires are eager to lift smoke at stratospheric altitudes as a result of super-cell convection and they have

alreadySmoke from these fires was already shown to be present as such altitudes in

Greenland during the study period (see Figure 5Figure 5). As shown in Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 6Figure 6 Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 6Figure 6 Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 6Figure 6 laos Evangeliou 21/6/2 018 20:09 Deleted: Figure 6Figure 6 Andreas Stohl 17/6/2018 09:59 Deleted: Effect on snow and ice surfaces Andreas Stohl 17/6/2018 10:17 Deleted: The bottom of the atmosphere (BOA) instantaneous radiative forcing (IRF) due to the Greenland fires angeliou 6/6/2018 11:49 Deleted: at the bottom of the atmosphere (BOA) Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 7Figure 7 Andreas Stohl 17/6/2018 10:18 Deleted: The IRF includes both the effects of atmospheric BC and BC deposited on the snow. The latter dominates the IRF ... [2] Andreas Stohl 17/6/2018 10:12 Deleted: around

639 <u>Clouds are thus found to reduce the maximum BOA IRF by a factor of 2.9 and the average</u>
640 <u>BOA IRF by a factor of 1.7.</u>

641 The IRF depends on the optical properties of the smoke from the fire, which are not 642 known. Hence, a sensitivity analysis was performed where the single scattering albedo (SSA) was perturbed in contrast to a "medium case" (Figure S 7a) that was adopted from the 643 644 SNICAR model (Flanner et al., 2007, 2009) and has been used for the discussion in the 645 previous paragraph. To estimate the uncertainty due to the choice of BC optical properties, 646 additional calculations were made by scaling the SSA (red solid lines in Figure S 7a). The 647 choices of these scaled SSA values were based on the SSA reported for various modified combustion efficiencies (MCE) by Pokhrel et al. (2016). Pokhrel et al. (2016) reported an 648 649 MCE of 0.9 for peat land. As such, our adopted SSA may be considered low (compare black solid line and red line with upward triangles). Figure S 7b shows the IRF as BC is deposited 650 651 for the three cases. It suggests that the IRF ranges between 40% and 130% of our above 652 assumed medium-case values for realistic variation of the aerosol optical properties.

653 Figure 7d depicts the temporal behaviour of the cloudy TOA IRF averaged over 654 Greenland (red line). In addition the daily averaged IRF is shown (green line). The daily 655 averaged IRF is seen to increase as the plume from the fires spreads out and starts to decline 656 after the fires were extinguished at the end of the month. The fact that the reduction towards 657 end of August is relatively slow is caused by the effect of the albedo reduction, which persists 658 until clean snow covers the polluted snow. Overall, albedo reduction dominates the total IRF 659 averaged over Greenland for the period of study contributing between 85% (in the beginning 660 of the study period) to 99% (at the end of the study period) and increasing in relative importance with time as atmospheric BC is removed. 661

662 According to Hansen et al. (2005) the TOA IRF of BC approximates the adjusted RF as 663 reported by Myhre et al. (2013). In their Table 8.4, Myhre et al. (2013) estimated the global averaged RF due to BC between the years 1750 and 2011 to be +0.40 (+0.05 to +0.80) W m⁻². 664 Skeie et al. (2011) estimated a global mean radiative forcing of 0.35 W m⁻² due to fossil fuel 665 and biofuel increases between 1750 and 2000. For Greenland, Skeie et al. (2011) found the 666 RF to be less than about 0.2 W m⁻², This number may be compared to our area averaged IRF 667 estimate due to the Greenland fire. For cloudy conditions the TOA IRF over Greenland due to 668 669 the Greenland fires is about one order of magnitude smaller compared with the RF over 670 Greenland due to BC from all global anthropogenic sources reported in Skeie et al. (2011). 671 The albedo reduction at 550 nm due to the deposited BC from the Greenland fires is

shown in Figure 7c. The maximum albedo change is about 0.006. This albedo change has an

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 7 Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 7 Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure S 7 Nikolaos Evangeliou 6/6/2018 11:52 Deleted: For IRF at the top of the atmosphere (TOA), the corresponding values are 0.59 W m⁻² and 0.03 W m⁻². Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Figure 7 Andreas Stohl 17/6/2018 11:26

Deleted: The blue line in Figure 7db shows the value for the pixel with maximum IRF.

/	Nikolaos Evangeliou 6/6/2018 14:49				
/	Deleted: calculated				
1	Nikolaos Evangeliou 6/6/2018 14:50				
	Deleted: due to BC originating from fossil fuel and biofuel combustion relative to preindustrial times (1750)				
1	Nikolaos Evangeliou 6/6/2018 14:51				
	Deleted: Thus, the calculated RF due to the Greenland fires f				
1	Nikolaos Evangeliou 18/6/2018 13:27				
	Deleted: (
	Nikolaos Evangeliou 18/6/2018 13:27				
	Deleted: ,				
	Nikolaos Evangeliou 21/6/2018 20:09				
	Deleted: Figure 7Figure 7				

- 691 impact on JRF, but it is too small to be measured by satellites. For example, MODIS albedo
- 692 estimates have been compared to in situ albedo measurements in Greenland by Stroeve et al.
- 693 (2005). They found that the root mean square error between MODIS and in situ albedo values
- 4000 was ± 0.04 for high quality flagged MODIS albedo retrievals. Unmanned Aerial Vehicle (UAV) measurements over Greenland made by Burkhart et al. (2017) have uncertainties of
- (UAV) measurements over Greenland made by Burkhart et al. (2017) have uncertainties ofsimilar magnitude. Also, Polashenski et al. (2015) reported that the albedo reduction due to
- 697 aerosol impurities on the Greenland Ice Sheet in 2012–2014 period is relatively small (mean
- 698 0.003), though episodic aerosol deposition events can reduce albedo by 0.01–0.02. The albedo
- 699 changes due to BC from the Greenland fires are generally an order of magnitude smaller
- 700 (Figure 7c) and thus too small to be detected by present UAV and satellite instruments and
- 701 retrieval methods (Warren, 2013).

thawing is occurring already now.

702 5 Conclusions

709

The conclusions from our study of the unusual open fires burning in Greenland between31 July and 21 August 2017 are the following:

- The fires burned on peat lands that became vulnerable by permafrost thawing. The region where the fires burned was identified previously as being susceptible to permafrost melting; however, large-scale melting was expected to occur only towards the end of the 21st century. The 2017 fires show that at least in some locations substantial permafrost
- The total area burned was about 2345 hectares. We estimate that the fires consumed a fuel amount of about 117 kt C and produced BC emissions of about 23.5 t.
- The Greenland fires were small compared to fires burning at the same time in North
 America and Eurasia, but a large fraction of their BC emissions (30% or 7 t) was
 deposited on the Greenland Ice Sheet or glaciers.
- Measurements of aerosol optical depth at three sites in Western Greenland in August 2017
 were strongly influenced by forest fires in Canada burning at the same time, but the
 Greenland fires had an observable impact doubling the column-integrated BC
 concentrations only at the closest station.
- \bullet A comparison of the simulated BC releases in FLEXPART with the vertical cross-section
- of total attenuated backscatter (at 532 nm) from CALIOP lidar showed that the
- spatiotemporal evolution and particularly the top height of the plume was captured by themodel.

Andreas Stohl 17/6/2018 11:32 Deleted: the radiative forcing

Nikolaos Evangeliou 21/6/2018 20:09 **Deleted:** Figure 7Figure 7

Deleted: This BC deposition was small compared to BC deposition from global anthropogenic and biomass burning sources, but not entirely negligible.

Nikolaos Evangeliou 1/6/2018 15:59 **Deleted:** ion

730 We estimate that the maximum albedo change due to the BC deposition from the 731 Greenland fires was about 0.006, too small to be measured by satellites or other means. The average instantaneous **BOA** radiative forcing over Greenland at noon on 31 August 732 was 0.03 W m⁻², with locally occurring maximum values of 0.63 W m⁻². The average 733 value is at least an order of magnitude smaller than the radiative forcing due to BC from 734 735 other sources. We conclude that the fires burning in Greenland in summer of 2017 had little impact on 736 737 BC deposition on the Greenland Ice Sheet, causing almost negligible extra radiative 738 forcing. This was due to the - in a global context - still rather small size of the fires. 739 The very large fraction of the BC emissions deposited on the Greenland Ice Sheet (30% 740 of the emissions) makes these fires very efficient climate forcers on a per unit emission basis. 741 Thus, while the fires in 2017 were still relatively small on a global scale, if the expected future 742 warming of the Arctic (IPCC, 2013) produces more and larger fires in Greenland in the future 743 (Keegan et al., 2014), this could indeed cause substantial albedo changes and thus contribute 744 to accelerated melting of the Greenland Ice Sheet. 745 746 Data availability. All data used for the present publication can be obtained from the 747 corresponding author upon request. 748 749 Competing financial interests. The authors declare no competing financial interests.

751 Acknowledgements. This study was partly supported by the Arctic Monitoring and Assessment Programme (AMAP) and was conducted as part of the Nordic Centre of 752 753 Excellence eSTICC (Nordforsk 57001). We acknowledge the use of imagery from the NASA 754 Worldview application (https://worldview.earthdata.nasa.gov/) operated the bv 755 NASA/Goddard Space Flight Center Earth Science Data and Information System (ESDIS) 756 project. We thank Brent Holben and local site managers for their effort in establishing and 757 maintaining the AERONET sites used in this investigation. We thank NASA/CNES engineers and scientists for making CALIOP data available. The lidar data were downloaded from the 758 759 ICARE Data and Service Center.

760

750

761 *Author contributions*. NE performed the simulations, analyses, wrote and coordinated the 762 paper. AK performed the radiation calculations and wrote parts of the paper. VM and SZ 763 performed GIS analysis for the burned area calculations. RP made all the runs for the Andreas Stohl 17/6/2018 11:39 Deleted: If Nikolaos Evangeliou 25/5/2018 12:30 Deleted: further Nikolaos Evangeliou 25/5/2018 12:30 Deleted: Greenland Nikolaos Evangeliou 25/5/2018 15:21 Deleted: much larger Nikolaos Evangeliou 6/6/2018 15:23 Deleted: lead

- 770 injection height calculations using the PRMv2 model. KS analysed satellite data for AOD and
- 771 CALIOP, SE and AS commented and coordinated the manuscript. All authors contributed to
- the final version of the manuscript.
- 773

774 References

- 775 Abdalati, W. and Steffen, K.: Greenland Ice Sheet melt extent:1979-1999, J. Geophys. Res.
- 776 Atmos., 106(D24), 33983–33988, doi:10.1029/2001JD900181, 2001.
- 777 Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J.
- 778 D. and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use
- 779 in atmospheric models, Atmos. Chem. Phys., 11(9), 4039–4072, doi:10.5194/acp-11-780 4039-2011, 2011.
- 781 AMAP: Snow, Water, Ice and Permafrost. Summary for Policy-makers, Arctic Monitoring
- and Assessment Programme (AMAP), Oslo, Norway. [online] Available from:
- 783 https://www.amap.no/documents/doc/Snow-Water-Ice-and-Permafrost.-Summary-
- for-Policy-makers/1532 (Accessed 27 November 2017), 2017.
- 785 BBC News: "Unusual" Greenland wildfires linked to peat, [online] Available from:
- http://www.bbc.com/news/science-environment-40877099 (Accessed 6 September 2017), 2017.
- Bellouin, N. and Haywood, J.: Aerosols: Climatology of Tropospheric Aerosols, Second
 Edi., Elsevier., 2014.
- 790 Benscoter, B. W. and Wieder, R. K.: Variability in organic matter lost by combustion in a
- 791 boreal bog during the 2001 Chisholm fire, Can. J. For. Res., 33(12), 2509–2513,
- 792 doi:10.1139/x03-162, 2003.
- 793 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Flanner,
- M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C.,
- 795 Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda,
- 796 S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P.,
- 797 Shindell, D., Storelvmo, T., Warren, S. G. and Zender, C. S.: Bounding the role of black
- carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118(11),
 5380–5552, doi:10.1002/jgrd.50171, 2013.
- 800 Buras, R., Dowling, T. and Emde, C.: New secondary-scattering correction in DISORT with
- 801 increased efficiency for forward scattering, J. Quant. Spectrosc. Radiat. Transf., 112(12),
 802 2028–2034, doi:10.1016/j.jqsrt.2011.03.019, 2011.
- 803 Chavez, P. S.: An improved dark-object subtraction technique for atmospheric scattering
- 804 correction of multispectral data, Remote Sens. Environ., 24(3), 459–479,
- 805 doi:10.1016/0034-4257(88)90019-3, 1988.
- 806 Cofer III, W. R., Levine, J. S., Winstead, E. L. and Stocks, B. J.: New estimates of nitrous
- 807 oxide emissions from biomass burning, Nature, 349(6311), 689–691 [online] Available 808 from: http://dx.doi.org/10.1038/349689a0, 1991.
- 809 Conny, J. and Slater, J.: Black carbon and organic carbon in aerosol particles from crown
- 810 fires in the Canadian boreal forest, J. Geophys. Res. ... [online] Available from:
- 811 http://onlinelibrary.wiley.com/doi/10.1029/2001JD001528/full, 2002.
- Daanen, R. P., Ingeman-Nielsen, T., Marchenko, S. S., Romanovsky, V. E., Foged, N.,
- 813 Stendel, M., Christensen, J. H. and Hornbech Svendsen, K.: Permafrost degradation risk
- zone assessment using simulation models, Cryosphere, 5(4), 1043–1056,
- 815 doi:10.5194/tc-5-1043-2011, 2011.
- 816 Dahlback, A. and Stamnes, K.: A new spherical model for computing the radiation field

- 817 available for photolysis and heating at twilight, Planet. Space Sci., 39(5), 671–683,
- 818 doi:10.1016/0032-0633(91)90061-E, 1991.
- 819 Davies, G. M., Gray, A., Rein, G. and Legg, C. J.: Peat consumption and carbon loss due to
- 820 smouldering wildfire in a temperate peatland, For. Ecol. Manage., 308, 169–177,
- 821 doi:10.1016/j.foreco.2013.07.051, 2013.
- 822 Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D. and Brandt, R. E.: Light-absorbing
- 823 impurities in Arctic snow, Atmos. Chem. Phys., 10(23), 11647–11680, doi:10.5194/acp-824 10-11647-2010, 2010.
- 825 Drysdale, D.: An Introduction to Fire Dynamics, 3rd Editio., John Wiley & Sons, Ltd., 826 2011.
- 827 Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J.,
- 828 Richter, B., Pause, C., Dowling, T. and Bugliaro, L.: The libRadtran software package for 829 radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9(5), 1647–1672,
- 830 doi:10.5194/gmd-9-1647-2016, 2016.
- 831 Escuin, S., Navarro, R. and Fernández, P.: Fire severity assessment by using NBR
- 832 (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived
- 833 from LANDSAT TM/ETM images, Int. J. Remote Sens., 29(4), 1053-1073,
- 834 doi:10.1080/01431160701281072, 2008.
- 835 Evangeliou, N., Balkanski, Y., Cozic, A., Hao, W. M. and Møller, A. P.: Wildfires in
- 836 Chernobyl-contaminated forests and risks to the population and the environment: A
- 837 new nuclear disaster about to happen?, Environ. Int., 73, 346-358,
- 838 doi:10.1016/j.envint.2014.08.012, 2014.
- 839 Evangeliou, N., Balkanski, Y., Cozic, A., Hao, W. M., Mouillot, F., Thonicke, K., Paugam, R.,
- 840 Zibtsev, S., Mousseau, T. A., Wang, R., Poulter, B., Petkov, A., Yue, C., Cadule, P., Koffi, B.,
- 841 Kaiser, J. W., Møller, A. P. and Classen, A. T.: Fire evolution in the radioactive forests of 842
- Ukraine and Belarus: Future risks for the population and the environment, Ecol.
- 843 Monogr., 85(1), 49-72, doi:10.1890/14-1227.1, 2015.
- 844 Evangeliou, N., Zibtsev, S., Myroniuk, V., Zhurba, M., Hamburger, T., Stohl, A., Balkanski,
- 845 Y., Paugam, R., Mousseau, T. A., Møller, A. P. and Kireev, S. I.: Resuspension and
- 846 atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear
- 847 Power Plant in 2015: An impact assessment., Sci. Rep., 6, 26062 [online] Available from:
- 848 http://www.nature.com/srep/2016/160517/srep26062/full/srep26062.html, 2016.
- 849 Fang, X., Thompson, R. L., Saito, T., Yokouchi, Y., Kim, J., Li, S., Kim, K. R., Park, S., Graziosi,
- 850 F. and Stohl, A.: Sulfur hexafluoride (SF6) emissions in East Asia determined by inverse modeling, Atmos. Chem. Phys., 14(9), 4779-4791, doi:10.5194/acp-14-4779-2014, 851
- 852 2014
- 853 Faulkner Burkhart, J., Kylling, A., Schaaf, C. B., Wang, Z., Bogren, W., Storvold, R., Solbø, S.,
- 854 Pedersen, C. A. and Gerland, S.: Unmanned aerial system nadir reflectance and MODIS
- 855 nadir BRDF-adjusted surface reflectances intercompared over Greenland, Cryosphere,
- 856 11(4), 1575-1589, doi:10.5194/tc-11-1575-2017, 2017.
- 857 Ferguson, S. A., Collins, R. L., Ruthford, J. and Fukuda, M.: Vertical distribution of
- nighttime smoke following a wildland biomass fire in boreal Alaska, J. Geophys. Res., 858
- 859 108(June), D23, 4743, doi:10.1029/2002JD003324, doi:10.1029/2002JD003324, 2003.
- 860 Fernandez Anez, N., Garcia Torrent, J., Medic Pejic, L. and Grima Olmedo, C.: Detection of
- 861 incipient self-ignition process in solid fuels through gas emissions methodology. I. Loss
- 862 Prev. Process Ind., 36, 343-351, doi:10.1016/j.jlp.2015.02.010, 2015.
- 863 Flanner, M. G., Zender, C. S., Randerson, J. T. and Rasch, P. J.: Present-day climate forcing
- 864 and response from black carbon in snow, J. Geophys. Res. Atmos., 112(11), 1-17,
- 865 doi:10.1029/2006JD008003, 2007.

- 866 Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V.
- and Rasch, P. J.: Springtime warming and reduced snow cover from carbonaceous
- 868 particles, Atmos. Chem. Phys., 9, 2481–2497, doi:10.5194/acp-9-2481-2009, 2009.
- 869 Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen, D., Simmonds, P.,
- 870 O'Doherty, S., Jennings, S. G., Kleefeld, C., Schneider, J., Trickl, T., Kreipl, S., Jäger, H. and
- Stohl, A.: Transport of boreal forest fire emissions from Canada to Europe, J. Geophys.
 Res., 106, 22887, doi:10.1029/2001JD900115, 2001.
- 873 Forster, C., Stohl, A. and Seibert, P.: Parameterization of convective transport in a
- 874 Lagrangian particle dispersion model and its evaluation, J. Appl. Meteorol. Climatol.,
- 875 46(4), 403–422, doi:10.1175/JAM2470.1, 2007.
- 876 Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. a. F., Andreae, M. O.,
- 877 Prins, E., Santos, J. C., Gielow, R. and Carvalho, J. a.: Including the sub-grid scale plume
- 878 rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem.
- 879 Phys. Discuss., 6(6), 11521–11559, doi:10.5194/acpd-6-11521-2006, 2006.
- 880 Freitas, S. R., Longo, K. M., Trentmann, J. and Latham, D.: Technical Note: Sensitivity of 1-
- 881 D smoke plume rise models to the inclusion of environmental wind drag, Atmos. Chem.
- 882 Phys., 10(2), 585–594, doi:10.5194/acp-10-585-2010, 2010.
- 883 French, N., Kasischke, E., Hall, R., Murphy, K., Verbyla, D., Hoy, E. and Allen, J.: Using
- Landsat data to assess fire and burn severity in the North American boreal forest region:
 an overview and summary of results, Int. J. Wildl. Fire, 17(4), 443–462,
- 886 doi:10.1071/WF08007, 2008.
- 887 Fromm, M., Bevilacqua, R., Servranckx, R., Rosen, J., Thayer, J. P., Herman, J. and Larko, D.:
- 888 Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of
- a super blowup in northwestern Canada on 3-4 August 1998, J. Geophys. Res. D Atmos.,
- 890 110(8), 1–17, doi:10.1029/2004JD005350, 2005.
- 891 Giglio, L., Descloitres, J., Justice, C. O. and Kaufman, Y. J.: An enhanced contextual fire
- detection algorithm for MODIS, Remote Sens. Environ., 87(2–3), 273–282,
- 893 doi:10.1016/S0034-4257(03)00184-6, 2003.
- 894 Grythe, H., Kristiansen, N. I., Groot Zwaaftink, C. D., Eckhardt, S., Ström, J., Tunved, P.,
- Krejci, R. and Stohl, A.: A new aerosol wet removal scheme for the Lagrangian particle
 model FLEXPARTv10, Geosci. Model Dev., 10, 1447–1466, doi:10.5194/gmd-10-1447-
- 897 2017, 2017.
- 898 Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos, Proc. Natl.
- 899 Acad. Sci. U. S. A., 101(2), 423–428, doi:10.1073/pnas.2237157100, 2004.
- 900 Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov,
- 901 I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A.,
- 902 Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D.,
- 903 Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz,
- 904 J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher,
- 905 D., Wielicki, B., Wong, T., Yao, M. and Zhang, S.: Efficacy of climate forcings, J. Geophys.
- 906 Res. D Atmos., 110(18), 1–45, doi:10.1029/2005JD005776, 2005.
- 907 Hao, W. M. and Ward, D. E.: Methane production from global biomass burning, J.
- 908 Geophys. Res. Atmos., 98(D11), 20657–20661, doi:10.1029/93JD01908, 1993.
- Hao, W. M., Petkov, A., Nordgren, B. L., Silverstein, R. P., Corley, R. E., Urbanski, S. P.,
- 910 Evangeliou, N., Balkanski, Y. and Kinder, B.: Daily black carbon emissions from fires in
- 911 Northern Eurasia from 2002 to 2013, Geosci. Model Dev., 9, 4461–4474,
- 912 doi:10.5194/gmd-9-4461-2016, 2016.
- 913 Holben, B. N.: Characteristics of maximum-value composite images from temporal
- 914 AVHRR data, Int. J. Remote Sens., 7(11), 1417–1434, doi:10.1080/01431168608948945,

- 915 1986.
- 916 Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J.
- 917 A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I. and Smirnov, A.: AERONET—A
- 918 Federated Instrument Network and Data Archive for Aerosol Characterization, Remote
- 919 Sens. Environ., 66(1), 1-16, doi:10.1016/S0034-4257(98)00031-5, 1998.
- 920 Hosseini, S., Li, Q., Cocker, D., Weise, D., Miller, A., Shrivastava, M., Miller, J. W.,
- 921 Mahalingam, S., Princevac, M. and Jung, H.: Particle size distributions from laboratory-
- 922 scale biomass fires using fast response instruments, Atmos. Chem. Phys., 10(16), 8065-
- 923 8076, doi:10.5194/acp-10-8065-2010, 2010.
- 924 IPCC: Climate Change 2013: The Physical Science Basis. Contribution to the Fifth
- 925 Assessment Report of the Intergovernmental Panel on Climate Change., edited by T. F.
- 926 Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. 927 Bex, and P. M. Midgley, Cambridge University Press., 2013.
- 928 Jedrzejek, B., Drees, B., Daniëls, F. J. A. and Hölzel, N.: Vegetation pattern of mountains in 929 West Greenland - a baseline for long-term surveillance of global warming impacts, Plant
- 930 Ecol. Divers., 6(3-4), 405-422, doi:10.1080/17550874.2013.802049, 2013.
- 931
- Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., Descloitres, J., 932 Alleaume, S., Petitcolin, F. and Kaufman, Y.: The MODIS fire products, Remote Sens.
- 933 Environ., 83(1-2), 244-262, doi:10.1016/S0034-4257(02)00076-7, 2002.
- 934
- Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J. J., 935 Razinger, M., Schultz, M. G., Suttie, M. and Van Der Werf, G. R.: Biomass burning
- 936 emissions estimated with a global fire assimilation system based on observed fire
- 937 radiative power, Biogeosciences, 9(1), 527–554, doi:10.5194/bg-9-527-2012, 2012.
- 938 Kato, S., Ackerman, T. P., Mather, J. H. and Clothiaux, E. E.: The k-distribution method and
- 939 correlated-k approximation for a shortwave radiative transfer model, J. Quant.
- 940 Spectrosc. Radiat. Transf., 62(1), 109–121, doi:10.1016/S0022-4073(98)00075-2, 1999.
- 941 Keegan, K. M., Albert, M. R., Mcconnell, J. R. and Baker, I.: Climate change and forest fires
- 942 synergistically drive widespread melt events of the Greenland Ice Sheet, , 1-4,
- 943 doi:10.1073/pnas.1405397111, 2014.
- Key, C. H. and Benson, N. C.: Landscape assessment: Sampling and analysis methods, 944
- 945 USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-164-CD, (June), 1-55,
- 946 doi:10.1002/app.1994.070541203, 2006.
- 947 Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J. and
- 948 Schöpp, W.: Global anthropogenic emissions of particulate matter including black
- 949 carbon, Atmos. Chem. Phys., 17, 8681-8723, doi:10.5194/acp-17- 50 8681-2017, 2017.
- 950 Lavoie, C. and Pellerin, S.: Fires in temperate peatlands (southern Quebec): past and
- 951 recent trends, Can. J. Bot., 85(3), 263-272, doi:10.1139/B07-012, 2007.
- 952 Legrand, M., McConnell, J., Fischer, H., Wolff, E. W., Preunkert, S., Arienzo, M., Chellman,
- 953 N., Leuenberger, D., Maselli, O., Place, P., Sigl, M., Schï, ½pbach, S. and Flannigan, M.:
- 954 Boreal fire records in Northern Hemisphere ice cores: A review, Clim. Past, 12(10),
- 955 2033-2059, doi:10.5194/cp-12-2033-2016, 2016.
- 956 Leino, K., Riuttanen, L., Nieminen, T., Väänänen, R., Pohja, T., Keronen, P., Järvi, L., Aalto,
- 957 P. P., Virkkula, A., Kerminen, V. M., Petäjä, T., Kulmala, M., Nieminen, T., Dal Maso, M. and
- 958 Virkkula, A.: Biomass-burning smoke episodes in Finland from eastern European
- 959 wildfires, Boreal Environ. Res., 19(x), 275–292, 2014.
- 960 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. and Pozzer, A.: The contribution of
- 961 outdoor air pollution sources to premature mortality on a global scale., Nature,
- 962 525(7569), 367-71, doi:10.1038/nature15371, 2015.
- 963 Leung, F. Y. T., Logan, J. A., Park, R., Hyer, E., Kasischke, E., Streets, D. and Yurganov, L.:

- 964 Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric
- 965 chemistry and the sensitivity of model results to the injection height of emissions, J.
- 966 Geophys. Res. Atmos., 112(10), 1–15, doi:10.1029/2006JD008132, 2007.
- 967 Long, C. M., Nascarella, M. A. and Valberg, P. A.: Carbon black vs. black carbon and other
- 968 airborne materials containing elemental carbon: Physical and chemical distinctions,
- 969 Environ. Pollut., 181, 271–286, doi:10.1016/j.envpol.2013.06.009, 2013.
- 970 Magnan, G., Lavoie, M. and Payette, S.: Impact of fire on long-term vegetation dynamics
- 971 of ombrotrophic peatlands in northwestern Québec, Canada, Quat. Res., 77(1), 110–121,
 972 doi:http://dx.doi.org/10.1016/j.yqres.2011.10.006, 2012.
- 973 Massling, A., Nielsen, I. E., Kristensen, D., Christensen, J. H., Sorensen, L. L., Jensen, B.,
- 974 Nguyen, Q. T., Nøjgaard, J. K., Glasius, M. and Skov, H.: Atmospheric black carbon and
- 975 sulfate concentrations in Northeast Greenland, Atmos. Chem. Phys., 15(16), 9681–9692,
 976 doi:10.5194/acp-15-9681-2015, 2015.
- 977 Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative
- 978 transfer calculations description and examples of use, Atmos. Chem. Phys., 5(7), 1855–
- 979 1877, doi:10.5194/acp-5-1855-2005, 2005.
- 980 Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
- 981 Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T.
- 982 and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in Climate Change 2013:
- 983 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
- 984 Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T.F., D. Qin,
- 985 G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M.
- 986 Midgley, pp. 659–740, Cambridge University Press, Cambridge, United Kingdom and
- 987 New York, NY, USA., 2013.
- 988 NASA: FIRMS. Web Fire Mapper, [online] Available from:
- 989 https://firms.modaps.eosdis.nasa.gov/firemap/ (Accessed 5 September 2017a), 2017.
- 990 NASA: Roundtable: The Greenland Wildfire, [online] Available from:
- https://earthobservatory.nasa.gov/blogs/earthmatters/2017/08/10/roundtable-the greenland-wildfire/ (Accessed 6 September 2017b), 2017.
- 993 NASA: Wildfires Continue to Beleaguer Western Canada, [online] Available from:
- 994 https://www.nasa.gov/image-feature/goddard/2017/wildfires-continue-to-beleaguer-
- 995 western-canada (Accessed 29 October 2017c), 2017.
- 996 New Scientist Magazine: Largest ever wildfire in Greenland seen burning from space,
- 997 [online] Available from: https://www.newscientist.com/article/2143159-largest-ever-
- 998 wildfire-in-greenland-seen-burning-from-space/ (Accessed 6 September 2017), 2017.
- 999 Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jada, A. and Limin, S.: The amount of
- carbon released from peat and forest fires in Indonesia during 1997, Nature, 420(19),
 61–65, doi:10.1038/nature01131, 2015.
- 1002 Paugam, R., Wooster, M. and Atherton, J.: Development and optimization of a wildfire
- plume rise model based on remote sensing data inputs Part 2, , doi:10.5194/acpd-159815-2015, 2015.
- 1005 Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A., Jayarathne, T., Stone, E. A.,
- 1006 Stockwell, C. E., Yokelson, R. J. and Murphy, S. M.: Parameterization of single-scattering
- albedo (SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol
- 1008 emissions from biomass burning, Atmos. Chem. Phys., 16(15), 9549–9561,
- 1009 doi:10.5194/acp-16-9549-2016, 2016.
- 1010 Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R., Lai, A. M., Schauer,
- 1011 J. J., Shafer, M. M. and Bergin, M.: Neither dust nor black carbon causing apparent albedo
- 1012 decline in Greenland's dry snow zone: Implications for MODIS C5 surface reflectance,
 - 23

- 1013 Geophys. Res. Lett., 42(21), 9319-9327, doi:10.1002/2015GL065912, 2015.
- 1014 Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. and Morton, D. C.: Global
- 1015 burned area and biomass burning emissions from small fires, J. Geophys. Res.
- 1016 Biogeosciences, 117(4), doi:10.1029/2012JG002128, 2012.
- 1017 Reddy, A. D., Hawbaker, T. J., Wurster, F., Zhu, Z., Ward, S., Newcomb, D. and Murray, R.:
- 1018 Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-
- temporal LiDAR, Remote Sens. Environ., 170, 306-316, doi:10.1016/j.rse.2015.09.017, 1019 1020 2015.
- 1021 Rémy, S., Veira, A., Paugam, R., Sofiev, M., Kaiser, J. W., Marenco, F., Burton, S. P.,
- 1022 Benedetti, A., Engelen, R. J., Ferrare, R. and Hair, J. W.: Two global data sets of daily fire
- emission injection heights since 2003, , 2921-2942, doi:10.5194/acp-17-2921-2017, 1023 1024 2017.
- 1025 Restuccia, F., Ptak, N. and Rein, G.: Self-heating behavior and ignition of shale rock,
- 1026 Combust. Flame, 176, 213-219, doi:10.1016/j.combustflame.2016.09.025, 2017a.
- 1027 Restuccia, F., Huang, X. and Rein, G.: Self-ignition of natural fuels: Can wildfires of
- 1028 carbon-rich soil start by self-heating?, Fire Saf. J., 91(February), 828-834,
- 1029 doi:10.1016/j.firesaf.2017.03.052, 2017b.
- 1030 Sand, M., Berntsen, T. K., von Salzen, K., Flanner, M. G., Langner, J. and Victor, D. G.:
- 1031 Response of Arctic temperature to changes in emissions of short-lived climate forcers, 1032 Nat. Clim. Chang., 6(November), 1–5, doi:10.1038/nclimate2880, 2015.
- 1033
- von Schneidemesser, E., Schauer, J. J., Hagler, G. S. W. and Bergin, M. H.: Concentrations 1034 and sources of carbonaceous aerosol in the atmosphere of Summit, Greenland, Atmos.
- 1035 Environ., 43(27), 4155-4162, doi:10.1016/j.atmosenv.2009.05.043, 2009.
- 1036 Seiler, W. and Crutzen, P. J.: Estimates of gross and net fluxes of carbon between the
- 1037 biosphere and the atmosphere from biomass burning, Clim. Change, 2(3), 207-247,
- 1038 doi:10.1007/BF00137988, 1980.
- 1039 SERMITSIAO: Se billeder: Naturbrand udvikler kraftig røg, , in Danish [online] Available 1040 from: http://sermitsiaq.ag/se-billeder-naturbrand-udvikler-kraftig-roeg (Accessed 6
- 1041 September 2017), 2017.
- Shetler, G., Turetsky, M. R., Kane, E. and Kasischke, E.: Sphagnum mosses limit total 1042
- 1043 carbon consumption during fire in Alaskan black spruce forests, Can. J. For. Res., 38(8), 1044 2328-2336, doi:10.1139/X08-057, 2008.
- Shi, Y., Matsunaga, T., Saito, M., Yamaguchi, Y. and Chen, X.: Comparison of global 1045
- 1046 inventories of CO2 emissions from biomass burning during 2002-2011 derived from
- 1047 multiple satellite products, Environ. Pollut., 206, 479-487,
- 1048 doi:10.1016/j.envpol.2015.08.009, 2015.
- 1049 Skeie, R. B., Berntsen, T., Myhre, G., Pedersen, C. A., Sträm, J., Gerland, S. and Ogren, J. A.:
- 1050 Black carbon in the atmosphere and snow, from pre-industrial times until present, 1051 Atmos. Chem. Phys., 11(14), 6809-6836, doi:10.5194/acp-11-6809-2011, 2011.
- 1052 Smirnov, N. S., Korotkov, V. N. and Romanovskaya, A. A.: Black carbon emissions from
- 1053 wildfires on forest lands of the Russian Federation in 2007–2012, Russ. Meteorol.
- 1054 Hydrol., 40(7), 435-442, doi:10.3103/S1068373915070018, 2015.
- 1055 Stamnes, K., Tsay, S.-C., Wiscombe, W. and Jayaweera, K.: Numerically stable algorithm
- 1056 for discrete-ordinate-method radiative transfer in multiple scattering and emitting
- layered media, Appl. Opt., 27(12), 2502, doi:10.1364/A0.27.002502, 1988. 1057
- 1058 Stendel, M., Christensen, J. H. and Petersen, D.: Arctic Climate and Climate Change with a
- 1059 Focus on Greenland, Adv. Ecol. Res., 40(07), 13-43, doi:10.1016/S0065-
- 1060 2504(07)00002-5, 2008.
- 1061 Stockwell, C. E., Jayarathne, T., Cochrane, M. A., Ryan, K. C., Putra, E. I., Saharjo, B. H.,
- 24

- 1062 Nurhayati, A. D., Albar, I., Blake, D. R., Simpson, I. J., Stone, E. A. and Yokelson, R. J.: Field
- 1063 measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan,
- 1064 Indonesia, during the 2015 El Niño, Atmos. Chem. Phys., 16(18), 11711–11732,
- 1065 doi:10.5194/acp-16-11711-2016, 2016.
- 1066 Stohl, A., Forster, C., Frank, A., Seibert, P. and Wotawa, G.: Technical note: The Lagrangian
- 1067 particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5(9), 2461–2474, doi:10.5194/acp-5-2461-2005, 2005.
- 1069 Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A., Hoch, S. W., Kowal, D.,
- 1070 Lunder, C., Mefford, T., Ogren, J. A., Sharma, S., Spichtinger, N., Stebel, K., Stone, R., Ström,
- 1071 J., Tørseth, K., Wehrli, C. and Yttri, K. E.: Pan-Arctic enhancements of light absorbing
- 1072 aerosol concentrations due to North American boreal forest fires during summer 2004, J.
- 1073 Geophys. Res. Atmos., 111(22), 1–20, doi:10.1029/2006JD007216, 2006.
- 1074 Stohl, A., Berg, T., Burkhart, J. F., Fjáraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C.,
- 1075 McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J.,
- 1076 Tørseth, K., Treffeisen, R., Virkkunen, K. and Yttri, K. E.: Arctic smoke record
- 1077 high air pollution levels in the European Arctic due to agricultural fires in Eastern
- 1078 Europe in spring 2006, Atmos. Chem. Phys., 7(2), 511–534, doi:10.5194/acp-7-511-2007, 2007.
- 1080 Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N. I.,
- 1081 Minikin, A., Schumann, U., Seibert, P., Stebel, K., Thomas, H. E., Thorsteinsson, T., Tørseth,
- 1082 K. and Weinzierl, B.: Determination of time-and height-resolved volcanic ash emissions
- 1083 and their use for quantitative ash dispersion modeling: The 2010 Eyjafjallajokull
- 1084 eruption, Atmos. Chem. Phys., 11(9), 4333–4351, doi:10.5194/acp-11-4333-2011, 2011.
- 1085 Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M. and
- 1086 Novigatsky, A. N.: Black carbon in the Arctic: The underestimated role of gas flaring and 1087 residential combustion emissions, Atmos. Chem. Phys., 13(17), 8833–8855,
- 1088 doi:10.5194/acp-13-8833-2013, 2013.
- 1089 Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A. and Schaaf, C.: Accuracy assessment of the
- 1090 MODIS 16-day albedo product for snow: Comparisons with Greenland in situ
- 1091 measurements, Remote Sens. Environ., 94(1), 46–60, doi:10.1016/j.rse.2004.09.001,
- 1092 2005.
- 1093 Sunderman, S. O. and Weisberg, P. J.: Remote sensing approaches for reconstructing fire
- 1094 perimeters and burn severity mosaics in desert spring ecosystems, Remote Sens.
- 1095 Environ., 115(9), 2384–2389, doi:10.1016/j.rse.2011.05.001, 2011.
- 1096 Turetsky, M. R., Donahue, W. F. and Benscoter, B. W.: Experimental drying intensifies
- 1097 burning and carbon losses in a northern peatland, Nat. Commun., 2, 514,
- 1098 doi:10.1038/ncomms1523, 2011.
- 1099 Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R. and Watts, A.: Global
- 1100 vulnerability of peatlands to fire and carbon loss, Nat. Geosci., 8(1), 11–14,
- 1101 doi:10.1038/ngeo2325, 2014.
- 1102 Urbanski, S. P., Hao, W. M. and Nordgren, B.: The wildland fire emission inventory:
- 1103 Western United States emission estimates and an evaluation of uncertainty, Atmos.
- 1104 Chem. Phys., 11(24), 12973–13000, doi:10.5194/acp-11-12973-2011, 2011.
- 1105 Wandji Nyamsi, W., Arola, A., Blanc, P., Lindfors, a. V., Cesnulyte, V., Pitkänen, M. R. a. and
- 1106 Wald, L.: Technical Note: A novel parameterization of the transmissivity due to ozone
- absorption in the distribution method and correlated approximation of Kato et al.
- 1108 (1999) over the UV band, Atmos. Chem. Phys., 15(13), 7449–7456, doi:10.5194/acp-15-1109 7449-2015, 2015.
- 1110 Warren, S. G.: Can black carbon in snow be detected by remote sensing?, J. Geophys. Res.
 - 25

- 1111 Atmos., 118(2), 779–786, doi:10.1029/2012JD018476, 2013.
- 1112 Wieder, R. K., Scott, K. D., Kamminga, K., Vile, M. A., Vitt, D. H., Bone, T., Xu, B., Benscoter,
- 1113 B. W. and Bhatti, J. S.: Postfire carbon balance in boreal bogs of Alberta, Canada, Glob.
- 1114 Chang. Biol., 15(1), 63–81, doi:10.1111/j.1365-2486.2008.01756.x, 2009.
- 1115 Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., Semiletov, I. P., Dudarev, O. V., Charkin,
- 1116 A., Shakhova, N., Klimont, Z., Heyes, C. and Gustafsson, Ö.: Siberian Arctic black carbon
- 1117 sources constrained by model and observation, Proc. Natl. Acad. Sci., 114(7), E1054-
- 1118 E1061, doi:10.1073/pnas.1613401114, 2017.
- 1119 Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H. and
- 1120 Young, S. A.: Overview of the CALIPSO mission and CALIOP data processing algorithms, J.
- 1121 Atmos. Ocean. Technol., 26(11), 2310–2323, doi:10.1175/2009JTECHA1281.1, 2009.
- 1122 Wu, D., Huang, X., Norman, F., Verplaetsen, F., Berghmans, J. and Van Den Bulck, E.:
- 1123 Experimental investigation on the self-ignition behaviour of coal dust accumulations in
- 1124 oxy-fuel combustion system, Fuel, 160, 245–254, doi:10.1016/j.fuel.2015.07.050, 2015.
- 1125 Zhuravleva, T. B., Kabanov, D. M., Nasrtdinov, I. M., Russkova, T. V., Sakerin, S. M.,
- 1126 Smirnov, A. and Holben, B. N.: Radiative characteristics of aerosol during extreme fire
- 1127 event over Siberia in summer 2012, Atmos. Meas. Tech., 10(1), 179–198,
- 1128 doi:10.5194/amt-10-179-2017, 2017.
- 1129 1130

1132
1133Figure 1. Map of Greenland (upper left) and zoomed map marked with fire location (upper
right and burned area classification (bottom) in terms of fire severity according to Sentinel 2A
images for fires burning in Greenland in August 2017. To delineate fire perimeters, both
11361136Landsat 8 OLI and Sentinel 1A – 2A data were used (Table 1).

Nikolaos Evangeliou 21/6/2018 20:09 Deleted: Table 1

1140 Figure 2. (a) <u>Time-series of vertical</u> distribution of BC concentrations <u>averaged over the area</u>

1141 of Greenland in summer 2017 as a function of time. (b) Total (wet and dry) deposition of BC

1142 (in µg m⁻²) from Greenland fires until 31 August 2017. The colored rectangle depicts the

1143 nested high-resolution domain.

Nikolaos Evangeliou 8/6/2018 10:33 Deleted: Vertical Nikolaos Evangeliou 8/6/2018 10:34 Deleted: from the fires in Nikolaos Evangeliou 8/6/2018 10:38 Deleted: n

28

Figure 3. (a) Calculated snow concentrations of BC over Greenland based on the modeled deposition and the snow precipitation (large scale and convective) in the operational ECMWF data that were used in our simulation (see section 2.3). (b) Dry to total deposition ratio of BC from the 2017 peat fires over Greenland.

29

Moved down [1]: Average contribution of biomass burning (upper panels) and anthropogenic emissions (lower panels) to surface concentrations of BC in Northwestern, Northeastern, Southwestern and Southeastern Greenland (in ng m⁻³ per grid cell). Numbers (in red) represent total concentrations in the studied domain, obtained by spatial integration over all source grid cells. Receptor areas in Greenland are highlighted by pink boxes.

31

Deleted: at 500 Nikolaos Eva

Deleted: (Nikolaos Ev Deleted:) Nikolaos E

Deleted:

21/6/2018 19:15

21/6/2018 19:15

Figure 7. (a) The instantaneous direct BOA RF due to BC from the Greenland fires for
cloudless and (b) cloudy conditions on 31 August, and (c) snow albedo reduction due to the
total BC deposited as a result of the Greenland fires. (d) Temporal variation of the cloudy
TOA IRF over Greenland in August 2017.

Nikolaos Evangeliou 8/6/2018 11:23 Deleted: the

1215

1217	SUPPLEMENTARY FIGURE LEGENDS	
1218		
1219	Figure S 1. Annual number of active fires over Greenland during the last 17 years as seen	
1220	from NASA's MODIS satellite (product MSC14DL).	
1221		
1222	Figure S 2, Fire dynamics in Greenland for the August 2017 fires according to MODIS	Nikolaos Evangeliou 21/6/2018 20:09
1223	(magenta dots show active fire hot spots from the MODIS MCD14DL product). Locations of	Deleted: 21
1224	stations with AOD measurements from AERONET are also shown.	
1225		
1226	Figure S 3, Median injection heights (km above sea level – ASL; left panel) and distribution	Nikolaos Evangeliou 21/6/2018 20:09
1227	of longitudinally integrated burned biomass (Tg) as a function of injection altitude (right	Deleted: 32
1228	panel) calculated by PRMv2 for the period between 31 July and 21 August 2017.	
1229		
1230	Figure S 4. Relative standard deviation of BC deposition for different assumed size	
1231	distributions of BC normalized against the results for our reference size distribution with a	
1232	logarithmic mean diameter of 0.25 µm. Particle size distributions with aerodynamic mean	
1233	diameters of 0.1, 0.25, 0.5, 1, 2, 4, 8 µm and a logarithmic standard deviation of 0.3 were	
1234	simulated.	
4005		
1235	Figure S 5. Footprint emissions sensitivities for Northwestern, Northeastern, Southwestern	
1237	and Southeastern Greenland for the period 31 July to 31 August 2017. Active fires from	
1238	NASA's MODIS MCD14DL product are shown with red dots.	
		Nikolaos Evangeliou 6/6/2018 17:46
1239	Figure S. 6 Average contribution of biomass burning (upper papels) and anthronogenia	Moved (insertion) [1]
1240	amissions (lower panels) to surface concentrations of PC in Northwestern Northwestern	Nikolaos Evangeliou 21/6/2018 20:09 Deleted: 64
1241	Emissions (nower panels) to surface concentrations of BC in Northwestern, Northwestern, Northwestern, Southwestern ond Southwestern Creanland (in $n \sigma m^{-3}$ nor orid call). Numbers (in rad)	Nikolaos Evangeliou 6/6/2018 17:46
1242	Southwestern and Southeastern Greenland (in fig in per grid cell). Numbers (in fed)	Deleted: (a) Time-series of surface BC concentrations in Northwestern, Northeastern,
1243	represent total concentrations in the studied domain, obtained by spatial integration over all	Southwestern and Southeastern Greenland from the summer 2017 fires in Western
1244	source grid cens. Receptor areas in Greenland are nightighted by pink boxes.	Greenland. (b) Time-series of surface BC concentrations in Northwestern, Northeastern,
1245		Southwestern and Southeastern Greenland from global anthropogenic (ANT) and biomass
1246	Figure S 7. (a) The single scattering albedo (SSA) of BC as a function of wavelength for	burning (BB) emissions for the same period. The numbers represent the respective dosages
1247	various modified combustion efficiencies (MCE). The star and dot marked lines are from the	integrated for the time period shown and each color corresponds to the legend.
1248	parameterization of Pokhrel et al. (2016). (b) The IRF as a function of BC deposited on the	Nikolaos Evangeliou 15/6/2018 15:13
		spacing: 1.5 lines

1264 Ice Sheet. The calculations were made for cloudless conditions with a snow-covered surface

1265 <u>for noon on 31 August 2017 at 65°N.</u>

Table 1. Start and end date of releases, source of data, type of sensor, burned area and daily increment of burned area, fuel consumption and calculated BC emissions from Eq. 1 during the Greenland fires in 2017. Total numbers for burned area, fuel consumption and BC emissions are highlighted in bold.

Stant	End	Source of RS	Type of	Burned area	Increment of	Fuel consumption	BC emission
Start		data	sensor	(ha)	burned area (ha)	(t C)	(kg)
31/07/17	02/08/17	Sentinel 2A	MSI	304	304	15176	3035
02/08/17	03/08/17	Landsat 8 OLI	MSI	428	125	6247	1249
03/08/17	04/08/17	Sentinel 1A	SAR	588	160	7980	1596
04/08/17	05/08/17	Sentinel 1A	SAR	740	152	7621	1524
05/08/17	07/08/17	Sentinel 2A	MSI	1100	359	17966	3593
07/08/17	08/08/17	Sentinel 2A	MSI	1314	214	10706	2141
08/08/17	12/08/17	Landsat 8 OLI	MSI	1868	554	27714	5543
12/08/17	14/08/17	Sentinel 1A	SAR	2005	136	6817	1363
14/08/17	15/08/17	Sentinel 1A	SAR	2169	165	8244	1649
15/08/17	16/08/17	Sentinel 1A	SAR	2209	40	1998	400
16/08/17	19/08/17	Sentinel 1A	SAR	2254	44	2213	443
19/08/17	21/08/17	Sentinel 2A	MSI	2345	92	4579	916
TOTAL					2345	117259	23452

RS - Remote Sensing MSI - Multispectral Images SAR - Synthetic Aperture RADAR

Page 8: [1] Deleted	Andreas Stohl	17/06/2018 14:45

RF was calculated at the top and bottom of the atmosphere at $1^{\circ} \times 1^{\circ}$ resolution.

Page 15: [2] Deleted	Andreas Stohl	17/06/2018 10:18			
The IRF includes both the effects of atmospheric BC and BC deposited on the snow. The					
latter dominates the IRF con	tributing between 85 to 99 % t	to the IRF depending on BC			
amount. Note that the IRF do	es not include any semi-direct n	or indirect effects. Cloudless			
conditions were assumed in	Figure 7a, while in Figure 7b	water and ice water clouds			
were adopted from ECMWF.					