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Abstract
We present the laboratory results of immersion freezing efficiencies of cellulose particles at

supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose
samples are used as surrogates that represent supermicron and submicron ice nucleating

5 plant structural polymers. These samples include micro-crystalline cellulose (MCC), fibrous
cellulose (FC) and nano-crystalline cellulose (NCC). Our experimental data show that particles
resembling the MCC lab particle occur also in the atmosphere. Our immersion freezing dataset
includes data from various ice nucleation measurement techniques available at seventeen
different institutions, including nine dry dispersion and eleven aqueous suspension

10  techniques. With a total of twenty methods, we performed systematic accuracy and precision
analysis of measurements from all twenty measurement techniques by evaluating T-binned (1

°C) data over a wide T range (-36 °C < T < -4 °C). Specifically, we inter-compared the geometric
surface area-based ice nucleation active surface-site (INAS) density data derived from our
measurements as a function of T, nsgeo(T). Additionally, we also compared the nsgeo(T) values

15  andthe freezing spectral slope parameter (Alog(nsge)/AT) from our measurements to previous
literature results. Results show that freezing efficiencies of NCC samples agree reasonably

well, whereas the diversity for the other two samples spans for ~10 °C. Despite given
uncertainties within each instrument technique, the overall trend of the nsgeo(T) spectrum
traced by the T-binned average of measurements suggest that predominantly supermicron-

20  sized (giant hereafter) cellulose particles (MCC and FC) generally act as more efficient ice-
nucleating particles than NCC with about one order of magnitude higher nsgeo(T). Further, our
results indicate significant diversity between dry and aqueous suspension measurement
techniques. The ratios of the individual measurements (nsna) to the log average of N geo(T)
range 0.6-1.4 across the examined T range. In general, the ratios of the log average of dry

25  dispersion measurements are higher than those of aqueous suspension measurements. The
observed discrepancy may be due to non-uniform active site density for different sizes and/or

the alteration in physico-chemical properties of cellulose by liquid-suspending it. Unless
otherwise defined, the cellulose system may not be an ideal calibrant. Given such a distinct
difference between two subgroups of immersion freezing techniques, standardization of our

30 methods, especially INP sampling and treatment, may be one approach to reduce the
measurement diversity and valiability when we deal with a complex material like cellulose. A
community-wide effort to identify specimen-specific limitations and characteristics of each
technique, as well as consolidating the nsgeo(T) parameterization, is an alternative approach to

achieve overall precise and accurate ice-nucleating particle measurements.
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1. Introduction

1.1 Background

Glaciation of supercooled clouds through immersion freezing induced by ice-nucleating
particles (INPs) is an important atmospheric process affecting the formation of precipitation
5 and the Earth’s energy budget (Boucher et al., 2013; Vergara-Temprado et al., 2018).
Currently, the climatic impact of INPs is, however, uncertain due to our insufficient knowledge
regarding their diversity and abundance in the atmosphere (e.g., Hoose and Méhler, 2012;
Murray et al., 2012; Kanji et al., 2017; Knopf et al., 2018). Recently, micro-crystalline cellulose
(MCC) particles of <16 um in diameter, extracted from natural wood pulps (Aldrich, 435236),

10  have been identified as an efficient INP (Hiranuma et al. 2015a, H15a hereafter). Experiments
with this surrogate may provide useful information to understand the role of biological INPs
in the troposphere as presented in H15a. Conspicuously, the H15a modeling results suggest
that the tropospheric concentration of ice-nucleating cellulose becomes substantial (>0.1 L?)
below about -21 °C.

15 In general, airborne cellulose particles are prevalent (>0.05 pg m=) throughout the
year even at remote and elevated locations as reported in Sdnchez-Ochoa et al. (2007). Their
water insoluble, hydrolysis resistant and heat resistive features (Ferndndez et al., 1997,
Quiroz-Castafieda & Folch-Mallol, 2013) may in part explain the long-range transport and high
concentrations of cellulose even at geographically dispersed sites. Another unique

20  characteristic of ambient cellulose is its wide range of physical size available for freezing. For
example, the size distribution measurements of ambient cellulose particles by Puxbaum and
Tenze-Kunit (2003) indicate the presence of particulate cellulose in the range from 10 nm to
>20 um. The presence of supermicron particles, possessing larger surfaces as compared to
submicron ones, is remarkable since they can potentially act as giant INPs since large surfaces

25 may promote efficient formation of ice embryos (Pruppacher and Klett, 2010; Schnell and Vali,
1972 and 1973). Nevertheless, more comprehensive characterization of ice-nucleating
properties of various cellulose-containing particles is indeed necessary to examine if the ice-
nucleating activity is specific to MCC or generally relevant to all cellulose materials in the

atmosphere.

30 1.2 Previous INUIT Inter-comparison Activities

In 2012, the German research consortium-led INUIT (Ice Nuclei research UnlIT) project was
commenced to comprehensively study the heterogeneous ice nucleation processes in the

atmosphere. Throughout the period since, this project has provided a trans-national platform

3
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to bolster collaborative research activities between various yet meticulous groups who study
atmospheric INPs. In turn, INUIT has accelerated ice nucleation research in a wide range of
study scales from nanoscopic microphysics (e.g., Kiselev et al., 2017) to cloud scale modeling
(e.g., Diehl and Mitra, 2015 ; Paukert and Hoose, 2014) in cross- and inter-disciplinary
manners.

Formerly, several INUIT studies addressed quantitative validations of ice nucleation
(IN) instruments using test proxies of atmospheric particles (Wex et al., 2015; Hiranuma et al.,
2015b; Burkert-Kohn et al., 2017). Some studies focused on identifying potential reasons of
the data diversity (e.g., different experimental methods and sample preparation methods).
For example, Burkert-Kohn et al. (2017) remarked the importance of the inter-comparison
workshop by co-deploying instruments with a uniform aerosol dispersion procedure and size
segregation method to minimize the diversity in ice nucleation results. Hiranuma et al.
(2015b), H15b henceforth, took a different approach to perform an inter-comparison of INP
measurement techniques. The authors demonstrated the collaborative multi-institutional
laboratory work with a total of fourteen institutions (seven from Germany, four from U.S., one
from U.K., one from Switzerland and one from Japan) by distributing a test particulate sample
to partners and allowing measurements at their home laboratories. The authors discussed the
potential effect of sampling of the dust, agglomeration, flocculation, surface estimation
methods, multiple nucleation modes and chemical aging on the observed data deviation
amongst seventeen different IN instruments. This study suggested that a combination of
above-listed factors may be responsible for ~8 °C diversity in terms of temperature and up to
three orders of magnitude difference with respect to the ice nucleation active surface-site
(INAS) density, ns(T), parameters. Further, two follow-up studies on potential effects of
aggregation upon IN were performed in Emersic et al. (2015) and Beydoun et al. (2016). The
former study presented the potential role of aggregation and sedimentation of mineral
particles, altering their IN efficiency in aqueous suspension, by combining experimental and
modeling approaches. The latter study presented a subset of cellulose data used in the
concurrent study, and the authors postulated that the widening of the frozen fractions and
enhanced ice activity towards high T was attributable to increased diversity in ice nucleating
activity for lower concentrations and particle surfaces. In other words, there is a distribution
of active sites between individual droplets depending on the total surface area. Nevertheless,
our understanding of overall consistency of current INP measurement techniques and
dominant mechanisms that may be responsible for diversity among measurements is still

insufficient.

Atmospheric
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1.3 Goals

The measurement strategy for this study was formulated in year 2015 to further augment our

understanding of sensitivity of various ice nucleation instrument techniques towards

immersion freezing efficiency. Beyond official INUIT-participating institutes, including

5  Bielefeld University (BU), Goethe University Frankfurt (GUF), Johannes Gutenberg University

of Mainz (JGU), Karlsruhe Institute of Technology (KIT), Max Planck Institute for Chemistry

(MPIC), Leibniz Institute for Tropospheric Research (TROPOS), Technical University of

Darmstadt (TUD) and Weizmann Institute of Science (WIS, alphabetical order according to the

abbreviations), ten associated institutes (five from U.S., three from E.U. and two from Japan)

10  areinvolved in this study. These associated partners include Carnegie Melon University (CMU),

Colorado State University (CSU), North Carolina State University (NC State), Pacific Northwest

National Laboratory (PNNL), West Texas A&M University (WTAMU), Institute of Atmospheric

Sciences and Climate-National Research Council (ISAC-CNR), University of Basel, University of

Leeds, Meteorological Research Institute (MRI) and National Institute of Polar Research (NIPR).

15  We have shared three cellulose samples: micro-crystalline cellulose (MCC, Aldrich, 435236),

fibrous cellulose (FC, Sigma, C6288) and nano-crystaline cellulose (NCC, Melodea, WS1) as

atmospheric surrogates for non-proteinaceous biological particles to perform immersion

freezing experiments with the collaborators involved in this study to obtain immersion

freezing data as a function of multi-experimental parameters (see Sect. 3.1). The motivation

20  of using multiple types of cellulose was to examine the immersion freezing abilities of both

predominantly supermicron (MCC and FC) and submicron (NCC) cellulose particles towards
assessing a wide size range of chemically uniform biological particles.

A total of twenty measurement techniques are used in this inter-comparison study to

compile a comprehensive dataset for evaluating immersion freezing properties of cellulose

25 samples. The dataset is analyzed to understand functional dependence of various

experimental parameters and of cellulose particle characteristics. In this work, eleven

instruments test samples using aqueous suspensions, while nine examine aerosolized powders

dispersed in synthetic air with a low RH or atomized/nebulized-suspensions containing

cellulose samples followed by diffusion drying process, referred to as dry dispersion methods

30 henceforth. The basic experimental methods and parameterization approaches used to

interpret the data are discussed in Sects. 3.1 and 3.2.

This work extends a previous proof-of-principle experiment that demonstrated the

importance of cellulose-containing particles in the atmosphere (H15a). The main objective of

this study is to examine how different ice nucleation instrument techniques compare when

35 using chemically homogeneous biological material rather than multi mineral systems, such as

5
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illite NX (e.g., Broadley et al., 2012) and understand if cellulose can be used as a standard
reference material in INP research. Besides, the comprehensive ice nucleation data of cellulose
materials presented in this work can be used to elucidate the role of biological ice-nucleating

aerosols (e.g., Després et al., 2012).
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2. Sample Preparation and Characterization

2.1 Sample Specifications

All of our samples are linear polymers of glucosyl derivatives, mechanically extracted through

<200 °C heat application and catalytic oxidation (e.g., Battista et al., 1962; Brinchi et al., 2013).

5 In particular, MCC is extracted from hardwoods (e.g., oak, personal communication with the

manufacturer, Aldrich). A summary of major properties of three samples is provided in Table

1. Briefly, these highly stable biopolymers, whose bulk density ranges between 1.0-1.5 g cm?3,

exhibit different physical dimensions depending on sample processing and treatments. As

seen in Table 1, the geometric size of dispersed particles are more than ten-fold smaller than

10  the electron micrograph-assessed size of bulk materials without any exception, suggesting the

presence of super aggregates in non-dispersed bulk samples. We note that the powder size of

MCC reported by the manufacturer (~50 um) is in good agreement with our Scanning Electron

Microscope (SEM)-measured size. In contrast, the particle size of NCC reported on the

manufacturer’s material data sheet (TEM-based data) is more comparable to the dispersed

15 particle diameter of ~0.2 um than the SEM-based size. In this manuscript, the NCC size by SEM

represents the size of NCC residuals (i.e., leftover particles after evaporating water content)

from 5 pL suspension droplet of 0.03 wt%. Due to the high viscosity of the gelatinous form of

NCC (4,665 + 200 cP at 25 °C), aggregation may have occurred while evaporating water. Even

after the 15 minute ultrasonic bath treatment of the suspension, aggregates seem to remain

20  unelucidated, which is reflected in its SEM-based diameter of >2.5 um. A more detailed

discussion of particle and residual size distributions are available in the Supplemental

Information.

The average aspect ratios (ARs) of each cellulose material in Table 1 were estimated

with an identical procedure employed in our previous H15a study. We evaluated a total of

25 4,976 MCC, 371 FC and 764 NCC particles. The Everhart-Thornley Detector (ETD) of a scanning

electron microscope (SEM, FEI, Quanta 650 FEG) was used to acquire the below-the-lens

micrograph image and measure two dimensional axis length of particles deposited on

membrane filters. The degree of elongation appears to be higher for NCC (average AR up to

2.93) when compared to MCC and FC (average AR of <2.30). Nonetheless, all sample types

30 show that particles are elongated with an aspect ratio varying from ~2 to 3, which is similar to
our previous measurement on MCC particles (i.e., 2.1).

Three different measurements of the unit surface area per unit mass (specific surface

area, SSA), namely geometric SSA, SEM-based SSA and BET-SSA, for each system are also

shown in Table 1. These measurements correspond to SSA of mechanically aerosolized

7
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particles (<10 um in diameter) in the Aerosol Interaction and Dynamics in the Atmosphere
(AIDA) chamber, droplet residuals obtained after evaporating water content of 5 uL droplet of
0.03 wt% aqueous suspension and bulk samples, respectively. Our intention of using different
SSA metrics is to provide the most adequate parameter for the nsgeo(T) estimation of individual
techniques based on their characteristics (e.g., geometric SSA for dry dispersion techniques
and SEM-based SSA for aqueous suspension techniques). As demonstrated in our previous
H15b comparison effort, when a reduced SSA value is observed for a same sample, it indicates
the presence of agglomeration. Hence, the degree of aggregation of cellulose fibers is
presumably responsible for the observed differences in SEM-based SSA values for residuals
obtained from suspensions from geometric SSA of the mechanically aerosolized particles
(Table 1). Alternatively, a loss of larger particles from the sample which may happen in
airborne aerosols due to settling or impaction in the particle generation set-up may also lead
to different SSA values if the surface properties of the cellulose particles differ with the particle

size.

2.2 Chemical Composition
Single particle mass spectra of dry dispersed FC and MCC particles in the size range

between 200 and 3500 nm were measured in the laboratory using the Aircraft-based Laser
ABlation Aerosol Mass spectrometer (ALABAMA, Brands et al., 2011). The averaged mass
spectra of both cellulose types are shown in Fig. 1. The mass spectra of the dry dispersed
particles show high signals of anions at mass-to-charge ration, m/z, of -45 (HCO,), -59
(CHsCOO0) and -71 (C3H30,). These are typical markers for biomass burning particles, especially
levoglucosan CgH100s, 1,6-anhydro-8-D-glucopyranose) (Silva et al., 1999). Levoglucosan is an
anhydrous sugar formed from the pyrolysis of carbohydrates, such as naturally occurring
starch and cellulose (Madorsky et al., 1959; Lakshmanan et al. 1969). Thus, it is not surprising
that the mass spectrum of cellulose particles resembles that of levoglucosan. The above
mentioned marker ions should therefore be regarded as general markers for plant-related
material and are not unique to levoglucosan or cellulose. Now for the cations, the prominent
ions are found on the peaks at m/z 19 (H30%), 27 (Al* or C;Hs*), 39 (K*), 43 (AlO*, C;H50", or
CsHs*) and 56 (Fe*). The presence of some ions, such as Al, K and Fe, may indicate
contamination of the sample.

A more detailed analysis of the individual mass spectra revealed several distinct
particle types. Using a combination of fuzzy clustering (Hinz et al., 1999) and the marker peak
search method based on the above mentioned and further characteristic ions, we found that

~75% of FC particles contained the characteristic marker peaks. The average mass spectrum

Atmospheric
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35

of these FC particles is shown in Fig. 1a. The remaining 25% of the particle mass spectra
showed similar cation spectra but the anions were dominated by signals of elemental carbon
(Cy). This may be due to a stronger fragmentation of the cellulose molecules or due to other
effects. Previous studies have identified at least 37 different compounds in products of
cellulose pyrolysis (Schwenker and Beck, 1963). Further, those ions in the remaining 25% of
the spectra may indicate aluminosilicates that could be a contamination of the sample. The
source of these impurities is not known. Two potential sources include the manufacturing
process (e.g., controlled acid hydrolysis during the mechanical extraction of natural fibers)
and/or contamination from ambient lab air. Similar results were obtained for dry dispersed
MCC cellulose particle (See Fig 1b). Briefly, approximately 60% of the mass spectra were clearly
identified by means of the above mentioned marker peaks. The remaining mass spectra show
again the C, pattern, possibly indicating higher fragmentation, as well as the aluminosilicate
contamination.

To compare properties of MCC particles generated by nebulization and dry dispersion,
a single particle mass spectrometer (miniSPLAT), a Centrifugal Particle Mass Analyser (CPMA),
and a Scanning Mobility Particle Sizer (SMPS) (Zelenyuk et al., 2015; Alexander et al., 2016)
were used to measure the aerosol particles vacuum aerodynamic and mobility diameters (dva
and dm respectively) of mass-selected MCC particles, their mass spectra and effective
densities. The “nebulized” cellulose particles were generated by nebulizing a 0.06 wt%
suspension using PELCO all-glass nebulizer (14606, Ted Pella, Inc.) and dried through a
diffusion dryer prior to characterization. The “powder” particles were generated by powder
dispersion using the TOPAS Solid Aerosol Generator (SAG 410) with the spoon method, where
small volumes of dry cellulose sample are dispersed by placing it on a spoon and holding it
under the ejector.

The results of these measurements are shown in Fig. 2. As shown in Fig. 2a, for a given
mass and, thus, for a given volume equivalent diameter (d..), the nebulizer-generated MCC
particles have smaller mobility diameters when compared to the dry powder population. In
contrast, the nebulized MCC particles have larger d.. than the dry powder ones (Fig. 2b). Such
behavior indicates that MCC particle generated by dry dispersion are more aspherical and have
larger dynamic shape factors than nebulizer-generated particles (Alexander et al., 2016;
Beranek et al., 2012). Consistently, we find that the full width at half maximum (FWHM) of the
dya distributions for mass-selected MCC particles generated by dry powder dispersion are
broader than those observed for nebulizer-generated particles with the same mass, signifying
the presence of more aspherical particles and particles with distribution of shapes as discussed

in detail in separate publications (Alexander et al., 2016; Beranek et al., 2012). As an example,

9

Atmospheric
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data shown in Fig. 2b and the material density of 1.5 g cm™ yield average free-molecular
regime dynamic shape factors of 2.20 and 1.96 for dry powder dispersion and nebulizer-
generated MCC particles, respectively. The d,, measurements of size-selected particles can
also be used to calculate the average effective densities of the nebulizer- and dry powder-
generated particles, shown in Fig. 2c. The figure shows that at least across the examined size
range (dva and dm<450 nm) the calculated effective densities appear to be independent on the
particle size (Fig. 2c), implying homogeneous physical properties. The average effective
density of the nebulizer-generated MCC particles (1.16 + 0.05 g cm) is higher than the average
effective density of dry powder-generated particles (0.96 + 0.03 g cm), pointing to the
relative abundance of compacted, less aspherical and/or less porous particles in the nebulized
population. However, both effective densities are lower than the bulk material density (1.5 g
cm3), indicating that both types of particles are aspherical or/and have voids. Clearly, the
micrographs of cellulose particles indicate their aspherical elongated appearance with
substantial amount of surface structures (Figs. S1 and S3 of H15a).

Finally, Fig. 2d presents the comparison of the average mass spectra of nebulizer- and
dry-generated MCC particles, acquired by miniSPLAT. The mass spectra of the MCC particles
generated by dry dispersion were dominated by C*, CO*, CO,", C,0,H*, C,0sH*, O, C,H". The
mass spectra of the MCC particles generated by nebulization of aqueous cellulose suspension
exhibited additional peaks (i.e., Na*, K*), most likely from the trace-level metal impurities in
the water. Note that the high relative intensity of these peaks in all mass spectra of individual
nebulizer-generated MCC particles are due to high ionization efficiencies of the alkali metals
in single-particle mass spectrometers like miniSPLAT and ALABAMA. While the presence of
these trace metals in nebulizer-generated MCC particles, presumably will have negligible
effects on IN measurements, the significant differences in shape and morphology of nebulizer-

and dry powder-generated MCC particles may affect their IN activity.

2.3 Tests to Investigate Impurities

We characterized the samples in addition to what the manufacturers reported. One of the
weaknesses of the indirect technique validation at multiple venues is the difficulty to ensure
sample purity and stability during distribution and measurement at each institute. Impurity
inclusions are often uncontrollable partly because each team treats the samples differently
for necessity and known reasons (Sect. 3.1). Potential sources of contaminants include organic
gases covering the substrate’s surface or the interaction of volatile organic compounds (VOCs)
at the vapor-liquid interface (Whale et al., 2015). Besides, several previous studies have

reported the dissolution behavior of contaminants (e.g., siloxane and sodium containing

10

Atmospheric
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materials) from the standard apparatus, such as conductive tube and glassware in water, and
even ultra-pure water itself (e.g., Yu et al., 2009; Timco et al., 2009; Bilde and Svenningsson,
2004).

Though it is hard to identify the source of any potential contaminations and isolate
the possibility of sample impurity from other sources and artifacts, such as apparatus and
procedures used for solution preparation or sample dispersion, the INUIT group has made an
effort to ensure the quality and purity of the samples. The laboratory test results from two
electron microscopy groups (KIT and MRI) are discussed in the following sections.

In the Laboratory for Electron Microscopy at the Karlsruhe Institute of Technology, we
tested the purity of MCC and FC powders (>0.4 um), transported back and forth between U.S.
and Europe, using a SEM (FEI, Quanta 650 FEG). In this test, we placed bulk cellulose powders
on 47 mm membrane filters (Whatman® Nuclepore™ Track-Etched Membranes, 0.2 um pore
size) followed by the sputter coating process to cover cellulose particles with a conductive
carbon layer. Subsequently, the coated-membranes were placed in a SEM chamber and
exposed to an electron beam to assess the brightness of individual particles with a
backscattered electron detector (contrast/brightness = 88.8/74.2) and their elemental
compositions with an energy dispersive X-ray (EDX) detector. At the end, this assessment
allows for isolation of non-carbonaceous materials (e.g., dusts and metals) from the other
materials according to the brightness contrast (if there are any). With this methodology, we
analyzed a total of 5637 particles (3898 MCC and 1739 FC particles) and found impurity
inclusions of only <0.25%. This number is nearly equal to the impurity fraction in MCC of 0.28%,
which is reported in Ohwoavworhua and Adelakun (2010). A few contaminants identified in
our cellulose samples are copper/aluminum oxide, quartz, chromium sulfate/sulfide, sodium
chloride, non-aluminosilicate salt, pure chromium and lead. Note that no aluminosilicates
were found. Except lead (Cziczo et al., 2009), all other compounds are known for negligible ice
nucleation activities at T> -25 °C and for at least an order magnitude lower n¢(T) as compared
to H15a-MCC as suggested in our previous AIDA tests and other studies (e.g., Archuleta et al.
2005; Steinke, 2013; Hiranuma et al., 2014; Atkinson et al., 2013).

A complementary impurity analysis was carried out using another SEM-EDX (SU-3500,
Hitachi) and a transmission electron microscope (TEM, JEM-1400, JEOL) at MRI, Japan. A total
of 123 SEM images of MCC and FC powders (<10 um) as well as a few TEM images of NCC that
has the geometry of several tens nanometer with 500-800 nm length were analyzed. There
were no notable contaminants except some expected elements, such as sulfur and sodium,

possibly stemmed from the manufacturing process of NCC [i.e., (CeH9Os)n (SOsNa)y].
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In some cases, bulk particles may break up and apart into fragments, and those
fragments may appear in an analytical instrument (e.g., single particle mass spectrometer)
with a high detection sensitivity and efficiency. For MCC, the total fraction of contaminants,
which may cumulatively derive from any experimental procedures (e.g., sample transport,
treatment and impurity), is 3%, as formerly reported in H15a. Ostensibly, these contaminants
may have emanated from the brush generator or the AIDA chamber wall. Nonetheless, our
blank reference expansion AIDA experiments (i.e., background expansion cooling
measurements without aerosol) suggest that impurities are quantitatively negligible to impact
overall ice nucleation activity of cellulose itself at heterogeneous freezing temperatures of 7>
-33 °C. In brief, we examined the immersion mode IN activity of ‘sample blanks’ injected
through running a blank brush generator for >60 min in the chamber. Our SMPS/APS
measurements showed that the blank injection provided >10 cm™ of particle concentration
(equivalent to >1 pm? cm™ surface), and >80% of background particles are smaller than 250
nm. Our experimental results (2 independent expansions; INUITO3_2 and _3) indicated no ice
observed at T > -33 °C. Further discussion regarding impurity is beyond the scope of the

concurrent study.

2.4 Atmospheric Relevance
To examine if ambient particles resemble our test cellulose particles, we compared the

laboratory spectra of dry dispersed FC and MCC to the ambient particle spectra measured by
a single particle mass spectrometer, ALABAMA. For the ambient measurement, ALABAMA was
utilized on board of the Gulfstream G-550 High Altitude and Long-Range Research Aircraft
(HALO) during the Midlatitude Cirrus (ML-CIRRUS) aircraft campaign to study aerosol-cloud-
climate interactions focused on natural cirrus clouds in 2014 over Central Europe (Voigt et al.,
2017). We chose to assess the ALABAMA data from the ML-CIRRUS campaign because this
aircraft measurement was conducted at mid-latitudes, where abundant cellulose aerosols
might be expected.

We searched the data set of 24,388 atmospheric particle mass spectra for the
occurrence of the characteristic marker peaks found from the reference mass spectra (i.e., Fig.
1). For this search we focused on cations because the data quality of the anions during ML-
CIRRUS was not sufficient. Depending on the exact search criteria and signal intensity
thresholds, we found that between 0.5 and 1.0% of the particles (between about 120 and 240
particles) matched the search criteria. For the comparison between the ambient mass spectra
and the reference mass spectra, we restricted the size range of the reference mass spectra to

vacuum aerodynamic diameters below 900 nm because the inlet system of ALABAMA
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transmitted only particles up to 900 nm during the aircraft measurements. The mean mass
spectra of the ambient particles were compared with the laboratory spectra (< 900 nm only)
by means of the correlation coefficient (r?). The correlation coefficient ranged between 0.5
and 0.6 (r?), indicating that the atmospheric particles are not identical to the laboratory

5 spectra of cellulose, but show a certain resemblance in the abundance of ions. The best match
(averaged mass spectrum of 238 atmospheric particles and averaged mass spectrum of 22
MCC spectra of particles < 900 nm) is shown in Fig. 3. The correlation coefficient r? of the two
spectra is 0.58. The atmospheric particles were found in all altitudes in the troposphere and
even in the lowermost stratosphere during ML-CIRRUS ranged between 10 and 14 km.
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3. Methods

3.1. Ice Nucleation Measurements

Twenty techniques were used to investigate the ice-nucleating properties, in particular
immersion freezing (Vali et al., 2015), of cellulose particles (Table 2). In this study, nine
techniques employed dry dispersion methods that refer to experiments employing water
vapor condensation onto dry dispersed particles followed by droplet freezing, and another set
of eleven techniques used aqueous suspension methods that denote the experiments started
with the test sample pre-suspended in water before cooling. Detailed information of individual
methods and their applications to study atmospherically relevant INPs are provided in
references given in Table 2 and elsewhere (e.g., DeMott et al., 2017). The summary tables
containing quantitative and nominal descriptions of both dry dispersion and aqueous
suspension methods are available in Tables 3-6.

A summary of quantifiable parameters involved in dry dispersion experiments is given
in Table 3. For dry dispersion measurements, both monodisperse and polydisperse aerosol
populations were used to examine ice nucleation abilities. Monodisperse particles were size-
selected by a differential mobility analyzer (DMA, manufacturer information are given in Table
1), and selected sizes ranged from 320 to 800 nm in mobility diameter depending on the
aerosol and ice detection sensitivity of the technique. For MCC and FC, polydisperse particles
were predominantly in the supermicron size range, but the particle size distributions varied
between techniques as the mode diameters ranged from ~1 to 2 um. The measured geometric
SSA values correspondingly deviated for up to an order of magnitude for all cellulose sample
types, indicating various size distributions. Similarly, the size of supercooled droplets ranged
from 2.6 to 90 um, and the ratio of the aerosol size (i.e., mode diameter) to the droplet size
also ranged over two orders of magnitude (0.0036-0.5). Furthermore, a total number of
droplets examined per experiment varied over two orders of magnitude (100-10,000)
depending on the technique. Above all, the temperature uncertainty of the dry dispersion
techniques was fairly small (within = 1 °C) despite of variation in cooling rate (0.9-2.8 °C min~
1), ice nucleation time (0.2 s — 15 min) and a difference in the way of determining the fraction
of frozen droplets. Concerning the latter, most of the dry-dispersion methods measure the
concentration of ice crystals and separately determine the particle concentration, assuming
that for immersion freezing measurements the conditions chosen in the instrument cause all
particles to be activated to droplets. This yields a value called “activated fraction”(AF) in e.g.,
Burkert-Kohn et al. (2017). Others look at the entirety of all droplets and check how many of
these are frozen, determining a “frozen fraction” (FF), the latter being done e.g., for LACIS
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(Burkert-Kohn et al., 2017), but generally also for all aqueous suspension methods. Likewise,
the uncertainties in RH,, and S, are also small (<5%). However, it should be pointed out that
recently systematic differences were described when comparing CFDC (continuous flow
diffusion chamber) methods with other immersion freezing methods (AIDA and LACIS),
(DeMott et al., 2015; Burkert-Kohn et al., 2017). In these studies, simultaneous measurements
at the same measurement location were done, and CFDCs yielded lower results by roughly a
factor of 3 for conditions where all particles should activate to droplets in the instruments.

Table 4 provides a summary of quantifiable experimental parameters of the aqueous
suspension techniques. A majority of the techniques used the bulk cellulose samples,
containing larger particle sizes as compared to dry dispersed ones. In association with their
large grain size, bulk samples exhibited smaller SSA than dry dispersed ones (Table 1). Note
that the SEM-based SSA values from Table 1 were used for the nsgeo(7) estimation of most
bulk-based measurements. Two exceptions were the <10 um particles examined with NIPR-
CRAFT and dispersed particles collected on filters and scrubbed with deionized water for
FRIDGE-CS. The results of these unique size-segregated measurements were compared to the
bulk results (see Sect. 4.3).

The volume of water used each aliquot in aqueous suspension techniques was in many
cases much larger than in the volume of the droplets generated in dry dispersed techniques.
The ratio of the aerosol mass (i.e., mass equivalent diameter) to the droplet mass of this subset
was on average much smaller (for less than an order of magnitude) as compared to that of the
dry dispersion subgroup. Therefore, the solute concentration per drop in the wet suspension
experiments was greater than in the dry suspension experiments. This might be important
since solutes have been shown to both enhance and suppress ice nucleation even in very dilute
solutions (Kumar et al., 2018; Whale et al. 2018). An exception was WISDOM, which used <100
pum droplet diameters (<0.5 nL volume). A total number of droplets examined per experiment
was several hundred at the most and typically smaller than that of dry dispersion techniques.
The total surface area probed was, however, much larger in aqueous suspension methods,
resolving much warmer temperatures. Temperature was well-controlled in these methods.
For example, similar to the dry dispersion measurements, the temperature uncertainty was
fairly small (within £ 1 °C) regardless of variations in cooling rate (0.4-2.0 °C min). As seen in
Table 4, the weight percent of particle suspensions varied over five orders of magnitude (10°
to 1 wt%) to access a wider freezing temperature range. On the other hand, the resulting
Nsgeo(T) uncertainty of >20% and slope parameter of nsgeo(T) spectrum (0.2 < Alog(nsgeo)/AT <

0.47) exhibited large deviations as can be seen in Table 4. Alog(nsgeo)/AT of this subgroup
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(~0.34) was on average larger than the dry dispersion subgroup (~0.18). More detailed
discussion of quantifiable parameters in Tables 3 and 4 are provided in Sect. 4.5.2.

Nominal method descriptions of dry dispersion and wet suspension techniques are
listed in Tables 5 and 6. Information given in these tables include the impactor type used while
dispersing cellulose materials (if employed), background correction method, ice detection
method, valid data range, sample pre-treatment, water type and status of the suspension
solution while generating droplets/vials.

Background correction methods vary amongst the dry dispersion methods (Table 5).
For CFDCs (CSU-CFDC, INKA and PNNL-CIC), background INP concentrations estimated by
taking measurements through a filter for before and after the sample period were accounted.
For cloud simulation chambers (AIDA and MRI-DCECC), an expansion without aerosols in the
vessel, namely blank expansion (Hiranuma et al., 2014), was conducted to confirm negligible
background non-IN active particle concentrations prior to the experiment. For diffusion cells
(DFPC-ISAC and FRIDGE-default), background INP concentrations on blank filters/wafer were
subtracted from the actual ice crystal concentrations of loaded filter/wafer.

Note that only non-mandatory guidelines were provided as an experimental protocol
by INUIT to those who employed aqueous suspension techniques, and the experimental
protocol for the wet suspension techniques was decided by each investigator. The intention
was not to introduce limitations and constrains to participants. For MCC and FC, the INUIT
protocol recommended the following procedures:

1. Measurements with <0.05 wt% suspension,

2. ldle time of ~30 min without stirring for large particles to settle out,

3. Prepare droplets out of the quasi-steady state suspension (i.e., the upper layer of the
suspension),

4. Storage of the sample in the chemically inert container at ambient temperature.

In a similar way, for NCC, the INUIT protocol suggested:
1. One minute sonication of the original sample for initial homogenization,
2. Dilution to the desired final concentration using deionized water (18.2 MQ cm™),
3. Mixing the suspension vigorously for 3 minutes using high shear mechanical stirrer,
homogenizer or probe sonicator to get homogenous suspension; alternatively, using
an ultrasonic bath for 30 minutes in the case of sample volume <10 ml,
4. Measurements with <0.03wt% in order to diminish particle aggregation,

5. Storage of the sample in dry and cool (4 °C) environment.
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The background levels of the agueous methods are discussed in detail in Sect. 4.5.1. More

detailed discussion regarding nominal parameters is given in Sect. 4.5.3.

3.2. Ice Nucleation Parameterization

In this section, we describe a procedure to parameterize immersion freezing abilities for both
dry dispersion methods and aqueous suspension techniques. The immersion freezing data of
cellulose particles in a wide range of temperatures is then discussed by comparing nsgeo(T)
spectra from all twenty instruments. Please note that using the scaled metrics for the
validation (e.g., nsgeo(T) scaling with the technique specific SSA value) is indispensable in this
study because the changes or uncertainties in surface area amongst groups are an issue as
described in Sect. 3.1. The INP concentration per volume of air (nine(T), e.g., DeMott et al.,
2017; Vali, 1971) is a useful parameter for instrumental evaluation when utilizing identical
samples at a single location with known sampling flows, but is not applicable in this work.
The majority of dry dispersion methods employs the approximation of Niemand et al.
(2012). If the activated ice fraction is small (< 0.1), the Taylor series approximation can be

applied, and we can estimate nsgeo(7):

Mygeo(T) = —In (1 — MeeD) (L) o Miee® _ Niee®) | "

Ntotal Sve NtotalSve Stotal

in which Nice(T) is the cumulative number concentration of formed ice crystals at T (cm™), Niotal
is the total number concentration of particles prior to any freezing event (cm?3), S.e is the
volume equivalent surface area of an individual particle (m?), and Swtal is the total surface area
(m?). For the LACIS data, the left part of Eqn. (1) was used without any approximation.

One distinct exception is the electrodynamic balance (EDB) method, in which the
probability of contact freezing on a single collision, e, is first inverted from FF to take into
account the rate of collision and, then, scaled to surface area of a single INP to estimate nsgeo(T)

(Hoffmann et al., 2013a; 2013b):

T
Ns,geo M= _eell)_ (2)

KimmSve
Note that the INP particle colliding with the supercooled droplet is only partially submersed in
water, and therefore the surface available for nucleation is corrected by a dimensionless factor
Kimm - The value of this factor depends on the wettability of the particle surface and is
generally unknown. In this work, k;,;,;, = 1 has been assumed. The effective surface area of
MCC particles has been derived from the scanning electron microscope images of the particles
collected on the Nuclepore® membrane filters placed inline to the EDB, as described in

Supplemental Information.
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The results of eleven aqueous suspension methods are interpreted in terms of the
frozen fraction (FF), INP concentration per volume of liquid (cine, Vali, 1971) and geometric
size-based ice nucleation active surface-site density (nsgeo(7), Connolly et al., 2009; H15b). The
cumulative FF at Tis:

FF(T) =1-7%, 3)
where N, is the number of unfrozen droplets and N is the total number of originally liquid

entities. Following Eqn. 1 in DeMott et al. (2017), conversion to cinp at T is expressed by
_ 1, (Ny(T)
cwp(T) = —-In (—N ) , (4)
where Vg represents the individual droplet volume. Finally, the nsgeo(T) value as a function of

T can be estimated by

cnp(T)
N5 geo(T) = ;_A;Pwe , (5)
where py is the water density (= 997.1 g L'?), w is the mass ratio of analyte and water (unit-

less) and @ is the SSA value (m? g1), provided in Tables 2 and 4.

Accordingly, we compare the nsgeo(T) and Alog(nsgeo)/AT (i.e., the freezing spectral
slope parameter, H15b) data from our measurements to five literature results. These
reference results include previously reported nsgeo(T) curves of illite NX particles from H15b
(hereafter HI5NX), MCC particles from H15a (hereafter HISMCC), Snomax (Wex et al., 2015,
hereafter W15), desert dusts (Ullrich et al., 2017, hereafter U17) and K-feldspar (Atkinson et
al., 2013, hereafter A13). The nsgeo(T) (M2 as a function of °C) fits from the reference literature
are:

niliea ¥4 = exp((27.92 x exp(—exp(0.05 x (T + 13.25)))) + 6.32),

T € [-37, -18]; Alog(nsgeo)/AT = 0.18, (6)

Nilgeo " = exp((22.64 x exp(—exp(0.16 X (T + 20.93)))) + 5.92),

T €[-34, -11]; Alog(nsgeo)/AT = 0.37, 7)
WA = exp(~056 X7 + 7.50),
T € [-30, -15]; Alog(nsgeo)/AT = 0.24, (®)
- x107
H15MCC,wet — 2I57X107+#%§_T)
s,geo SEM—based SSApcc
T € [-28, -22]; Alog(nsgeo)/AT = 0.35, ©)

wis _ (1.40x1012)x(1—(exp((—2.00x10"1%)exp(—2.34XT))))
ns,geo -

geometric SSAspomax ’

T € [-38, -2]; Alog(ns geo)/AT = 0.88 (-2 °C < T< -10.7 °C), (10)

nl37, = exp(150.577 — (0.517 x (T + 273.150))),
T € [-30, -14]; Alog(nsgeo)/AT = 0.22, (11)
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BET—SSAK—feldspar
geO_SSAK—feldspar’

nﬁjglgo = 10* x exp(—1.038(T + 273.150) + 275.260) X

T € [-25, -5]; Alog(nsgeo)/AT = 0.45. (12)

For H15MCC (wet), the nm(T) to nsgeo(T) conversion was performed using SEM-based SSA
constants of 0.068 m? g’*. The geometric SSA value of 7.99 m? g'* was used for W15. This SSA
value was derived from the polydisperse particle size distribution measurements of Snomax
obtained during AIDA studies, whose IN data are included to compute immersion freezing
results reported in Wex et al. (2015). For microcline (K-feldspar), the nsgeo(T) to nsger(T)
conversion was performed using a laser diffraction-based geometric SSA of 0.89 m? g'land an
N, BET-SSA of 3.2 m? g reported in Atkinson et al. (2013). Please note that laser diffraction
tends to be sensitive to the larger particles in a distribution, so it may miss the smaller particles

and underestimate surface area.

3.3. Temperature Binning

A consistent data interpolation method is important to systematically compare different ice
nucleation measurement methodologies as demonstrated in H15b. In this study, we present
T-binned average ice nucleation data (i.e., 1 °C bins for -36 °C < T <-4 °C). Unless the data were
originally provided in 1 °C binned-data (i.e., weighted-average or cumulative counts) [i.e.,
BINARY, DFPC-ISAC, FRIDGE-CS (MCC portion), LINDA, NC State-CS, NIPR-CRAFT, WISDOM and
WT-CRAFT], all data are binned in a consistent manner using either a moving average (where
original data points are finer than 1 °C) or a Piecewise Cubic Hermite Interpolating Polynomial
function (where original data points are equivalent or coarser than 1 °C). For the former case,
the default span for the moving average is 3. If the total number of original data points is less
than 6 and the ratio of interpolated data points to original data points is larger than 0.5 (i.e.,
M-WT, EDB, AIDA for FC), we used the given ratio — which is specific to the technique —for the
moving average span to implement the interpolation without obvious errors. The comparison
of T-binned immersion freezing spectra from particle dispersion methods and aqueous

suspension methods is discussed in Sect. 4.1.

3.4. Surface Structure Analyses

Cellulose particles consist of a complex porous morphology with capillary spaces between the
nanoscale fibrils (H15a). These surface structures may make the surface accessible to water
and induce a varying sensitivity to heterogeneous ice formation (Page and Sear, 2006;
Subramanyam et al., 2016; Kiselev et al., 2016). To better understand the nanoscale surface
morphology of cellulose materials, surface structures of all three cellulose materials were

characterized using a scanning electron microscope (SEM, SU-3500, Hitachi). To minimize the
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deformation of a specimens’ surface by the intense electron beam bombardment, we
purposely used an acceleration voltage of 5 keV and a working distance of 5 mm in a low
vacuum mode (50 Pa). Dry MCC and FC particles from the batches were sprinkled over a
carbon tape substrate. A number of SEM images (61 MCC and 62 FC particles) were afterwards
taken for randomly selected <10 um particles with an Ultra Variable Pressure (UVD) detector
at 2560 x1920 pixel resolution. After the micrograph image acquisition, our images were
analyzed to estimate the line structure density and size distribution of defects on the surface
of all 123 particles. For the image processing, background signals from the carbon tape
substrate in the proximity of target particles were first removed by subtracting threshold
intensities between particles and the background. Thus, particles were distinguished from the
carbon tape by choosing an appropriate threshold value of image intensity to yield binary
images (Adachi et al., 2007 and 2018). Followed by the background correction, line structures
on the particle surfaces were clipped. These line structures were typically brighter than the
other areas because of their edge effects on the UVD images. Line structures with >0.25 um
were chosen to characterize the particle surface, i.e., surface features with <0.25um were
ignored as noise because of a lack of SEM image resolution. Afterwards, the length of
individual line structures extracted from the original SEM image was measured over the entire
grid along both X and Y axes. No major image distortion was observed and, hence, no
corrections for curvature were applied. Lastly, the distributions of the length were integrated
for particle type (i.e., MCC and FC) to assess the overall size distributions of these surface linear
peaks. Consequently, surface areas of all 123 particles were also measured from SEM images,
and the abundances of the line structures were scaled to their surface area measured by SEM.

Our attempt to facilitate SEM for NCC surface characterization was unsuccessful since
our NCC sample contained fibers smaller than its spatial detection limit (~0.25 um).
Complementally, we employed a transmission electron microscope (TEM, JEM-1400, JEOL) to
analyze the NCC surface. The NCC sample was diluted with water (0.03wt% NCC) and pipetted
onto TEM grids with both formvar and lacey carbon substrates (U-1007 and U-1001,
respectively; EM-Japan, Tokyo, Japan). The results of both our SEM and TEM analyses are

available in Sect. 4.4.
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4. Results and Discussions

4.1. Dry dispersion vs. aqueous suspension methods
Temperature-binned ensemble nsgeo(T) spectra of MCC, FC and NCC in a temperature range

between -4 and -38 °C are presented in Fig. 4. Different columns (a-c) correspond to different
5  sample types: (a) MCC, (b) FC and (c) NCC. The top panels show a comparison between dry
dispersion type measurements and aqueous suspension measurements of cellulose samples
with previous parameterizations of other reference samples (panels i). The nsgeo(T) spectra
from each subgroup of techniques are independently summarized in panels ii and iii. More
detailed representations of nsg.o(T) spectra from individual techniques are available in Figs. 6-
10 8 and are discussed in Sect. 4.3. Lastly, the bottom panels (panels iv) show the overall
deviation between maxima and minima of nsgeo(T) as pink shaded areas. As inferred from the
first three panels (i, ii and iii), dry particle-dispersed measurements generally show higher
Nsgeo(T) values than aqueous suspension measurements above -24 °C regardless of sample
types. Furthermore, as apparent in panels iv, the nsgeo(T) differences among measurements
15  can extend up to three orders of magnitude at -20 °C (for MCC and FC) and -15 °C (for NCC),
where the results from particle dispersion measurements and a majority of suspension
measurements coexist.

The observed divergence in nsgeo(T) is most significant at temperature higher than -24
°C, where the slope in the aqueous suspension spectra is steeper (i.e., Alog(ns)/AT > 0.34).
20 Most aqueous suspension methods capture the abruptly increasing segment of the nsgeo(T)
spectral slopes at -20 °C > T >-25 °C. In this T region, the slope is virtually identical to the slopes
of wet HI5NX and H15MCC spectra (0.35-0.37, Eqns. 7 and 9) and is also closely parallel to the
A13 parameterization (0.45, Eqn. 12), suggesting the number of active sites are different.
Likewise, our T-binned data from dry dispersion methods exhibit similar nsgeo(7) values when
25  compared to the previous parameterizations. For instance, our dry dispersed cellulose spectra
(i.e., Alog(ns)/AT of 0.20, 0.28 and 0.22 for MCC, FC and NCC) present comparable trends to

the dry H15 curves (0.18-0.24, Eqns. 7 and 9) and U17 parameterization (0.22, Eqn. 11).
It is interesting that a similar difference between dry dispersion and aqueous
suspension results (i.e., Nsgeo(T) of dry dispersed particle > nsgeo(T) of suspension results) is
30 made by previous inter-comparison activities with mineralogically heterogeneous dust
particles (Emersic et al., 2015; H15b). In brief, Emersic et al. (2015) reports the dry dispersion
chamber-measured nsgeo(T) can be up to a factor of 1000 larger than the cold stage results for
multiple mineral dust samples, including illite NX, Kaolinite and K-feldspar. Our previous study

also shows that nsgeo(T) of illite NX increases sharply at colder temperatures in the T range
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from -18 °C to -27 °C, followed by the leveling off segment at the low temperature region. It is
certainly common for the nsgeo(T) spectrum to level off at the nsgeo(T) maxima. As mentioned
in Sect. 1.2., several studies (Emersic et al., 2015; Beydoun et al., 2016) reported the
mechanism of the observed divergence between two subsets of methods. Nonetheless, the
reduction in the slope of Nsgeo(T) spectrum may be a plausible contributor to the higher
reported nsgeo(T) values in some aqueous suspension measurement results (WISDOM, CMU-
CS in Sect. 4.3), which are comparable to the dry dispersion results (i.e., data of freezing of
individual droplets containing a single aerosol particle) for illite NX and cellulose (Beydoun et
al., 2016).

Next, Fig. 5 depicts the nsgeo(T) diversity in log(ns,ing.)/108(ns,ave), Which represents the
ratio of the individual measurements (nsind) to the log average of Nsgeo(T) (Nsavg) at given
temperatures. In other words, this figure provides an overview of the nsgeo(T) deviations across
the various techniques employed in this work. These nsratios are shown for the temperature
range covered by at least two measurement techniques used in the present study. In this
figure, different panels show three different nsa.g values as denominators, including the
average based on all bulk data (All, panels i, ii and iii), dry dispersion subgroup (Dry, panels
iv), or aqueous suspension subgroup (Sus, panels v). As for numerators (ns,ng), the interpolated
T-binned data (1 °C) from Fig. 4 are used. A total of five panels are presented. First, a summary
comparison of two method categories (dry dispersion and aqueous suspension) in a
temperature range of -33 °C < T < -15 °Cis given in the top panels (panels i). As shown in these
panels, data deviation (i.e., scatter from the average log(ns ind.)/108(nsavg) = 1 line) can be seen
in both dry dispersion and aqueous suspension measurements. Other panels provide more
evidence on the measurement diversity. In short, while the log(ns,na.)/108(nsave) values range
within 0.8-1.2 for Dry Dispersion (DD) and Aqueous Suspension (AS) cases (panels iv and v),
more prominent scatter of the log(ns,ind.)/108(ns,avg) Values (0.6-1.4) is seen when All is used as
nsavg Values (panels i, ii and iii). Thus, the observed deviation is the largest with n .,z of All (i.e.,
both AS and DD). Furthermore, the deviation becomes more apparent towards higher
temperatures. This trend persists regardless of sample type. We will discuss potential
explanations for the observed diversity of data from different techniques in the following

section.

4.2. Inter-comparison of three sample types

The multiple exponential distribution fits (also known as the Gumbel cumulative
distribution function) for T-binned data of all three cellulose samples are summarized in Table

7. Fit parameters as well as Alog(ns)/AT for each category are given in this table. As can be
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inferred from the table, the overall Alog(ns)/AT value is almost identical for all three sample
types (0.31-0.33) in spite of some deviations observed for min-max (0.26-0.40). The observed
consistency in the spectral slopes suggests cellulose material contains relatively similar ice
nucleation efficiency across the heterogeneous freezing T.

For all cellulose types, a reasonable correlation coefficient (r) is found for each portion
of techniques (i.e., DD and AS), suggesting reasonable agreement and consistency for the
results from a similar group of immersion freezing techniques. However, we must reiterate
the discrepancy between DD and AS. For instance, our observation of lower values of DD
slopes (0.20-0.29) as compared to those of AS slopes (0.29-0.37) in the similar temperature
range suggests distinct differences between two subsets of methods. Moreover, the dry
dispersed-MCC shows relatively lower Alog(ns)/AT of 0.20 than FC and NCC (note not all
instruments delivered FC and NCC measurements, see Table 2). This exception potentially
indicates fundamental difference of dry dispersed-MCC from other sample types.

Table 8 provides the log average of T-binned nsgeo(T) values for all of the cellulose
samples, representing detailed comparisons of MCC, FC and NCC. Figure S2 also summarizes
the comparison between the averages for each material (see Supplemental Information for
details). As seen in the table and figure, there exists a discrepancy between this study and
previous work for MCC. At -28 °C, for example, our log average N geo(T) of MCC(3.25 x 10° m"
2, Table 8) is smaller than the previous MCC result at the same T (1.18 x 10%° m’2, H15a). This
difference possibly reflects the fact that our average nsgeo(T) includes the results from a
multitude of aqueous suspension measurements, which typically fall in the lower range of DD
measurements (Sect. 4.1), while HIS5MCC (Eqgn. 9) is derived from a dry dispersion method
only. Note that the nsgeo(T) maxima from Table 8 and Fig. S2 reasonably overlap with the
H15MCC parameterization.

The highest nsgeo(T) value of the FC experiments (3.6 x 10'° m2 at -29 °C from AIDA) is
somewhat lower than that of MCC. Similarly, the highest nsgeo(T) value of the NCC experiments
(1.5 x 10 m2 at -35 °C from WISDOM) is an order magnitude lower than that of MCC as well
as W15.

Table 8 (and Fig. S2) also implies that MCC possesses higher ice nucleation efficiency
relative to the other two types. First, at above -25 °C, the immersion freezing ability of MCC
typically exceed that of NCC. Second, at -22 to -24 °C, where more than seven instruments are
involved to calculate the average T-binned nsgeo(T), MCC’s nsgeo(T) is consistently one order
magnitude higher than FC and NCC. Third, when compared to FC, MCC generally possess
slightly higher nsgeo(T) at T below -16 °C. Likewise, a similar trend holds true when we compare

MCC to NCC at T below -17 °C. The observed difference is up to two orders of magnitude at -
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20 °C. Please note that, at the high T region (> -17 °C), dry dispersion techniques are not
sensitive enough to detect INPs with their experimental parameters used in this study (Tables
3 and 5). In contrast, detecting rare INPs by increasing the concentration of the aqueous
particle suspension is advantageous yet also challenging. In other words, the measurement
uncertainties generally propagate towards high temperatures because the confidence interval
is relatively wider when there exists only a few frozen droplets. Hence, our observation of less
immersion freezing ability of MCC at this T range (up to a factor of ~20 at -16 °C) may not be
conclusive. Particle sedimentation, aggregation and the concentrations effects identified by
Beydoun et al. (2016) are also more prominent at higher concentration, especially for cellulose

samples.

4.3. Individual immersion freezing measurements

All individual nsgeo(T) spectra of MCC, FC and NCC from each technique are shown in Figs. 6, 7
and 8, respectively. Since the primary focus of this study is on the methods inter-comparison,
only brief remarks regarding each technique are summarized below. Several special
experiments were carried out using seven techniques to complement our understanding of
cellulose ice nucleation. The results from these unique experiments are first described (Sects.

4.3.1-4.3.7) followed by the other remarks (Sects. 4.3.8-4.3.19).

4.3.1. CSU-CFDC

Immersion freezing ability of both polydisperse and quasi-monodisperse dry dispersed
MCC particles were characterized by CSU-CFDC. In short, ice-nucleating efficiencies of DMA
size-selected MCC particles (500 nm mobility diameter) were compared to that of the
polydisperse population for immersion freezing experiments.

As seen in the Fig. 6b, the discrepancy between the results from two populations is
substantial. Similar to the LACIS result, a weak temperature dependence of nsgeo(7) of
monodisperse MCC particles is observed within defined experimental uncertainties (see Table
3). Observed quasi-flat Alog(nsgeo)/AT of the monodisperse case suggests a week T-dependent
immersion freezing ability of given specific size of MCC particles for the investigated
temperature range. Conversely, a polydisperse spectrum, which represents the result of an
ensemble of different MCC particle sizes, shows a stronger trend of the slope towards low T
segment, suggesting a non-uniform distribution of active sites over the available St Of
cellulose in this study. Some previous INUIT studies demonstrated the size independence of

the nsgeo(T) value using submicron hematite and illite NX particles based on AIDA ice nucleation
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experiments (Hiranuma et al., 2014 and 2015b). Such a characteristic may not remain true for
the immersion mode freezing of giant fiber particles.

For all sample types, as seen in Figs 6b, 7b and 8b, the CSU-CFDC results do not agree
well with H15a (MCC_dry, Eqn. 8). Instead, they virtually agree with the wet generation
results. This is especially true for the results with polydisperse population. Note that formerly
observed agreement within a factor of three in nsgeo(T) estimation (cloud simulation chamber
INAS > CSU-CFDC INAS; DeMott et al., 2015) is seen only at -30 °C. The observed discrepancy
may be due to non-uniform active site density for different sizes. Another possible explanation
may be due to the alternation of cellulose physico-chemical properties perhaps upon
humidification during shipping, causing behaviour more like aqueous suspended particles.
One thing that we need to keep in mind is that the CFDC uses a 2.4 um particle impactor at its
inlet (Table 5). Because of the impactor, there is loss of larger particles. Thus, the nsgeo(T)
results may vary, possibly due to the difference in the size of cellulose samples examined. At -
23 °C, where the data of size-selected measurements exist for all three cellulose samples, CSU-

CFDC show nsgeomcc = Ns geo,rc > Nsgeonce (Figs. 6b, 7b and 8b).

4.3.2. DFPC-ISAC

The DFPC-ISAC instrument (Santachiara et al. 2010) provided data for
condensation/immersion freezing. The use of 103% RH,, in this investigation was optimized to
count statistically significant amount of INPs in this system for examined cellulose particles
(i.e., MCC and FC). With this system, we assessed the IN efficiencies of different sizes of MCC
and FC particles generated by means of different cyclone cut-sizes (0.5, 1.0, 7.0 um or none).
Further, both dry dispersed (Dry) and nebulizer-generated particles (Wet) were systematically
assessed for their INP activities. Without an exception, INP concentrations were measured at
-22°C for all specimens. For the case of particles (<0.5 um cyclone-selected), we additionally
measured INP concentrations at -18 °C to assess the general trend of the INP activates as a
function of T. This particular case was selected for the extended study due to the similarity of
their geometric SSAs to those of the AIDA cloud parcel simulation measurements. In addition,
while collecting the cellulose particles on nitrate membrane filters (Millipore, 0.47 um pore
size) used for IN assessment, parallel measurements of particle size distributions using an
optical particle counter (Grimm, 1.108) were carried out. The results of size distributions,
represented by the SSA values, are summarized in Table 9.

For Dry, increasing the cut-size tends to decrease the SSA value, implying large
particles come through, and the dominance of the mass relative to the surface becomes

significant. This observation is valid as the cyclone is used to remove particles larger than the

25

Atmospheric



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-933

Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 14 September 2018 and Physics
(© Author(s) 2018. CC BY 4.0 License. Discussions

10

15

20

25

30

designated cut-size. Regardless of whether using the cyclone or not, particle sizes out of the
nebulizer-generation is somehow comparable to that of Dry dispersion with a cyclone of 1 pm
cut-size. The observed difference between Wet and Dry is indicative of the changes in particle
size and morphology while drying atomized particles from a suspension of the powder in water
as described in Sect. 2.2.

Figures 6¢ and 7c show all the results of INP measurements by DFPC-ISAC. For MCC,
the interpolated DFPC results of the immersed particles (<0.5 um cyclone-selected) falls in the
middle of FRIDGE results of two different modes for -22 °C < T < -18 °C. More interestingly, the
slope of the DFPC N geo(T) spectrum (Alog(nsgeo)/AT = 0.24) represents the median of the slopes
of FRIDGE measurements (i.e., 0.17 for default mode and 0.31 for immersion mode). This
observation is consistent with other results of (1) size-selected particles tend to exhibit a
gentle slope (similar to the observations from CFDC and LACIS) and (2) nebulizer-generated
techniques tend to result in a deteriorated INP activity (H15b).

Another important implication of the DFPC results is the fact that submicron dry
particles show the highest INP efficiencies, practically lie on nsgeo(T) data points of H15a
parameterization at given T for both MCC and FC. Moreover, inclusion of supermicron sizes
(no cyclone or 7 um) seems reducing IN efficiencies of both MCC and FC. Further investigation
is required to interpret these results.

Over the temperature range of -18 to -22 °C, the DFPC results of immersed particles
(<0.5 um cyclone-selected), Show nsgeo rc = Ns geomcc (Figs. 6¢ and 7c). Note that ns geo,rc appears
to be slightly higher than nsgeomcc. This observation is not consistent with the general trend of
Nsgeomcc > Nsgeofc (Sect. 4.2). However, the observed difference is only a factor of <2 on

average.

4.3.3. FRIDGE

The FRIDGE data were derived from both default mode (a combination of deposition,
condensation ice nucleation and immersion freezing at RH. of 101%) and immersion mode
operation for MCC. With these two different operational modes, FRIDGE investigated the ice
nucleation ability of both dry and droplet suspended particles deposited on a substrate.
Particularly, the default mode operation of FRIDGE provided data from -16 to -30 °C (MCC) by
scanning RHi.. and RHy (low to high) at a constant temperature. Accordingly, ice crystals
formed at the highest RH,, of 101% were considered as a measure of immersion Nic. from dry
dispersed particle measurements. Likewise, the immersion mode operation of FRIDGE
provided data from -19 to -28 °C (MCC) and from -13 to -23 °C (NCC). As demonstrated in H15b,

this immersion mode counts immersion freezing of suspended particles in which the particles
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are first washed into droplets and then placed on the substrate to be comparable to the dry
dispersion method. Hence, this method is advantageous to collect a filter sample of cellulose,
prepared the same way as in the dry dispersion experiment, and then run it on a cold-stage.

Figure 6e shows the comparison of nsgeo(7) derived from the two different operation
modes of FRIDGE. There are a few important implications from the FRIDGE results. First, on
average, the measurements with dry particles in the ‘default’ setting showed more than an
order of magnitude higher nsgeo(T) in comparison to the immersed particles in FRIDGE
experiments at T>-22 °C. As shown in Fig. 6e, the deposition mode data suggest that nsgeo(T)
values for -22 °C < T < -19 °C are close (within a factor of two) to those from MRI-DCECC, in
which experiments were carried out with a high degree of particle agglomeration. In
comparison to the default mode result, FRIDGE experiments in the pure immersion mode
showed much lower nsgeo(T) than that with the default setting, but agreed with other
immersion datasets. Second, a steeper Alog(nsgeo)/AT of 0.31 was found for the measurements
with immersed particles at T > -24 °C when compared to the slope of the deposition mode
data (i.e., 0.17). As a temperature shift (i.e., shifting the data a few °C) does not offset the
discrepancy, other mechanistic interpretations might be plausible causes of this discrepancy.
For instance, this difference may be a consequence of the different IN efficiencies of
nucleation modes of both experimental approaches (e.g., deposition + condensation +
immersion vs. immersion alone) in the examined temperature range, the different sample
preparation processes, effects of agglomeration or a combination of the three. The divergence
of default-mode and CS-mode becomes notable T > -24 °C, perhaps suggesting the effect of
agglomeration. Specifically agglomeration may take place inside the pipetted droplets. While
pipetting agglomeration and separation is avoided by shaking the sample, but during cooling
it lasts 15-30min until a droplet freezes.

Figure 8c presents the summary of FRIDGE-CS measurements for NCC. The nsgeo(T)
spectrum nearly overlaps with the H15b (illite NX wet) reference spectrum. It also agrees well
with the other droplet freezing instruments CMU-CS, NIPR-CRAFT, NCS-CS, BINARY and
WISDOM. Similar nsgeo(T) values were obtained although the methods analysed droplets of
different volumes. In particular FRIDGE and WISDOM n;eo(T) attach to each other better than
0.3 °C. By comparing NCC to MCC at -23 °C < T < -19 °C, the FRIDGE-CS results show nsgeomcc >
Nsgeonce for >one order magnitude throughout this overlapping T range. Note that the
Alog(nsgeo)/AT value of NCC (0.40) is somewhat higher than the average slope parameters
listed in Table 7.
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4.3.4. LACIS

With LACIS, we examined immersion mode freezing of both atomized and dry dispersed MCC
particles separately. For atomized particle generation, particles were dried in a diffusion dryer
directly after spraying the suspension. Succinctly, LACIS measured immersion ice nucleation

5  ability of atomizer-generated MCC particles for 700 nm mobility diameters in the temperature
range of -35 °C < T < -30 °C. The selection of this relatively large size was necessary to get a
signal above the limit of detection in the system. The experiments with dry dispersed MCC
were performed with polydisperse MCC particles for -36 °C < T < -27 °C. Note that a cyclone
was used in the air stream of LACIS (see Table 5).

10 Generally, LACIS measurements with dry dispersed MCC particles are in agreement
with that from H15a as apparent in Fig. 6g (nsgeo(-30 °C) ~ 1.5 x 10%° m™2). Furthermore, LACIS
measurements down to -36 °C with dry polydisperse MCC particles show that Alog(nsgeo)/AT
(= 0.17, Table 3) is identical to MRI-DCECC for -28 °C < T < -16 °C. Contrastively, the slope of
the spectrum for 700 nm size-segregated MCC particles (= 0.05) is considerably lower than

15  that of the polydisperse case. This slope of the LACIS nsgeo(T) spectrum is parallel to that of the
CSU-CFDC spectrum (dry dispersed 500 nm case, slope = 0.05 for -30 °C < T < -24 °C; Fig. 6b).
Thus, though we cannot certainly define the relative importance of the aerosol generation
method (e.g., the changes in physico-chemical properties of particles occurred during
atomization as prescribed in Sect. 2.2), the aerosol size might have a non-negligible impact on

20  the variation in spectral slopes. Therefore, the immersion freezing efficiency of MCC particles
likely is different for differently sized MCC particles, meaning that a single nsgeo(T) curve cannot
be reported for MCC. With this, the method of accounting for differences in surface area
between different groups/methods becomes questionable for a complex system like cellulose.
Furthermore, its complex morphology (Sect. 4.4) causes that the determination of the surface

25  area is quite prone to errors which can be a reason for the observed differences in nsgeo(T7).
The ns framework must be rigorously tested with more empirical data. Nevertheless, for LACIS,
both polydisperse and quasi-monodisperse MCC particles exhibit similar nsgeo(T) values above
-30 °C (€.8., Nsgeo(-30 °C) ~ 1.5 x 10'° m2 in Fig. 6g), suggesting a negligible size dependency of

Nsgeo(T) for MCC particles in this temperature range.

30 4.3.5.LINDA
This vial-based immersion freezing assay was utilized to compare the freezing activity of bulk
suspension (0.1 wt% cellulose in NaCl solvent) to that of dry powders individually suspended
in each vial (sus vs. pow henceforth). Such comparison was carried out to ensure that

employing different methods of vial preparation did not impede ice nucleation of cellulose
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samples, including MCC and FC. For the latter procedure (pow), pre-weighed cellulose
powders (0.2 mg) were directly poured into 200 mg (199.8 uL) of 0.1% NaCl solution to realize
the concentration of cellulose in each vial to be equivalent to 0.1 wt%, such that two
procedures became comparable. We note that all vials, regardless of the procedure, were
sonicated (46 kHz) for 5 minutes prior to each LINDA measurement. Note that we used non-
sterile NCC (NCCO1) for the IN characterization with LINDA.

The results of MCC and FC are shown in Figs. 6m and 7g. The results suggest similarity
of Nnsgeo(T) Within the experimental uncertainties of LINDA (Stopelli et al., 2014) for the range
of examined temperatures (-7 °C to -18 °C). Further, the slope of LINDA nsgeo(T) spectra
(Alog(nsgeo)/AT) of 0.29 is identical for both scenario cases (i.e., sus and pow). Hence, for given
mass concentration of 0.1 wt%, both vial preparation procedures seem valid. Nonetheless,
suspended cellulose powders settle rapidly in both cases, implying the necessity of taking a
great care when measuring INP activity of giant particles with the ~200 uL vial-based assay.

For-18 °C < T <-12 °C, the LINDA results (bulk suspension) show ns geo,mcc > Ns geo,rc With
similar Alog(nsgeo)/AT (0.29-0.30), verifying comparable performance of this vial-based
technique to other suspension methods (Figs. 6m and 7g).

Figure 8f shows the freezing spectrum of NCCO1 with the slope parameter
(Alog(nsgeo)/AT) of 0.21. The observation of higher activity of NCCO1 compared to MCC and FC
implies possible inclusion of INA materials in the original 3% solution of NCCO1. The source is
not known, and the source identification is beyond the scope of this inter-comparison work.
The sample stability of another NCC sample from another batch, NCC02, is discussed in Sect.
4.3.6.

4.3.6. NIPR-CRAFT

This suite of cold stage instruments offered the immersion freezing measurements of all three
cellulose samples using droplets with volumes of 5 pL. This microliter range volume was the
largest amongst all agueous suspension techniques employed within this work. Such a large
drop volume advantageously enables high resolution immersion freezing analysis for a wide
range of temperatures (-31 °C < T < -17 °C). The highest freezing temperatures are attained
with the largest droplets, which contain the largest surface area of cellulose.

By means of Stokes-law gravity differential settling (Tobo, 2016), <10 um MCC and FC
particles of were extracted to generate droplets containing size-segregated cellulose samples.
These droplets were subsequently assessed on NIPR-CRAFT, estimating an immersion freezing
ability of MCC and FC with SSA of 3.35 m? g (The AIDA-derived geometric SSA value,

accounting for only <10 um particles). Afterwards, the obtained results of <10 um were
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compared to those of bulk (SEM-based SSA of 0.068-0.087 m? g!). Furthermore, we facilitated
NIPR-CRAFT for the quality check of the NCC sample over time. Expressly, we stored NCC02 at
4 °C for 9 months and made follow-up measurements to examine the potential decay of the
samples, potentially altering its immersion freezing.

Figures 6q and 7k show the NIPR-CRAFT results for MCC and FC. In general, the NIPR-
CRAFT data represent the lower boundary of compiled nsgeo(T) spectrum defined by the bulk
of the instruments (Figs. 5.a.iii and 5.b.iii). Constant offset between NIPR-CRAFT and the log
average of AS methods in nsgeo(T) is seen at -28 °C < T < -21 °C for on average a factor of >9 for
MCC and >2.7 for FC. Immersion freezing abilities of bulk and size-segregated samples are in
agreement within the measurement uncertainties. The spectral slopes for bulk MCC and FC
are 0.41 and 0.39, respectively, and are in agreements with WT-CRAFT (measurements with 3
UL sonicated samples), indicating the presence of systematic error (e.g., temperature shift
towards the low end). The spectral slopes for size-segregated MCC and FC are 0.43 and 0.34,
respectively, and are in agreement with bulk NIPR-CRAFT.

Figure 8i shows time-trials of NCC02 and similarity in IN activity over 9 months. As
inferred from the overlapped spectra, the influence of the decay over time is negligible. Over
the time, the spectral slopes and n;geo(T) remain similar, indicating high stability of NCCO2.

For investigated temperatures listed in Table 2, the bulk NIPR-CRAFT results show
Ns.geoMcc > Nsgeorc (Figs. 6g and 7k). Corresponding Alog(nsgeo)/AT values are similar (0.41 for
MCC and 0.39 for FC) but notably higher than any averaged slope parameters listed in Table
7. With even higher slope value of 0.50, the ns geonce Values exceed both nsgeomcc and N geo rc at

T below -20 °C (Fig. 8i).

4.3.7. WT-CRAFT

The WT-CRAFT system, which is a replica of NIPR-CRAFT (Tobo, 2016), measured the freezing
abilities of droplets containing 0.05-0.0005 wt% MCC and FC at T > -26 °C. WT-CRAFT also
examined if the pre-treatment of agueous suspension (i.e., sonication of 50 mL falcon tube for
15 min) has any influences on IN efficiency of MCC and FC. More specifically, we compared
the IN efficiency of 49 drops made out of the sonicated-suspension containing given wt% of
MCC and FC to those of non-sonicated suspension left idle for at least 60 min.

The results are shown in Figs. 6s and 7I. As seen in these figures, early freezer only
appears in the case of pre-application of sonication. This trend is especially notable for the
MCC case. As a result, the difference of the spectral slope for MCC deviates from 0.36
(sonicated-case) to 0.52 non-sonicated case). Importantly, our results suggest that MCC may

suffer more from the particle settling in the suspension when compared to FC for examined
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ranges of temperature and wt%. Nevertheless, the difference in nsgeo(T) is within a factor of
four at the most, which is well within our experimental uncertainty (see Table 4).

Below -22 °C, WT-CRAFT Shows Nsgeomcc > Nsgeorc (Figs. 6s and 71). The MCC result
exhibits sharper increase in nsgeo(T) within the limited temperature range with Alog(nsgeo)/AT

of 0.36 than FC (Alog(nsgeo)/AT = 0.30).

4.3.8. AIDA

The AIDA facility at KIT represents the world’s foremost facility for studying ice clouds in a
controlled setting. As shown in Fig. 5, for all cellulose types, the AIDA data hover in the upper
bound of comprehensive nsgeo(T) spectrum defined by the bulk of the instruments. The
corresponding log(ns;ind.)/108(Ns,av) is within 1.2. The spectral slope for immersion freezing of
cellulose from AIDA varies depending on the sample type. For MCC, Alog(nsgeo)/AT is 0.24 and
equivalent to that of H15a (MCC, dry, Egn. 8). The larger slope value is found for FC (0.47),
which is practically parallel to A13 (0.45), and deviating from other DD instrument
(Alog(nsgeo)/AT of 0.28). But, the nsgeo(T) data of FC form AIDA are in fair agreement with the
log Nnsgeo(T) average for examined T. Finally, the NCCO2 results agree well with CSU-CFDC and
WISDOM. Observed quasi-flat Alog(nsgeo)/AT of NCCO2 (0.04) suggests a week T-dependent
immersion freezing ability for the investigated temperature range. In addition, similar to the
observation made by LINDA, higher activity of NCCO1 compared to NCCO2 is seen in Fig. 8a.This
difference suggests the inclusion of INA materials in the original 3% solution of NCCO1 (the
source is not known). For investigated temperatures listed in Table 2, AIDA show nsgeomcc >

N5 geo,rc AN Ns geomcc > Nsgeonce (Figs. 6a, 7a and 8a).

4.3.9. EDB
The contact freezing experiments have been performed with MCC particles preselected in

DMA at two electrical mobility diameters: 320 nm and 800 nm. Due to the low concentration
(typically less than 30 cm™) of the MCC particles produced by the dry dispersion method (a
turbulent flow disperser, see Table 5), and relatively low IN efficacy of MCC particles, the
measurements of e. were possible only in a limited temperature range between -29°C and -32
°C. A strong asphericity of the MCC particles contributes to the uncertainty of nsgeo(T)
determination, which differs by two orders of magnitude for particles with mobility diameters
of 320 nm and 800 nm. Additional uncertainty factor is the unknown portion of the MCC
particle submersed in water upon contact with the supercooled droplet (k;,m, see Eqn. 2).
We set kinm = 1 thus giving a lower estimate of the possible nsgeo(T) value. On the whole, the

contact INAS density falls nicely within the range of nsgeo(T) values measured by other
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instruments, but does not exceed H15MCC parametrization for dry NCC particles. This is not

very surprising given the experimental uncertainties of the EDB-based method.

4.3.10. INKA
INKA (Ice Nucleation Instrument of the Karlsruhe Institute of Technology; Schiebel, 2017) is a

cylindrical continuous flow diffusion chamber built after the design of the CSU-CFDC
(Richardson, 2010), but with a prolonged residence time of the sample (Chen et al., 2000).
Using INKA, we studied the condensation / immersion freezing of MCC, which was dry
dispersed into a 4 m? stainless steel tank using the same procedure as for the AIDA
experiments. No additional impactor was used at the INKA inlet.

The aerosol freezing ability was measured from -32.5 °C to -25 °C for increasing
relative humidity from well below liquid water saturation to about 110% RH in a total of eight
scans. Data reported in this paper was interpolated at a relative humidity of 107% RH, taking
into account that the nominal relative humidity for CFDCs has to be above 100% in order to
enable full aerosol activation (DeMott et al., 2015; Garimella et al., 2017). INKA measured ice
nucleation surface site densities which are close to the average of all measured data (see Fig.
5). The results match the data measured by the CSU-CDFDC for polydisperse aerosol, with

slightly less pronounced temperature dependence.

4.3.11. MRI
MRI cloud simulation chamber experiments were conducted to demonstrate that MCC

particles can act as efficient immersion freezing nuclei in simulated supercooled clouds. The
evacuation rate was correspondent to the updraft velocity of 5 m s™. Dry MCC powders were
dispersed by a rotating brush generator (PALAS, RBG1000) and injected into the ventilated 1.4
m? chamber vessel. Using the data from six experiments, we calculated the ice nucleation
active surface-site densities of aerosolized cellulose in the temperature range from -15 °C to -
30 °C. The regression line for the experimental data is nsgeo(T) = exp(-0.56T + 7.50) with a
correlation coefficient of 0.84. As shown in Figs. 5 and 6h, for dry MCC type, the MRI cloud

simulation chamber data exist in the upper bound of comprehensive nsgeo(T) spectrum.

4.3.12. PNNL-CIC
Immersion freezing properties of size-selected MCC samples at a temperature ranging from -

20 to -28 °C were investigated. The chamber was operated at RH,, = 106 + 3%, and the
evaporation section of the chamber was maintained at aerosol lamina temperature. The
uncertainty (£0.5 °C) in the aerosol lamina temperature was calculated based on aerosol
lamina profile calculations. nsgeo(T) calculations were performed using immersion freezing
frozen fraction and surface area of MCC particles. The nsgeo(T) values varied from 1 x 108 to 1
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x 10° m2. Alog(nsgeo)/AT (=0.13, Fig. 6i) agreed well with that of the U17 dust parameterization

in the same temperature range.

4.3.13. BINARY
The three different cellulose types were investigated with the BINARY setup (Budke and Koop,

2015), and their sample preparation is described in Table 6. We note that the MCC and FC
original data are those published in H15a, i.e., before the recommended suspension
preparation procedure was developed. As described in H15a these bulk suspensions suffered
from sedimentation and, hence, are not predestined for a nsgeo(T) inter-comparison. The
original raw data from H15a were re-analyzed here in order to have the same 1 °C binning and
averaging as other techniques. Moreover, a different background correction was applied, also
to the NCC samples: the first 5% and last 5% of nucleation data points in a given frozen fraction
curve (i.e. the data smaller than 0.05 and greater than 0.95 in FF) were excluded, in order to
account for a concentration variation between individual droplets due to sedimentation and
for nucleation events triggered by the glass substrate or impurities in the “pure” water
background.

For -25 °C < T < -22 °C, the bulk BINARY data for the different cellulose samples are in
a similar active site range, i.e. the results Show N geomcc > Nsgeoc = Nsgeonce (Figs. 6j, 7d and
8d). At -25 °C the MCC and FC data show a rapid change in slope and at lower temperature
they level off at @ nsgeo(T) value of about 108 m2, which may be due to the sedimentation of
cellulose particles with lower ice nucleation activity as discussed above. In contrast, no such
change in slope is observed for NCC (which did not suffer from apparent sedimentation), thus
being consistent with higher nsgeonce values observed below -25 °C in small-droplet
experiments and dry suspension techniques. Moreover, above -25 °C the NCC data agree well
with other large-volume droplet experiments such as NIPR-CRAFT and NC-State CS as well as
with small-droplet techniques such as WISDOM. In summary, these observations imply that
techniques using large droplets may suffer from sedimentation if the suspended material
consists of particles with a wide size distribution. However, if smaller and homogeneous

particles are suspended they give results similar to small droplet techniques.

4.3.14. CMU-CS

The immersion freezing ability of wide range of aqueous suspension concentrations and
immersion freezing temperatures was measured by CMU-CS (Polen et al., 2016; Beydoun et
al., 2017; Polen et al., 2018). This cold stage device facilitates the sampling of drops within a

squalene oil matrix that allows for experiments using varied wt% of the cellulose test samples
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(0.001 to 0.15 wt%) for this study. Drops containing MCC, FC and NCC02 were studied at a
cooling rate of 1 °C min™ to determine the immersion freezing temperature spectrum.

A total of 10 immersion mode freezing experiments with a droplet volume of 0.1 uL
were performed. Using this instrument, a wide range of temperatures was investigated (T > -
30 °C) yielding nsgeo(T) values ranging from 10° to 10 m™. The data from the ten individual
runs collapsed into a single nsgeo(T) spectrum suggesting that the mass loading of dust in the
droplet did not affect the measurements for the wt% values investigated. For MCC, the data
are in fair quantitative agreement with the H15a (Dry MCC) parameterization at temperatures
below -25 °C. The nsgeo(T) values of both FC and NCC are about one order magnitude lower
than the MCC ns geo(T) values, agreeing with a general trend and overlapping with the Wet MCC
reference curve.

Remarkably, the CMU-CS data show that the value of Alog(nsgeo)/AT for MCC (= 0.20,
Table 4) is the least amongst the aqueous suspension techniques and the closet to the results
of the bulk dry techniques (the DD slope = 0.20, Table 7), potentially suggesting a similar and
more atmospherically representative experimental condition (less particle inclusion in a single
droplet) when compared to other aqueous methods.

At -25 °C, where the immersion freezing abilities of all three cellulose samples were
assessed, the CMU-CS result Shows N geomcc > Nsgeonce > N geo rc (Figs. 6k, 7e and 8e). Note that
MCC and FC exhibit broad nsge(T) spectra with the Alog(nsgeo)/AT values of 0.20 (MCC) and
0.34 (FC), detecting ice nucleation at <-29 °C, whereas the NCC spectrum spans for limited T
range (-25 °C < T <-22 °C) with the Alog(n;geo)/AT value of 0.51. The observed widening of the
spectra and detection temperature sensitivity suggests that giant particles have increased

diversity in immersion freezing as compared to submicron particles.

4.3.15. Leeds-NIPI
UL-NIPI is a droplet freezing device which controls the temperature of 1 puL water droplets

supported on a hydrophobic glass slide and monitors freezing in those droplets (Whale et al.
2015). For this study, 0.1 wt% suspensions of FC and MCC cellulose were made up in Milli-Q
water by stirring for 30 minutes in glass vials. The suspensions were then stirred continuously
while 1 L droplets were pipetted onto a hydrophobic glass slide using an electronic pipette.
Droplets were then cooled from room temperature (~18 °C) at a rate of 1 °C min™ until they
froze, freezing being monitored by a digital camera. A gentle flow of dry nitrogen was passed
over the droplets to ensure that ice did not grow across the hydrophobic slide and cause
unwanted droplet freezing. Temperature error for the instrument has been estimated at + 0.4

°C and nsgeo(T) error bars were calculated by propagating the uncertainties from droplet
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volume and weighing of the cellulose and water. The instrument has a freezing background,
likely caused by minor impurities in the Milli-Q water or on the hydrophobic slide. A
background subtraction is performed to account for any freezing caused by this background
(O’Sullivan et al. 2015) however the freezing reported here occurred at sufficiently warm
temperatures such that they did not overlap with the background freezing. For investigated
temperatures listed in Table 2, Leeds-NIPl Show N georc = Nsgeomcc, bUt the Nggeorc Values are
on average a factor of two higher than nsgeomcc across the investigated T range (Figs. 6l and

7f). The Alog(nsgeo)/AT values for MCC and FC are 0.47 and 0.57, respectively.

4.3.16. M-AL
For investigating the immersion freezing of droplets containing cellulose particles we have

utilized two independent contact-free drop levitation methods in our laboratory at the
Johannes Gutenberg University of Mainz, Germany. One of them is the Mainz Acoustic
Levitator (M-AL) which was placed inside a walk-in cold room where the ambient temperature
was set to be -30 °C. After introducing single drops into M-AL the drops were cooling down (at
a continuously varying cooling rate) adapting their surface temperature to the ambient
temperature. The size of the levitated drops was approx. 2 mm which was determined for each
drop from the images captured by a digital video camera attached to the M-AL. Such large
droplet size enabled the direct measurement of the surface temperature during the
experiments with means of an infrared thermometer, therefore reducing the error in
temperature originating from indirect determination of droplet temperature. The onset of
freezing was characterized by a sudden increase in the surface temperature caused by the
latent heat released during nucleation. The freezing temperatures of 100 drops was measured
for each cellulose samples (MCC, FC and NCC) at two distinct concentrations, 1.0 and 0.1 wt%.
Due to the relatively large droplet size a wide range of temperatures was covered (-13 to -23
°C) yielding nsgeo(T) values ranging from 10% to 10’ m2. The NCC sample we got for investigation
was contaminated by mold therefore the nsgeo(T) deviates significantly from other techniques
at temperature above -20 °C (see Fig. 4c. iii). For investigated temperatures listed in Table 2,
M-AL Shows Nsgeomcc > Ns geo,fc aNd N geomcc > Nsgeonee (Figs. 6n, 7h and 8g). For example, at -17
°C, the nsgeo(T) values of MCC, FC and NCC are 2.54 x 105, 2.48 x 10° and 8.28 x 10* m2. The
Alog(nsgeo)/AT values vary for 0.28 (FC)-0.40 (MCC) with the spectral parameter of NCC (0.31)

falling around the middle.

4.3.17. M-WT
The main facility of our laboratory at the JGU Mainz is a vertical wind tunnel (M-WT) in which

atmospheric hydrometeors can be freely suspended in the updraft of the tunnel at
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temperatures down to -30 °C. Since all hydrometeors (from cloud droplets of few tens of um
to large hailstones with sizes of several centimeters) can be freely floated at their terminal
falling velocities the relevant physical quantities, as for instance the Reynolds number and the
ventilation coefficient, are equal to those in the real atmosphere.

The immersion freezing measurements in the M-WT have been conducted under
isothermal conditions. The air was cooled down to a certain temperature between — 20 and -
25 °C and at that temperature the frozen fraction of water droplets containing MCC or FC was
measured by investigating typically 50 droplets a day. The drop temperatures were
determined from the continuously recorded air temperature and humidity (Diehl et al., 2014;
Pruppacher and Klett, 2010). The size of the droplets was calculated from the vertical air speed
which can be measured by high accuracy in the M-WT (Diehl et al., 2014). Due to the small
droplet size and the applied INP concentration (0.1 wt%) a relatively narrow temperature
range could be investigated yielding nsgeo(T) values ranging from 10° to 10® m2. Over -23 °C<
T<-22°C, M-WT shows Nsgeomcc > Ns geo rc (Figs. 60 and 7i). Corresponding Alog(ns geo)/AT values
are 0.26 for MCC and 0.48 for FC.

4.3.18. NC State-CS
Across investigated temperatures (T € [-23, —16] °C), results from the NC State CS show that

INAS is indistinguishable between FC, MCC, and NCC for all temperatures within experimental
uncertainty, except for T>—18 °C where nsgeoncc is less than that of FC and MCC. Overall, the

NCC spectrum is narrower than the FC and MCC spectra, suggesting that the distribution of

active sites for NCC is slightly more homogenous. The data connect with the n:ésgdcc'mt

parameterization at T= —22 °C, but falls below by ~ 1 order of magnitude at T= —-23 °C. The

H15NX,wet

data intersect with the ng g, parameterization in the =20 < T < =18 °C range. However,
the ngégévx'wet has a steeper slope with temperature and thus overpredicts and underpredicts

Ns geo cellulose at colder and warmer temperatures, respectively.

4.3.19. WISDOM

Over the investigated temperature range given in Table 2, WISDOM shows ns geomcc > Ns,geo,nce
(Figs. 6r and 7j). The MCC result exhibits broader spectrum with Alog(nsgeo)/AT of 0.26 than
NCC (Alog(nsgeo)/AT = 0.31). The observed relation between widening of spectra and increased
Nsgeo(T) suggests that giant particles have increased diversity in immersion freezing as
compared to submicron particles. Looking at the overall NCC data (Fig. 7.c.iii), nearly all
aqueous suspension techniques, independently of the drop volume, agree with the WISDOM
data and all point towards the AIDA data. We remark that the WISDOM team followed the
suggested sample handling details described in Sect. 3.1.
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4.4. Surface Structure of Cellulose Samples
We will discuss possible explanations for the observed diversity of data from different

techniques in detail below. A detailed discussion of the samples comparison (surface
difference) is given in this sub-section. Figure 9 shows a representative SEM image and a
5 processed image for MCC. As can be seen in Fig. 9a, our cellulose surface possesses substantial
amount of line structures and defects that may provide thermodynamically preferential
condition to suppress the energy barrier of crystallization and perhaps induce different
interactions with water vapor and/or super-cooled water droplets (Page and Sear, 2006).
Brighter regions of the line structures in Fig. 9b correspond to structural peaks whereas darker
10  parts represent troughs on the surface.

Figure 10 shows the surface density of these submicron structures on MCC as well as
FC. Interestingly, the lengths of linear peaks are log-normally distributed on both MCC and FC
particles with modes of ~0.6 and 0.7 um, respectively. Moreover, the line structure length of
FC particles is slightly larger but less abundant than those of MCC particles. At the mode size,
15  the structure density exceeds 0.4 pm™ (4 x 10! m) for MCC and 0.3 um (3 x 10** m?) for FC.
Note that there is none for NCC. In addition, we also examined seven of >10 um MCC particles

and confirmed they had similar features as <10 um particles (not shown).
Figure 11 shows TEM and SEM images of NCC particles at various magnifications.
Unlike MCC and FC, there exist no notable surface defects on the NCC surface. As shown in
20 the TEM images, NCC seems to be composed of single fiber with 10s nm width and 500-800
nm length. At a given aqueous concentration (0.03 wt%), some NCC fibers aggregate each
other, forming particulate aggregates of >lum; however, there are less abundant
agglomerations as compared to MCC and FC based on our SEM observations (Fig. 11 e and f).
Together with our offline characterization of sample physico-chemical properties
25 (Sects. 2.2), we observed the presence of considerable amount of surface porosity and line
structures on MCC and FC type particles. With a mode size of >0.6 um, the surface density of
these surface structures is estimated to be at least 3 x 10 m™. This density is almost
equivalent to the observed maxima of nsgeomcc (Table 8), suggesting these structures may act
as ice active sites and may be responsible for heterogeneous freezing, assuming the density of
30 these linear structures correlate with that of pores, acting as ice active sites. In contrast, there
is no surface structure observed for submicron NCC as it mainly retains a single fibrous form.
Most importantly, our observation suggests that submicron-sized pores that are uniquely
abundant on MCC and FC may be, at least partially, responsible for the observed differences
in ice nucleation efficiency amongst materials (i.e., ns mcc/rc > Ns, ncc) prescribed in Sect. 4.2. It

35 is, however, important to note that our method is limited to measure line structures of
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approximately >0.25 um. The structures of <0.25 um are presumably considered as noise
because of poor SEM resolution. Nonetheless, this limitation does not rule out the possibility
of a capillary condensation effect (i.e., inverse Kelvin effect) of nano-sized pores on ice
nucleation enhancement (Marcolli, 2014). Hence, further detailed investigation of the

influence of <0.25 um ice nucleation active sites is necessary in the future.

4.5. Experimental Parameters

This section addresses the relationship between experimental conditions/parameters and ice
nucleation results to find a potential controlling factor of the observed measurement diversity
in T and nsgeo(T). Particularly, we discuss the influence of impurities within water towards
freezing (Sect. 4.5.1), quantifiable variables (Sect. 4.5.2) and nominal experimental

parameters (Sect. 4.5.3) on our immersion freezing measurements.

4.5.1. Water Freezing Spectra

Heterogeneous nucleation experiments often suffer from unknown ice active contributors or
foreign contaminants suspended in supercooled droplets, triggering non-homogeneous
freezing at supercooled temperatures (T > -38 °C). Even with high purity water, it is difficult to
eliminate the contribution of heterogeneous INPs in water, especially when using droplets on
the microliter scale (Whale et al., 2015 and references therein). To our knowledge, only a small
number studies have reported their microliter water droplets to produce freezing spectra with
negligible artifacts and reproduce freezing temperatures close to the homogeneous limit
predicted by CNT [Tobo, 2016; Reicher et al., 2018; Polen et al., 2018; Peckhaus et al., 2016;
Fornea et al., 2009 — note the data is not shown in Fornea et al. (2019)]. To understand the
contributions of the impurities within water towards freezing results, we further analyzed the
immersion freezing results of various purity grade water used in aqueous suspension
experiments.

Figure 12 shows frozen fraction spectra of pure water with different grades and
freezing temperatures of background INP per liter in the water. Various freezing temperatures
seen in Fig. 12a suggest that freezing behavior of the water depends on the droplet size and
several types of water purity grades. Clearly, the comparison of background freezing of
different droplet volumes (1, 3 and 5 uL) evaluated by WT-CRAFT indicates that larger droplet
volume promotes early freezing at high temperatures. Thus, despite unknown source of such
an early onset, the probability of undesired INP inclusion seems — as expected — to correlate
with individual droplet size. As apparent in Fig. 12b, homogeneous nucleation can occur at

higher temperatures than -38 °C (Koop and Murray, 2016). For instance, 10 pL droplets would
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possess 50% activation at just below -33 °C with a cooling rate of 1 °C min™. The WISDOM
measurements with 0.6 nL of DI water are consistent with homogeneous nucleation.

The observed heterogeneous freezing of the water may not solely reflect impurity in
the water as it is inherently related to other system artifacts, such as variation in heat
conduction and droplet T, contribution of a supporting substrate and dissolved foreign gases.
Itis also noteworthy that using autoclaved sterile water did not hinder the background droplet
freezing on WT-CRAFT, implying negligible biological contribution to the observed water
droplet freezing. In addition, it has been shown that the surface on which microliter droplets
are supported also introduces background freezing sites, with ultra pure silicon or Teflon
surfaces producing less background freezing than a hydrophobic glass surface (Diehl et al.,
2001; Price et al., 2018). The characterization of water quality to identify what causes the
observed dominant background freezing in deionized water is beyond the scope of our
investigation. However, determining the best possible practice to make sure the freezing
temperatures of pure water droplets <-30 °C or lower is important in agqueous suspension
experiments (Knopf et al., 2018; Price et al., 2018; Polen et al., 2018). For example, using
microfluidically generated sub-micro liter drops and proper substrate condition (e.g., where
the droplets are completely surrounded by oil and not in contact with the substrate) may be
the key (Tarn et al., 2018; Polen et al., 2018). Another key is to check the background freezing
on a routine basis. Obtaining absolutely clean water is conceivably challenging. Perhaps,
running a control experiment with commercially available HPLC water may provide
complementary insight on the inter-system offset. Polen et al. (2018) recently evaluated a
series of different substrates and water purification strategies to reduce background freezing
interference in droplet freezing assays. They propose a series of recommendations regarding
experimental methods and data analysis strategies to reduce and properly account for these
background freezing interferences. Note that the shift in freezing temperatures in Fig. 12c may
also in part derive from the deviation in INP detection methods or variation in heat conduction
and droplet T. A systematic calibration of the temperature sensor (and associated
freezing/melting point) would benefit increasing overall accuracy and precision of droplet
assay techniques. It is also important to note that the apparent steep increase in INP
concentrations for the WISDOM device at temperatures below about -34 °C (Fig. 12c) does not
imply that the water droplets in these experiments contained numerous INPs. Instead, the
observed sharp increase in freezing rates of these rather small (<100 um) droplets, which
might be particle-free, is most probably due to homogeneous ice nucleation. The observation
agrees with previous studies of homogeneous ice nucleation in droplets of this size and

published homogeneous ice nucleation rates (Riechers et al., 2013; Ickes et al., 2015).

39

Atmospheric



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-933 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 14 September 2018 and Physics
(© Author(s) 2018. CC BY 4.0 License.

Discussions

4.5.2. Nominal Experimental Parameters

The discussion of the experimental parameters, which may be responsible for the observed
diversity of ice nucleation data, is now provided. This section discusses two more issues which

might contribute to the observed deviations. As seen in Tables 5 and 6, experimental

5 procedures are diverse, potentially responsible for abovementioned deviations in quantifiable
experimental parameters. For example, the ice detection methods deviate, highly depending

on the size and number of supercooled droplets examined. Thus, the standardization of ice
detection is important to minimize the measurement diversity. Correspondingly, the
false/positive image analysis should be standardized not to miscount half frozen half unfrozen

10  droplets (Wright and Petters, 2013). The 8bit mean gray value image analysis procedure
introduced in Budke and Koop (2015) is ideal and recommended to the new cold stage users.
Other emerging technologies (e.g., application of IR to detect the latent heat release and
droplet freezing) may become available in the future (Harrison et al., 2018). On the other hand,

in situ methods detecting droplets that were grown on single particles typically use OPCs for

15 ice counting (except microscopy-combined individual freezing observation apparatus, such as
EDB, FRIDGE and DFPC-ISAC). Detecting small ice crystals and separating them from droplets

of the overlapping optical size range is a challenge (Vochezer et al., 2016). In LACIS, a change

in depolarization is used to discriminate between frozen and liquid droplets (Clauss et al.,
2013). A depolarization technique has been implemented in other ice nucleation methods

20  (Nicolet et al., 2010; Garimella et al., 2016). A new technology of optical scattering methods
(e.g., Glen et al., 2013; 2014) was recently introduced to improve the small ice detection

capability.
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5. Conclusion and Future Outlook

This paper presents the immersion freezing efficiencies of giant and submicron cellulose
particles of three different types evaluated by a total of twenty IN instruments at supercooled
temperature conditions. Three cellulose samples examined in this study showed a propensity
5  to nucleate ice, and their ice nucleation activity are comparable to another test system (i.e.,
illite NX) that we have previously evaluated. On average, giant cellulose samples are more ice
active than the nano cellulose one at T lower than -20 °C although the difference is not
apparent for all temperatures when considering experimental uncertainty. Electron
microscopy revealed that giant cellulose particles possess surface features such as fibrous
10  structures that may act as the ice nucleation active site and influence the immersion freezing
efficiency. This surface feature was unique for MCC and FC samples, but was not observed for

the cellulose samples (NCC).

Our work also provides a comprehensive dataset of experimental variables in INP
measurement techniques to complement our insufficient knowledge regarding inter-method

15  diversity that, when filled, will enhance the credibility of our experiments to evaluate INP
abundance in the atmosphere. Strikingly, our results indicate that the overall diversity derived
from comparing techniques is significant when compared to the individual uncertainties of
each instrument.

The observed diversity amongst measurement techniques for cellulose is larger than

20  that observed for a mineralogically heterogeneous illite NX sample described in our previous
inter-comparison study (H15b). For illite NX, the deviations in T are within 8 °C (H15b) while
they span 10 °C for cellulose. For nsgeo(T), while the span in results covers a maximum of three
orders of magnitude for illite NX, they span 4 orders of magnitude for cellulose. These
diversities suggest the complex surface structure and compositional heterogeneity may play a

25  substantial role to explain the diversity. This also implies that the cellulose system might not
be suitable as a calibrant.

Observed deviations could arise from a number of sources. As verified in this
manuscript, there are many experimental variables involved in currently available INP
measurement techniques, and such a diverse variation seems to yield significant data diversity

30 and limit the instrument validation by distributing any reference bulk materials. To at least
qualitatively examine what experimental parameters predominantly generate the nsgeo(7)
diversity, the MCC results of a selected number of measurements derived under similar
experimental condition were systematically compared. Our results show that two distinct

modes of more and less active ice nucleation were found at higher temperatures for dry
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dispersion and aqueous suspension results, respectively. To further validate the INP

measurement instruments using reference INPs in the future, we suggest the following six

points:

1)

2)

3)

4)

Working with similarly produced samples: As described in Sect. 4.3.7, our cellulose
powders (especially MCC) promptly settle in water. Sampling a filter of size segregated
cellulose generated by means of dry dispersion from a large volume chamber after
letting giant MCC settle out and running it on a droplet freezing assay (e.g., Sects. 4.3.2
and 4.3.3 DFPC-ISAC and FRIDGE) is important to assure working with the same
sample. Otherwise, aerosolising and then doing the ice nucleation experiment versus
suspending particles in water might result in different particle populations. Knowing
the sample volume of air, Vs, and liquid suspension volume, Vi, we can estimate
immersion freezing efficiency of the sample particles in terms of INP concentration

. v, . . .
per volume of air [nwe = c;yp(T) (7‘”)]., which may be a better ice nucleation
s

parameter for the instrument comparison.

Sample stability analysis: Chemical and structural changes during sample processing
(e.g., Liitzenkirchen et al., 2014) should certainly be considered more carefully.
Depending on the aerosolization method, the surface properties can be altered even
for the same sample (see Sect. 2.2). For instance, the changes in particle size,
morphology and hygroscopicity can occur for atomized particles from a suspension of
the powder in water, compared to the dry powder (Koehler et al., 2009; Sullivan et al.,
2010). Understanding the effect of alteration in particulate properties on IN (e.g.,
Polen et al., 2016) must be studied in the future.

Interfacial effect characterization: Since the cellulose is a strong desiccant and
absorbs a lot of water from the droplet, pre-exposure to humidified condition may
create partially immersed solid-liquid interfacial condition. An effect is viable. For
instance, giant particles (MCC and FC) partially immersed but half exposed to air may
create the interfacial condition preferable for ice formation. This quasi-contact
(perhaps also condensation) freezing process may be analogous to the dry dispersion
techniques (with different induction time). The future study to visually inspect this
mechanism by means of microscopy (Kiselev et al., 2017) and verify it as an
atmospherically representative process is an imperative task.

Method Standardization: Standardization of our methods (e.g., ice detection and in

particular INP sampling and treatment) may be one route to reduce the prevailing
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5)

measurement diversity. Evidently, we verified that the aqueous measurements with
smaller droplets and less aerosol exerted high nsgeo(T) of cellulose samples (Sect.
4.3.14). A similar observation is addressed in Beydoun et al. (2016). As atmospheric
cloud droplets range over sizes up to some tens of micrometres (Miles et al., 2000),
using an atmospherically relevant range of water volume or at least tenth of micro-
liter scale may be a key to improve our measurement comparability in the future. Such
effort may reduce the diversity in experimental conditions and unify the experimental
parameters (e.g., Alog(nsgeo)/AT). Currently, given parameters are treated as if free
variables, certainly contributing to the data diversity. A community-wide effort to
quantify nominal characteristics of each technique (e.g., background correction and
sample pre-treatment) is another key to achieve more precise and accurate INP
measurements (Polen et al., 2018). For future works, aqueous suspension
measurements aligned with the protocol are desired. This might warrant the particle
size distribution of the steady-state suspension, perhaps similar to what is examined
in the cloud simulation chamber experiments. Alternative strategy is to rigorously
examine the causes and clearly define the limitations of individual techniques.
Nonetheless, we believe a current diversity in techniques is beneficial at least at this
point, in particular because they allow different types of approaches for identifying
new INPs.

Active site validation: One of the biggest uncertainties in the nsgeo(T) concept is the
interpretation of particle surface area (H15b). More rigorous understanding of the
true surface area of the system by parameterising SSA as a function of particle
concentration in a drop is a crucial step to constrain the nsg.o(T) concept as this
parameter obviously varies amongst experiments as presented in this work (Sect. 2.1).
Given the size-dependence of nsgeo(7T) for MCC discussed in Sect. 4.3.4, varying
concentration to access a wider freezing temperature range and stitching the nsgeo(T)
spectra obtained from different concentrations together may be problematic
(Beydoun et al., 2016). This approach may create an issue especially towards high T,
where highly concentrated suspension droplets are typically utilized to diagnose their
freezing ability. High particle concentrations also promote particle aggregation and

gravitational settling out of the droplet (Beydoun et al., 2016; Emersic et al., 2015).

In conclusion, we have shown that several types of cellulose have the capacity to nucleate ice
as efficiently as some mineral dust samples. Given cellulose within plant residue is present in

the atmosphere, it represents a poorly characterised non-proteinaceous INP type. While the
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diverse instruments employed in this study agree in that cellulose has the capacity to nucleate
ice, their quantitative agreement is poor. Unfortunately, it is not possible as yet to say what
the cause of this disagreement is. We suggest a number of topics that future studies could
address in order to better understand and resolve this discrepancy. Nevertheless, we show
5  that cellulose has the potential to be an important atmospheric ice nucleating particle and

more work is warranted.
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Data Records
Within the framework of INUIT, we established a new community database including the
laboratory results on ice nucleation with access for registered users. The tabulated data are

available in a publically accessible MySQL portal at http://imk-aaf-s1.imk-aaf.kit.edu/inuit/.

This database helps the users to evaluate and interpret the comprehensive laboratory ice
nucleation results measured over the past years. It also provides a good basis for a database

with a wider public access.

Usage Notes
All data associated with this study will be made available without any barriers to the user. Any
disputes about the use of other groups’ data, particularly with respect to publications, will be

resolved by the INUIT coordinators.
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Figure 1. Laboratory reference mass spectra of dry dispersed cellulose particles with
ALABAMA. a) Fibrous cellulose (FC), b) Microcrystalline cellulose (MCC), left: anions, right:
cations. These mass spectra represent between 60 and 75% of the particles (FC: 1585 out of
2071; MCC: 193 out of 329). The remaining particles show either higher molecular
fragmentation and are therefore useful to identify molecular structures or show signs of
contamination.
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Figure 2. Aerosol particles mobility diameter (dm) (a), vacuum aerodynamic diameter (d..) (b),
effective density (c) and mass spectra (d) of dry powder (red) and nebulized (blue) MCC
particles.
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Figure 3. Comparison of atmospheric particles with laboratory cellulose measured by

ALABAMA. Upper panel: Averaged mass spectrum of 22 MCC cation spectra of particles

smaller than 900 nm (d\.). Lower panel: Averaged mass spectrum of 238 atmospheric cation
5 mass spectra selected using the marker peaks. Between 0.5 and 1.0% of the atmospheric

particle fulfilled the marker peak criteria. The overall correlation coefficient (r?) of the two

spectra shown here is 0.58. lons that significantly different between the display mass spectra

are labelled in red.
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Figure 4. Immersion freezing nsgeo(T) spectra for MCC (a), FC (b) and NCC (c) from different
techniques. Dry dispersion results (DD, pink markers) and aqueous suspension results (AS, blue
markers) are shown in (i) to highlight the difference between these two subsets. Inter-
comparisons of DD and AS for each cellulose sample type using T-binned nsgeo are presented
in (i) and (iii), respectively. The log average of all results as well as the deviation between
maxima and minima of nsgeo(T) are shown in (iv). Reference immersion freezing ny(T) spectra
for MCC (H15a) illite NX (H15b), Snomax (Wex et al., 2015), desert dusts (U17; Ullrich et al.,
2017) and K-feldspar (A13; Atkinson et al., 2013) are also shown (See Sect. 4.1). For NCC, the
results from two different batches (NCCO1 from Dec 2014 and NCC02 from May 2015) are

shown.
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Figure 5. T-binned ratios of the interpolated individual measurements to the average of the
data, log(ns,ing.)/108(ns,avg), based on the geometric surface area (nsgeo) for MCC (a), FC (b) and
NCC (c). T-binned log(ns,na.)/l0g(nsave) are presented for (i) ratios of the log average to dry

dispersion measurements (DD) or aqueous suspension measurements (AS) to the log average

to all the data (All), (ii) ratios of the individual DD measurements to All, (iii) ratios of the
individual AS measurements to All, (iv) ratios of the individual particle dispersion
measurements to DD and (v) ratios of the individual aqueous suspension measurements to AS.
The black dotted line represents log(ns;ind.)/108(ns,avg) = 1. Panel c.iv is left blank since only one

10

dataset is available at each temperature; thereby, no differences can arise.
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Figure 6. Inter-comparison of 20 INP measurement methods for MCC using T-binned nsgeo.
FRIDGE results of default (solid square) and imm.mode (open diamond) measurements are

5 both presented in (e). Reference immersion freezing ns(T) spectra for MCC (H15a) illite NX
(H15b), Snomax (Wex et al., 2015), desert dusts (U17; Ullrich et al., 2017) and K-feldspar (A13;
Atkinson et al., 2013), ATD and are also shown (See Sect. 3.2).
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Figure 7. Inter-comparison of 12 INP measurement methods for FC using T-binned nsgeo.

Reference immersion freezing ns(T) spectra are provided as in Fig. 6.
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Figure 8. Inter-comparison of 11 INP measurement methods for NCC using T-binned nsgeo.
Reference immersion freezing ns(T) spectra are provided as in Fig. 6. Note: unless otherwise
specified, the data are for NCC02.
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a) SEM image b) Line image

Figure 9. An example of surface image analysis. SEM image of a MCC particle (a) and its
extracted surface line structure image analysed using an Interactive Data Language (IDL)
program (b).
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Figure 10. Surface abundance of line structures scaled to the particle surface area as a function
of line structure length for MCC and FC particles. Peaks with smaller than 0.2 um include noise
and are excluded.
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Figure 11. TEM and SEM images of NCC samples. individual NCC fibers over a formvar carbon

substrate (a). They form networks (white arrows) with some particulate aggregates (red

arrows) (b and c). A stack of NCC fiber (white arrow) within a hole of lacey carbon substrate
5  (black arrow) (d). SEM images of a layer with particulate NCC (red arrows) (e and f).
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Tables

Table 1. Properties of micro-crystalline cellulose (MCC), fibrous cellulose (FC) and nano crystalline
cellulose (NCC).

System MCC (Aldrich, 435236) FC (Sigma, C6288) NCC (Melodea, WS1)*

Chemical Formula (CeH1005)n (CeH1005)n (CsHoOs)n (SO3Na)x

3wt% thixotropic gel (viscosity
Product Form Powder Powder ~4,665 + 200 cP at 25 °C) in
deionized water

1Density, g m*3 ~1.5 ~1.5 ~1.0-1.1

2Geometric Mode Diameter (+
standard deviation) of dispersed | 1.22 +<0.134 1.13 £<0.154 0.21+<0.1%7
particles, um

SEM-based Mode Diameter of
bulk materials (+ standard 54.24+6.2 >65 2.68+0.3%
deviation), pm

Manufacturer-reported 5-20 nm width, 100-500 nm

Diameter 51 pm N/A length

Aspect Ratio 1.80-2.30 (4976/3)° ~2.03 (371/1) 2.30-2.93 (764/2)
1Geometric SSA, m?2 gt 3.35+0.1 3.35+0.5 18.59+2.5
HSEM-based SSA of residuals in

0.03wt% of 5 pL droplet, m? g* 0.068 0.087 1.24

12BET-based SSA, m? gt 1.44 £0.10 1.31+0.10 8.00 +1.00

~80% (Cellulose IB
crystallographic structure)®*

87% (Cellulose 1B

N/A crystallographic structures)*

Crystallinity

*Two NCC samples from different batches, namely non-sterile NCC (NCCO01) and freshly generated NCC (NCC02), were used for
the IN characterization.

1Bulk density values according to manufacturers

2Based on AS/AlogD.e from ADIA measurements

3Measured by a combination of SMPS and APS at AIDA (INUIT06_1, 17, 31, 42, 43, 44, 45, 46, 54)

“Dry particles were dispersed into the AIDA chamber using a rotating brush generator (RBG1000, PALAS).

SMeasured by a combination of SMPS and APS at AIDA (INUIT06_6, 14)

®Measured by a combination of SMPS and APS at AIDA (INUIT08_6, 7, 9, 10)

"Water-suspended NCC was aerosolized using the customized-atomizer (Wex et al., 2015).

8The SEM-based mode diameter of atomized NCC is 0.28 + <0.1 um, which is similar to that of bulk NCC.

SAverage aspect ratio per substrate: the numbers in bracket represent a total number of particles/substrate(s) analyzed under
SEM for each subset.

1Geometric SSA is derived from ADIA measurements (i.e., fraction of total surface area concentration to total mass concentration
estimated from a combination of SMPS and APS; See Fig. S1). The particles in AIDA were all <10 um in diameter.

11Measured using droplet residuals derived from 5 pL of 0.03wt% suspension. Uncertainty is not given because all individual
particle counts were compiled to calculate the SSA value of each sample.

2Brunauer et al., 1938

BNishiyama et al., 2002

“Aulin et al., 2009
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Table 7. List of the Gumbel cumulative distribution fit parameters to the nsgeo(T) for T-binned ensemble

datasets of MCC, FC and NCC (All). The datasets are fitted in the log space. Besides All, fit parameters

for ensemble maximum values (Allmax), ensemble minimum values (Allmin), suspension subset (AS), and

dry dispersed particle subset (DD) are also included in this table. The correlation coefficient, r, for each
5 fit is also shown. All nsgeo(T) values are in m2. Tisin °C.

Fit Parameters

Fitted dataset [Nsgeo(T) = exp(a-exp(-exp(b-(T+c)))+d)]

Fitted T range

a b(°CY) c(°c) d r Alog(nsgeo)/ AT

All (MCC) -36°C<T<-12°C 24.47 0.12 15.99 3.24 0.96 0.32
Allmax (MCC) -36°C<T<-12°C 23.19 0.19 14.36 328 0.83 0.33
Allmin (MCC) -36°C<T<-12°C 27.95 0.08 18.67 3.03 0.95 0.30
DD (MCC) -36°C<T<-16°C 24.12 0.08 12.56 469 091 0.20
AS (MCC) -33°C<T<-12°C 28.03 0.10 18.22 348 0.97 0.37
All (FC) -29°C<T<-11°C 22.25 0.11 15.95 3.62 0.88 0.33
Allmax (FC) -29°C<T<-11°C 23.78 0.13 16.85 4.79 0.94 0.40
Allmin (FC) -29°C<T<-11°C 21.88 0.08 16.85 3.15 0.8 0.26
DD (FC) -29°C<T<-18°C 26.97 0.07 18.12 6.85 0.89 0.28
AS (FC) -29°C<T<-11°C 22.57 0.09 16.05 3.46 0.92 0.29
All (NCC) -35°C<T<-13°C 19.30 0.14 19.48 6.59  0.90 0.31
Allmax (NCC) -35°C<T<-13°C 17.22 0.18 17.36 7.30 0.93 0.29
Allmin (NCC) -35°C<T<-13°C 17.39 0.21 19.88 6.30 0.89 0.32
DD (NCC) -33°C<T<-15°C 16.40 0.18 17.33 7.45 0.97 0.29
AS (NCC) -35°C<T<-13°C 15.35 0.28 20.83 8.53 0.98 0.30
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Discussions

Table 9. Summary of the geometric SSA of MCC and FC particles assessed by DFPC-ISAC. In general, high
SSA values indicate the presence of small grains because the relative dominance of the mass to the
surface becomes small.

Exp_ID Avg. SSA (m? g-1) Stdev. SSA (m?g?)
MCC_Dry_7um_cut-size 0.8 0.09
MCC_Wet_no_cyclone 3.12 0.1
MCC_Wet_0.5um_ cut-size 3.48 0.13
MCC_Dry_lum_ cut-size 4.37 0.24
FC_Dry_7um_ cut-size 0.9 0.1
FC_Wet_no_cyclone 3.11 0.11
FC_Wet_0.5um_ cut-size 3.57 N/A
FC_Dry_lum_ cut-size 491 0.35
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