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Abstract 15 
 16 

     This study assesses the impact of revised volatile organic compound (VOC) and organic 17 

aerosol (OA) emissions estimates in the GEM-MACH (Global Environmental Multiscale‒18 

Modelling Air Quality and CHemistry) chemical transport model on air quality model 19 

predictions of organic species for the Athabasca oil sands region in Northern Alberta, Canada. 20 

The first emissions dataset that was evaluated (base-case run) makes use of regulatory-reported 21 

VOC and particulate matter emissions data for the large oil sands mining facilities. The second 22 

emissions dataset (sensitivity run) uses total facility emissions and speciation profiles derived 23 

from box-flight aircraft observations around specific facilities. Large increases in some VOC and 24 

OA emissions in the revised-emissions data set for four large oil sands mining facilities and 25 

decreases for others were found to improve the modeled VOC and OA concentration maxima in 26 

facility plumes, as shown with the 99
th

 percentile statistic and illustrated by case studies. The 27 

results show that the VOC emission speciation profile from each oil sand facility is unique and 28 

different from standard petrochemical-refinery emission speciation profiles used for other 29 

regions in North America. A significant increase in the correlation coefficient is reported for the 30 

long-chain alkane predictions against observations when using the revised emissions based on 31 



 

 

aircraft observations. For some facilities, larger long chain alkane emissions resulted in higher 32 

secondary organic aerosol production, which improved OA predictions in those plumes. Overall, 33 

the use of the revised emissions data resulted in an improvement of the model mean OA bias; 34 

however, a decrease in OA correlation coefficient and a remaining negative bias suggests the 35 

need for further improvements to model OA emissions and formation processes. The weight of 36 

evidence suggests that the top-down emission estimation technique helps to better constrain the 37 

fugitive organic emissions in the oil sands region, which are a challenge to estimate given the 38 

size and complexity of the oil sands operations and the number of steps in the process chain from 39 

bitumen extraction to refined oil product. This work shows that top-down emissions estimation 40 

technique may help to constrain bottom-up emission inventories in other industrial regions of the 41 

world with large sources of VOCs and OA. 42 

 43 

1 Introduction 44 
 45 

     Chemical transport models (CTMs) are useful tools to support clean energy policy decisions 46 

because they can be used to assess the impact of past and future pollutant emission changes on 47 

air quality (e.g., Schultz et al., 2003; Kelly et al., 2012; Rouleau et al., 2013; Lelieveld et al., 48 

2015). CTMs can also be run in forecast mode with their output being used to support air quality 49 

forecasts (Moran et al., 2010; Chai et al., 2013). CTMs require pollutant emission inputs, 50 

typically at hourly intervals, at the model grid spatial resolution (Dickson and Oliver, 1991; 51 

Houyoux et al., 2003; Pouliot et al., 2012, 2015; Zhang et al., 2017). The pollutant emission 52 

input files are based on the processing of emission inventories compiled for all emission sectors, 53 

usually at some geopolitical spatial resolution (e.g., county, province/state, or country), and may 54 

thus require the application of spatial disaggregation factor fields to allocate emissions to the 55 

model grid. North American emission inventories are typically derived from bottom-up 56 



 

 

approaches, where representative pollutant emission factors (e.g., pollutant mass emission per 57 

volume of fuel burned) are multiplied by activity factors (e.g., volume of fuel burned per unit 58 

time). In developed countries, industrial facilities are usually required to report estimates of their 59 

pollutant emissions to national inventories such as the National Pollutant Release Inventory 60 

(NPRI) in Canada (Government of Canada, Canada Gazette, 2018) and the National Emissions 61 

Inventory (NEI) in the United States (Office of the Federal Register, Protection of Environment, 62 

2015). Updates of these inventories occur under a regulatory framework on a regular basis. 63 

However, reporting requirements may be limited to aggregated mass emissions on an annual 64 

basis (e.g., a total bulk mass of VOC emitted rather than a detailed and observation-based 65 

emissions of individual speciated VOCs), with the subsequent use of VOC speciation profiles 66 

(splitting factors) to determine the relative contribution of the individual VOCs to the total VOC 67 

emissions. Uncertainties in the availability and assignment of appropriate VOC speciation 68 

profiles, spatial and temporal allocation factors (Mashayekhi et al., 2016), and/or unaccounted-69 

for emitting activities, result in the need to evaluate the impact of these assumptions through the 70 

comparison of CTM predictions with ambient observations. 71 

     The Athabasca region of northeastern Alberta, Canada has one of the largest reserves of oil 72 

sands (OS) in the world. The OS deposits are composed of bitumen, minerals, sand and clay.  Oil 73 

sand near the surface is mined by open-pit mining techniques. The oil sand is then transported by 74 

heavy hauler trucks to crushers, followed by the addition of hot water to make the oil sand flow 75 

through pipelines to a bitumen extraction facility. Here, the bitumen is separated from the sand 76 

and clay by the use of organic solvents. The product is used either directly, upgraded on-site to 77 

crude oil or transported to a remote upgrader facility. Volatile organic compounds from the 78 

bitumen have the potential to escape into the atmosphere as fugitive emissions during the 79 



 

 

mining, extraction, processing, or tailing discharge steps. The complexity and vast size of the oil 80 

sands operations make generating pollutant emission input files for CTMs a challenge (Cho et 81 

al., 2012; ECCC & AEP, 2016). 82 

     Organic compounds in the atmosphere are oxidized over time and, in the presence of 83 

sufficient levels of oxides of nitrogen, are important precursors to ozone formation (Seinfeld and 84 

Pandis, 1998). VOCs and semi-volatile organic compounds (SVOCs) are also precursors to 85 

secondary organic aerosol (SOA) formation (Griffin et al., 1999; Kanakidou et al., 2005; 86 

Robinson et al., 2007; Kroll and Seinfeld, 2008; Slowik et al., 2010; Stroud et al., 2011; Gentner 87 

et al., 2017). If the organic compounds have sufficiently low saturation vapor pressures, then 88 

upon release into the atmosphere they remain particle-bound and are classified as primary 89 

organic aerosol (POA). Many specific organic compounds can also be toxic to human health and 90 

require explicit reporting in emission inventories (Stroud et al., 2016). 91 

     The Joint Oil Sands Monitoring (JOSM) program was developed by the federal government 92 

of Canada and the Alberta provincial government with input and consultation from the local 93 

indigenous population and industry stakeholder groups to monitor the potential impacts of 94 

pollutant emissions. During JOSM, top-down approaches to estimate emissions based on 95 

atmospheric observations provided a unique opportunity to compare with bottom-up calculated 96 

emissions for the Athabasca OS facilities in Alberta, Canada (Gordon et al, 2015; Li et al., 97 

2017). The mass-balance approach that was used is based on using box-shaped aircraft flight 98 

patterns around a facility and measuring pollutant concentrations and meteorological variables 99 

(wind speed and direction, air density). In this approach, the difference in pollutant mass fluxes 100 

entering and leaving the box is used to determine the total facility-wide emission rate, subject to 101 



 

 

assumptions such as minimal losses due to chemical oxidation between the emissions location 102 

and the nearby aircraft observations. 103 

      Environment and Climate Change Canada (ECCC)’s chemical transport model, GEM-104 

MACH (Global Environmental Multi-scale-Modelling Air quality and CHemistry) is being used 105 

in JOSM to assess the impact of current emissions and future emission changes on local air 106 

quality and downwind regional-scale acid deposition (Makar et al., 2018).  In this model study, 107 

we make use of both regulatory-inventory-based and aircraft-observation-derived emissions data 108 

for VOCs and primary particulate emissions for six large OS mining facilities as inputs to GEM-109 

MACH in order to assess the impact of these two different emission data sets on model 110 

predictions of VOC concentrations and organic aerosol (OA) formation. 111 

2 Methods 112 
 113 

     The GEM-MACH model uses the ECCC operational weather forecast model (GEM) as the 114 

core operator for dynamics and microphysical processes (Côté et al., 1998a,b; Girard et al., 115 

2014). GEM-MACH is an “on-line” CTM - the chemistry, vertical diffusion, and pollutant 116 

deposition routines exist as a set of subroutines contained and called from within GEM’s 117 

meteorological physics package (Moran et al., 2010, Makar et al., 2015ab). The gas-phase 118 

chemistry scheme is based on the ADOM-II mechanism, originally developed for continental 119 

boundary-layer oxidant formation. The VOC lumped species used in GEM-MACH are described 120 

in Stroud et al. (2008). The focus here is on evaluating volatile aromatic and alkane species of 121 

anthropogenic origin. The aerosol size distribution is described by a 12-bin sectional approach 122 

based on the Canadian Aerosol Module (CAM) (Gong et al., 2003; Park et al., 2011). The SOA 123 

scheme is based on a two-product fit to smog chamber data using the SOA yield equations 124 

derived from gas/particle partitioning theory (Pankow 1994; Griffin et al., 1999; Barsanti et al., 125 



 

 

2013). In the GEM-MACH model’s current SOA formation algorithms, after initial particle 126 

formation, the organic compounds in the particle phase are assumed to be converted rapidly to 127 

non-volatile mass, as observed by recent studies (Cappa and Jimenez, 2010; Cappa et al., 2011; 128 

Lopez-Hilfiker et al., 2016) and recommended by modelling studies (Shrivastava et al., 2015). 129 

However, other recent observation studies suggest that SOA ‘chemical aging’ over hours to days 130 

is quite complex, and involves further gas-phase oxidation and fragmentation reactions (Jimenez 131 

et al., 2009; Donahue et al., 2014), as well as potential particle-phase oxidation and oligomer 132 

reactions (McNeill et al., 2015). The particle oligomer reactions are rapid, often acid-catalyzed, 133 

and can result in conversion to non-volatile mass (Liggio et al., 2005; Kroll et al., 2005). We 134 

discuss below the evidence from this work on the likelihood that these additional missing 135 

processes are still impacting our model organic aerosol bias. 136 

2.1 Emissions 137 

     The Canadian base-case emissions were derived by combining several emission inventories, 138 

targeting 2013 as the base year. This base year was chosen to align with the JOSM 2013 139 

intensive field study period, which provided the observations for the model/observation 140 

comparisons that follow. Canadian emissions for industrial facilities, including the Athabasca OS 141 

mining facilities, were obtained from the 2013 NPRI. The U.S. base-case emissions were 142 

obtained from the 2011 U.S. NEI Version 1 (Eyth et al., 2013).  143 

     These base-case, bottom-up emissions inventories were processed with the SMOKE 144 

emissions processing tool (https://www.cmascenter.org/smoke), which includes three major steps 145 

corresponding to spatial allocation, temporal allocation, and chemical speciation (for NOx, VOC, 146 

and PM). The base-case VOC speciation profiles used by SMOKE for the OS surface mining 147 

https://www.cmascenter.org/smoke


 

 

facilities were obtained from the CEMA (Cumulative Environmental Management Association) 148 

inventory (Davies et al., 2012; Zhang et al., 2015). 149 

     For the sensitivity run, speciated VOC emissions from the base case for four OS mining 150 

facilities (Suncor Millenium/Steepbank, Syncrude Mildred Lake, Shell Canada 151 

Muskeg/Jackpine, and CNRL Horizon) were revised by replacing them with the top-down 152 

emission rates estimated by Li et al. (2017) while primary PM emissions were revised for six oil 153 

sand facilities (Suncor Millenium/Steepbank, Syncrude Mildred Lake, Shell Canada 154 

Muskeg/Jackpine, CNRL Horizon, Syncrude Aurora North, and Imperial Oil Kearl) (Zhang et 155 

al., 2018).  The VOC and PM chemical speciation profiles used for these facilities were also 156 

revised using the aircraft-observed VOC speciation (Li et al., 2017) and ground-based PM filter 157 

analysis (Wang et al., 2015), respectively.   The set of emissions input files making use of these 158 

revisions is hereafter referred to as the “revised emissions”, while the original emissions input 159 

files without these changes is referred to as the “base-case emissions”.  A detailed description of 160 

the development of the emission inventory and emissions processing steps to create the model-161 

ready files (hourly gridded emission fields for the same domain and grid spacing as the model) 162 

for the base case and revised version are described in Zhang et al. (2018).  Table 1 compares the 163 

facility emission rates for four species for the base case and revised-emissions case. The changes 164 

are not consistent from species to species and are not uniform across facilities. Interestingly, the 165 

facilities that use paraffinic solvents for bitumen extraction (e.g. Shell Muskeg/Jackpine) were 166 

associated with the largest ALKA emission increases and aromatic decreases. The SI section 167 

includes figures illustrating the emission difference maps for the oil sand region (absolute and 168 

relative difference) showing the spatial distribution of emission changes between revised and 169 

base case. The changes are largest over the surface mines and tailing ponds. 170 



 

 

     Depending on whether bitumen extracted from the oil sand is upgraded on site or not, the OS 171 

mining facilities can be classified into two broad types: (1) integrated extraction and upgrading 172 

facilities (Suncor Millenium/Steepbank, Syncrude Mildred Lake, and CNRL Horizon) and (2) 173 

extraction-only facilities (Shell Canada Muskeg/Jackpine, Syncrude Aurora North, and Imperial 174 

Oil Kearl). Table 2 shows a comparison of the CEMA plant-specific VOC speciation profiles 175 

used in the base case for the two types of OS plants compared to two standard VOC speciation 176 

profiles for petrochemical facilities (#9012 “Petroleum Industry – Average”, #0316 “Fugitive 177 

Emissions, Pipe/Valve Flanges”) that were used by SMOKE to speciate more than half of the 178 

refinery emissions in the Houston area, the largest petrochemical cluster in the U.S. There are 179 

significant differences between the base case OS plant VOC speciation profiles and the two 180 

commonly used standard oil refinery profiles. The OS integrated extraction and upgrading plant 181 

profiles are higher in long-chain alkenes, toluene, and other aromatics than the standard profiles, 182 

while the extraction-only plant profile has the highest long-chain alkane fraction. The two 183 

standard profiles used for the base case and revised simulation (for speciating U.S. and Canadian 184 

refinery emissions) have higher less-reactive species (e.g., propane, acetylene) and formaldehyde 185 

(profile #9012), than both the CEMA OS plant profiles. Note also that these differences in 186 

relative fractions result in substantial differences in the absolute emissions of certain groups of 187 

VOCs between the standard profiles for oil refineries and the facility-specific oil sand profiles. 188 

For reference, the aircraft-measurement-derived facility-specific VOC speciation profiles used 189 

for four OS facilities in the revised-emissions case are presented in Zhang et al. (2018). The 190 

aircraft-measurement-derived profiles in Zhang et al. (2018), and used here for the revised case, 191 

are composite profiles since they encompass plant, tailing pond and mining emissions. As such, 192 



 

 

they are not appropriate for comparison with the profiles in Table 2, which are specific to plant 193 

emissions. 194 

     The primary PM emissions from the OS facilities originate largely from off-road heavy-duty 195 

diesel trucks, plant stack emissions, and fugitive and wind-blown dust. The 2009/10 CEMA 196 

inventory was used to specify the tail-pipe emissions from the off-road mining fleet and the 2013 197 

NPRI inventory was used for fugitive road-dust emissions. The base-case inventory did not 198 

include wind-blown dust. For the revised inventory, the PM size distribution was measured 199 

during the 2013 field study for all six facilities and these data were used to constrain the revised 200 

PM emission input data set. Note that the PM emissions estimates based on the aircraft-measured 201 

aerosol data included the contribution of wind-blown dust emissions. The aircraft-based PM 202 

emissions were re-binned for the 12 GEM-MACH PM size bins. The first eight size bins 203 

correspond to mass up to diameter 2.56 µm. Interestingly, the aircraft measured a much higher 204 

fraction of particulate mass in bin 8 (bounded by diameters 1.28 and 2.56 µm) compared to the 205 

mass fraction in bin 8 from the area-source PM size-distribution profiles used by SMOKE in 206 

processing the base-case emissions. In addition, a PM chemical speciation profile specific to OS 207 

fugitive dust emissions was created from an analysis of deposited dust collected from surfaces in 208 

the OS region (Wang et al., 2015); this speciation profile replaced the standard fugitive dust 209 

profile for unpaved roads from the U.S. EPA SPECIATE v4.3 database in the revised emissions 210 

processing. The resulting organic carbon fraction in the observation-derived PM speciation 211 

profile was higher than that of the base-case emissions by about a factor of 3 (Zhang et al., 212 

2018). In general, significantly higher POA emissions were observed over the open-pit mines for 213 

all facilities, except for the Imperial Kearl mine. The impact of the revised POA emissions will 214 

be discussed further in Section 3.4. 215 



 

 

2.2 Modeling 216 

     The GEM-MACH model was run in a nested configuration with an outer domain covering the 217 

continental U.S. and Canada and an inner domain covering Alberta and Saskatchewan. The 218 

continental-scale GEM-MACH model (10-km resolution) and the Canada-wide GEM weather 219 

model (2.5-km resolution) were run first. These provided the chemical and meteorological lateral 220 

boundary conditions, respectively, for the high-resolution GEM-MACH 2.5-km resolution run, 221 

which has a domain covering the provinces of Alberta and Saskatchewan (Figure 1). The two 222 

models providing boundary conditions were run on a 30-hour cycle, of which the first six hours 223 

were spin-up and discarded, while the remaining 24 hours provided boundary conditions for the 224 

2.5-km GEM-MACH simulation. The initial conditions subsequent to the starting model 225 

simulation for each overlapping 24-hour 2.5-km GEM-MACH simulation came from the end of 226 

the previous 2.5-km GEM-MACH simulation. This strategy was used to allow the two boundary 227 

condition simulations to make use of assimilated meteorological analyses. The sequence of 228 

model simulations was started for August 10, 2013 and run until September 7 to cover the 2013 229 

JOSM intensive field study period.  230 

2.3 Observations 231 

     The NRC (National Research Council) Convair two-engine turboprop aircraft was used to 232 

collect air-quality observations during the JOSM 2013 intensive field study. The aircraft was 233 

equipped with a suite of instruments to measure air quality over 22 flights (see Li et al., 2017, 234 

Figure S1). Most of the flight hours focused on “box” flight paths; these took the aircraft around 235 

the periphery of facilities at different heights, with the goal of deriving facility-wide emission 236 

rates by using observations of chemical concentrations and winds to estimate the mass of 237 

pollutants entering and leaving the box enclosures. Coupled with a mass-conserving flux model 238 



 

 

(Gordon et al., 2015), these aircraft data were used to estimate emissions from the encircled 239 

facilities. 240 

     VOC and PM observations were collected by the instrumented research aircraft using 241 

different technologies. A proton-transfer-reaction mass spectrometer (PTR-MS) was used to 242 

measure a select number of VOCs at high temporal resolution (1-sec) (Li et al., 2017). An 243 

aerosol mass spectrometer (AMS) was used to measure PM1 mass and non-refractory chemical 244 

composition (Liggio et al., 2016). A Single Particle Soot Photometer (SP2) was used to measure 245 

refractory black carbon aerosol (Liggio et al., 2016). A number of canisters were filled with 246 

ambient air on each flight and returned to the lab for GC-FID and GC-MS analysis of VOCs (Li 247 

et al., 2017). The canister VOC analysis measured 154 different C2 to C12 hydrocarbons (Dann 248 

and Wang, 1995). The resulting observation data were compared to the model output generated 249 

as described above. The 2.5-km GEM-MACH runs used a 120-s chemistry time step; 120-s 250 

model output values were linearly interpolated in time and space to the aircraft observation 251 

locations; all comparisons which follow make use of the resulting model/observation data pairs 252 

for the two simulations. 253 

3 Results and Discussion 254 
 255 

     We present our evaluation results for four species classes: mono-substituted aromatics in 256 

section 3.1; multi-substituted aromatics in section 3.2; long-chain alkane species in section 3.3; 257 

and organic aerosols in section 3.4.  258 

3.1 Toluene and other Mono-Substituted Aromatics (TOLU) Evaluation 259 
 260 

     The aircraft PTR-MS measurement data set was averaged to 10-sec intervals for comparison 261 

to the GEM-MACH model output. The model grid cell output was extracted along the flight 262 

track and interpolated linearly between the two minute model output intervals to create a 263 



 

 

coincident model and measurement time series. The model lumped TOLU species includes 264 

toluene and other mono-substituted aromatics with the two most important additional species 265 

being ethyl-benzene and propyl-benzene. Therefore, we must derive an equivalent observed 266 

lumped TOLU species for a comparison. We used all of the canister VOC data from the field 267 

study to create ethyl-benzene vs. toluene and propyl-benzene vs. toluene scatterplots. The 268 

corresponding slope, y-intercept and correlation coefficient for both these plots (not shown) were 269 

as follows: m=0.376±0.006, y=0.0328±0.006, R=0.91 and m=0.0652±0.0008, y-270 

intercept=0.0011±0.0008, R=0.90, respectively. Thus, we derived an observed TOLU equal to 271 

the PTR-MS C7 aromatic multiplied by the factor 1.4412 (sum of m=1.0 C7+0.376 C7+0.0652 272 

C7). This new observation-derived TOLU was used in the statistical comparison with model 273 

output TOLU, which follows.   274 

     Histograms of mixing ratio were created using the observed TOLU, the revised-emissions 275 

model output, and the base-case model output. Figure 2 illustrates the histograms using 20 276 

mixing-ratio bins and an increment of 0.2 ppbv per bin. It is clear that there are more high values 277 

(>2 ppbv) produced by the sensitivity model run with revised emissions compared to the base-278 

case model run. The number of observations in the highest value bins lies between the results 279 

from the revised and base-case versions. This can be quantified by using the 99% percentile 280 

statistic (obs=1.258 ppbv, revised=1.906 ppbv, base=0.934 ppbv). The 99% percentile means 281 

that 99% of the data points are lower than the value. The median concentration of the 282 

observations (0.061 ppbv) is higher than both the revised (0.038 ppbv) and base-case model 283 

(0.019 ppbv) simulated values, but is closer to the revised version. Table 3 lists statistical scores 284 

for the TOLU lumped species and the other species considered in this study. The mean bias goes 285 

from a negative value with the base-case run to a positive value with the revised emissions. 286 



 

 

There is little difference in the correlation coefficient for the model vs. observation scatterplot 287 

between the base-case and sensitivity run. The changes to the VOC emissions for the revised-288 

emissions run affected their total mass and speciation, and the observations were made 289 

sufficiently close to the sources that there was little time for oxidation. The main sources for 290 

VOCs are the processing plants, tailing ponds, mine faces, and off-road vehicles and their spatial 291 

allocation (from CEMA, 2010) did not change significantly between the two model-emission 292 

versions. The main differences in the model time series between the two simulations are thus in 293 

magnitude of concentrations, and hence relatively invariant correlation coefficients might be 294 

expected. The correlation coefficient is more likely controlled by the meteorological model 295 

accuracy in the placement of the plumes (i.e. wind direction). 296 

     The largest increases in the TOLU emission, between the revised and base case run, are noted 297 

for the Syncrude Mildred Lake facility over the tailing ponds and open pit mine faces. Table 1 298 

shows the changes on a facility-wide level. Notable increases are also calculated for the Suncor 299 

Millennium/Steepbank and the Canadian Natural Resources Ltd (CNRL) Horizon facilities. The 300 

flights on August 14 and 23 have the largest TOLU mixing ratios for the aircraft study, and both 301 

flights correspond to box flights around the Syncrude Mildred Lake facility. The SI section 302 

includes the model and measurement time series comparisons (termed case studies) for the 303 

flights on August 14 (Figure S5) and August 23 (Figure S6). Overall, the magnitude of the 304 

mixing ratio maximum in the time series are better represented in the revised-emission 305 

simulation. This is also reflected in the better slope statistic in Table 3 for the revised-emission 306 

simulation. 307 

3.2 Multi-Substituted Aromatics (AROM) Evaluation 308 
 309 



 

 

     The model lumped AROM species includes all multi-substituted aromatics, with the most 310 

important species being the xylene isomers and trimethylbenzene isomers. These two species 311 

match with the PTR-MS C8 and C9 aromatic fragments, respectively. However, the observed C8 312 

aromatic also includes ethyl-benzene and the C9 aromatic also includes propyl-benzene, which 313 

are lumped with TOLU in the model VOC speciation. Thus, we need to subtract these unwanted 314 

species from the totals used to compare to the model lumped AROM species. To do this, we use 315 

their correlation slopes with PTR-MS C7 aromatic from Section 3.1. The new observation-316 

derived AROM was calculated from the PTR-MS measurements as follows: C8 + C9 – 0.376 C7 317 

– 0.0652 C7.   318 

     Figure 3 shows the histograms for the lumped AROM species for 10-sec averaged points 319 

along all the flight tracks. The base model has a large number of high value points (> 2ppbv), 320 

many more than the model simulations with the revised emissions, and also more than the 321 

observations. This can be quantified by using the 99% percentile (obs=0.7607, revised=1.004, 322 

base case=2.302). The median value for the observations is 0.0182 ppbv, smaller than both the 323 

model versions (revised=0.0236 ppbv, base case=0.0466 ppbv), but closer to the model driven by 324 

the revised emissions. Table 3 lists other statistical scores for the AROM lumped species. The 325 

mean bias and RMSE are smaller for the revised emissions run compared to the base case. 326 

However, there is a small degradation in the correlation coefficient with the sensitivity run. 327 

     The largest decreases in the AROM emission field between the revised and base case 328 

emissions are again over the Syncrude Mildred Lake facility (refer to Table 1). There were also 329 

notable decreases over the CNRL Horizon and Shell Muskeg/Jackpine facilities, but positive 330 

changes in AROM emissions were noted over the Suncor Millennium/Steepbank facility (also 331 

refer to Figure S2 for the emission spatial difference map). The SI section includes the model 332 



 

 

and measurement time series comparison for the flights on August 23 and September 3. In 333 

general, the observed mixing ratio changes are closer in magnitude to the predictions from the 334 

revised-emission simulation compared to the base case for the plume intersects. 335 

3.3 Long-Chain Alkanes (ALKA) Evaluation 336 
 337 

     The long-chain alkanes (C4 to C12) were sampled by filling canisters with ambient air on-338 

board the aircraft.  Figure 4 presents the histogram for the long-chain alkanes. The mixing ratios 339 

are divided into 20 bins each with a width of 3 ppbv. From the observed histogram, there is a 340 

wide range to the mixing ratios with a small number of very large concentrations, but also the 341 

first bin (0 to 3 ppbv) has a high percentage of the points. The model gas-phase mechanism 342 

represents all higher carbon-number alkanes by a single lumped species, with chemical and 343 

physical properties derived from C4 to C8 alkanes. The base-case run calculates lower ALKA 344 

mixing ratios than the model version using revised emissions. The model using revised emissions 345 

is much better at reproducing the higher concentration points, particularly above 12 ppbv. This is 346 

quantified by the 99% percentile of the data sets (obs=29.9, base=18.0 revised=24.6).  Other 347 

statistics for the lumped ALKA species are shown in Table 3. The mean bias went from a small 348 

negative value to +1.98 ppbv. The slope decreased by a small value, but the y-intercept 349 

increased, which also increased the RMSE for the run with the revised emissions. The correlation 350 

coefficient improved significantly for the model run with revised emissions. 351 

     The revised ALKA emissions are considerably higher for the CNRL Horizon and Shell 352 

Muskeg/Jackpine facilities, but have smaller changes for the other facilities (refer to Table 1), 353 

possibly reflecting differences in the processing activities between the facilities. Overall, the time 354 

series analysis for the aircraft flights (refer to Figures S10 and related discussion in SI) showed 355 

mixed improvements for ALKA associated with the revised emissions. The large increases in 356 



 

 

ALKA emissions in the sensitivity simulation for the CNRL facility did improve the model 357 

maxima for the plume intersects on August 26. The analysis suggests further improvement in 358 

spatial allocation for the Shell facility may be needed. The higher ALKA mixing ratios also feeds 359 

back to higher SOA formation downwind of these facilities, as discussed below. 360 

     The use of aircraft observations to both derive emissions data and evaluate the subsequent 361 

model simulations might be taken as circular reasoning. We note first that observation-derived 362 

emissions are frequently used in modelling (for example, Continuous Emissions Monitoring 363 

System concentration observations are used to generate emissions data for large stack emitters), 364 

and second, that the emissions are only one component of the overall modelling system. An 365 

improvement in the simulated VOC concentrations using observation-based emissions is only 366 

guaranteed if the emissions dominate the net model error. While our results show that, in general, 367 

the new emissions information does improve model performance, the results using that new data 368 

are not perfect, indicating other sources of error are contributing to the overall model 369 

performance.   370 

3.4 Organic Aerosol (OA) Evaluation 371 

        Figure 5 illustrates the histograms for the organic aerosol observations and model results 372 

with base case and revised emissions. A clear improvement is shown in the highest concentration 373 

bins (>15 µg/m
3
) with the revised emissions. This can be quantified with the 99

th
 percentile of 374 

the data (obs=13.4 µg/m
3
, revised=9.3 µg/m

3
, base=4.9 µg/m

3
). The median statistic also 375 

improved (obs=2.8 µg/m
3
, revised=0.84 µg/m

3
, base=0.70 µg/m

3
). The lower 5

th
 percentile is 376 

also significantly under-predicted compared to observations and does not change much between 377 

the two model runs (obs=0.49 µg/m
3
, revised=0.036 µg/m

3
, base=0.035 µg/m

3
). This reflects an 378 

under-prediction in the background OA predicted by the model, which is likely due to low 379 



 

 

biogenic SOA formation and aging in both model versions. The importance of widespread 380 

biogenic SOA formation from boreal forests has been reported in other work (Slowik et al., 381 

2010; Tunved et al., 2006). 382 

     Additional statistics are presented in Table 3. The mean bias, RMSE and slope all improve for 383 

the revised-emissions run, though the correlation coefficient decreases significantly for this run.       384 

To investigate the variability in the OA bias, we plotted the OA bias as a function of different 385 

measured variables. Figure 6 is a plot of the OA bias as a function of the observed black carbon 386 

(BC) aerosol for the base-case and sensitivity runs. The BC is a marker for petrochemical 387 

combustion, particularly diesel. For the base-case run, the OA negative bias is observed to 388 

increase in magnitude with observed BC.  Points with high observed BC correlate well with 389 

emissions from the OS open-pit mines (Liggio et al., 2017), where the BC is likely emitted from 390 

the heavy-hauler trucks. The locations with the largest OA bias were also consistent with the 391 

locations of mines and the transport wind direction. A review of the OS emission inventories 392 

suggest that about 70% of the BC comes from the OS off-road diesel fleet. Including all points, 393 

the mean bias improves from -2.8 to -2.4 (see Table 3) when using the revised emissions. Figure 394 

6b shows a zoomed plot for points with high observed BC (>0.8 µg/m
3
). There is a clear 395 

improvement in bias for most of these points. The average bias for these high BC points 396 

improves from -6.8 µg/m
3
 for the base case to -2.6 µg/m

3
 for the revised emissions. For 397 

emissions processing the increase in PM emissions was assigned to the processing plants 398 

(particle bin D<1µm) or the surface mines (particle bin D>1µm). Overall, Figure 6 shows that, 399 

while the negative OA bias improves for samples high in BC concentration (i.e. influenced by 400 

petrochemical combustion or collocated with petrochemical combustion sources), there still 401 

remains an unaccounted for negative OA bias. .  402 



 

 

     Figure 7 is a scatterplot of the difference in predicted POA between the revised and base-case 403 

emissions runs vs. the difference in predicted total OA. A large fraction of the points fall along 404 

the 1:1 line, and hence for these points the difference between the two runs is almost completely 405 

due to the increased total primary PM emissions, and increased POA fraction of those emissions,  406 

of the revised emissions simulations. The points with largest concentrations along the 1:1 line 407 

correspond to flights over the Syncrude Mildred Lake facility on Aug. 16, Aug. 23 and Sept. 3.  408 

There is a subset of points, however, that lies below the 1:1 line; these correspond to points with 409 

significantly enhanced model SOA between the two runs (Aug. 16 flight over CNRL Horizon 410 

and Aug. 21 survey flight over Shell Muskeg/Jackpine). The SI section includes the model and 411 

measurement time series comparisons for the flights on August 21, August 23 and September 3. 412 

Overall, the case studies showed improved predictions for the magnitude of the organic aerosol 413 

change for the plume passages with the revised emissions; however, the base line organic aerosol 414 

was over-predicted for all case studies. 415 

3.4.2 Organic Aerosol Model Recommendations 416 

     The improvement in model PM1 OA bias due to the use of the revised emissions is 417 

encouraging; however, the decrease in correlation coefficient suggests that the spatial allocation 418 

of PM1 emissions may need further refinement. The remaining negative bias suggests that other 419 

important processes may be missing or under-represented in the model. Three recommendations 420 

emerge from recent and current work: 421 

1) SOA Formation from Fugitive IVOC Emissions 422 

     Recent publications suggest that fugitive intermediate volatile organic (IVOC) emissions 423 

from the OS open-pit mines are needed to represent SOA formation downwind of the OS region 424 

(Liggio et al., 2016). In our emissions revision, only a small portion of the IVOCs (dodecane 425 



 

 

C12) were added and lumped into the long-chain ALKA lumped species. IVOC species with 426 

carbon number ≥13 were not measured by the Li et al., (2017) aircraft study and thus we do not 427 

have revised IVOC emissions included in this work. Furthermore, the ALKA lumped species has 428 

an SOA yield more representative of a lower molecular-weight range, and the yield is known to 429 

increase with increasing carbon number, so the dodecane SOA contribution would be 430 

underestimated. Work is currently underway with GEM-MACH to implement a Volatility Basis 431 

Set (VBS) approach to SOA formation. The VBS approach will more adequately represent the 432 

intermediate and semi-volatile volatility range and chemical aging of this lower volatility 433 

compounds (Robinson et al., 2006). Future work will measure IVOC emissions using box flights 434 

around the oil sand facilities and open-pit mines. This will remove current uncertainties in 435 

models and help improve the negative bias in plumes. Implementing the VBS scheme will also 436 

enable the PM emissions used here (in both data sets) to be distributed into volatility bins. 437 

     Also, while the measurement-derived emissions are missing the IVOCs, the measurement-438 

derived POA emissions may contain some gaseous VOCs, IVOCs and SVOC species that react 439 

quickly and in one oxidation step yield products that condense onto particles. This rapid SOA 440 

mass produced would be measured in the box flights and, at least partially, accounted for in the 441 

updated OA emissions; however labeled here as POA instead of fresh SOA. Furthermore, there 442 

is the potential for double counting if some of the very reactive gaseous precursors react to form 443 

SOA and this is accounted for in the measured POA. In this paper, we have tried to minimize this 444 

effect by examining the model performance in the “near field” from emission flights close to 445 

facilities. This will be the topic of future box modelling work with the new 2018 measurement-446 

derived IVOC and SVOC emissions to determine how much of the measurement-derived POA is 447 



 

 

derived from the fugitive open-pit mining IVOC and SVOC emissions and their rapid particle 448 

formation. 449 

2) Background Organic Aerosol Levels 450 

     The under-prediction in background OA was a general finding from the study; the cause is 451 

believed to be due to underestimated biogenic SOA, due to the lumping of biogenic monoterpene 452 

emissions into the anthropogenic ALKE model species in the model’s gas-phase mechanism, and 453 

the lack of speciated representation of other biogenic SOA precursors such as sesquiterpenes. 454 

Future work will update the biogenic SOA yield coefficients in the VBS approach using recent 455 

smog chamber results which account for gas-phase loss of organic species to chamber walls (Ma 456 

et al., 2017). 457 

3) Spatial Allocation of Emissions  458 

      Future field studies should also focus on improving within-facility spatial allocation.  For 459 

example, within-facility data such as the GPS location of the mining trucks would be helpful to 460 

derive their activity diurnal profiles and to improve truck emission spatial allocation within a 461 

facility. The GPS data would also be useful to define the location of freshly excavated open-pit 462 

mines within a facility. 463 

Conclusions 464 
 465 

     Overall, the weight of evidence suggests that the top-down emission estimation technique 466 

applied to the OS surface mining facilities helps to better constrain reported facility-total organic 467 

emissions including fugitive sources, as shown by improved model results when the revised 468 

emissions are employed.  We note that emissions from these sources are a challenge to calculate 469 

in bottom-up inventories due to the potential for fugitive emissions. For the mono- and multi-470 

substituted aromatics (TOLU and AROM), the emission rates from facilities were more fine 471 



 

 

adjustments, as some facility totals went up and some went down and the overall biases 472 

compared to observations improved for AROM but degraded for TOLU. However, the model’s 473 

ability to predict very high aromatic concentrations in plumes improved with the revised 474 

emissions, as shown by the 99
th

 percentile statistic and the case studies.  475 

     For the long-chain ALKA species, the revised emissions may have over-corrected, on 476 

average, as shown by the increase in mean bias for the entire aircraft data set. However, the 477 

correlation coefficient did improve significantly for the long-chain alkane predictions, suggesting 478 

the combination of alkane emission increases for some facilities and decreases for others helped 479 

to improve the spatial distribution of ALKA emissions. The results for some facilities suggest 480 

that further improvement could be achieved by putting more emissions at extraction processing 481 

plant locations (i.e., adjusting within-facility spatial allocation). Interestingly, the alkane 482 

emission increases and aromatic emission decreases, derived from aircraft data (Li et al., 2018), 483 

were associated with the facilities that use paraffinic solvents for bitumen extraction (e.g. Shell 484 

Muskeg/Jackpine). Overall, the predictions of alkanes in high concentration plumes improved 485 

with the revised emission data set, as shown by the 99
th

 percentile statistic. 486 

     For PM1 organic aerosol, the revised emissions improved the mean bias for predictions; 487 

however, a negative bias still exists and the improvement was associated with a decrease in 488 

correlation coefficient. The increase in predicted PM1 OA concentration was largely due to the 489 

increase in POA emissions in the revised emissions input files. The POA emissions increased 490 

because of a combination of larger measurement-derived PM1 emissions and the revised ground-491 

observed PM speciation profile having a larger POA fraction. The increase in PM1 POA 492 

emissions were largely allocated spatially to stack locations and this allocation may be a key 493 

factor in the degradation of the correlation coefficient, especially if the fine OA originates from 494 



 

 

mine-face fugitive emissions.  Future work should focus on improving within-facility spatial 495 

allocation of emissions. The remaining negative bias in plumes likely stems from missing IVOC 496 

emissions in both the emission data sets used here, as suggested by Liggio et al. (2015). Ongoing 497 

field work to measure the IVOC emissions using aircraft box flights is underway in a new 2018 498 

measurement intensive. Upcoming modelling work with GEM-MACH will include the VBS 499 

approach to better represent lower volatility compounds.  500 
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Table 1.  Facility total emission rates for three lumped organic species and PM2.5 calculated 804 

with the bottom-up, base case inventory, CEMA facility-specific VOC profiles (labeled 805 

Base Case) and the top-down measurement-derived rates (labeled Revised Emission case, 806 

scaled to tonnes/year for VOCs or tonnes/Aug&Sept for PM2.5). Emission rate 807 

increase/decrease of more than ±500 tonnes compared to base case is shown in red/blue. 808 

 Suncor – M/S Syncrude - ML Shell – MR/J CNRL - Horizon 

Species Base 

Case 

Revised Base 

Case 

Revised Base 

Case 

Revised Base 

Case 

Revised 

Mono-

Substituted 

Aromatics 

(TOLU) 

486 1112 806 1539 6.8 72 135 393 

Multi-

Substituted 

Aromatics 

(AROM) 

1457 1569 5273 1696 746 88 1125 500 

Long Chain 

Alkanes 

(ALKA) 

5636 13488 12348 10022 1690 14384 2651 23779 

Particulate 

Matter 

(PM2.5) 

1251 2537* 1021 3648* 459 2423* 402 1015* 

VOC revised-emissions are based on annual estimates, derived in Li et al., (2017). The estimates 809 

consider monthly and annual oil production yields reported by facilities for the plant stack 810 

emissions.  For tailing ponds and mine faces, the VOC estimates are calculated using a surface-811 

to-atmosphere mass transfer model considering ambient temperature and wind speed.  812 

* PM2.5 revised emissions are based on 2-month emission (Aug&Sept) rather than based on an 813 

annual estimate (Zhang et al., 2018) due to uncertainties in calculating dust emissions in the 814 

winter months. 815 
 816 
 817 
 818 
 819 
 820 
 821 
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 824 
 825 
 826 
 827 
 828 
 829 
 830 
 831 
 832 
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 834 
 835 
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Table 2. Facility-specific VOC speciation profiles (mass fractions) applied to the surface 837 

mining facilities in the Athabasca oil sands region compared to standard speciation profiles 838 

for Canadian and U.S. petrochemical oil refineries (in ADOM-II chemical speciation). Data 839 

are based on Zhang et al. (2018) and references therein. All four profiles are used in the 840 

base case simulation. 841 

Species  Shell M/J, 
Syncrude AN, 
Imperial Kearl 
Base Case 
Plant Profile 
(CEMA)  

Syncrude ML,  
Suncor,  
CNRL 
Base Case 
Plant Profile 
(CEMA)  

CEPS Database 
Standard 
Profile #9012 
For Oil 
Refineries in 
Base Case  

SPECIATE 
Database 
Standard Profile 
#0316 
For Oil 
Refineries in 
Base Case  

EC38 (Propane, 
Benzene, 
Acetylene)  

0.0 0.0 0.247 0.176 

EA3 (Alkane 
≥C4)  

0.90 0.71 0.623 0.781 

EA2 (Alkene 
≥C3)  

0.007 0.069 0.031 0.002 

ETOL (Toluene 
and other 
mono-
aromatics)  

0.001 0.057 0.005 0.008 

EARO (Multi-
functional 
aromatics)  

0.0003 0.099 0.003 0.003 

EHCO 
(Formaldehyde)  

0.00001 0.0003 0.110 0.0 

Columns do not add up to unity due to “unaccounted for” or “unassigned species” and/or due to 842 

consideration of reactivity weighting for the ADOM-II mechanism. 843 

 844 

Refinery Profile #9012 is a profile from the Canadian Emissions Processing System (Moran, 845 

M.D., M.T. Scholtz, C.F. Slama, A. Dorkalam, A. Taylor, N.S. Ting, D. Davies, P.A. Makar, S. 846 

Venkatesh, An Overview of CEPS1.0: Version 1.0 of the Canadian Emissions Processing 847 

System for Regional-Scale Air Quality Models.  In Proc. 7th AWMA Emission Inventory Symp., 848 

Research Triangle Park, North Carolina, Air & Waste Management Association, Pittsburgh, Oct. 849 

28-30, 1997.) 850 
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 855 
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 857 



 

 

Table 3.  Statistical scores from the model simulations with revised and base case 858 

emissions; all statistics are relative to observations. 859 

Lumped 

Species 

Simulation Mean 

Bias 

(ppbv) 

RMSE 

(ppbv) 

Slope Y-intercept 

(ppbv) 

Correlation 

Coefficient, 

R 

TOLU Base Case -0.041 0.277 0.217 0.063 0.32 

Revised Emissions 0.049 0.386 0.426 0.125 0.31 

AROM Base Case 0.152 0.435 0.957 0.154 0.41 

Revised Emissions 0.044 0.227 0.383 0.083 0.37 

ALKA Base Case -0.123 5.556 0.378 2.028 0.24 

Revised Emissions 1.98 6.403 0.335 4.097 0.34 

OA Base Case -2.79 3.866 0.186 0.252 0.59 

Revised Emissions -2.37 3.632 0.292 0.273 0.49 

RMSE is the root mean square error. Y-intercept corresponds to the model intercept of a model 860 

vs observation correlation plot. Mean bias is the model-observation mean score. The better score 861 

for a given pair of statistics is shown in bold-face font. 862 
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 898 

Figure 1.  The background image is the nested domain, at 2.5-km grid spacing, covering all of 899 

Alberta and Saskatchewan and encompassing the Athabasca Oil Sand study region (white box). 900 

The model field shown is for the lumped toluene species (TOLU) mass mixing ratio (µg/kg air). 901 

The inserted image on the right is the TOLU emission map (g/s/grid cell) for the Oil Sands study 902 

region at the same hour as mixing ratio image on the left. The Oil Sand facility’s names are 903 

listed in white labels.  904 
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 909 

Figure 2. Histograms for (a) observed TOLU, (b) revised-emissions TOLU, and (c) base-case-910 

emissions TOLU volume mixing ratios (ppbv). Points correspond to 10-sec averaged aircraft and 911 

model data, sorted into 20 bins by volume mixing ratio. The inset boxes show the 50th and 99th 912 

percentile values for each histogram. 913 
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                   914 

Figure 3.  Histograms for (a) observed AROM, (b) revised-emissions AROM, and (c) base model AROM 915 

volume mixing ratios (ppbv).  Points correspond to 10-sec averaged aircraft and model data, sorted into 916 

20 bins by volume mixing ratio. The inset boxes show the 50th and 99th percentile values for each 917 

histogram 918 
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 939 

Figure 4. Histograms for (a) observed ALKA, (b) revised-emissions ALKA, and (c) base-case emissions 940 

ALKA volume mixing ratios (ppbv). Points correspond to canister grab samples and model data, 941 

sorted into 20 bins by mixing ratio. The inset boxes show the 99th percentile value for each 942 

histogram. 943 
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 946 

Figure 5. Histograms for (a) observed organic aerosol (OA), (b) revised-emissions OA, and (c) base-947 

case emissions OA concentrations (µg/m3). Points correspond to 10-sec averaged aircraft and model 948 

data. The inset boxes show the 50th and 99th percentile values for each histogram. 949 
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 950 

Figure 6ab. Organic aerosol model bias as a function of observed black carbon aerosol. The 951 

bottom panel is an enlargement of the upper panel showing only the data points for observed 952 

BC>0.8 µg/m3.  The model results for the base-case emissions run are plotted in blue and points 953 

in red correspond to the revised-emissions run. The data plotted is for all the aircraft flights. 954 



 

 

 955 

 956 

Figure 7. Difference in predicted POA concentrations between revised-emissions and base-case 957 

runs plotted as a function of the difference in predicted total OA concentration between the 958 

revised-emissions and base-case runs for all flights.  Points along the 1:1 line show a difference 959 

solely from POA emission changes. Points below the 1:1 line show enhanced SOA formation. 960 
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