
 

 

Response to Co-Editor Comments 
 

1) The title talks about "Improving Air Quality predictions using...". The first 
sentence of the abstract suggests the same, assessing the impact of revised 

VOC and OA emissions estimates .... on air quality predictions for...". Most 
readers would then expect like me to find a paper reporting improved air 

quality predictions but that is not what we get. Instead, you merely report 
how the use of top down emission estimates better constrains the fugitive 

emissions in the OS region. That is a much more restricted objective, I 
would expect to read how air quality predictions on things like oxidants 

(ozone) and particles in the air were improved by using those better 
constrained emission data. The actual results reported in the paper are 

extensively discussed which may of interest and merit publication, but then 
say so up front. 
 
The manuscript focuses on air quality model predictions for VOCs and PM2.5 organic aerosol.  
As recommended, we have changed the title to be more specific to this focus, “Improving Air 

Quality Model Predictions of Organic Species using Measurement-Derived Organic Gaseous 

and Particle Emissions in a Petrochemical-Dominated Region”. We have also changed the first 

line of the abstract to specifically mention the paper discusses air quality model predictions for 

organic species. 

 

2) The paper is also overly long, as mentioned by referee 1 (who also made 
some comments about the original title). You mention that you shortened 

the paper upon referee 1's comments. Well that sounded odd to me so I 
counted: the original paper had an abstract of 34 lines, 7 lines shorter that 

the revised version. The original main text runs from lines 50-603, the 
revised version runs from lines 43-628... So I feel there is work to do. 
 

One of the things that makes the paper so long is the amount of detail. I do 
not know the Zhang et al. paper, now accepted for ACP, but I suspect that 

there is quite some overlap with section 2.1, so reference to that paper 

should be possible. Similarly section 2.3 may well include a lot of the details 
already reported in the Li et al. and Liggio and al. papers, so again, 

references to those papers should be possible. In short, only describe what 
is new and refer for the rest to those earlier papers.  
 

A lot of space is used for detailed case studies. I am wondering whether it 
would not make sense to move most of the case studies to the supplement 

(lines 207-338, figures 2-3; lines 359-386, figures 6-8; lines 403-444, figure 
10; lines 486-543, figures 14-16), and only write a few paragraphs in the 

main body of the text summarizing these case studies 

 



 

 

Thank you for your suggestion in moving the case study analysis to the SI. We have moved 9 

figures illustrating case study results to the SI. We have also added a few paragraphs in the main 

text summarizing the case study results. This reduces the length of the paper from 552 lines to 

484 lines. The original abstract was 445 words and the revised abstract is now 351 words.  The 

original text was 7484 words and the revised text is now 5946 words. The main part of the 

manuscript now has 7 figures. This length should help to make the paper more readable by the 

air pollution research community. 

 

The Zhang et al. (2018) paper is a comprehensive summary of all the emissions projects under 

JOSM, of which the measurement-derived organic emission project is only a subset.  I have 

taken the main points from the comprehensive Zhang et al. paper relevant to this paper and 

summarized them in the Methods section. The first reviewer also requested MORE detail in the 

emissions method section to understand the paper, without having to read another long paper. As 

a result, we have not changed the emissions method section, apart from rewording one sentence 

and removing one sentence that is redundant with the sentence already in the Table 1 caption. 

 

We have removed a couple sentences in the Observation section that are unnecessary detail.  

 

3) One further comment: lines 169-171 mention that the PM2.5 emissions in 
Table 1 are derived only for the summer months which seems eminently 

sensible. But it makes me wonder whether the same should be true for the 
gaseous VOCs. Are there wintertime aircraft observations for these VOCs 

suggesting that fugitive emissions are more or less the same? 

 
We do not have wintertime aircraft VOC observations from the JOSM 2013 field study.  The Li, 

S.M. et al. (2017) paper reports the annual measurement-derived VOC emission totals for each 

facility. For the plant emissions this was scaled up using the monthly and annual oil production 

yields reported by the facilities. For the mine face and tailing pond emissions, the emissions were 

estimated considering surface-to-atmosphere mass transfer calculations using ambient 

temperature and wind speeds.  In this paper, we refer to this previous published work.  We agree 

that there is considerable uncertainty in these annual VOC totals. The results from the April 2018 

aircraft study with snow cover will be interesting to compare. We have added the following 

caption to Table 1. For comparison, Table 1 includes the annual VOC emission totals reported 

from the bottom-up inventories. 

 
“VOC revised-emissions are based on annual estimates, derived in Li et al., (2017). The 

estimates for the plant stack emissions consider monthly and annual oil production yields 

reported by facilities.  For the tailing ponds and mine faces, the VOC estimates are calculated 

using a surface-to-atmosphere mass transfer model considering ambient temperature and wind 

speed.” 

 

 
4) Chapter 4, Discussion, only pertains to the results in chapter 3.4. 

Therefore make current chapter 3.4 into 3.4.1, and chapter 4 into chapter 
3.4.2. 
 



 

 

We agree that the logic of your suggested section numbering makes more sense. We have made 

the changes. 

 

5) Finally, among the conclusions (should now be Chapter 4!) I note your 
comment on the especially large increases in the ALKA compounds at the 

facilities that use paraffins for bitumen extraction. That seem to me like an 
important observation that should also be mentioned earlier (in chapter 2). 
 
We have added a sentence to the emissions method section to emphasize this large change in 

ALKA emission and decrease in aromatic emission for the facilities that use paraffins for 

bitumen extraction. 

 

“Interestingly, the facilities that use paraffinic solvents for bitumen extraction (e.g. Shell 

Muskeg/Jackpine) were associated with the largest ALKA emission increases and aromatic 

decreases.” 
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Abstract 

 

     This study assesses the impact of revised volatile organic compound (VOC) and organic 

aerosol (OA) emissions estimates in the GEM-MACH (Global Environmental Multiscale‒

Modelling Air Quality and CHemistry) chemical transport model on air quality model 

predictions of organic species for the Athabasca oil sands region in Northern Alberta, Canada. 

driven with two different emissions input datasets, using observations from the 2013 Joint Oil 

Sands Monitoring (JOSM) intensive field study.  The first emissions dataset that was evaluated 

(base-case run) makes use of regulatory-reported VOC and particulate matter emissions data for 

the large oil sands mining facilities. in northeastern Alberta, Canada, while Tthe second 

emissions dataset (sensitivity run) uses total facility emissions and speciation profiles derived 

from estimates based on box-flight aircraft observations around specific facilities. (Li et al., 

2017, Zhang et al., 2017) and a mass-balance analysis (Gordon et al., 2015) to derive total 

facility emission rates. The preparation of model-ready emissions files for the base-case and 

sensitivity run is described in an accompanying paper by Zhang et al. (2017). LThe large 

increases in some VOC and OA emissions in the revised- emissions data set for four large oil 

sands mining facilities and decreases for others were found to improve the modeled VOC and 



 

 

OA concentration maxima in facility plumes from these facilities, as shown with the 99
th

 

percentile statistic and illustrated by case studies. The results show that the VOC emission 

speciation profile from each oil sand facility is unique and different from standard 

petrochemical-refinery emission speciation profiles used for other regions in North America. A 

significant increase in the correlation coefficient is reported for the long-chain alkane predictions 

against observations when using the revised emissions based on aircraft observations. For some 

facilities, larger long chain alkane emissions resulted in higher secondary organic aerosol 

production, which improved OA predictions in those plumes. A feedback between larger long-

chain alkane emissions and higher secondary organic aerosol (SOA) concentrations was found to 

be significant for some facilities and improved OA predictions for those plumes.  Overall, tThe 

use of the revised emissions data resulted in a large an improvement of the model mean OA bias; 

however, a decrease in OA correlation coefficient and a remaining negative bias suggests the 

need for further improvements to model organic aerosol OA emissions and formation processes.  

Including intermediate volatile organic compound (IVOC) emissions as precursors to SOA and 

spatially allocating more PM1 POA emissions (primary organic aerosol of 1.0 μm or less in 

diameter) to mine-face locations are both recommended to improve OA bias and correlation 

further. A systematic bias in the background OA was also predicted on most flights, likely due to 

under-predictions in biogenic SOA formation. Overall, tThe weight of evidence suggests that the 

top-down emission estimation technique helps to new aircraft-observation-derived organic 

emissions help to better constrain better the fugitive organic emissions in the oil sands region, 

which are a challenge to estimate given the size and complexity of the oil sands operations and 

the number of steps in the process chain from bitumen extraction to refined oil product.  in the 

creation of bottom-up emission inventories. This work shows that the use of facility-specific 



 

 

emissions, based on direct observations, rather than generic emission factors and speciation 

profiles can result in improvements to model predictions of VOCs and OA.  This work shows 

that top-down eEmissions estimation techniques, such as those used to construct the inventories 

in our study, may therefore may help to constrain bottom-up emission inventories in have 

beneficial impacts when applied to other industrial regions of the world with large sources of 

VOCs and OA. 

 

1 Introduction 

 

     Chemical transport models (CTMs) are useful tools to support clean energy policy decisions 

because they can be used to assess the impact of past and future pollutant emission changes on 

air quality (e.g., Schultz et al., 2003; Kelly et al., 2012; Rouleau et al., 2013; Lelieveld et al., 

2015). CTMs can also be run in forecast mode with their output being used to support air quality 

forecasts (Moran et al., 2010; Chai et al., 2013). CTMs require pollutant emission inputs, 

typically at hourly intervals, at the model grid spatial resolution (Dickson and Oliver, 1991; 

Houyoux et al., 2003; Pouliot et al., 2012, 2015; Zhang et al., 2017). The pollutant emission 

input files are based on the processing of emission inventories compiled for all emission sectors, 

usually at some geopolitical spatial resolution (e.g., county, province/state, or country), and may 

thus require the application of spatial disaggregation factor fields to allocate emissions to the 

model grid. North American emission inventories are typically derived from bottom-up 

approaches, where representative pollutant emission factors (e.g., pollutant mass emission per 

volume of fuel burned) are multiplied by activity factors (e.g., volume of fuel burned per unit 

time). In developed countries, industrial facilities are usually required to report estimates of their 

pollutant emissions to national inventories such as the National Pollutant Release Inventory 

(NPRI) in Canada ( https://www.canada.ca/en/environment-climate-change/services/national-



 

 

pollutant-release-inventory.html(Government of Canada, Canada Gazette, 2018) and the 

National Emissions Inventory (NEI) in the United States (https://www.epa.gov/air-emissions-

inventories/national-emissions-inventory-nei.html(Office of the Federal Register, Protection of 

Environment, 2015). Updates of these inventories occur under a regulatory framework on a 

regular basis.  However, reporting requirements may be limited to aggregated mass emissions on 

an annual basis (e.g., a total bulk mass of VOC emitted rather than a detailed and observation-

based emissions of individual speciated VOCs), with the subsequent use of VOC speciation 

profiles (splitting factors) to determine the relative contribution of the individual VOCs to the 

total VOC emissions.  Uncertainties in the availability and assignment of appropriate VOC 

speciation profiles, spatial and temporal allocation factors (Mashayekhi et al., 2016), and/or 

unaccounted-for emitting activities, result in the need to evaluate the impact of these assumptions 

through the comparison of CTM predictions with ambient observations. 

     The Athabasca region of northeastern Alberta, Canada has one of the largest reserves of oil 

sands (OS) in the world. The OS deposits are composed of bitumen, minerals, sand and clay.  Oil 

sand near the surface is mined by open-pit mining techniques. The oil sand is then transported by 

heavy hauler trucks to crushers, followed by the addition of hot water to make the oil sand flow 

through pipelines to a bitumen extraction facility. Here, the bitumen is separated from the sand 

and clay by the use of organic solvents. The product is used either directly,then  upgraded on-site 

to crude oil or transported to a remote upgrader facility. Volatile organic compounds from the 

bitumen have the potential to escape into the atmosphere as fugitive emissions during the 

mining, extraction, processing, or tailing discharge steps.  The complexity and vast size of the oil 

sands operations make generating pollutant emission input files for CTMs a challenge (Cho et 

al., 2012; ECCC & AEP, 2016). 



 

 

     Organic compounds in the atmosphere are oxidized over time and, in the presence of 

sufficient levels of oxides of nitrogen, are important precursors to ozone formation (Seinfeld and 

Pandis, 1998). VOCs and semi-volatile organic compounds (SVOCs) are also precursors to 

secondary organic aerosol (SOA) formation (Griffin et al., 1999; Kanakidou et al., 2005; 

Robinson et al., 2007; Kroll and Seinfeld, 2008; Slowik et al., 2010; Stroud et al., 2011; Gentner 

et al., 2017). If the organic compounds have sufficiently low saturation vapor pressures, then 

upon release into the atmosphere they remain particle-bound and are classified as primary 

organic aerosol (POA). Many specific organic compounds can also be toxic to human health and 

require explicit reporting in emission inventories (Stroud et al., 2016). 

     The Joint Oil Sands Monitoring (JOSM) program was developed by the federal government 

of Canada and the Alberta provincial government with input and consultation from the local 

indigenous population and industry stakeholder groups to monitor the potential impacts of 

pollutant emissions. During JOSM, tTop-down approaches to estimate emissions based on 

atmospheric observations provided a unique opportunity to compare with bottom-up calculated 

emissions for the . One such approach has recently been applied for Athabasca OS facilities in 

Alberta, Canada (Gordon et al, 2015; Li et al., 2017). The mass-balance approach that was used 

is based on using box-shaped aircraft flight patterns around a facility and measuring pollutant 

concentrations and meteorological variables (wind speed and direction, air density). In this 

approach, the difference in pollutant mass fluxes entering and leaving the box is used to 

determine the total facility-wide emission rate, subject to assumptions such as minimal losses 

due to chemical oxidation between the emissions location and the nearby aircraft observations. 

This emission estimate can then be compared with the reported bottom-up emission total.  



 

 

     The Joint Oil Sands Monitoring Program (JOSM) was developed by the federal government 

of Canada and the Alberta provincial government with input and consultation from the local 

indigenous population and industry stakeholder groups.  Environment and Climate Change 

Canada (ECCC)’s chemical transport model, GEM-MACH (Global Environmental Multi-scale-

Modelling Air quality and CHemistry) is being used in JOSM to assess the impact of current 

emissions and future emission changes on local air quality and downwind regional-scale acid 

deposition (Makar et al., 2018). Evaluations of the model performance in different 

configurations and with respect to other pollutants may be found elsewhere in this special issue 

(Makar et al., 2017; Akingunola et al., 2017). In this model study,  

     Here we make use of both regulatory-inventory-based and aircraft-observation-derivedbased 

emissions data for VOCs and primary particulate emissions for six large OS mining facilities as 

inputs to GEM-MACH in order to assess the impact of these two different emission data sets 

sources of information on model predictions of VOC concentrations and organic aerosol (OA) 

formation.  The base-case inventory, which was derived from regulatory reporting, and updates 

for point sources, spatial and temporal allocation, and measured top-down, facility-total aircraft-

measurement-based emission rates are described in detail for VOCs in Li et al (2017) and for 

particulate matter (PM) in Wang et al. (2015) and Zhang et al. (2017). 

2 Methods 

 

     The GEM-MACH model uses the ECCC operational weather forecast model (GEM) as the 

core operator for dynamics and microphysical processes (Côté et al., 1998a,b; Girard et al., 

2014). GEM-MACH is an “on-line” CTM - the chemistry, vertical diffusion, and pollutant 

deposition routines exist as a set of subroutines contained and called from within GEM’s 

meteorological physics package (Moran et al., 2010, Makar et al., 2015a,b). The gas-phase 
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chemistry scheme is based on the ADOM-II mechanism, originally developed for continental 

boundary-layer oxidant formation. The VOC lumped species used in GEM-MACH are described 

in Stroud et al. (2008). The focus here is on evaluating volatile aromatic and alkane species of 

anthropogenic origin. The aerosol size distribution is described by a 12-bin sectional approach 

based on the Canadian Aerosol Module (CAM) (Gong et al., 2003; Park et al., 2011). The SOA 

scheme is based on a two-product fit to smog chamber data using the SOA yield equations 

derived from gas/particle partitioning theory (Pankow 1994; Griffin et al., 1999; Barsanti et al., 

2013). In the GEM-MACH model’s current SOA formation algorithms, after initial particle 

formation, the organic compounds in the particle phase are assumed to be converted rapidly to 

non-volatile mass, as observed by recent studies (Cappa and Jimenez, 2010; Cappa et al., 2011; 

Lopez-Hilfiker et al., 2016) and recommended by modelling studies (Shrivastava et al., 2015). 

However, other recent observation studies suggest that SOA ‘chemical aging’ over hours to days 

is quite complex, and involves further gas-phase oxidation and fragmentation reactions (Jimenez 

et al., 2009; Donahue et al., 2014), as well as potential particle-phase oxidation and oligomer 

reactions (McNeill et al., 2015). The particle oligomer reactions are rapid, often acid-catalyzed, 

and can result in conversion to non-volatile mass (Liggio et al., 2005; Kroll et al., 2005). We 

discuss below the evidence from this work on the likelihood that these additional missing 

processes are still impacting our model organic aerosol bias. 

2.1 Emissions 

     The Canadian base-case emissions were derived by combining several emissionfrom a hybrid 

inventoriesy, targeting 2013 as the base year, as described by Zhang et al. (2017). This base year 

was chosen to align with the JOSM 2013 intensive field study period, which provided the 

observations for the model/observation comparisons that follow. Canadian emissions for 



 

 

industrial facilities, including the Athabasca OS mining facilities, were obtained from the 2013 

NPRI. The U.S. base-case emissions were obtained from the 2011 U.S. NEI Version 1 (Eyth et 

al., 2013).  

     These base-case, bottom-up emissions inventories were processed with the SMOKE 

emissions processing tool (https://www.cmascenter.org/smoke), which includes three major steps 

corresponding to spatial allocation, temporal allocation, and chemical speciation (for NOx, VOC, 

and PM). The base-case VOC speciation profiles used by SMOKE for the OS surface mining 

facilities were obtained from the CEMA (Cumulative Environmental Management Association) 

inventory (Davies et al., 2012; Zhang et al., 2015).  

     For the sensitivity run, speciated VOC emissions from the base case for four OS mining 

facilities (Suncor Millenium/Steepbank, Syncrude Mildred Lake, Shell Canada 

Muskeg/Jackpine, and CNRL Horizon) were revised by replacing them with the top-down 

emission rates estimated by Li et al. (2017) while primary PM emissions were revised for six oil 

sand facilities (Suncor Millenium/Steepbank, Syncrude Mildred Lake, Shell Canada 

Muskeg/Jackpine, CNRL Horizon, Syncrude Aurora North, and Imperial Oil Kearl) (Zhang et 

al., 20187).  The VOC and PM chemical speciation profiles used for these facilities were also 

revised using the aircraft-observed VOC speciation (Li et al., 2017) and ground-based PM filter 

analysis (Wang et al., 2015), respectively.   The set of emissions input files making use of these 

revisions is hereafter referred to as the “revised emissions”, while the original emissions input 

files without these changes is referred to as the “base-case emissions”.  A detailed description of 

the development of the emission inventory and emissions processing steps to create the model-

ready files (hourly gridded emission fields for the same domain and grid spacing as the model) 

for the base case and revised version are described in Zhang et al. (20187).  Table 1 compares 

https://www.cmascenter.org/smoke


 

 

the facility emission rates for four species for the base case and revised-emissions case. The 

changes are not consistent from species to species and are not uniform across facilities. 

Interestingly, the facilities that use paraffinic solvents for bitumen extraction (e.g. Shell 

Muskeg/Jackpine) were associated with the largest ALKA emission increases and aromatic 

decreases. The SI section includes figures illustrating the emission difference maps for the oil 

sand region (absolute and relative difference) showing the spatial distribution of emission 

changes between revised and base case. The changes are largest over the surface mines and 

tailing ponds. 

     Depending on whether bitumen extracted from the oil sand is upgraded on site or not, the OS 

mining facilities can be classified into two broad types: (1) integrated extraction and upgrading 

facilities (Suncor Millenium/Steepbank, Syncrude Mildred Lake, and CNRL Horizon) and (2) 

extraction-only facilities (Shell Canada Muskeg/Jackpine, Syncrude Aurora North, and Imperial 

Oil Kearl).  Table 2S1 shows a comparison of the CEMA plant-specific VOC speciation profiles 

used in the base case for the two types of OS plants facilities compared to two standard VOC 

speciation profiles for petrochemical facilities (#9012 “Petroleum Industry – Average”, #0316 

“Fugitive Emissions, Pipe/Valve Flanges”) that were used by SMOKE for the base case to 

speciate more than half of the U.S. refinery emissions in the Houston area, the largest 

petrochemical cluster in the U.S. There are significant differences between the base case OS 

plant aircraft-observation-based OS VOC speciation profiles and the two commonly used 

standard oil refinery reference profiles. The OS integrated extraction and upgrading 

plantfacilities profiles are higher in long-chain alkenes, toluene, and other aromatics than the 

standardreference profiles, while the extraction-only plant facilitiesprofile hasve the highest 

long-chain alkane fraction.  The other two standard profiles used for the base case and revised 



 

 

simulation (for speciating U.S. and Canadian refinery emissions) have higher less-reactive 

species (e.g., propane, acetylene) and formaldehyde (profile #9012), than both the CEMA OS 

plant  profiles. Note also that these differences in relative fractions result in substantial 

differences in the absolute emissions of certain groups of VOCs between the standard profiles for 

oil refineries and the facility-specific oil sand profiles. For reference, the aircraft-measurement-

derived facility-specific VOC speciation profiles used for four OS facilities in the revised-

emissions case are presented in Zhang et al. (2018). The aircraft-measurement-derived profiles in 

Zhang et al. (2018), and used here for the revised case, are composite profiles since they 

encompass plant, tailing pond and mining emissions. As such, they are not appropriate for 

comparison with the profiles in Table 2, which are specific to plant emissions. 

     The primary PM emissions from the OS facilities originate largely from off-road heavy-duty 

diesel trucks, plant stack emissions, and fugitive and wind-blown dust. The 2009/10 CEMA 

inventory was used to specify the tail-pipe emissions from the off-road mining fleet and the 2013 

NPRI inventory was used for fugitive road-dust emissions.  The base-case inventory did not 

include wind-blown dust. For the revised inventory, the PM size distribution was measured 

during the 2013 field study for all six facilities and these data were used to constrain the revised 

PM emission input data set. Note that the PM emissions estimates based on the aircraft-measured 

aerosol data included the contribution of wind-blown dust emissions. The aircraft-based PM 

emissions were re-binned for the 12 GEM-MACH PM size bins. The first eight size bins 

correspond to mass up to diameter 2.56 µm. Interestingly, the aircraft measured a much higher 

fraction of particulate mass in bin 8 (bounded by diameters 1.28 and 2.56 µm) compared to the 

mass fraction in bin 8 from the area-source PM size-distribution profiles used by SMOKE in 

processing the base-case emissions. In addition, a PM chemical speciation profile specific to OS 



 

 

fugitive dust emissions was created from an analysis of deposited dust collected from surfaces in 

the OS region (Wang et al., 2015); this speciation profile replaced the standard fugitive dust 

profile for unpaved roads from the U.S. EPA SPECIATE v4.3 database 

(https://www.epa.gov/air-emissions-modeling/speciate-version-45-through-40) in the revised 

emissions processing. The resulting organic carbon fraction in the observation-derived PM 

speciation profile was higher than that of the base-case emissions by about a factor of 3 (Zhang 

et al., 20187). In general, significantly higher POA emissions were observed over the open-pit 

mines for all facilities, except for the Imperial Kearl mine.  Theis impact of the revised POA 

emissions will be discussed further in Section 3.4. 

2.2 Modeling 

     The GEM-MACH model was run in a nested configuration with an outer domain covering the 

continental U.S. and Canada and an inner domain covering Alberta and Saskatchewan.  The 

continental-scale GEM-MACH model (10-km resolution) and the Canada-wide GEM weather 

model (2.5-km resolution) were run first.  These provided the chemical and meteorological 

lateral boundary conditions, respectively, for the high-resolution GEM-MACH 2.5-km resolution 

run, which has a domain covering the provinces of Alberta and Saskatchewan (Figure 1).  The 

two models providing boundary conditions were run on a 30-hour cycle, of which the first six 

hours were spin-up and discarded, while the remaining 24 hours provided boundary conditions 

for the 2.5-km GEM-MACH simulation.  The initial conditions subsequent to the starting model 

simulation for each overlapping 24-hour 2.5-km GEM-MACH simulation came from the end of 

the previous 2.5-km GEM-MACH simulation.  This strategy was used to allow the two boundary 

condition simulations to make use of assimilated meteorological analyses. The sequence of 
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model simulations was started for August 10, 2013 and run until September 7 to cover the 2013 

JOSM intensive field study period.  

2.3 Observations 

     The NRC (National Research Council) Convair two-engine turboprop aircraft was used to 

collect air-quality observations during the JOSM 2013 intensive field study. The aircraft was 

equipped with a suite of instruments to measure air quality over 22 flights (see Li et al., 2017, 

Figure. S1). Most of the flight hours focused on “box” flight paths; these took the aircraft around 

the periphery of facilities at different heights, with the goal of deriving facility-wide emission 

rates by using observations of chemical concentrations and winds to estimate the mass of 

pollutants entering and leaving the box enclosures.  Coupled with a mass-conserving flux model 

(Gordon et al., 2015), these aircraft data were used to estimate emissions from the encircled 

facilities. 

     VOC and PM observations were collected by the instrumented research aircraft using 

different technologies.  A proton-transfer-reaction mass spectrometer (PTR-MS) was used to 

measure a select number of VOCs at high temporal resolution (1-sec) (Li et al., 2017). An 

aerosol mass spectrometer (AMS) was used to measure PM1 mass and non-refractory chemical 

composition (Liggio et al., 2016). A Single Particle Soot Photometer (SP2) was used to measure 

refractory black carbon aerosol (Liggio et al., 2016). Black carbon is used in our analysis, as a 

proxy for transport from open-pit mine-face sources. A number of canisters were filled with 

ambient air on each flight and returned to the lab for GC-FID and GC-MS analysis of VOCs (Li 

et al., 2017). The canister VOC analysis measured 154 different C2 to C12 hydrocarbons (Dann 

and Wang, 1995).  Each flight typically filled ~30 stainless-steel canisters.  The resulting 

observation data were compared to the model output generated as described above.  The 2.5-km 
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GEM-MACH runs used a 120-s chemistry time step; 120-s model output values were linearly 

interpolated in time and space to the aircraft observation locations; all comparisons which follow 

make use of the resulting model/observation data pairs for the two simulations. 

3 Results and Discussion 

 

     We present our evaluation results for four speciesVOC classes: mono-substituted aromatics in 

section 3.1; multi-substituted aromatics in section 3.2; long-chain alkane species in section 3.3; 

and organic aerosols in section 3.4.  

3.1 Toluene and other Mono-Substituted Aromatics (TOLU) Evaluation 

 

     The aircraft PTR-MS measurement data set was averaged to 10-sec intervals for comparison 

to the time and spatially linearly interpolated GEM-MACH model output. The interpolated 

model grid cell output was extracted along the flight track and interpolated linearly between the 

two minute model output intervals along the flight track was merged with the observations to 

create a coincident model and‒ measurement time series. The model lumped TOLU species 

includes toluene and other mono-substituted aromatics with the two most important additional 

species being ethyl-benzene and propyl-benzene. Therefore, we must derive an equivalent 

observed lumped TOLU species for a comparison. We used all of the canister VOC data from 

the field study to create ethyl-benzene vs. toluene and propyl-benzene vs. toluene scatterplots. 

The corresponding slope, y-intercept and correlation coefficient for both these plots (not shown) 

were as follows: m=0.376±0.006, y=0.0328±0.006, R=0.91 and m=0.0652±0.0008, y-

intercept=0.0011±0.0008, R=0.90, respectively. Thus, we derived an observed TOLU equal to 

the PTR-MS C7 aromatic multiplied by the factor 1.4412 (sum of m=1.0 C7+0.376 C7+0.0652 

C7). This new observation-derived TOLU was used in the statistical comparison with model 

output TOLU, which follows.   



 

 

     Histograms of mixing ratio were created using the observed TOLU, the revised-emissions 

model output, and the base-case model output. Figure 2 S1 illustrates the histograms using 20 

mixing-ratio bins and an increment of 0.2 ppbv per bin. It is clear that there are more high values 

(>2 ppbv) produced by the sensitivity model run with revised emissions compared to the base-

case model run. The number of observations in the highest value bins lies between the results 

from the revised and base-case versions. This can be quantified by using the 99% percentile 

statistic (obs=1.258 ppbv, revised=1.906 ppbv, base=0.934 ppbv). The 99% percentile means 

that 99% of the data points are lower than the value. The median concentration of the 

observations (0.061 ppbv) is higher than both the revised (0.038 ppbv) and base-case model 

(0.019 ppbv) simulated values, but is closer to the revised version.  Table 31 lists other statistical 

scores for the TOLU lumped species and the other species considered in this study. The mean 

bias goes from a negative value with the base-case run to a positive value with the revised 

emissions. There is little difference in the correlation coefficient for the model vs. observation 

scatterplot between the base-case and sensitivity run.  The changes to the VOC emissions for the 

revised-emissions run affected their total mass and speciation, and the observations were made 

sufficiently close to the sources that there was little time for oxidation.  The main sources for 

VOCs are the processing plants, tailing ponds, mine faces, and off-road vehicles and their spatial 

allocation (from CEMA, 2010) did not change significantly between the two model-emission 

versions. The main differences in the model time series between the two simulations are thus in 

magnitude of concentrations, and hence relatively invariant correlation coefficients might be 

expected.  The correlation coefficient is more likely controlled by the meteorological model 

accuracy in the placement of the plumes (i.e. wind direction). 



 

 

     Figure S2 illustrates the difference between the 2.5-km TOLU emissions field over the 

Athabasca OS mining facilities for the revised-base case as a spatial map for one selected time 

(Friday , August, 18Z). The largest increases in the TOLU emission, between the revised and 

base case run, are noted for the Syncrude Mildred Lake facility over the tailing ponds and open 

pit mine faces. The Table 1 shows the changes shown here reflect net changes on a facility-wide 

level. Notable actual and relative increases are also calculated for the Suncor 

Millennium/Steepbank and the Canadian Natural Resources Ltd (CNRL) Horizon facilities. 

Figure 2 illustrates the correlation between the sensitivity-case TOLU output and the base-case 

TOLU output. The flights on August 14 and 23 have the largest TOLU mixing ratios for the 

aircraft study, and both flights (blue and green points) correspond to box flights around the 

Syncrude Mildred Lake facility. The SI section includes the model and measurement time series 

comparisons for the flights on August 14 (Figure S5) and August 23 (Figure S6). Overall, the 

magnitude of the mixing ratio maximum in the time series are better represented in the revised-

emission simulation. This is also reflected in the better slope statistic in Table 3 for the revised-

emission simulation.Figure S3 shows the flight path for August 14, color-coded as a function of 

the difference between the modelled revised and base-case concentrations. The background is a 

satellite map image along with the GEM meteorological model wind barbs predicted for that day 

at 16 UTC. The largest differences in the simulated concentrations (1.8 ppbv) correspond to a 

location just downwind of the Syncrude Mildred Lake open-pit mine, as expected based on the 

emission difference map (Figure S2) and the southerly wind direction. 

     Figure 3 shows the time series for a segment of the August 14 flight corresponding to three 

flight boxes at different heights (green dotted line). The observations are plotted as open circles 

and the two lines represent the two model results. The model output with the revised VOC 



 

 

emissions clearly captures the main peak of the TOLU concentrations driven by TOLU 

emissions from the Syncrude Mildred Lake facility. The secondary peak occurs from the aircraft 

flying over the Suncor Millennium/Steepbank facility while on the east side of the flight box 

pattern.  The direct flyover adds uncertainty to the model comparison, as it depends on predicting 

accurately the early-stage vertical mixing of the plume from the Suncor facility. 

     Figure  is a time-series segment for August 23 corresponding to a fly-over of the Syncrude 

Mildred Lake (earlier peak in time) and Suncor Millennium/Steepbank (later peak in time) 

facilities at a constant altitude of 300-magl. Winds were light on this day with variable swings in 

direction. A double-peak pattern is observed in both the model and observations with a 1-min 

time shift needed to align the peaks. For this fly-over, the magnitude of the peaks is better 

represented with the revised emission model version.  We note also that the one-minute lag time 

of the model peaks illustrates the difficulties in prediction of plume location at high resolution; 

this corresponds to an error in the forecast position of the plume of 6 km, or 2.4 of the model’s 

grid-cells, given the aircraft’s typical flight speed of 100 m s
-1

.  Small errors in wind direction, 

the potential for point sources located near grid-cell boundaries to effectively be re-located to the 

grid centroids, as well as directional errors in the forecasted winds, can contribute to these offsets 

between observed and simulated concentration peaks. 

     For the TOLU lumped species, the overall statistical scores change from a small negative bias 

to a small positive bias with little change in correlation coefficient, which may be controlled in 

part by the meteorological model accuracy as noted above. However, for the locations where the 

absolute difference in emissions has changed the most (see Fig. S2), the model time series for the 

revised emissions shows improvement and this is reflected in the improvement in the slope 

statistics in Table 1.  The larger deviation between model and observed RMSE for the revised 



 

 

emissions likely reflects the error in positioning of the plumes inherent in both simulations – in 

the revised emissions simulation, the positioning error noted above likely contributes to the 

increased RMSE value.  

3.2 Multi-Substituted Aromatics (AROM) Evaluation 

 

     The model lumped AROM species includes all multi-substituted aromatics, with the most 

important species being the xylene isomers and trimethylbenzene isomers.  These two species 

match with the PTR-MS C8 and C9 aromatic fragments, respectively. However, the observed C8 

aromatic also includes ethyl-benzene and the C9 aromatic also includes propyl-benzene, which 

are lumped with TOLU in the model VOC speciation.  Thus, we need to subtract these unwanted 

species from the totals used to compare to the model lumped AROM species. To do this, we use 

their correlation slopes with PTR-MS C7 aromatic from Section 3.1.  The new observation-

derived AROM was calculated from the PTR-MS measurements as follows: C8 + C9 – 0.376 C7 

– 0.0652 C7.   

     Figure 3S4  shows the histograms for the lumped AROM species for 10-sec averaged points 

along all the flight tracks. The base model has a large number of high value points (> 2ppbv), 

many more than the model simulations with the revised emissions, and also more than the 

observations. This can be quantified by using the 99% percentile (obs=0.7607, revised=1.004, 

base case=2.302). The median value for the observations is 0.0182 ppbv, smaller than both the 

model versions (revised=0.0236 ppbv, base case=0.0466 ppbv), but closer to the model driven by 

the revised emissions. Table 31 lists other statistical scores for the AROM lumped species. The 

mean bias and RMSE are smaller for the revised emissions run compared to the base case. 

However, there is a small degradation in the correlation coefficient with the sensitivity run. 



 

 

     The largest decreases in the AROM emission field between the revised and base case 

emissions Figure S5 displays the difference between the 2.5-km AROM emissions field over the 

Athabasca OS mining facilities for the revised emissions and base-case emissions. The largest 

decreases are again over the Syncrude Mildred Lake facility (refer to Table 1). There were also 

notable decreases over the CNRL Horizon and Shell Muskeg/Jackpine facilities, but positive 

changes in AROM emissions were noted over the Suncor Millennium/Steepbank facility (also 

refer to Figure S2 for the emission spatial difference map). Figure S6 shows the flight track for 

the August 23 survey flight, which flew over all the facilities. The background map shows model 

winds were light and variable on this afternoon. The flight track is color-coded as a function of 

the difference between AROM from the sensitivity-base case. Consistent with the emission 

changes, negative difference in ppbv were modelled over Syncrude, Shell, and CNRL and 

positive differences in ppbv over Suncor.   

     Figure 5 shows the time series for a segment of the August 23 survey flight over Syncrude 

Mildred Lake and Suncor Millennium/Steepbank. The largest maxima are for times over 

Syncrude (7:31Z) and, while both runs show an over-prediction in plumes, the sensitivity run 

predictions are closer to observations. Panel B is the time series for a short segment later in the 

flight for locations over the Syncrude (earlier peak in time) and Suncor (later peak in time) 

facilities.  For the Suncor maximum, the sensitivity run with revised emissions has a better 

prediction for the magnitude of the mixing ratio change.  

     Figure S7 shows the box flight track on September 3, which was focused on quantifying 

emissions from Syncrude Mildred Lake facility. The flight path also included some turns over 

the Suncor Millennium/Steepbank facility. Similar to the August 23 flight, there are negative 

differences in the predicted AROM mixing ratio between the sensitivity and base runs over 



 

 

Syncrude and positive differences over Suncor. The decreases in mixing ratio are as large as 2 

ppbv.  Figure 6 is the time series for a segment of the September 3 flight.  The observed mixing 

ratios are closer to the predictions from the revised-emissions model run compared to the base-

case run.  

     The SI section includes the model and measurement time series comparison for the flights on 

August 23 and September 3. In general, the observed mixing ratio changes are closer in 

magnitude to the predictions from the revised-emission simulation compared to the base case for 

the plume intersects.from the overall statistics and the case studies, the revised-emissions model 

run output for lumped AROM species compares better to observations than the base-case 

emissions run, reducing the mean bias by a factor of three, and the RMSE by a factor of two 

(Table 1), and giving a better overall performance for the histograms of AROM concentration. 

3.3 Long-Chain Alkanes (ALKA) Evaluation 

 

     The long-chain alkanes (C4 to C12) were sampled by filling canisters with ambient air on-

board the aircraft.  Figure 4S8  presents the histogram for the long-chain alkanes. The mixing 

ratios are divided into 20 bins each with a width of 3 ppbv. From the observed histogram, there is 

a wide range to the mixing ratios with a small number of very large concentrations, but also the 

first bin (0 to 3 ppbv) has a high percentage of the points.  The model gas-phase mechanism 

represents all higher –carbon-number alkanes by a single lumped species, with chemical and 

physical properties derived from C4 to C8 alkanes.  The base-case run calculates lower ALKA 

mixing ratios than the model version using revised emissions. The model using revised emissions 

is much better at reproducing the higher concentration points, particularly above 12 ppbv. This is 

quantified by the 99% percentile of the data sets (obs=29.9, base=18.0 revised=24.6).  Other 

statistics for the lumped ALKA species are shown in Table 31. The mean bias went from a small 



 

 

negative value to +1.98 ppbv. The slope decreased by a small value, but the y-intercept 

increased, which also increased the RMSE for the run with the revised emissions.  The 

correlation coefficient improved significantly for the model run with revised emissions. 

     Figure S9 shows the difference in emission rate between the revised emissions and the base-

case emissions. Interestingly, tThe revised ALKA emissions are considerably higher for the 

CNRL Horizon and Shell Muskeg/Jackpine facilities, but have smaller changes for the other 

facilities (refer to Table 1), possibly reflecting differences in the processing activities between 

the facilities.  

     Figure S10 shows the differences between the two model predictions for ALKA at the 

observation canister sample locations, for the flight on August 26. On this day, winds were from 

the northeast and notably Fort McMurray (further to the south, not shown) had quite poor air 

quality. The largest differences in the modelled mixing ratios correspond to observation locations 

south of CNRL. Positive differences as large as 20 ppbv were simulated for some points. Figure 

7 shows the time series for the observations, revised-emissions model results, and base-case 

model results for the Aug. 26 box flight around the CNRL Horizon facility. A clear improvement 

in ALKA modelling is observed when using the revised emissions for the plume sampled 

downwind of the CNRL facility.  

     There were two other box flights around the CNRL Horizon facility. The flight on August 20 

also showed an improvement in ALKA predictions when using the new emission data set.  

Winds were from the west on this day. The flight on Sept. 2 showed the opposite trend, with 

more of an over-prediction with the revised emissions. Winds were from the north on this day. 

The background ALKA on this flight was predicted to be higher for the sensitivity run; however, 



 

 

the differences in mixing ratio between background and plume were still over-predicted with the 

revised emissions and under-predicted with the base emissions. 

     The other facility that had large increases in ALKA emissions with the revised data was the 

Shell Muskeg/Jackpine facility (Fig. S9). Flight 9 on August 21 was a box flight around the Shell 

facility. A detailed analysis of this flight showed that for the majority of the data points on this 

flight, the model run with the base-case emissions showed the best results, except for the three 

highest measured canister samples, where the model run with the revised emissions performed 

better. This likely reflects an uncertainty in the spatial allocation maps used to distribute the 

emissions with a higher fraction of emissions needed at the point specific locations.      Overall, 

the time series analysis for the aircraft flights (refer to Figures S10 and related discussion in SI) 

the ALKA statistics showed mixed improvements for ALKA associated with the revised 

emissions.  using the entire data set. The correlation coefficient does improve significantly. The 

large increases in ALKA emissions in the sensitivity simulation for the CNRL facility did 

improve the model maxima for the plume intersects on August 26.time series downwind. The 

analysis suggests further improvement in spatial allocation for the Shell facility may be needed. 

The higher ALKA mixing ratios also feeds back to higher SOA formation downwind of these 

facilities, as discussed below.  

     The use of aircraft observations to both derive emissions data and evaluate the subsequent 

model simulations might be taken as circular reasoning. We note first that observation-derived 

emissions are frequently used in modelling (for example, Continuous Emissions Monitoring 

System concentration observations are used to generate emissions data for large stack emitters), 

and second, that the emissions are only one component of the overall modelling system. An 

improvement in the simulated VOC concentrations using observation-based emissions is only 



 

 

guaranteed if the emissions dominate the net model error. While our results show that, in general, 

the new emissions information does improve model performance, the results using that new data 

are not perfect, indicating other sources of error are contributing to the overall model 

performance.   

3.4 Organic Aerosol (OA) Evaluation 

        Figure 5 S11 illustrates the histograms for the organic aerosol observations and model 

results with base case and revised emissions. A clear improvement is shown in the highest 

concentration bins (> 15 µg/m
3
) with the revised emissions. This can be quantified with the 99

th
 

percentile of the data (obs=13.4 µg/m
3
, revised=9.3 µg/m

3
, base=4.9 µg/m

3
). The median 

statistics also improved (obs=2.8 µg/m
3
, revised=0.84 µg/m

3
, base=0.70 µg/m

3
). The lower 5

th
 

percentile is also significantly under-predicted compared to observations and does not change 

much between the two model runs (obs=0.49 µg/m
3
, revised=0.036 µg/m

3
, base=0.035 µg/m

3
). 

This reflects an under-prediction in the background OA predicted by the model, which is likely 

due to too low a level of biogenic SOA formation and aging in both model versions. The 

importance of widespread biogenic SOA formation from boreal forests has been reported in 

other work (Slowik et al., 2010; Tunved et al., 2006). 

     The other Additional statistics are presented in Table 31. The mean bias, RMSE and slope all 

improve for the revised-emissions run, though the correlation coefficient decreases significantly 

for this run.  The decrease in correlation suggests that the improved bias may not always be the 

result for the right reasons for some points. To investigate this further, this study looked at the 

model PM1 OA bias as a function of different observed variables. Figure 8a shows the base-case 

model bias as a function of observed PM1 sulfate for individual points. Figure 8a is color-coded 

as a function of the model %SOA relative to model OA. There is a trend of increasing negative 



 

 

bias in model OA in the base case with increasing observed sulfate aerosol. This suggests that air 

masses that originate from sources high in SO2 tend to be under-estimated in simulated organic 

aerosol. These air masses also tend to have large %SOA in the base model. Figure 8b is the same 

plot but for the model run using revised emissions.  There are a large number of points that are 

relatively high in observed sulfate (>1 µg/m
3
) that change from a negative OA bias to a positive 

OA bias and these points also shift to being dominantly POA in model composition (low %SOA, 

blue points). The model output confirms that much of the increase in model OA in the sensitivity 

run originates from the increase in primary PM emissions and from the increase in the mass 

fraction of that primary PM assumed to be OA (based on Wang et al., 2015). The revised 

emissions simulation has less organic aerosol bias at high sulfate loading suggesting that the 

improved results are closely linked to model organic emissions co-located with sources of SO2. 

     To investigate the variability in the OA bias, we plotted the OA bias as a function of different 

measured variables. Figure 6 9a is a plot of the OA bias as a function of the observed black 

carbon (BC) aerosol for the base-case and sensitivity runs. The BC is a marker for petrochemical 

combustion, particularly diesel. For the base-case run, the OA negative bias is observed to 

increase in magnitude with observed BC.  Points with high observed BC correlate well with 

emissions from the OS open-pit mines (Liggio et al., 2017), where the BC is likely emitted from 

the heavy-hauler trucks. This The locations with the largest OA biaswas were also consistent 

with the locations of mines and the transport wind direction. A review of the OS emission 

inventories suggest that about 70% of the BC comes from the OS off-road diesel fleet. Including 

all points, the mean bias improves from -2.8 to -2.4 (see Table 31) when using the revised 

emissions. Figure 69b shows a zoomed plot for points with high observed BC (>0.8 µg/m
3
). 

There is a clear improvement in bias for most of these points. The average bias for these high BC 



 

 

points improves from -6.8 µg/m
3
 for the base case to -2.6 µg/m

3
 for the revised emissions. For 

emissions processing the increase in PM emissions was assigned to the processing plants 

(particle bin D<1µm) or the surface mines (particle bin D>1µm). Overall, Figure 6 shows that, 

while the negative OA bias improves for samples high in BC concentration (i.e. influenced by 

petrochemical combustion or collocated with petrochemical combustion sources), there still 

remains an unaccounted for negative OA bias. Note that anthropogenic SOA formation should be 

minimal for the high BC points close to the emission source, so uncertainties stemming from the 

model SOA formation mechanism should be reduced.  The revised emissions simulation has less 

bias as a function of observed black carbon, suggesting that the improved results are closely 

linked to model emissions with similar sources to the black carbon.  

     Figure 7 10 is a scatterplot of the difference in predicted POA between the revised and base-

case emissions runs vs. the difference in predicted total OA. A large fraction of the points fall 

along the 1:1 line, and hence for these points the difference between the two runs is almost 

completely due to the increased total primary PM emissions, and increased POA fraction of 

those emissions,  of the revised emissions simulations. The points with largest concentrations 

along the 1:1 line correspond to flights over the Syncrude Mildred Lake facility on Aug. 16, 

Aug. 23 and Sept. 3.  There is a subset of points, however, that lies below the 1:1 line; these 

correspond to points with significantly enhanced model SOA between the two runs (Aug. 16 

flight over CNRL Horizon and Aug. 21 survey flight over Shell Muskeg/Jackpine). The SI 

section includes the model and measurement time series comparisons for the flights on August 

21, August 23 and September 3. Overall, the case studies showed improved predictions for the 

magnitude of the organic aerosol change for the plume passages with the revised emissions; 

however, the base line organic aerosol was over-predicted for all case studies.  



 

 

   The focus of the flight on Aug. 21 was an enclosing box pattern around the Shell 

Muskeg/Jackpine facility at different altitudes. The approach to this facility, however, also 

included an overpass of the Syncrude Mildred Lake facility. Figure S13 illustrates the flight path 

color-coded as a function of POA difference (revised emissions – base case) and SOA difference 

(revised emissions –base case). The corresponding time series for OA observations, the revised 

emissions model run, and the base-case emissions model run OA predictions are shown in Figure 

11. There is a clear “hot spot” in POA difference in Figure S13a located over the Syncrude 

Mildred Lake facility. This hot spot corresponds to the first large maxima in the times series in 

Figure 11 (17:17 UTC). The observations at this time lie between the predictions from the two 

model simulations, though the overestimate of the revised emissions simulation is closer to the 

observations than the underestimate of the base-case emissions simulation. The aircraft then 

entered the box pattern at different altitudes around the Shell Muskeg/Jackpine facility, and each 

successive pass around this facility intersected the observed plume on the north-east corner of the 

flight box (see hot-spot, Figure S13b); the model predicts that the increase in OA is largely due 

to SOA (as implied by Figure 10), and the revised-emissions simulation produces peak OA 

concentrations that are closer to the observations than the base-case emissions simulation.  As is 

clear from Fig. 11, the base-case emissions simulation greatly underestimated the OA relative to 

observations. In examining the time series, it is also clear that both model simulations are under-

estimating the background biogenic OA concentrations, by about 0.5 g m
-3

. The height of the 

peaks relative to background is closer to the sensitivity run peaks than the base-case run peaks.    

     Figure S14 shows the difference between revised-emissions and base-case model OA 

predictions for another case study, for southerly winds with a box flight over the Syncrude 

Mildred Lake facility. The flight started and ended with a horizontal zig-zag pattern with 



 

 

overpasses directly over the facility emissions sources. This corresponds to the initial spikes in 

the model in the time series shown in Figure 12 (8:30 p.m. UTC). Again, the observed height of 

the peaks lies between the model peak heights for the base-case and revised-emissions 

simulations. For this flight the background OA concentration is under-predicted by up to 2 µg/m
3
 

by the end of the flight. The background air has more measured oxygenated organic aerosol 

(OOA) (Liggio et al., 2015), with an aerosol mass spectra more reflective of laboratory 

monoterpene SOA (Han et al., 2017).  During the box pattern, the peak heights in the 

observations more closely match the base model peaks.  The PM1 emission rates derived from 

the five box flights around Syncrude Mildred Lake did show more variability than for the other 

facilities. The average of five aircraft-derived PM1 emission rates was used to revise the PM1 

emissions for Syncrude in the revised emissions data used by the model. Interestingly, the largest 

observed OA value was measured in the spiral into the free troposphere near the end of the flight. 

There is no corresponding peak in the model at this time. The model peaks again only after the 

flight path has dropped into the boundary layer. Note that there was no corresponding increase in 

acetonitrile observed in the free troposphere so the source of the elevated OA is not likely from 

biomass burning, but may represent long-range transport from other sources. 

     The last case study is for the survey flight on August 23. Figure S15 shows the corresponding 

flight path color-coded by POA difference (revised - base case emissions; panel a) and SOA 

difference (revised – base-case emissions; panel b). From Fig. S15a, we can again see the local 

maxima in POA difference between runs over the Syncrude Mildred Lake facility. This 

corresponds to the peaks in time series at 5:50 p.m. UTC (Figure 13). The observed peaks are 

closer in magnitude to the base-case model peaks at this time. The peak at 7:40 p.m. UTC 

corresponds to another time later in flight over the same location. The peak in SOA difference at 



 

 

6:20 p.m. UTC is downwind of the CNRL Horizon facility (red points in Fig. S15b). The 

observations show a more broadly spread-out peak at this time than is predicted by the model, 

perhaps indicating a greater degree of turbulence or wind variability in the observations than 

predicted by the model.  Both modelled and observed meteorology had light wind speeds with a 

high degree of variability in direction on this day.  The variability in the observed winds at the 

local Mildred Lake weather station was large on this afternoon with hourly-averaged wind 

directions of 40˚, 290˚, 180˚, 20˚, 40˚ from 12-16 UTC and wind speeds all less than 6 km/hr. 

These light, variable winds result in a more dispersed nature of the observed organic aerosol.  

The peak in observations at 6:25 p.m. UTC is represented well by the revised model. This 

corresponds to a location over Shell Muskeg/Jackpine (light blue points in Fig. S15a).  Note that 

Fig. 13 suggests that background OA levels once again seem to be under-estimated in both 

simulations. 

3.4.2 Organic Aerosol Model Recommendations 

     In summary, tThe improvement in model PM1 OA bias due to the use of the revised emissions 

is encouraging; however, the decrease in correlation coefficient suggests that the spatial 

allocation of PM1 emissions may need further refinement. or The remaining negative bias 

suggests that other important processes may be missing or under-represented in the model. Three 

recommendations emerge from recent and current work: 

The under-prediction in background OA was a general finding from the study; the cause is 

believed to be due to underestimated biogenic SOA, due to the lumping of biogenic monoterpene 

emissions into the anthropogenic ALKE model species in the model’s gas-phase mechanism, and 

the lack of speciated representation of other biogenic SOA precursors such as sesquiterpenes. 

Biogenic SOA mass yield stoichiometric coefficients, based on more recent chamber 



 

 

experiments that consider vapor wall loss, should also be used for future modeling. Future 

aircraft observations should include a biogenic emission closure flight, where the aircraft flies a 

box pattern over a boreal forest location where the tree speciation is uniform and observed and 

modeled surface emission fluxes are then compared.  

1) SOA Formation from Fugitive IVOC Emissions      

     Recent publications also suggest that fugitive intermediate volatile organic (IVOC) emissions 

from the OS open-pit mines are needed to represent SOA formation downwind of the OS region 

(Liggio et al., 2016). In our emissions revision, only a small portion of the IVOCs (dodecane 

C12) were added and lumped placed into the long-chain ALKA lumped species. IVOC species 

with carbon number ≥13 were not measured by the Li et al., (2017) aircraft study and thus we do 

not have revised IVOC emissions included in this work. Furthermore, tThe ALKA lumped 

model VOC species has an SOA yield more representative of a lower molecular-weight range, 

and the yield is known to increase with increasing carbon number, so the dodecane SOA 

contribution would be underestimated. Work is currently underway with GEM-MACH to 

implement a Volatility Basis Set (VBS) approach to SOA formation. The VBS approach will 

more adequately represent the intermediate and semi-volatile volatility range and chemical aging 

of this lower volatility compounds (Robinson et al., 2006). Future work will measure IVOC 

emissions using box flights around the oil sand facilities and open-pit mines. This will remove 

current uncertainties in models and help improve the negative bias in plumes. Implementing the 

VBS scheme will also enable the PM emissions used here (in both data sets) to be distributed 

into volatility bins. 

     Also, while the measurement-derived emissions are missing the IVOCs, the measurement-

derived POA emissions may contain some gaseous VOCs, IVOCs and SVOC species that react 

Formatted: Font: Italic



 

 

quickly and in one oxidation step yield products that condense onto particles. This rapid SOA 

mass produced would be measured in the box flights and, at least partially, accounted for in the 

updated OA emissions; however labeled here as POA instead of fresh SOA. Furthermore, there 

is the potential for double counting if some of the very reactive gaseous precursors react to form 

SOA and this is accounted for in the measured POA. In this paper, we have tried to minimize this 

effect by examining the model performance in the “near field” from emission flights close to 

facilities. This will be the topic of future box modelling work with the new 2018 measurement-

derived IVOC and SVOC emissions to determine how much of the measurement-derived POA is 

derived from the fugitive open-pit mining IVOC and SVOC emissions and their rapid particle 

formation. 

2) Background Organic Aerosol Levels 

     The under-prediction in background OA was a general finding from the study; the cause is 

believed to be due to underestimated biogenic SOA, due to the lumping of biogenic monoterpene 

emissions into the anthropogenic ALKE model species in the model’s gas-phase mechanism, and 

the lack of speciated representation of other biogenic SOA precursors such as sesquiterpenes. 

Future work will update the biogenic SOA yield coefficients in the VBS approach using recent 

smog chamber results which account for gas-phase loss of organic species to chamber walls (Ma 

et al., 2017). 

3) Spatial Allocation of Emissions  

      Future field studies should also focus on improving within-facility spatial allocation.  For 

example, within-facility data such as the GPS location of the mining trucks would be helpful to 

derive their activity diurnal profiles and to improve trucktheir emission spatial allocation within 
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a facility. The GPS data would also be useful to define the location of freshly excavated open-pit 

mines within a facility. 

4) Conclusions 

 

     Overall, the weight of evidence suggests that the top-down emission estimation technique 

applied torevised aircraft-measurement-derived organic emissions for the OS surface mining 

facilities helps to better constrain reported facility-total organic emissions includingfor fugitive 

sources, as shown by improved model results when the revised emissions are employed.  We 

note that emissions from these sources are a challenge to calculate in bottom-up inventories due 

to the potential for fugitive emissions. For the mono- and multi-substituted aromatics (TOLU and 

AROM), the emission rates from facilities were more fine adjustments, as some facility totals 

went up and some went down and the overall biases compared to observations improved for 

AROM but degraded for TOLU. However, the model’s ability to predict very high aromatic 

concentrations in plumes improved with the revised emissions, as shown by the 99
th

 percentile 

statistic and the case studies.  

     For the long-chain ALKA species, the revised emissions may have over-corrected, on 

average, as shown by the increase in mean bias for the entire aircraft data set. However, the 

correlation coefficient did improve significantly for the long-chain alkane predictions, suggesting 

the combination of alkane emission increases for some facilities and decreases for others helped 

to improve the spatial distribution of ALKA emissions. The results for some facilities suggest 

that further improvement could be achieved by putting more emissions at extraction processing 

plant locations (i.e., adjusting within-facility spatial allocation). Interestingly, the alkane 

emission increases and aromatic emission decreases, derived from aircraft data (Li et al., 2018), 

were associated with the facilities that use paraffinic solvents for bitumen extraction (e.g. Shell 
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Muskeg/Jackpine) and Syncrude Aurora North; Li et al., 2017). Overall, the predictions of 

alkanes in high concentration plumes improved with the revised emission data set, as shown by 

the 99
th

 percentile statistic. 

     For PM1 organic aerosol, the revised emissions improved the mean bias for predictions; 

however, a negative bias still exists and theis improvement was associated with a decrease in 

correlation coefficient. The increase in predicted PM1 OA concentration was largely due to the 

increase in POA emissions in the revised emissions input files. The POA emissions increased 

because of a combination of larger aircraft-measurement-derived PM1 emissions and the revised 

ground-observed PM speciation profile having a larger POA fraction. The increase in PM1 POA 

emissions were largely allocated spatially to stack locations and this allocation may be a key 

factor in the degradation of the correlation coefficient, especially if the fine OA originates from 

mine-face fugitive emissions.  Future work should focus on improving within-facility spatial 

allocation of emissions. The remaining negative bias in plumes likely stems from missing IVOC 

emissions in both the emission data sets used here, as suggested by Liggio et al. (2015). Ongoing 

field work to measure the IVOC emissions using aircraft box flights is underway in a new 2018 

measurement intensive. Upcoming modelling work with GEM-MACH will include the VBS 

approach to better represent lower volatility compounds.  

A portion of this aircraft-measurement-derived POA emission increase could stem from rapid 

SOA formation in the interior of the aircraft flight boxes. It was recently discovered that IVOC 

SOA formation can be important in OA formation downwind of the OS surface mining region 

and the IVOC emissions came from open-pit mine fugitive emissions. GEM-MACH does not 

currently include the IVOC emissions from open-pit mines, as the estimation of the IVOC 

emission rate and SOA aging rate are the subject of ongoing Lagrangian box model studies. 



 

 

Furthermore, the increase in PM1 POA emissions were largely allocated spatially to stack 

locations and this allocation may be a key factor in the degradation of the correlation coefficient, 

especially if the fine OA originates from mine-face fugitive emissions.  Future work should 

focus on improving within-facility spatial allocation of emissions. 
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Table 1.  Facility total emission rates for three lumped organic species and PM2.5 calculated 

with the bottom-up, base case inventory, CEMA facility-specific VOC profiles (labeled 

Base Case) and the top-down measurement-derived rates (labeled Revised Emission case, 

scaled to tonnes/year for VOCs or tonnes/Aug&Sept for PM2.5). Emission rate 

increase/decrease of more than ±500 tonnes compared to base case is shown in red/blue. 

 Suncor – M/S Syncrude - ML Shell – MR/J CNRL - Horizon 

Species Base 

Case 

Revised Base 

Case 

Revised Base 

Case 

Revised Base 

Case 

Revised 

Mono-

Substituted 

Aromatics 

(TOLU) 

486 1112 806 1539 6.8 72 135 393 

Multi-

Substituted 

Aromatics 

(AROM) 

1457 1569 5273 1696 746 88 1125 500 

Long Chain 

Alkanes 

(ALKA) 

5636 13488 12348 10022 1690 14384 2651 23779 

Particulate 

Matter 

(PM2.5) 

1251 2537* 1021 3648* 459 2423* 402 1015* 

VOC revised-emissions are based on annual estimates, derived in Li et al., (2017). The estimates 

consider monthly and annual oil production yields reported by facilities for the plant stack 

emissions.  For tailing ponds and mine faces, the VOC estimates are calculated using a surface-

to-atmosphere mass transfer model considering ambient temperature and wind speed.  

* PM2.5 revised emissions are based on 2-month emission (Aug&Sept) rather than based on an 

annual estimate (Zhang et al., 2018) due to uncertainties in calculating dust emissions in the 

winter months. 
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Table 2. Facility-specific VOC speciation profiles (mass fractions) applied to the surface 

mining facilities in the Athabasca oil sands region compared to standard speciation profiles 

for Canadian and U.S. petrochemical oil refineries (in ADOM-II chemical speciation). Data 

are based on Zhang et al. (2018) and references therein. All four profiles are used in the 

base case simulation. 

Species  Shell M/J, 
Syncrude AN, 
Imperial Kearl 
Base Case 
Plant Profile 
(CEMA)  

Syncrude ML,  
Suncor,  
CNRL 
Base Case 
Plant Profile 
(CEMA)  

CEPS Database 
Standard 
Profile #9012 
For Oil 
Refineries in 
Base Case  

SPECIATE 
Database 
Standard Profile 
#0316 
For Oil 
Refineries in 
Base Case  

EC38 (Propane, 
Benzene, 
Acetylene)  

0.0 0.0 0.247 0.176 

EA3 (Alkane 
≥C4)  

0.90 0.71 0.623 0.781 

EA2 (Alkene 
≥C3)  

0.007 0.069 0.031 0.002 

ETOL (Toluene 
and other 
mono-
aromatics)  

0.001 0.057 0.005 0.008 

EARO (Multi-
functional 
aromatics)  

0.0003 0.099 0.003 0.003 

EHCO 
(Formaldehyde)  

0.00001 0.0003 0.110 0.0 

Columns do not add up to unity due to “unaccounted for” or “unassigned species” and/or due to 

consideration of reactivity weighting for the ADOM-II mechanism. 

 

Refinery Profile #9012 is a profile from the Canadian Emissions Processing System (Moran, 

M.D., M.T. Scholtz, C.F. Slama, A. Dorkalam, A. Taylor, N.S. Ting, D. Davies, P.A. Makar, S. 

Venkatesh, An Overview of CEPS1.0: Version 1.0 of the Canadian Emissions Processing 

System for Regional-Scale Air Quality Models.  In Proc. 7th AWMA Emission Inventory Symp., 

Research Triangle Park, North Carolina, Air & Waste Management Association, Pittsburgh, Oct. 

28-30, 1997.) 
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Table 31.  Statistical scores from the model simulations with revised and base case 

emissions; all statistics are relative to observations. 

Lumped 

Species 

Simulation Mean 

Bias 

(ppbv) 

RMSE 

(ppbv) 

Slope Y-intercept 

(ppbv) 

Correlation 

Coefficient, 

R 

TOLU Base Case -0.041 0.277 0.217 0.063 0.32 

Revised Emissions 0.049 0.386 0.426 0.125 0.31 

AROM Base Case 0.152 0.435 0.957 0.154 0.41 

Revised Emissions 0.044 0.227 0.383 0.083 0.37 

ALKA Base Case -0.123 5.556 0.378 2.028 0.24 

Revised Emissions 1.98 6.403 0.335 4.097 0.34 

OA Base Case -2.79 3.866 0.186 0.252 0.59 

Revised Emissions -2.37 3.632 0.292 0.273 0.49 

RMSE is the root mean square error. Y-intercept corresponds to the model intercept of a model 

vs observation correlation plot. Mean bias is the model-observation mean score. The better score 

for a given pair of statistics is shown in bold-face font. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 1.  The background image is the nested domain, at 2.5-km grid spacing, covering all of 

Alberta and Saskatchewan and encompassing the Athabasca Oil Sand study region (white box). 

The model field shown is for the lumped toluene species (TOLU) mass mixing ratio (µg/kg air). 

The inserted image on the right is the TOLU emission map (g/s/grid cell) for the Oil Sands study 

region at the same hour as mixing ratio image on the left. The Oil Sand facility’s names are 

listed in white labels.  

 

 

 

 



 

 

 

Figure 2. Histograms for (a) observed TOLU, (b) revised-emissions TOLU, and (c) base-case-

emissions TOLU volume mixing ratios (ppbv). Points correspond to 10-sec averaged aircraft and 

model data, sorted into 20 bins by volume mixing ratio. The inset boxes show the 50th and 99th 

percentile values for each histogram. 
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Figure 3.  Histograms for (a) observed AROM, (b) revised-emissions AROM, and (c) base model AROM 

volume mixing ratios (ppbv).  Points correspond to 10-sec averaged aircraft and model data, sorted into 

20 bins by volume mixing ratio. The inset boxes show the 50th and 99th percentile values for each 

histogram 

99
th

 = 0.761 

50
th

 = 0.018 

99
th

 = 1.004 

50
th

 = 0.024 

99
th

 = 2.302 

50
th

 = 0.047 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Histograms for (a) observed ALKA, (b) revised-emissions ALKA, and (c) base-case emissions 

ALKA volume mixing ratios (ppbv). Points correspond to canister grab samples and model data, 

sorted into 20 bins by mixing ratio. The inset boxes show the 99th percentile value for each 

histogram. 
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Figure 5. Histograms for (a) observed organic aerosol (OA), (b) revised-emissions OA, and (c) base-

case emissions OA concentrations (µg/m3). Points correspond to 10-sec averaged aircraft and model 

data. The inset boxes show the 50th and 99th percentile values for each histogram. 
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Figure 6ab. Organic aerosol model bias as a function of observed black carbon aerosol. The 

bottom panel is an enlargement of the upper panel showing only the data points for observed 

BC>0.8 µg/m3.  The model results for the base-case emissions run are plotted in blue and points 

in red correspond to the revised-emissions run. The data plotted is for all the aircraft flights. 



 

 

 

 

Figure 7. Difference in predicted POA concentrations between revised-emissions and base-case 

runs plotted as a function of the difference in predicted total OA concentration between the 

revised-emissions and base-case runs for all flights.  Points along the 1:1 line show a difference 

solely from POA emission changes. Points below the 1:1 line show enhanced SOA formation. 
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