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Abstract

Aerosols and ozone have significant influences on air qualities, human health and climate changes.
To further understand the characteristics and interactions among different urban air pollutants in the
west Yangtze River Delta (YRD) region, continuous measurements of low layer atmospheric
particles and trace gases have been performed at an urban site in Nanjing from September 2016 to
February 2017 in this study. In urban area of west YRD, the mean PMjo and O3 concentrations are
86.3 ug/m3 and 37.7 ppb, respectively, with significant seasonal and diurnal variations. Particles,
which are dominated by fine aerosols, are relatively scattering. And most of their optical properties
have the similar variations to the aerosol concentrations. Results also show that west YRD could
still suffer severe air pollutions, although the seasonal mean aerosol concentrations have been
decreased in recent years. Even in cold seasons, O3 could have about 40 days excess against to the

National Ambient Air Quality Standards during the sampling period. Most of polluted episodes are
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caused by local and sub-regional emissions. A case study for a typical O3z and PM, s episode in

December 2016 demonstrates that the episode was generally associated with regional transport and

stable weather system. Air pollutants were mostly transported from the western areas with high

emissions, as well as with an anticyclone and high-pressure system in this region. Correlation

analysis revels that the interaction between O3 and PMs are complex with a combination of

inhibition and promotion under different conditions. The inhibition effect might result from the

reduction of photolysis frequency near surface due to aerosols besides their positive correlations

with precursors, while the promotion effect is from the formation of secondary aerosols under high

concentrations of oxidants and solar radiation. However, the interaction between O3 and BC shows

an inhibit effect due to its chemical stability. It is also indicated a VOC-sensitive regime for

photochemical production of O3 in this region. This study further improves the insight in the

characteristics and interactions of main pollutants, and might have a certain contribution to improve

the simulation and prediction of aerosols and gases in urban area of YRD.

1. Introduction

Particles, including black carbon (BC), PM» s, and PM, and trace gases, such as carbon monoxide
(CO), ozone (0O3), nitric oxide and nitrogen dioxide (NOy), and total reactive nitrogen (NOy, which
includes NOxy, aerosol nitrates (NO3"), nitric acid (HNO3), N2Os, peroxyacetyl nitrate (PAN), and
various nitrogen-containing organic compounds.), are important components in the troposphere
because of their impacts on human health, biosphere and climate changes (e.g., Chameides et al.,
1999a, b; Jerrett et al., 2009; Allen et al., 2012). Through long-range particle cycles, particles could
interact with atmospheric trace gases from complex sources, especially ozone and its precursors,
disturbing the earth's radiation budget (Sassen, 2002), or providing reactive surfaces for
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heterogeneous reactions (Kumar et al., 2014), which leads to a great but hard problem for regional

air quality (Zhang et al., 2008; van Donkelaar et al., 2010).

Over the decades, China is always one of the major source regions of particles, with BC and dust
emission accounting for up to 25% of the global anthropogenic sources (Streets et al., 2001; Tegen
and Schepanski, 2009). Relatively high levels of particle concentrations are mainly distributed in
Beijin-Tianjin-Hebei area (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions
(e.g., Zhang et al., 2008, 2012; Zhang et al., 2015), along with the rapid economic development.
These regions consistently have the highest emissions of anthropogenic precursors (e.g., Wang et
al., 2015; Wang et al., 2009b; Ding et al., 2013b; Zheng et al., 2010), which have led to severe
region-wide air pollution. Earlier studies on particles mostly focused on concentrations estimation,
the chemical characteristics, potential sources, as well as climate effects based on numerical
simulations (e.g., Wu et al., 2012; Song et al., 2014; Xiao et al., 2012; Yu et al., 2015; Kristjansson,
2002; Liao and Seinfeld, 2005; Zhuang et al., 2010, 2013, 2013b, 2018). However, a better
understanding of spatial and temporal variations of particles can contribute to the adoption of
effective measures to reduce air pollution, and real-time monitoring data is essential to better obtain
the detailed variations (seasonal, monthly, and diurnal) on the city scale. In China, the research
based on PMs observations, especially in the polluted regions above, have gradually expanded since
2012 due to the establishment of China’s PM» s air quality standards and gradual developments of
nationwide PMs observation. The research is mainly related to the temporal and spatial distribution
characteristics (e.g., Wang et al., 2015; Chen et al., 2016; Wu et al., 2012), and the effects of
meteorological variables on aerosols (e.g., Zhang et al., 2015; Yan et al., 2016; Huang et al., 2015).
In addition, many observations of BC have been made in the recent years, most of which
concentrated on the analysis of the concentration level and the temporal and spatial variations (e.g.,
Verma et al., 2010; Wang et al., 2011b; Zhang et al., 2012). Some also revealed the correlations of
carbonaceous aerosols (Pan et al., 2011; Zhuang et al., 2014b). Besides particles, because of the lack
of nationwide O3 monitoring data in earlier years, O3 and its precursors (NOx, NOy, CO and VOCs
etc.) pollution situations can only be discerned from limited campaign-type measurements in certain

developed regions, for instance, Beijing in BTH area (Shao et al., 2006; Lin et al.,2008; Meng et al.,
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2009), Guangzhou in PRD region (Zhang et al., 1998; Wang et al., 2003) and Lin’an in YRD region
(Luo et al., 2000; Cheung and Wang 2001; Wang et al. 2001a, 2002, 2004; Guo et al. 2004b). Since
2005, the number of photochemical studies through observation data has increased in the PRD
region in the south (Xue et al., 2014a), the BTH area in the north (Han, 2011), and the YRD region
in the east (Shi et al., 2015). However, large gaps and uncertainties remain in the knowledge of
characteristics of regional particles and O3 pollution and its mitigation strategies due to the

complexity of main sources, interaction between different aerosols, and changing meteorology filed.

The YRD is located in the eastern part of the Yangtze River Plain, adjacent to the most polluted
North China Plain, including large cities of Shanghai, southern Jiangsu and northern Zhejiang.
Taking up only 2 percent of the land area in China, this region produces over 20 percent of China’s
Gross Domestic Product (GDP). Nanjing, as the capital of Jiangsu Province, lies in the middle to
west YRD. It covers an area over 6000 km? with more than 7.3 million residents

(http://www.njtj.gov.cn/). Being the second largest commercial center after Shanghai in YRD, even

the East China, Nanjing is highly urbanized and industrialized, especially the urban area. In addition,
the complex monsoon and synoptic weather may play an important role in air pollution transport
and formation in Nanjing. Therefore, the urban atmosphere in Nanjing is also heavily polluted by
local emissions and long-distance transport of pollutants, which affects regional climate and air
quality (Huang et al., 2013; Yi et al., 2015). Thus, the issue of air pollution in Nanjing deserves
attentions. Previous studies using observation data in Nanjing often concentrated on characteristics
of one of the particles (Deng et al., 2011; Shen et al., 2014; Zhuang et al., 2014) or ozone and its
precursors (Tu et al., 2007; Wang et al., 2008; An et al., 2015), describing the temporal and spatial
distributions, and the influence of meteorological effects, but lay less emphasis on the inter-species
correlations and the combined effects of pollutants during severe pollution episodes. Ding et al.
(2013b) described the characteristics of O3 and PM» s with near-surface observation data in rural

Nanjing, but the detailed characteristics in urban Nanjing is not clear enough so far.

To fill the knowledge gap, continuous online measurements of particles, trace gases, and other

relevant parameters were carried out at Gulou site in urban Nanjing about 80m above the ground,
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an integrated measurement platform for the study of atmospheric environment and climate change.
In this study, 6-month measurement of particles, trace gases, and other related variables at this site
during September 2016~ February 2017 when air pollution occurred frequently is analyzed. Our
work gives a synthetic analysis about their characteristics. The emphasis of our objective is to
improve the insight in the characteristics, interactions of main pollutants, and the influence of
integrated meteorology variables based on the observation data at an urban site above ground, and
further investigate the possible underlying reasons and mechanisms. Firstly, an in-depth discussion
on particles variations is performed, not limited to the concentrations but taking optical properties
into consideration as well, to quantify the polluted level in detail. Secondly, a detailed description
of O3 variations can also be found in our study, including the analysis of the main precursors as trace
gases (NOx, NOy and CO), to have a general and quantitative insight in O3 pollution situations. Both
of the pollutants are analyzed considering the effects of meteorology variables including but not
limited to precipitation and temperature. Thirdly, analysis of inter-species correlations gives a
relatively thorough overview of the interactions among various species, and deduction of the
underlying chemical mechanisms based on the results of our study and previous studies is also
presented in our study. Moreover, backward trajectories analysis is conducted for improving the
knowledge of regional/sub-regional transport process in urban Nanjing. Finally, a case study for
high particles and O; episode is implementing to emphasize the integrated influence of

meteorological field on regional air pollution.

In the following, we describe the methodology in Section 2, which includes the measurement site
and instruments. Results and discussions are presented in Section 3, consisting of overall temporal
variation, correlation analysis, backward trajectory analysis, and case studies. A summary is given

in Section 4.
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2. Methodology

2.1 Brief Introduction to the Urban Atmospheric Observational Site

The Urban Atmospheric Observational Site is a regional atmospheric urban site located on the Gulou
Campus of Nanjing University in the downtown area of Nanjing (32.05 °N,118.78 °E), and run by
School of Atmospheric Sciences, Nanjing University. It is built on the roof of a 79.3m tall building,
without any industrial pollution sources within a 30 km radius around but several main roads with
evident traffic pollution, especially during rush hours. The sketch map of the site (not shown) and

the corresponding climatology have been described in Zhu et al (2012).

The particles, O3, NOx, NOy (including most oxides of nitrogen mentioned above with the exception
of NH3z and N>O), CO, and wavelength-dependent aerosol optical parameters including aerosol
scattering ( Oy ), back-scattering ( 0y, ), and absorption (0, ) coefficients have been routinely
measured at the site during the time period from September 2016 to February 2017. The o, and
concentrations of BC were derived from the measurements using a seven-channel Aethalometer
(model AE-31, Magee Scientific, USA). The detailed calculation will be discussed below. The AE-
31 model measures light attenuation (ATN) at seven wavelengths, including 370, 470, 520, 590,
660, 880 and 950 nm. The sample air is taken through a stainless-steel tube into the instruments,
with a desired flow rate of 5.0 L min’' and a sampling interval of 5 min during the whole period.
The aerosol O and o, were measured with a three-wavelength-integrating Nephelometer
(Aurora 3000, Australia). Aurora 3000 measures aerosol light scattering, including o and o, at

450, 525 and 635 nm, with a sampling interval of 1 min (Zhuang et al. 2017). The sample air was
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taken through a 2m stainless-steel tube with a sampling interval of 1 min, top of which is 1.5m

above the roof. The inlet has a rain cap and an external as well as an internal heater to prevent

condensation. In cold seasons when RH in the tube was relatively low, maximum of which was

lower than 75% and 80% of which was lower than 50% during sunny hours, therefore the internal

heater was turned off. PM» s and PMjo mass concentrations were measured using a mass analyzer

(Thermo Instruments, THOM 1405-DF), which has been used to measure the mass concentration

of PMz s, PM25.19, and PM;o simultaneously. The hourly and daily mean mass concentrations are

updated every 6 minutes, as well as the hourly base and reference mass concentrations. The sample

air is taken through a stainless-steel tube into the instruments. Trace gases (CO, NOy, NOy and O3)

were measured every minute using online analyzers (Thermo Instruments, TEI 48i, 421, 421Y, and

491, respectively). Sample air was drawn from the 1.5m above the rooftop to the laboratory through

a manifold connected to O3, NOx and CO analyzers with PFA Teflon tubes, while a separate sample

line with a MoO converter was used for NOy analyzer (Wang et al., 2002; Ding et al., 2013b) to

convert other reactive nitrogen species including PAN, NO3z™ and HNOs3. Thus the measured quantity

approximates total reactive nitrogen. Precision and instrument of all the measurements in this study

are listed in Table 1.

Since aerosols are quite hygroscopic in China (e.g., Eichler et al., 2008; Liu et al., 2011; Ding et al.,

2013b). All the instruments are installed in a laboratory with a constant temperature (24°C) and a

low RH located on the building roof. Routine calibrations and maintenances were carried out for all

these instruments during the sampling periods.
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Monthly averaged meteorological parameters during the study period at the site are shown in Table
2. The air temperature at the site ranged from 6.64°C in February to 24.88°C in September. Both
higher relative humidity (RH) and more precipitation occurred in fall than winter, especially in
October. Visibility (Vis) varied in different months. The peak of the ultraviolet radiation (UV)
occurred in September, after which the radiation became weak till the end of January, and rose a

little afterwards.

2.2 Calculation of the aerosol optical properties

The wavelength-dependent &, , which is associated with the intensities of the incoming light and
remaining light after passing through a medium, can be calculated directly using the measured light
attenuations (ATN) through a quartz filter matrix, a percentage to represent the filter attenuation, as
well as BC mass concentrations (Petzold et al., 1997; Weingartner et al., 2003; Arnott et al., 2005;
Schmid et al., 2006).

(ATN:(A)-ATNw1(A)) A
at " \7 ’ M

O, ATN, t(4) =

where A (in m?) is the area of the aerosol-laden filter spot, V is the volumetric sampling flow rate
(in L min") and At is the time interval (=5 min) between ¢ and #-1. O,ATN, known as O,
without any correction, is larger than the actual aerosol absorption coefficient O ,abs in general
because of (1). multiple-scattering of light at the filter fibers (multiple-scattering effect), and (2) the
instrumental response with increased particle loading on the filter (shadowing effect). The former
results in the overestimation of the 0, , while the later causes underestimation of the G, . Thus, the

correction is needed and the calibration factors C and R (shown in Eq. 2) are introduced against the
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scattering effect and shadowing effect, respectively:

- (;L) GaATN,t(Z) (2)
abs, t(A)= ——«——
a C xR
1 .. In(ATN, (4))=In10
A)=(=-1 - +1 3
RO = (=D =50 o @

Previous investigation suggested that wavelength-dependent Pacorrected by Schmid (Schmid et

al., 2006, SC2006 for short, hereinafter) might be the closest to the real ones in Nanjing (Collaud
Coen et al., 2010; Zhuang et al., 2015). Therefore, the SC2006 is adopted in this study. In this study,
the parameters in the correction procedure are derived from local optical properties (@, and @
were set to 0.922 and 1.51, respectively). The values of correction factors C and R are as follows:
R=1 when ATN<10 and /=1.2, and C in Nanjing is 2.95, 3.37, 3.56, 3.79, 3.99, 4.51 and 4.64 at 370,

470, 520, 590, 660, 880 and 950 nm (Zhuang et al., 2015).

Measurement of Aurora 3000, a nephelometer with newly designed light sources based on light
emitting diodes, needs correction using Mie-theory for measurement artifacts. In this study,
correction was performed according to MUler et al. (2011). The raw total scattering coefficients
were corrected first by calculating first the Angstrém exponents from the non-corrected scattering
coefficients and then following the formulas presented by MUler et al. (2011) where the tabulated
factors for no cutoff at the inlet were used. And based on corrected wavelength-dependent o, and
Oy, Qg and «,at 550 nm are estimated by the following:

a --log(o

a,470/660nm a,470nm

/6, ,...)!10g(470/660) @

a

1S,450/635nm

== Iog(ats,asonm /O-

ts,6350m

)/10g(450/635) ©)
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Meanwhile, aerosol asymmetry parameter ( g ), single-scattering albedo ( @, ) and extinction

coefficient (o, ) are further estimated:

0y =—28 (6)
O ts +O'a

o,=0,+0,, (7

2.3 HYSPLIT model

In order to understand the general transport characteristics of air masses recorded at this site, we

conducted a 4 d (96 h) backward trajectory simulations during the cold seasons in 2016 using a

Lagrangian dispersion model Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)

(version 4.9) provided by the Air Resource Laboratory (ARL) of the USA National Oceanic and

Atmospheric Administration (NOAA) (Draxler and Hess, 1998). HYSPLIT - 4 Model is capable of

processing multiple gas input fields, multiple physical processes and different types of pollutant

emission sources and has been widely used in the study of transport and diffusion of various

pollutants in various regions (Mcgowan and Clark, 2008; Wang et al., 2011; Wang et al., 2015). It

is one of the most extensively used atmospheric transport and dispersion models for the study of air

parcel trajectories (Draxler and Rolph, 2013; Stein et al., 2016). In this study, backward trajectories

were calculated and clustered using a stand-alone version of the GDAS (Ground Data Acquisition

System) meteorological field (ftp://arlftp.arlhg.noaa.gov/pub/archives/gdasl). The GDAS data

contain 6-hourly basic meteorological fields on pressure surfaces, with the spatial resolution of 1.0

corresponding to the 00, 06, 12, 18 UTC, respectively. In this study, the data are also converted to

hemispheric 144 by 73 polar stereographic grids, which is the same grid configuration as the dataset

10
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applied in synoptic weather classification. For each synoptic weather pattern, the backward

trajectories were started at Gulou site in Nanjing (32N, 118.8E).

3. Results and discussion

3.1 Characteristics of particulate matter in Nanjing

The hourly-mean concentrations and optical properties of particles at Gulou site during the cold

seasons in 2016 are shown in Fig 1. Gaps in the time series are missing values. Observations show

that peaks and valleys of BC, PM2s and PM3o occur simultaneously in general (Fig 1a), probably

because the three particles originate mostly from the same sources, i.e., fossil fuel burning and traffic

activities. It has also been addressed in previous work (e.g., Wang et al., 2008; Chow et al., 2011,

Schleicher et al., 2013; Zhuang et al., 2014b; Gong et al., 2015).

BC concentration ranged from 0.064 to 15.609 pg/m?. Seasonal mean of BC concentration was

2.126 pg/m?® in SON and 3.083 pg/m® in DJF, with a standard deviation of 1.457 and 1.827 pg/m?,

respectively. It was low in September and October, usually below 6 pg/m?, but higher in other

months. Although BC concentration was relatively low, it was extremely high in particular periods, ,

such as in mid-November, early and late December, early January, and mid-to-late February,

suggesting occurrences of substantial BC pollution events. PMzs and PMso concentration ranged

from 0.8 to 256.4 pg/m* and from 1.1 to 343.4 pg/m?, respectively. Seasonal mean of PMas

concentration was 43.1 pg/m? in SON and 73.2 pg/m? in DJF, with a standard deviation of 25.4 and

40.0 pg/m?, respectively. PMipaveraged 67.6 pg/m? in SON and 105.0 pg/m?* in DJF, with a standard

deviation of 39.1 and 54.0 ug/m?, respectively. PM2s and PMyo concentration were generally below
11
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120 and 200 pg/m?, respectively. Remarkable increases existed especially when BC concentration
was high. Additionally, the high concentrations of PMs in early October possibly resulted from the
increase in scattering aerosols, since absorption coefficient and BC, one of typical absorbing
aerosols, did not show such peak, while scatter coefficient experienced a sharp increase during that
period. It is found that both BC and PMs levels in Nanjing became lower compared to those in
earlier years, which is possibly due to the strengthening energy conservation and reduction of
pollution emissions from 2014. For instance, seasonal average in SON and DJF were reported 4339
and 4189 ng/m? in urban Nanjing during 2012 in Zhuang et al. (2014b), and Ding et al. (2013b)
stated a 1-year average about 75 pg/m® of PM_s in rural area of Nanjing form August 2011 to July
2012, while Wang et al. (2014) suggested that annual average of PM.s and PM1 were 75 and 135

ug/m? in Nanjing during 2013, respectively.

Monthly variations of particles in the cold seasons in 2016 were distinguished (Fig.2). The
concentrations increased from October to December and decreased a little afterwards but remained
relatively high in January and February. The lowest monthly concentrations of BC, PM2s, and PMag
occurred in October, being 1.8, 39.2, and 59.8 pg/m?, respectively, while the highest monthly
concentrations occurred in December, being 3.7, 85.0, and 123.1 pg/m?, respectively, which were
about twice of those in October. Monthly variations of BC were different from those in previous
studies in YRD. For instance, Pan et al. (2011) pointed out an extremely high concentration in
October in Mt. Huang, which was attributed to combustion of biomasses as well as the dynamic
transport and stable planetary boundary layer (PBL) stratification in the transitional periods of the
winter monsoon (October). For PMs, monthly behavior was basically similar to what has been

12



278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

reported in previous studies in YRD, increasing from September to December in general (Chen et

al., 2016), except the decrease in October. Generally, two key factors could impact particle

concentrations: meteorology and emissions. Heavy precipitation in October when average rainfall

was 3.1 mm, and the frequency of daily rainfall exceeding 50mm was over 30% (Table.2), had a

strong scavenging effect, which might directly lead to low levels of particles despite the influence

of biomass burning addressed in Pan et al. (2011). Anthropogenic particle emissions from fossil fuel

over China increased after summer and showed a sharp increase from November to January (Zhang

et al., 2009), and emission rates in southwest (Sichuan basin), central to north, and northeast China,

as well as YRD and PRD were higher in winter (Zhuang et al., 2018), especially in residential,

industry and power emissions (Li et al., 2017). And during the autumn harvest (September~

November), though not so much as that in summer, the crop burning emissions in still make

contribution to pollutants (Yang et al., 2008). Yin et al. (2016) discussed the spatial distribution of

crop residue burning from September to December in 2015, suggesting autumn crop residue burning

in surrounding regions like Shandong, Anhui and Henan Provinces, thus, particles in Nanjing might

also be subject to these large-scale burning of crop residues (Qian et al., 2014). According to Huang

etal. (2012) and Li et al. (2016), spatiotemporal distribution of agricultural fire occurrences in China

during 2003~ 2010 as well as 2012 has been presented associated with the spatial distribution of

CO emission from residue open burning. Both of them suggested the crop residue burning in autumn

is noteworthy and Jiangsu as well as the surrounding provinces are the regions with highest

emissions. Besides, sub-regional transport also plays an important role, for example, in winter, air

masses coming from North China Plain, which accounts for 31%, have high particles concentrations

(Sect 3.4).
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Substantial diurnal cycles of the particles are also observed (Fig.3). Particles levels were high during

7:00~9:00 and 22:00~0:00 LT but low in afternoon (13:00~15:00 LT). High concentrations during

7~9 am might be caused by the vehicle emissions (as mentioned in Section 2, several main roads

with apparent traffic pollution surround the site). A higher vehicle volume showed during 17:00~

20:00 LT in Nanjing, while the high concentrations occurred during 22:00~ 0:00 LT. A lower

temperature and a more stable atmosphere stratification after sunset (17:00~18:00 LT) often lead to

frequent temperature inversion and low height of planetary boundary layer (Jiang et al., 2014),

which is not conductive to the diffusion of pollutants, and the concentrations of particles accumulate

and remain high from the evening to early morning. For low levels in afternoon, it is mainly induced

by well-developed boundary layer. Because the atmosphere become less stable with the increasing

temperature, and strong turbulent exchange as well as vertical diffusion are favorable to the

diffusion of pollutants, particles concentrations decrease to a minimum in the afternoon. Similar

phenomenon of PMs has been observed in previous studies in Nanjing (Chen et al., 2016; Ding et

al., 2013b), while a different pattern is discussed in Pan et al. (2011) in Mt. Huang, a rural site in

YRD, due to different emission sources (less vehicle emission) and meteorology effects (effect of

valley breezing). Fig. 3 also shows that the peak values of fine particle concentrations often occur

one or two hours later than those of BC concentrations, with high values at around 10 am and low

values at around 5 pm. According to Roberts and Friedlander (1976) and Khoder (2002),

atmospheric photochemical reactions are extremely active under conditions of strong radiation and

high temperature especially during daytime, thus, more secondary aerosol particles (like sulfate

particles) are likely to generate, and the concentrations of fine particles in the atmosphere will
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increase.

3.2 Characteristics of trace gases in Nanjing

Fig.4 shows hourly-mean concentrations of trace gases at Gulou site during the cold seasons in 2016.

In general, as main precursors of Oz, NOx, NOy, and CO generally show different pattern with Os,

such as when the precursors levels remained high from November to January, Os levels were

relatively low (Xie et al., 2016; Wang et al., 2017). Also, the precursors concentrations varied

greatly, especially in DJF (with several peaks), possibly because of the frequent shifting of air

masses from the clean interior continent and heavily polluted urban plumes in the heating period

(normally from November to March in Northern China) (Pan et al., 2011).

Concentrations of trace gases, including CO (176~ 2852 ppb), NOy (2.7~ 80.0 ppb), NOy (3.6~

158.4 ppb), and O3 (0.2~ 235.7 ppb), varied a lot in the study period. Seasonal mean of Oz was 42.3

ppb in SON and 33.1 ppb in DJF, with a standard deviation of 40.1 and 24.4 ppb, respectively. As

shown in Fig.4, Os concentration was extremely high during the entire September in 2016, with a

maximum over 200 ppb, and decreased sharply after mid-October, basically keeping a low level

below 100 ppb, until early February when it began to increase. Seasonal averages of NOy and NOy,

were 21.4 and 28.6ppb in SON, with a deviation of 20.5, and 40.1 ppb, respectively. In DJF, mean

concentrations of NOx and NOy were 27.6 and 37.0 ppb, with a deviation of 15.5 and 23.1 ppb. And

seasonal averages of CO were 753 ppb in SON, and 950 ppb in DJF, with a deviation of 353 and

388 ppb, respectively. The precursors concentrations were high from November to mid-January,
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and low in September. Moreover, it is suggested that Oz concentration is higher compared to the
results in previous studies based on the measurement at ground sites in Nanjing (Xie et al., 2016;
An et al., 2015; Ding et al., 2013b), implying a more pressing environmental issue of near-surface

Os problem in urban area.

Monthly variations of trace gases are shown in Fig.5. It is noticeable that the different patterns occur
in O3 and its precursors. Observations show that Os concentration decreased after the lasting
extremely high level in September until November and increased a little afterwards. Highest
concentration of Oz was found in September and lowest in November, being 74.8 and 23.4 ppb,
respectively. This pattern might be attributed to the solar radiation and emissions. For instance, in
September when solar radiation was strong (maximum UV over 55 W/m?), it would contribute
greatly to Oz formation, and precursors were at relatively high levels (CO, NOy, and NOy were about
600, 15 and 20 ppb, respectively), though not as high as those in cold days. CO, NOx and NOy
peaked in December correspondingly at 1064, 31.8 and 41.7 ppb. The precursors reached the lowest
level in September, being 620, 14.5, and 20.8 ppb, respectively. In addition, the pattern of precursors
is analogous to those in previous studies (Xie et al., 2016; Ding et al., 2013b), but with a relatively
lower concentration, especially NOy and NOy, which might also result from the large-scale reduction

of pollution emissions.

Fig. 6 (a) shows the diurnal variations of the trace gases (Os, NOx, NOy, and CO). The concentration
of Os is the lowest around 7:00 LT and rises rapidly until reaching the peak in the middle of the day
at 15:00 LT. It keeps decreasing sharply after the afternoon peak till sunset. During the nighttime,
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the concentration of Oz decreases slowly and remains low. With respect to NOy and NOy, peak

appears at around 9:00 LT, with another high value occurring at night (21:00~ 0:00 LT), both of

which coincide with the rush hours in the city, when large amounts of vehicle emissions are released.

The morning peak is slightly higher than the night one in general. Besides emissions, these diurnal

variation patterns of Oz and NOx (NOy) mainly result from the photochemical processes and the

meteorological conditions. Simultaneous measurement of Oz and UV shows that the Os

concentration is highly correlated to UV (R=0.47). The ultraviolet radiation (UV) at Gulou started

to increase at about 7:00 LT (Fig.6 (b)), which could induce a series of photochemical reactions

including the formation of peroxy radicals (HO; and RO; etc.) and the photolysis of NO,. From

8:00 to 15:00 LT, the increase in UV enhances the Oz formation by promoting the production of

NO and OH from NO and peroxy radicals. The diurnal range of Oz concentration (the difference

between the maximum at 15:00 LT and the minimum at 7:00 LT) is relatively high (45.1 ppb),

suggesting the active chemical reactions as well. It is also noticeable that the O3z peaks 2 hours after

the UV maximum, suggesting the time to take for the chemical reactions. The slightly reduction of

O3 and NOx in the early morning (3:00~7:00 LT) is likely due to NOx titration. The development of

the planetary boundary layer (PBL) can also modulate pollutant concentrations. The concentration

of a pollutant is diluted when PBL rises during the daytime and enhanced in the low nocturnal PBL

that favors pollutant accumulation, after comparing Fig.6 (a) with the reported diurnal variation of

PBL height in Nanjing (Jiang et al., 2014; Xie et al., 2016). And that is also the reason for the

difference of peak time between the emission rate and NO, (NOy) concentration, which is similar

to particles to some degree. The abovementioned diurnal cycles in Oz and NOx (NOy) concentration

follow the typical patterns at other sites in Nanjing (Tu et al., 2007; Ding et al., 2013b; Xie et al,
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2016). The daily variation of CO concentration is found to be similar to that of BC, such as morning
peak during rush hours, afternoon dip at around 15:00 LT, and accumulation at night. A remarkable
correlation has been found in a number of previous studies (e.g., Jennings et al., 1996; Derwent et
al., 2001; Badarinath et al., 2007; Spackman et al., 2008; Pan et al., 2011; Zhuang et al., 2014b).
Besides, BC is mostly produced by the incomplete combustion of carbonaceous material, and so is
carbon monoxide (CO) (Pan et al., 2011), thus, both BC and CO might come from the same sources,
mostly from combustions of domestic bio-fuel, industry-coal, and vehicle-gasoline (Zhuang et al.,
2014b). The effect of meteorology, i.e., the development of PBL, influences the diurnal pattern as
mentioned in Section 3.1, especially the afternoon dip and night accumulation. Moreover, as one of
main precursors of Oz, increase in Oz levels in the afternoon might also contribute to the lowest

concentration at 15:00 LT.

Table 5 further provides the statistics of Oz, PM2 s and PM1o mass concentrations with a comparison
to the National Ambient Air Quality Standards in China (NAAQS-CN) released in 2012 by the
China State Council and will be implemented nationwide in 2016 (MEP, 2012). According to
NAAQS-CN for PM2s and PMyo (75 pg/m?® of PM2s and 150 pg/m3 of PMyo for 24h average
concentration), there were 48 days of PM. 5 exceedances, accounting for about 30% during the study
period, and 14 days of PMjo exceedances, lower than the PM2s exceedances. Days of PMs
exceedances mainly occurred during DJF. The days of exceedances decreased. Ding et al. (2013b)
reported 99 days of PM. s exceedances in total from September 2011 to February 2012, and Wang
etal. (2014) suggested that non-attainment rates in Nanjing from September 2013 to February 2014
were over 40% and 70% in SON and DJF, respectively. These results suggest that particles control
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policies are well-implemented in Nanjing although particles remain a severe pollution problem in
the YRD region. According to NAAQS-CN for O3 (160 pug/m? for 8 h average and 200 pg/m? for 1
h average), 37 days of exceedances occurred (Table 5), covering 20% of the period and mostly in
September and February when the air temperature was relatively high. In contrast to particulate
matter, days of O3 exceedances increases greatly. Wang et al. (2014) reported a 11.4% contribution
of O3 as the major pollutant on non-attainment days in cold seasons in 2013 in south-east China,
and Tu et al. (2007) reported frequency of days with O3 exceedance for cold seasons in 2000~2002
in urban Nanjing was 6.3%. Os levels in the rural areas are generally higher than those in the city
centers (Zhang et al., 2008; Geng et al., 2008; Xie et al., 2016). Thus, high O3 concentration and
severe air pollution at Gulou, an urban site, probably imply a severer O3 pollution problem in the
entire YRD region. Moreover, note that this study only discusses the O3 concentration in the cold

seasons when it is relatively low, and it might suggest a severer problem in warm seasons.

3.3 Inter-species correlations

Correlations between different species have been analyzed to help interpret the data and gain
insights into the underlying mechanisms/processes. Because precipitation could impact wet
scavenging processes for particles and other aerosols (Table 6), the data in rainy condition has been

eliminated.

The scatter plot of Oz and NOy measured at the site color-coded with air temperature is given in

Fig.7 (a). As discussed in previous studies (Xie et al., 2016; Ding et al., 2013b), measured O3
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presents an overall negative correlation with NOx. The negative correlation mainly exists for data
of relatively low air temperature, suggesting a titration effect of freshly emitted NOy with Os,
especially at nighttime. However, the slope gets less rigid when air temperature rises, and tend to
be positive with a high temperature (over 25°C) and low level of NOy (below 30 ppb). These results
possibly suggest a strong photochemical production of Os in this region under high temperature

with strong radiation like in September, leading to the seasonal cycle pattern of Oz shown in Fig. 5

@).

Fig.7 (b) provides a scatter plot of PM.s and visibility (Vis) color-coded with relative humidity
(RH). For a better understanding of the relationship between the variables, we have performed a
linear fit of the visibility with the PM. 5 concentration when RH < 70%, 70% <RH < 80%, and 80%
< RH < 90%, to find out the relationship among these factors, and the fitting curves are [PM2s] =
366.72[Vis] %7 (R== 0.7196), [PM2s] = 337.16[Vis] 8% (R? = 0.8692), and [PM> 5] = 248.6[Vis]
0852 (R2 = (.8279), respectively. It is found that visibility decreases with the concentration of PMzs
in a power function with a negative exponent, and the inverse relationship between visibility and
aerosols concentrations as well as relative humidity has also been discussed in previous studies
based on the observations in YRD (e.g., Deng et al., 2011; Xiao et al., 2011, Jiang et al., 2018). The
correlation is stronger than that in Lin’an, a rural site not far from Nanjing (Jiang et al., 2018). The
concentrations of particles would increase the extinction coefficient, while the visibility (Vis) is
related to the coefficients through:

Vis = 391 8)
O-e
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where Vis is the visibility and O, is the extinction coefficient (Larson et.al, 1989). As for the effect
of relative humidity (RH) on the visibility, according to Mie theory, with the increase of the relative
humidity, the radius of the wet particle also increases, and so the extinction coefficient, which leads

to the decrease in visibility.

According to the scatter plots of PM25-03; and BC—-Os color-coded with air temperature (Fig.8),
PM2s and BC are negatively correlated with Oz in general. It is also noticeable that a negative
correlation between PM2 s and O3 could be found for low air temperature samples while a positive
correlation exists for those under a high temperature. Similar results were also found at a rural site
in Nanjing (Ding et al., 2013b). Besides, BC is in a negative correlation with Oz under low air
temperature, but tend less-correlated with Oz when the temperature rises. PM. s is well-correlated
with Os precursors, such as NOy (Fig.10 (b)) and CO. Therefore, the anti-correlation in Fig.8 (a) for
cold air is likely due to the titration effect of high NO concentrations associated with high primary
PM_s levels. Additionally, the increasing slope under high air temperature might be related to the
formation of secondary fine particles, especially the high conversion rate of SO, to sulfate under the
effect of the high concentration of oxidants (Os) and solar radiation (Roberts and Friedlander, 1976;
Khoder, 2002). Previous studies of PM2s chemical compositions in Shanghai (Wang et al., 2006)
and Nanjing (Ding et al., 2013b) suggested that sulfate was the most dominate ion in PM.s. Ding et
al. (2013b) also suggested formation of secondary organic aerosols with high O3 concentration could
lead to the positive correlation because biogenic emission of VOCs is high under a condition of high
air temperature and solar radiation in summer. However, the study is performed during cold seasons
when air temperature is relatively lower and the biogenic emission of VOCs are likely lower, so the
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positive correlation is less pronounced. As for BC, it also shows a good correlation with NOx (Fig.10

(c)) and CO, which contributes to the inverse correlation for cold air. Since BC is insoluble in polar

and non-polar solvents and still remains stable when air or oxygen is heated to 350 ~ 400<C, it’s

hard to be generated or cleared through chemical reactions. And that is probably the reason why the

correlation between BC and Os is obscurer compared to the one between PM.s and Os when air

temperature rises. Moreover, as shown in Fig.9, Os is well correlated with UV (daily mean values

are used due to the remarkable diurnal variation), suggesting the significant role UV plays in O3

production, while PMzs is generally negatively correlated with UV. Previous findings based on

various numerical models also suggest that particles can affect actinic flux of UV radiation, and

inhibit the photolysis reactions near surface in reducing the photolysis frequencies in the atmosphere,

like the frequency of Oz — O(*D) (e.g., Li et al., 2005; Deng et al., 2010; Li et al., 2011; Li et al.,

2018). In central Nanjing, as implied in Li et al. (2017), high concentrations of aerosols could result

in a 0.1-5.0 ppb (12.0%) reduction of near-surface ozone. Thus, they might result in the decrease

of O3 concentration near the ground to some degree. However, the detailed mechanisms still need

to be further investigated by long-term measurement of aerosol chemical composition combined

with numerical models.

Scatter plots of CO-NOx, PM25-NOy, and BC-NOx, are given in Figs. 10 (a)~ (c), with data points

color-coded with the concentration of Os. Fig.10 (b) and (c) show a good positive correlation

between PM.s and NOy, as well as BC and NOy as mentioned above, suggesting that the particles

at the site are mainly associated with similar sources like combustion and traffic activities (Wang et

al., 2006; Ding et al., 2013b; Zhuang et al., 2014b). It is found that high Os levels are generally
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related to air masses of high CO/NOx or particles/NOy ratio. An increase in CO, as well as PMz5

and BC, always results in higher Oz concentration for NO, lower than 40 ppb, while NO, reverses.

To be specific, when NOx reduces for CO lower than 1500 ppb, Oz has a sharp increase, and an

increase in the CO level would lead to an in increase in the O3 concentration, especially when NOx

is lower than 40 ppb. The concentration of O3 is sensitive to the level of its precursors, and the O3

formation regime often includes NOx-sensitive Os formation regime and VOCs-sensitive O3

formation regime. If Oz formation is under VOC-sensitive regime, a reduction in the NOx

concentration will lead to an increase in the Oz concentration, which is used to determine the Os

photochemical production in the region is VOC-limited or NOx-limited based on observation data

(Geng et al., 2008; Ding et al., 2013b). In our study, we have no VOCs measurement, thus CO is

chosen as the reference tracer, because mixing ratios of CO showed significant correlations with the

measured levels of most anthropogenic VOCs, which has been verified in many previous studies

(e.g., Baker et al., 2008; von Schneidemesser et al., 2010; Wang et al., 2014). In addition, as a

significant precursor of O3, CO also plays a similar role as VOCs. HO, produced from the oxidation

reaction of CO with OH radicals could initiate photochemical reactions which result in the net

formation of O3 (Novelli et al., 1998; Atkinson et al., 2000; Gao et al., 2005). Thus, the CO-Os—

NOx relationship may reflect the correlation of VOCs, NOy and Os in this region to some degree.

Therefore, we suggest that the region is VOC-sensitive. Geng et al. (2008) reported a VOC-sensitive

regime in urban Shanghai combining the measured and modeling results, and Ding et al. (2013b)

also reported a VOC-sensitive regime in rural area in Nanjing using the observation data. And the

PM25-0O3-NOx and BC-O3-NOxy relationship show the similar pattern, possibly because they are

well-correlated with CO.
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3.4 Backward Trajectory Analysis

The cluster means of the backward trajectory at 100 m from Gulou, Nanjing, in 2016 fall (Fig.11)
and winter (Fig. 13) suggest different air flows transported to Nanjing from long distances. In
general, the aerosol kinds and optical properties are characterized differently with different air
masses in the two seasons, which are further analyzed by their origins in SON and DJF (Figs.12 and
14). Figs. 12 and 14 show the main concentrations of particles and trace gases, the ratio of PM2s to
PMjo, as well as the values of the aerosol optical properties of different clusters during SON and
DJF, respectively. Because PMyo varies similarly to PM.s, while NOy varies analogously to NOy,
we only present the variations of PM2s and NOy with cluster here. Also, because o,, o and o,
have good correlations with particle concentrations (Zhuang et al., 2014a) and ¢ is greatly affected

by relative humidity, we discuss the variation of «,, and @, with cluster here.

In SON, the dominant air masses are from the East China Sea passing through urban agglomeration
regions (cluster 3), and less-developed regions (cluster 2) of the YRD, and from northern continent
away from Nanjing passing through oceans and urban agglomeration regions (cluster 4). It is found
that although air masses in cluster 3, cluster 4 and cluster 2 all pass through the oceans and have the
same level of RH, differences still exist among the clusters. The air masses have to cross the urban
agglomeration (from Shanghai to Nanjing) of YRD when they arrive in Nanjing in cluster 3 but pass
less-developed regions (north Jiangsu Province) in cluster 4 and cluster 2. In YRD, emissions of

aerosols and trace gases are much stronger in urban agglomeration regions (Zhang et al., 2009;
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Zhuang et al., 2013). It is also noticeable that concentrations of aerosols in cluster 4 are mostly

lower, which may result from its avoidance from BTH regions, also a megacities and urban

agglomeration. In addition, air masses from the west of cluster 1 contain the highest concentrations

of PMs and precursors., Air masses pass central China with high emissions of particles and trace

gases according to MERRA data (https://gmao.gsfc.nasa.gov/reanalysissMERRA) and Zhuang et

al. (2015). Also, high concentrations of these aerosols are also reflected in a high aerosol optical

depth (AOD) according to the MISR data (https://giovanni.gsfc.nasa.gov/giovanni). The ratio of

PM2s to PMso represents the number of particles deriving from secondary pollution progress
compared to those from primary pollution progress to some extent. In SON, ratios of clusters 1~3
are relatively close (all over 60%) with a maximum of cluster 3, which means particles generating
from secondary pollution progress in the 3 clusters have a similar rate. O3 concentrations among the
4 clusters are different. Despite negative correlations of Os with its precursors and particles, the
concentration of Oz in cluster 3 is higher than that in cluster 4, possibly because radiation in cluster
3 is stronger. The size of the aerosols in cluster 1 are finest ( &, is the largest in Fig. 12g), because
the other 3 clusters all pass through oceans before arriving Nanjing with higher relative humidity.
Therefore, it is likely to enhance particles hygroscopicity. «j is also the largest in cluster 1, and it
suggests that aerosols in cluster 1 are the most scattering, corresponding with the highest

concentration of PMas.

In DJF, air masses come from the local region (cluster 2), north-west areas (cluster 1), and northern
regions far from Nanjing (cluster 4). Air masses from cluster 1 and cluster 2 both account for over
30% of the total aerosol characteristics and are more polluted with relatively high levels of particles,
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CO, and NOx. Air masses in cluster 1 come from Shandong Province while those in cluster 2 come
from local areas. Particles and trace gases concentrations of cluster 2 are higher than those of cluster
1 to some extent, implying the severer air pollution problem in YRD region. The concentration of
O3, similar to that in SON, is affected by radiation besides precursors levels. Thus, Os concentration
in cluster 2 is a little higher than that in cluster 1. The ratios of PM2s to PMj of cluster 1 and cluster
2 are approximately equal, over 70%. The size of aerosols in cluster 1 and 2 are coarser, however,
probably due to the higher RH (over 65%). Aerosols in cluster 1 are more scattering compared to
those in cluster 2. The trajectories of cluster 3 and cluster 4 are analogous to those in SON,
respectively, but more polluted, probably due to more emissions in DJF especially in north China

and weaker flow from ocean in DJF.

3.5 Case Study

For further understanding of the causes for high pollutants episodes, especially high particles and
O3 episodes, detailed analysis of a typical episode from 2016 December 3-6 is presented in this

section.

Fig.15 (a) and (b) show that high Oz concentration (over 80 ppb) occurred on December 4 with
broad O3 peaks (over 60 ppb) in the following days, while the average Oz during the cold seasons
was 37.7 ppb. Though there is a lack of PMs concentrations because of the instrument breakdown,
high concentrations of PMs might possibly occur referring to the relatively high o, (over 500

Mm?) and BC concentration (over 6 ug/m®) on December 4th. Both PMs reach a maximum on
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December 5th (PMzs over 200 ug/m® and PM1o over 300 pg/mq), over 3 times of the averages.
Besides, NOyx, NOy, have reached high levels since December 4th (NOy over 70 ppb and NOy over
100 ppb). Itis also noticeable that @, has a relatively sharp decrease from December 4, especially
on December 5 when particle concentrations were extremely high, probably suggesting that the ratio

of PM1o became higher. Meanwhile, a relatively sharp increase occurred in «, , without any

ts 1
obvious variation in «,, though, implying that scattering aerosols could take the leading role
during this episode. It is also found that this case occurred under calm conditions before the passage
of a cold front, which was at the front of a continental high-pressure system originating from
Mongolia and sweeping over Nanjing (Fig.15 (c)), and the decrease in temperature with high-
pressure system dominating eastern China were also detected on December 6. Backward trajectory
analysis for the past 96 hours (Fig.15 (d)) were conducted from December 5 at 8 pm, including the
maximum of O3z on December 4 and PMs on December 5. It is suggested that predominant wind
was just in time from the NW directions. Therefore, air masses with high particles and O3
concentrations would be transported to Nanjing. It was also clearly detected in Nanjing during these
days, such as the relatively high Os during nighttime on December 5 and 6. The highest O3 on
December 4 together with high particles and primary pollutants NOx and NOy suggests a strong in
situ photochemical production in mixed regional plumes under the influence of high-pressure
system. Previous studies (Luo et al., 2000; Wang et al., 2006; Ding et al., 2013b) reported that the
anticyclonic conditions, e.g.,, sunny weather and low wind velocities, are favorable for pollution

accumulation and O3 production. Results in this case clearly demonstrate sub-regional transport of

primary and secondary air pollutants within the YRD region under such weather system.
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4. Conclusion

In this study, particles (BC and PMs) and trace gases (O3 and related precursors) in polluted seasons,

are investigated based on continuous measurements of concentrations and optical properties in the

urban area of Nanjing. The characteristics and underlying reasons are comprehensively discussed

from perspectives of temporal variations, inter-species correlations, trajectories analysis, and case

studies associated with weather data and Lagrangian dispersion modeling.

Measurements show that average concentrations of PM;o was 86.3 pg/m?, with BC and PM; s

accounting for 3% and 67%, respectively. 48 and 14 days of PM, s and PM o exceeded NAAQS-CN,

respectively. The results suggested that both BC and PMs levels in Nanjing have decreased because

of energy conservation since 2014. The average concentration of O3 was 37.7 ppb with 40 days of

exceedance. Precursor concentrations, including CO, NOx and NO,, averaged 753, 28.4, and 28.6

ppb, respectively. Contrast to particles, O3 concentration has increased in urban Nanjing, implying

a severer pollution in rural area and entire YRD region. All the aerosols have substantially monthly

and diurnal variations. Both particles and precursors reached maximum values in December and

minimum values in October due to higher emission and less precipitation. O3 showed a peak in

September because of stronger radiation. Diurnal variations of BC and PMs were similar with peaks

around 7:00~9:00 and 22:00~0:00 LT. Both of the peaks were influenced by traffic emissions in

rush hours and accumulation of air pollution especially at night-time. The peaks of PMs often

occurred 1~ 2 h later than those of BC, possibly due to the production of secondary particles.

Precursors and particles varied similarly in time, and the diurnal variation of O3 was analogous to

that of radiation with peak around 15:00 LT.
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PM: 5 has a quasi-power-law distribution with Vis under RH of different ranges. The correlation is

stronger than that in a rural region in YRD, implying greater effects of air pollution on visibility in

urban Nanjing. O3 shows an anti-correlation with NOx generally, but it tends to be positive with a

relatively high temperature and low level of NOx. PM> s and BC are overall negatively correlated

with Os. A positive correlation between PM» 5 and Oj; exists under high temperatures, while it is not

found in BC-Os3 correlation. The negative correlation is related to the titration effect of high NO

concentration, which is highly correlated with particles due to similar emission sources. And the

negative correlation between PM,s and UV suggests particles could decrease actinic flux of

radiation, and thus inhibit the photolysis reactions near surface to degrees. The positive correlation

implies the formation of secondary aerosols under the effects of the high concentrations of oxidants

and solar radiation. BC is hard to be generated through chemical reactions, which might explain

why the correlation between BC and O3 is obscurer when temperature rises. An increase in CO, as

well as PMa2s and BC, always results in higher O3 concentration, while NOy reverses, which

indicates a VOC-sensitive regime for photochemical production of O3 in urban Nanjing.

Backward trajectories indicate that Nanjing could be affected by local air flow (35% in DJF) and

long-distance air flows mostly from western (11% in SON), northwestern (31% in DJF), northern

(up to 50 % in SON and DJF), eastern (40% in SON and 17% in DJF). Considerable air pollution

in the urban area of Nanjing is due to local and sub-regional emissions. Basically, air masses from

the oceans and remote or less-developed areas are relatively clean with low aerosols concentrations.

a,. at the site is usually low when the relative humidity of air masses is high, possibly suggesting

ts
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the increased hygroscopicity and more secondary aerosols production under higher RH.

A case study for a typical high O3 and PMz s episode in December 2016 illustrates the important

influences of sub-regional transport of pollutants from strong source regions and local synoptic

weather on the episode. Stable conditions such as an anticyclonic system make it easy for pollutants

to accumulate in urban Nanjing. Results from this case reveal the mechanisms of sub-regional

transport of primary and secondary air pollutants within the YRD region.

Overall, this work highlights the interactions and mechanisms of various aerosols and metrological

fields besides the important environmental impact from human activities and meteorological

conditions in the urban area in YRD region. Considering both results in this study and previous

work, it is suggested that collaborative control measures among different administrative regions are

urgently needed including but not limited to energy conservation and reduction of pollution

emissions to improve air quality in the western part of YRD region.

Data availability. The GDP data is from http://www.njtj.gov.cn/. Satellite CO data are available at:

https://emao.gsfc.nasa.gov/reanalysissMERRA. The aerosols AOD data are available at:

https://giovanni.gsfc.nasa.gov/giovanni. The Lagrangian dispersion model Hybrid Single-Particle

Lagrangian Integrated  Trajectory  (HYSPLIT) was  supplied by  NOAA:

http://ready.arl.noaa.gov/HYSPLIT _traj.php. The meteorological data for HYSPLIT are accessible

from ftp://arlftp.arlhg.noaa.gov/pub/archives/gdasl.
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Figure Caption

Fig 1. Time series of (a) concentrations and (b) optical properties of PMjg, PM2s, and BC from
September 2016 to February 2017 at Gulou site, Nanjing, China.

Fig 2. Seasonal variations of (a) BC, (b) PM2.5, and (c) PM10. Red markers represent the monthly
averages at Gulou site, Nanjing, China.

Fig 3. 6-month mean diurnal variations of BC, PM» 5, and PM ¢ at Gulou site, Nanjing, China from
September 2016 to February 2017.

Fig.4 Time series of particles from September 2016 to February 2017 at Gulou site.

Fig 5. Seasonal variations of (a) Os, (b) NOx, (c) CO, and (d) NOy. The 10, 25, 50, 75, and 90%
percentile values of each are shown in black, and red markers represent the monthly averages.

Fig 6. 6-month mean diurnal variations of (a) trace gases and (b) UV (ultra-violate radiation) at
Gulou site from September 2016 to February 2017

Fig 7. Scatter plots of (a) O3-NOx color-coded with air temperature (T) and (b) PM2s-Vis color-
coded with relative humidity (RH).

Fig 8. Scatter plots of (a) PM>5-O3 and (b) BC-O; color-coded with air temperature (T).
Fig 9. Scatter plots of (a) O3-UV and (b) PM25-UV color coded with Os.

Fig 10. Scatter plots of (a) CO-NOy, (b) PM,5-NOx, and (¢) BC-NOx color-coded with Os.
Fig 11. Clusters of 96 h back trajectories arriving at the study site at 100 m in 2016 fall.

Fig 12. The 10, 25, 50, 75, and 90% percentile values in each cluster of back trajectories in 2016

@,

fall of (a) BC, (b) PMas, (¢) PMas/PMio, (d) CO, (e) Os, (f) NOy, (g) %, and (h) “°. Black

markers represent the averages.
Fig 13. Clusters of 96 h back trajectories arriving at the study site at 100m in 2016 winter.

Fig 14. The 10, 25, 50, 75, and 90% percentile values in each cluster of back trajectories in 2016

29

winter of (a) BC, (b) PMas, (c) PM2.s/PMyy, (d) CO, (e) Os, (f) NOy, (g) s , and (h) . Black

markers represent the averages.
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Fig 15. Time series during December 3-6, 2016, for (a) PM>s, BC and O3z with associated
metrological parameters, trace gases and (b) optical parameters. Red markers represent O3 over
daily maximum average during winter. Weather charts on (c) 4th and (d) S5th December. (f) 96h
backward trajectories analysis ending at 1200 UTC on 5th December.
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Table

Table 1 Measurements at Gulou site.

Measurement Instrument Resolution
T (°C) Thermo Instruments, THOM 1405-DF
P (atm) Thermo Instruments, THOM 1405-DF
Meteorological RH (%) Thermo Instruments, THOM 1405-DF
parameters Rainfall (mm)
Vis (m) Visibility Meter, GSN-1
UV (W/m?)
BC (ng/m®) Aethalometer, Model AE-31 1 ng/m3
Particles PM2.5 (ug/m®) | Thermo Instruments, THOM 1405-DF 0.1pg/m?
PM10 (ug/m®) | Thermo Instruments, THOM 1405-DF 0.1pug/md
CO (ppb) Thermo Instruments, TEI 48i 1 ppb
Gaseous pollutant NOx (ppb) Thermo Instruments, TEI 42-i 0.4 ppb
NOy (ppb) Thermo Instruments, TEI 42iY 0.4 ppb
O3 (ppb) Thermo Instruments, TEI 49i 0.01 ppb
SC (Mm?) Nephelometer, Aurora 3000 10 Mm-!
Optical parameters BSP (Mm™) Nephelometer, Aurora 3000 10 Mm'!
AAC (Mm) Aethalometer, Model AE-31 103 Mm't

Table 2 Statistics of general meteorological parameters at Gulou site for the 6-month period

September 2016~ February 2017.

Temp Pres RH Rainfall Vis uv

Month (°0) (hPa) (%) (mm) (km) (W/m?)
Sep 24.88 996.97 69.41 2.34 11.84 10.36
Oct 18.37 1003.01 85.01 3.12 9.07 5.28
Nov 12.36 1007.87 77.15 1.19 8.99 5.67
Dec 8.74 1010.53 70.33 0.81 7.61 5.03
Jan 6.49 1010.89 70.65 0.59 9.23 4.94
Feb 7.72 1009.65 59.99 0.45 10.24 7.04
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Table 3 Statistics of the three particles during the study period at Gulou site, Nanjing, China

SON DJF Cold seasons
Mean £ STD Mean+ STD Mean=£ STD Maximum Minimum
BC (ug/m?) 2.126+1.457 3.083+1.827 2.602+1.720 15.609 0.064
PM25 (ug/m?) 43.1+254 73.2%+40.0 58.2+36.8 256.2 0.8
PM1o (ug/m?) 67.6+39.1 105.0%+54.0 86.3+50.8 343.4 11
Table 4 Statistics of trace gases during the study period
SON DJF Cold seasons
Mean+ STD Mean=+ STD Mean=+ STD Maximum Minimum
CO (ppb) 753+ 353 950 & 388 851+ 384 2852 176
NOx (ppb) 21.4+13.4 25.6+15.5 235+ 147 80.0 2.7
NOy (ppb) 28.6 =20.5 37.0x23.1 32.8+22.3 158.4 3.6
O3 (ppb) 42.31+40.1 33.1+24.4 37.7+£35.5 235.7 0.2

Table 5 Statistics of maximum and number of exceedances of Oz and PM; s compared with the

National Ambient Air Quality Standards in China.

Aerosol Mean =+ STD (pg/m?) Max (ng/m?) N.o.E.
PMzs 58.2+36.8 256.2 48
PM1o 86.3+50.8 343.4 14

O3 80.8+71.8 235.7 37

N.o.E. of PM; 5 accounts for days with 24 h average over 75 pug/m’. N.o.E. of PM¢ accounts for days

with 24 h average over 150 ug/m®. N.o.E of O; accounts for days with maximum 8 h average exceed

160 pg/m®.
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Table 6 Statistics of aerosols at Gulou site with and without rainfall for the 6-month period

September 2016~ February 2017

With Rainfall Without Rainfall
Aerosols Mean+ STD Maximum  Minimum Mean=® STD Maximum Minimum
BC (ug/m?) 1.676 £ 1.261 8.256 0.064 2.723%+1.735 15.608 0.211

PM2 s (ng/m?) 31.2+27.6 218.4 1.2 61.9+ 36.3 256.2 0.8
PMyo (pg/m?) 543+ 44.8 307.3 3.9 89.1+47.3 319.6 45
CO (ppb) 659 £ 240 2194 176 876 £ 392 2852 228
NOx (ppb) 20.4+12.7 75.5 2.9 23.9+14.9 80 2.7
NOy (ppb) 25.2+16.8 110.3 3.6 33.8+22.8 158.4 5.2
Os (ppb) 223+17.1 81.7 0.3 30.7+34.6 235.7 0.2
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Fig 1. Time series of (a) concentrations and (b) optical properties of PMio, PM, 5, and BC from
September 2016 to February 2017 at Gulou site, Nanjing, China.
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Fig 14. The 10, 25, 50, 75, and 90% percentile values in each cluster of back trajectories in 2016
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markers represent the averages.
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