1	Characteristics of ozone and particles in the near-surface atmosphere in urban area of the
2	Yangtze River Delta, China
3	Huimin Chen ¹ , Bingliang Zhuang ^{1,*} , Jane Liu ^{1,2} , TijianWang ^{1,**} , Shu Li ¹ , Min Xie ¹ , Mengmeng Li ¹ ,
4	Pulong Chen ¹ , Ming Zhao ¹
5	¹ School of Atmospheric Sciences, CMA-NJU Joint Laboratory for Climate Prediction Studies,
6	Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing
7	210023, China
8	² Department of Geography and Planning, University of Toronto, Toronto, M5S 3G3, Canada
9	Correspondence: Bingliang Zhuang (<u>blzhuang@nju.edu.cn</u>) and Tijian Wang (<u>tjwang@nju.edu.cn</u>)
10	Abstract
11	Aerosols and ozone have significant influences on air qualities, human health and climate changes.
12	To further understand the characteristics and interactions among different urban air pollutants in the
13	west Yangtze River Delta (YRD) region, continuous measurements of low layer atmospheric
14	particles and trace gases have been performed at an urban site in Nanjing from September 2016 to
15	February 2017 in this study. In urban area of west YRD, the mean PM ₁₀ and O ₃ concentrations are
16	86.3 µg/m ³ and 37.7 ppb, respectively, with significant seasonal and diurnal variations. Particles,
17	which are dominated by fine aerosols, are relatively scattering. And most of their optical properties
18	have the similar variations to the aerosol concentrations. Results also show that west YRD could
19	still suffer severe air pollutions, although the seasonal mean aerosol concentrations have been
20	decreased in recent years. Even in cold seasons, O3 could have about 40 days excess against to the
21	National Ambient Air Quality Standards during the sampling period. Most of polluted episodes are

22	caused by local and sub-regional emissions. A case study for a typical O3 and PM2.5 episode in
23	December 2016 demonstrates that the episode was generally associated with regional transport and
24	stable weather system. Air pollutants were mostly transported from the western areas with high
25	emissions, as well as with an anticyclone and high-pressure system in this region. Correlation
26	analysis revels that the interaction between O3 and PMs are complex with a combination of
27	inhibition and promotion under different conditions. The inhibition effect might result from the
28	reduction of photolysis frequency near surface due to aerosols besides their positive correlations
29	with precursors, while the promotion effect is from the formation of secondary aerosols under high
30	concentrations of oxidants and solar radiation. However, the interaction between O3 and BC shows
31	an inhibit effect due to its chemical stability. It is also indicated a VOC-sensitive regime for
32	photochemical production of O ₃ in this region. This study further improves the insight in the
33	characteristics and interactions of main pollutants, and might have a certain contribution to improve
34	the simulation and prediction of aerosols and gases in urban area of YRD.
35	To improve the understanding of the interactions between particles and trace gases in a typical city
36	of the YRD region, continuous measurements of particles and trace gases were made at an urban
37	site in Nanjing during cold seasons in 2016 in this study. The average of particles, including black
38	earbon (BC), PM _{2.5} , and PM ₁₀ are 2.602 \pm 1.720 µg/m ³ , 58.2 \pm 36.8 µg/m ³ , and 86.3 \pm 50.8 µg/m ³ ,
39	respectively, while the average of trace gases, which contain CO, O_3 , NO_x , and NO_y , are 850.9 \pm
40	384.1, 37.7 ± 33.5, 23.5 ± 14.7, and 32.8 ± 22.3 ppb, respectively. Compared to National Ambient
41	Air Quality Standards in China (NAAQS-CN), we found 48 days excess of PM2.5, 14 days excess
42	of PM ₁₀ , and 40 days excess of O ₃ . The particles, CO, and nitrogen oxide concentrations shared a
43	similar pattern of seasonality and diurnal cycles, which are different from O3. The former ones are

44	all high in DJF and at rush hours, while the latter one had high loadings in the daytime, especially
45	when the ultra violet (UV) was high. Correlation analysis reveals the formation of secondary
46	aerosols, especially PM2.5, under high O3 and temperature conditions, and suggests a VOC-sensitive
47	regime for photochemical production of O3 in urban Nanjing in cold seasons. Backward trajectory
48	analysis suggests the prevailing winds in Nanjing were northerly and easterly during cold seasons
49	in 2016. Air masses from eastern without passing through the urban agglomeration and those from
50	northern without crossing BTH regions were cleaner, but air masses from local regions were more
51	polluted in winter. A case study for a typical O3- and PM2.5-episode in December 2016 demonstrated
52	that the episode was generally associated with regional transport and stable weather system. Air
53	pollutants were mostly transported from the western areas with high emissions and weather
54	conditions are controlled by anticyclone and high-pressure system in this region. This study further
55	reveals the important effects of weather system and human activities on the environment in the YRD
56	region, especially in the urban areas, and it's an urgent need for improving air quality in these areas.
57	

1. Introduction

59	Particles, including black carbon (BC), PM _{2.5} , and PM ₁₀ , and trace gases, such as carbon monoxide
60	(CO), ozone (O ₃), nitric oxide and nitrogen dioxide (NO _x), and total reactive nitrogen (NO _{y, which})
61	includes NO _x , aerosol nitrates (NO ₃ ⁻), nitric acid (HNO ₃), N ₂ O ₅ , peroxyacetyl nitrate (PAN), and
62	various nitrogen-containing organic compounds.), are important components in the troposphere
63	because of their impacts on human health, biosphere and climate changes (e.g., Chameides et al.,
64	1999a, b; Jerrett et al., 2009; Allen et al., 2012). Through long-range particle cycles, particles could

65	interact with atmospheric trace gases from complex sources, especially ozone and its precursors,
66	disturbing the earth's radiation budget (Sassen, 2002), or providing reactive surfaces for
67	heterogeneous reactions (Kumar et al., 2014), which leads to a great but hard problem for regional
68	air quality (Zhang et al., 2008; van Donkelaar et al., 2010) BC is mostly from incomplete
69	combustion of coal, diesel fuels, biofuels, and outdoor biomass burning (Bond et al., 2004).
70	Although BC accounts for a relatively small portion of the total mass concentrations of aerosol
71	particles in atmosphere, it plays a significant role in global radiation balance, both directly and
72	indirectly. Thus, BC could influence the global and region climate changes and atmospheric
73	environment substantially (Jacobson et al., 2002; Bond et al., 2013; Deng et al., 2010). Particulate
74	matters (PMs) originate from both natural and anthropogenic emission sources (Kaufman et al.,
75	2002). Due to prosperous economic development, rapid industrialization and urbanization in recent
76	decades, haze events have frequently occurred in the Beijing-Tianjin-Hebei (BTH) area, Yangtze
77	River Delta (YRD) and Pearl River Delta (PRD) regions, all of which were mainly caused by high
78	concentrations of particulate matter. Tropospheric ozone is a typical secondary air pollutant that is
79	related to its precursors NOx and VOCs (Crutzen, 1973) through several complicated reactions. O3
80	could impact tropospheric environment (Monks et al., 2015), and make significant contributions to
81	radiative forcing of climate (Intergovernmental Panel on Climate Change (IPCC), 2007).
82	Tropospheric O ₃ precursors and the interactions between O ₃ and its precursors in different
83	geographical locations are usually different, and thereby the characterizations of O3 at different sites
84	can vary greatly (Xie et al., 2016). The impact of PMs and BC on surface ozone is a topic that has
85	attracted much attention. Jacobson (1998) reported that aerosols containing BC cores reduced
86	photolysis rates and resulted in a decrease in ozone concentrations by 5% 8% at ground level in

87 Los Angeles. It is also found that a strong reduction in photolysis rate (10% 30%) due to BC88 containing aerosols (Castro et al., 2001) led to a decrease in surface ozone in Mexico City. Similar
89 results have been found in other studies simulating the effects of BC on surface ozone in China (Li
90 et al., 2011).

91

92 -Over the decades, China is always one of the major source regions of particles, with BC and dust 93 emission accounting for up to 25% of the global anthropogenic sources (Streets et al., 2001; Tegen 94 and Schepanski, 2009). Relatively high levels of particle concentrations are mainly distributed in 95 Beijin-Tianjin-Hebei area (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions 96 (e.g., Zhang et al., 2008, 2012; Zhang et al., 2015), along with the rapid economic development. 97 These regions consistently have the highest emissions of anthropogenic precursors (e.g., Wang et 98 al., 2015; Wang et al., 2009b; Ding et al., 2013b; Zheng et al., 2010), which have led to severe 99 region-wide air pollution. Earlier studies on particles mostly focused on concentrations estimation, 100 the chemical characteristics, potential sources, as well as climate effects based on numerical 101 simulations (e.g., Wu et al., 2012; Song et al., 2014; Xiao et al., 2012; Yu et al., 2015; Kristjánsson, 102 2002; Liao and Seinfeld, 2005; Zhuang et al., 2010, 2013, 2013b, 2018). However, a better 103 understanding of spatial and temporal variations of particles can contribute to the adoption of 104 effective measures to reduce air pollution, and real-time monitoring data is essential to better obtain 105 the detailed variations (seasonal, monthly, and diurnal) on the city scale. In China, the research 106 based on PMs observations, especially in the polluted regions above, have gradually expanded since 107 2012 due to the establishment of China's PM_{2.5} air quality standards and gradual developments of 108 nationwide PMs observation. The research is mainly related to the temporal and spatial distribution 109 characteristics (e.g., Wang et al., 2015; Chen et al., 2016; Wu et al., 2012), and the effects of 110 meteorological variables on aerosols (e.g., Zhang et al., 2015; Yan et al., 2016; Huang et al., 2015). 111 In addition, many observations of BC have been made in the recent years, most of which concentrated on the analysis of the concentration level and the temporal and spatial variations (e.g., 112 Verma et al., 2010; Wang et al., 2011b; Zhang et al., 2012). Some also revealed the correlations of 113 carbonaceous aerosols (Pan et al., 2011; Zhuang et al., 2014b). Besides particles, because of the lack 114

115 of nationwide O₃ monitoring data in earlier years, O₃ and its precursors (NO_x, NO_y, CO and VOCs etc.) pollution situations can only be discerned from limited campaign-type measurements in certain 116 developed regions, for instance, Beijing in BTH area (Shao et al., 2006; Lin et al., 2008; Meng et al., 117 2009), Guangzhou in PRD region (Zhang et al., 1998; Wang et al., 2003) and Lin'an in YRD region 118 (Luo et al., 2000; Cheung and Wang 2001; Wang et al. 2001a, 2002, 2004; Guo et al. 2004b). Since 119 120 2005, the number of photochemical studies through observation data has increased in the PRD 121 region in the south (Xue et al., 2014a), the BTH area in the north (Han, 2011), and the YRD region 122 in the east (Shi et al., 2015). However, large gaps and uncertainties remain in the knowledge of 123 characteristics of regional particles and O₃ pollution and its mitigation strategies due to the 124 complexity of main sources, interaction between different aerosols, and changing meteorology filed. 125

126 Most of earlier studies on particles were focused on concentrations estimation, the chemical 127 characteristics, potential sources, as well as climate effects of particulate matters based on numerical simulations (Wu et al., 2012; Song et al., 2014; Xiao et al., 2012; Yu et al., 2015; Kristjánsson, 2002; 128 129 Liao and Seinfeld, 2005; Zhuang et al., 2010; 2013), while observation based studies of particles 130 were relatively limited. In addition, although a good understanding of the characteristics of O₃ have 131 been gained in the BTH area and the PRD region (Wang et al., 2009; Zheng et al., 2010; Lin et al., 132 2008) due to a relatively long history of research limited in the megacities, in the YRD region, there 133 were only very limited studies of O3 made in urban areas in some YRD cities (Tu et al., 2007; Ding 134 et al., 2013; Xie et al., 2016), most of which were based on studies of O₃ measurement beginning in 135 the 1990s at Lin'an site, a rural region in the southeast YRD (Luo et al., 2000). And most of studies 136 in YRD on particles, or particulate matter, were done in the eastern YRD, close to Shanghai, and 137 mainly covered short periods of time. In the YRD region, the prevailing winds are from between 138 the northeast and southeast. Therefore, western YRD region is under a downwind condition. As only few measurement studies have been conducted for western YRD (Tu et al., 2007), large 139

knowledge gaps still exist in our understanding of the characteristics and main sources of O₃ and
 particles (Ding et al., 2013) in the region, let alone their interactions.

142

143 China is always one of the major source regions of particles. Over recent decades, along with the 144 rapid economic development and the growing demand of energy consumption, many areas in China 145 are suffering from the elevated O₃ pollution. In the BTH area, the YRD region, and the PRD region, 146 all of which are the economically vibrant and densely populated, high levels of ozone precursor 147 emissions and O₃ pollution have become one of the major environment problems affecting the public 148 (Chan and Yao, 2008; Zhang et al., 2009; Ma et al., 2012; Xie et al., 2016). Because of complex 149 sources and chemical reactions, and relatively long atmospheric lifetimes of the pollutants in the 150 atmosphere that favors regional and long range transport, all the pollutants are of great concern for 151 regional air quality but are very difficult to control (Cooper et al., 2005; Zhang et al., 2008). The 152 YRD is located in the eastern part of the Yangtze River Plain, adjacent to the most polluted North 153 China Plain, including large cities of Shanghai, southern Jiangsu and northern Zhejiang. Taking up 154 only 2 percent of the land area in China, this region produces over 20 percent of China's Gross 155 Domestic Product (GDP). Nanjing, as the capital of Jiangsu Province, lies in the middle of YRD. It 156 covers an area over 6000 km², with more than 7.3 million residents (http://www.njtj.gov.cn/). Being the second largest commercial center after Shanghai in YRD, even the East China, Nanjing is highly 157 158 urbanized and industrialized, especially the urban area. In addition, the complex monsoon and synoptic weather may play an important role in air pollution transport and formation in Nanjing. 159 160 Therefore, the urban atmosphere in Nanjing is also heavily polluted by local emissions and longdistance transport of pollutants, which affects regional climate and air quality (Huang et al., 2013; 161

162	Yi et al., 2015) Both particles and O3 concentrations are found to be high in Nanjing, which affects
163	regional climate and air quality (Zhang et al., 2009; Yi et al., 2015). Therefore Thus, the issue of air
164	pollution in Nanjing deserves attentions. Previous studies using observation data in Nanjing ofter
165	concentrated on characteristics of one of the particles (Deng et al., 2011; Shen et al., 2014; Zhuang
166	et al., 2014b) or ozone and its precursors (Tu et al., 2007; Wang et al., 2008; An et al., 2015)
167	describing the temporal and spatial distributions, and the influence of meteorological effects, bu
168	lay less emphasis on the inter-species correlations and the combined effects of pollutants during
169	severe pollution episodes. Ding et al. (2013b) described the characteristics of O ₃ and PM _{2.5} with
170	near-surface observation data in rural Nanjing, but the detailed characteristics in urban Nanjing is
171	not clear enough so far
172	
173	To fill the knowledge gap, continuous online measurements of particles, trace gases, and othe
174	relevant parameters were carried out at Gulou site in urban Nanjing about 80m above the ground
175	an integrated measurement platform for the study of atmospheric environment and climate change
176	In this study, 6-month measurement of particles, trace gases, and other related variables at this sit
177	during September 2016~ February 2017 when air pollution occurred frequently is analyzed. Ou
178	work gives a synthetic analysis about their characteristics. The emphasis of our objective is to
179	improve the insight in the characteristics, interactions of main pollutants, and the influence of
180	integrated meteorology variables based on the observation data at an urban site above ground, and
181	further investigate the possible underlying reasons and mechanisms. Firstly, an in-depth discussion
182	on particles variations is performed, not limited to the concentrations but taking optical properties
183	into consideration as well, to quantify the polluted level in detail. Secondly, a detailed description
184	of O_3 variations can also be found in our study, including the analysis of the main precursors as trace
185	gases (NO _x , NO _y and CO), to have a general and quantitative insight in O ₃ pollution situations. Both
186	of the pollutants are analyzed considering the effects of meteorology variables including but no
187	limited to precipitation and temperature. Thirdly, analysis of inter-species correlations gives a

188	relatively thorough overview of the interactions among various species, and deduction of the
189	underlying chemical mechanisms based on the results of our study and previous studies is also
190	presented in our study. Moreover, backward trajectories analysis is conducted for improving the
191	knowledge of regional/sub-regional transport process in urban Nanjing. Finally, a case study for
192	high particles and O3 episode is implementing to emphasize the integrated influence of
193	meteorological field on regional air pollution.
194	
195	In the following, we describe the methodology in Section 2, which includes the measurement site
196	and instruments. Results and discussions are presented in Section 3, consisting of overall temporal
197	variation, correlation analysis, backward trajectory analysis, and case studies. A summary is given
198	in Section 4.
199	In this study, continuous observations of particles, trace gases and certain aerosol optical properties
200	at an urban station in Nanjing (a typical developing city in YRD) have been made in order to
201	characterize the air pollution in the city. In the following, we describe the methodology in Section
202	2. Results and discussions are presented in Section 3, followed by Conclusions in Section 4.

203 **2. Methodology**

204 2.1 Brief Introduction to the Urban Atmospheric Observational Station

205 The Urban Atmospheric Observational Station is a regional atmospheric urban station located on

206 the Gulou Campus of Nanjing University in the downtown area of Nanjing (32.05 °N,118.78 °E),

- 207 and run by School of Atmospheric Sciences, Nanjing University. It is built on the roof of a 79.3m
- tall building, without any industrial pollution sources within a 30 km radius around but several main
- 209 roads with evident traffic pollution, especially during rush hours. The sketch map of the site (not
- shown) and the corresponding climatology have been described in Zhu et al (2012).

212	The Particles, O ₃ , NO _x , NO _y (including most oxides of nitrogen mentioned above with the exception
213	of NH ₃ and N ₂ O), CO, and wavelength-dependent aerosol optical parameters including aerosol
214	aerosol scattering (σ_{ts}), back-scattering (σ_{bs}), and absorption (σ_a) coefficientsscattering (SC),
215	back-scattering (Bsp), and absorption (AAC) coefficients have been routinely measured at the
216	station during the time period from 1 Sep 2016 to 28 Feb 2017. The σ_a AAC and concentrations
217	of BC were derived from the measurements using a seven-channel Aethalometer (model AE-31,
218	Magee Scientific, USA). The detailed calculation will be discussed below. The AE-31 model
219	measures light attenuation (ATN) at seven wavelengths, including 370, 470, 520, 590, 660, 880 and
220	950 nm. The sample air is taken through a stainless-steel tube into the instruments, with a desired
221	flow rate of 5.0 L min ⁻¹ and a sampling interval of 5 min during the whole period. The aerosol σ_{ts}
222	SC and σ_{bs} Bsp were measured with a three-wavelength-integrating Nephelometer (Aurora 3000,
223	Australia). Aurora 3000 measures aerosol light scattering, including σ_{ts} and σ_{bs} at 450, 525 and
224	635 nm, with a sampling interval of 1 min (Zhuang et al. 2017). The sample air was taken through
225	a 2m stainless-steel tube with a sampling interval of 1 min, top of which is 1.5m above the roof. The
226	inlet has a rain cap and an external as well as an internal heater to prevent condensation. In cold
227	seasons when RH in the tube was relatively low, maximum of which was lower than 75% and most
228	of which was lower than 50% during sunny hours, therefore the internal heater was turned off. The
229	AE-31 model measures light attenuation at seven wavelengths, including 370, 470, 520, 590, 660,
230	880 and 950 nm, with a desired flow rate of 5.0 L min ⁻¹ and a sampling interval of 5 min. Aurora
231	3000 measures aerosol light scattering, including SC and Bsp at 450, 525 and 635 nm, with a
232	sampling interval of 1 min (Zhuang et al. 2017). PM _{2.5} and PM ₁₀ mass concentrations were measured

233 using a mass analyzer (Thermo Instruments, THOM 1405-DF), which has been used to measure the 234 mass concentration of PM_{2.5}, PM_{2.5-10}, and PM₁₀ simultaneously. The hourly and daily mean mass 235 concentrations are updated every 6 minutes, as well as the hourly base and reference mass 236 concentrations. The sample air is taken through a stainless-steel tube into the instruments. Trace 237 gases (CO, NO_x, NO_y and O₃) were measured every minute using online analyzers (Thermo 238 Instruments, TEI 48i, 42i, 42iY, and 49i, respectively). Sample air was drawn from the 1.5m above 239 the rooftop to the laboratory through a manifold connected to O₃, NO_x and CO analyzers with PFA Teflon tubes, while a separate sample line with a MoO converter was used for NOy analyzer (Wang 240 241 et al., 2002; Ding et al., 2013b) to convert other reactive nitrogen species including PAN, NO₃⁻ and 242 HNO₃. Thus, the measured quantity approximates total reactive nitrogen. Precision and instrument 243 of the measurements in this study are listed in Table 1.

244

245 Since aerosols are quite hygroscopic in China (e.g., Eichler et al., 2008; Liu et al., 2011; Ding et al.,

246 <u>2013b</u>). All the instruments are installed in a laboratory with a constant temperature (24°C) and a

247 <u>low RH located on the building roof. Routine calibrations and maintenances were carried out for all</u>
 248 these instruments during the sampling periods.

249

Monthly averaged meteorological parameters during the period from Sep.2016 to Feb.2017 at the station are shown in Table 2. The air temperature at the site ranged from 6.64°C in Feb.2017 to 24.88°C in Sep.2016. <u>Both higher relative humidity (RH) and more precipitation occurred in fall</u> than winter, especially in October. The relative humidity (RH) was higher in fall than in winter, especially in October, while the precipitation was heavier in fall than in winter. Visibility (Vis) varied in different months. The peak of the ultraviolet radiation (UV) occurred in Sep.2016, after
which the radiation became weak till the end of Jan.2017, and rose a little <u>afterwardsin Feb.2017</u>.

258 **2.2 Calculation of the aerosol optical properties**

L

The wavelength-dependent σ_a AAC, which is associated with the intensities of the incoming light and remaining light after passing through a medium, can be calculated directly using the measured light attenuations (ATN) through a quartz filter matrix, a percentage to represent the filter attenuation, as well as BC mass concentrations (Petzold et al., 1997; Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006):

264
$$\sigma_{ATN, t(\lambda)} = \frac{(ATN_t(\lambda) - ATN_{t-1}(\lambda))}{\Delta t} \times \frac{A}{V} -$$
265
$$\sigma_a^{ATN, t(\lambda)} = \frac{(ATN_t(\lambda) - ATN_{t-1}(\lambda))}{\Delta t} \times \frac{A}{V}, \qquad (1)$$

where A (in m²) is the area of the aerosol-laden filter spot, V is the volumetric sampling flow rate 266 (in L min⁻¹) and Δt is the time interval (=5 min) between t and t-1.-_ σ_a ATN σ_{ATN} , known as 267 σ_a AAC-without any correction, is larger than the actual aerosol absorption coefficient $\sigma_a{}^{abs}$ in 268 269 general. The key factors leading to the bias are as follows: (1). multiple-scattering of light at the 270 filter fibers (multiple-scattering effect), and (2) the instrumental response with increased particle 271 loading on the filter (shadowing effect). The former results in the overestimation of the σ , while 272 the later causes underestimation of the σ_a . Thus, the correction is needed and the calibration factors 273 C and R (shown in Eq. 2) are introduced against the scattering effect and shadowing effect, respectively: 274

Measurement of Aurora 3000, a nephelometer with newly designed light sources based on light emitting diodes, needs correction using Mie-theory for measurement artifacts. In this study, correction was performed according to Müller et al. (2011). The raw total scattering coefficients were corrected first by calculating first the Ångström exponents from the non-corrected scattering coefficients and then following the formulas presented by Müller et al. (2011) where the tabulated

297 factors for no cutoff at the inlet were used, and the raw backward scattering coefficients were
298 corrected according to the correction factors for no cutoff. And based on corrected wavelength-
299 dependent
$$\sigma_a$$
 and $\sigma_{a,z,u_m} \sigma_{a,add} \sigma_{a,at} 550$ nm are estimated by the following:
300 $\alpha_{a,z,0,itom} = -\log(\sigma_{a,z,u_m} / \sigma_{a,z,u_m}) / \log(470/660)$. (4)
301 $\alpha_{b,z,0,itom} = -\log(\sigma_{b,z,v,u_m} / \sigma_{a,z,u_m}) / \log(450/635)$. (5)
302
303 Meanwhile, acrosol asymmetry parameter (g), single-scattering albedo (ω_{b}) and extinction
304 coefficient (σ_{c}) are further estimated:
305 $\omega_{e} = \frac{\sigma_{a}}{\sigma_{a} + \sigma_{a}}$. (6)
306 $\sigma_{e} = \sigma_{u} + \sigma_{a}$. (7)
307
308 Measurement of Aurora 3000, a nephelometer with newly designed light sources based on light
309 emitting diodes, needs correction using Mic-theory for measurement atefacts. Müller et al. (2011)
309 provided parameterizations for the angular sensitivity functions of Aurora 3000, which follows the
310 definition of correction factors from Anderson and Ogren (1998), where the ratios of true to
312 measured nephelometer values for both total scattering and backscattering are defined by-
313 $C_{n,z} = \frac{\sigma_{n,z}^{read}}{\sigma_{n,x}^{read}} \frac{\sigma_{n,x}^{read}}{\sigma_{n,x}^{read}} \frac{\sigma_{n,x}^{read}}{\sigma_{n,x}^{read}}$

317	angular sensitivity functions, respectively, $\sigma_{tsR,\lambda}$ and $\sigma_{bsR,\lambda}$ are Rayleigh total scattering
318	coefficient and backscattering coefficient, respectively, and σ_{ts}^{neph} and σ_{bs}^{neph} are nephelometer
319	total scattering coefficient and backscattering coefficient, respectively. In this study, we assume that
320	Rayleigh scattering is equivalent to true scattering.
321	
322	The correction factors can be calculated using measured size distributions or SAE. Anderson and
323	Ogren (1998), hereinafter denoted as AO98, found a dependency between the SAE and the
324	correction factor for total scattering. The correction was given by:
325	$C_{ts} = a + b \cdot \alpha_{ts}^* \tag{6}$
326	where α_{ts}^{*} is the scattering Ångström exponent derived from uncorrected nephelometer scattering.
327	According to Müller et al. (2011), for backscattering, there was no correlation between correction
328	factors and scattering Ångström exponents, which is in agreement with AO98. The parameters a
329	and b were derived from Mie calculated true scattering and simulated nephelometer scattering for
330	ranges of particle sizes and refractive indices.
331	
332	In this study, we used the correction factors for Aurora 3000 without a sub-µm cut in Müller et al.
333	(2011), which are shown in the Table 3. According to nephelometer correction factors for angular
334	nonidealities, which are shown in Table 3(a), original scattering coefficient (SC at 635 nm, 525 nm
335	and 450 nm) and backscattering coefficient (Bsp at 635 nm, 525 nm and 450 nm) obtained from
336	the measurements are corrected based on Eqs (4) and Eqs (5). We also calculated correction factors
337	for total scatter as function of Angström exponent shown in Table 3.(b), original scattering
338	coefficient (SC at 635 nm, 525 nm and 450 nm) are corrected based on Eqs (6).

339	
340	Based on corrected wavelength-dependent AAC and SC, SAE and AAE are estimated by the
341	following:
342	$-AAE_{470 + 660nm} = -\log(AAC_{470nm} + AAC_{660nm}) + \log(470 + 660), $ (7)
343	$SAE_{450/635nm} = -\log(SC_{450nm}/SC_{635nm})/\log(450/635), $ (8)
344	$\sigma_{\lambda} = \sigma_{\lambda_0} \times \left(\frac{\lambda}{\lambda_0}\right)^{-\alpha} , \qquad (9)$
345	where σ_{λ} is the coefficient at wavelength λ and α is the corresponding Ångström exponents.
346	
347	On the basis of Eqs (7) ~ Eqs (9), SC and Bsp at 550 nm were calculated for comparison. Between
348	the two ways of corrections, the results of the total scattering coefficients are in agreement with
349	each other in general, with differences of 10.67%. In this study, we choose the results from the
350	correction using SAE.
351	Meanwhile, based on wavelength dependent SC, Bsp, AAC, aerosol asymmetry parameter (ASP),
352	single-scattering albedo (SSA) and extinction coefficient (EC) are further estimated:
353	$ASP_{\lambda} = -7.143889\beta_{\lambda}^{3} + 7.46443\beta_{\lambda}^{2} - 3.9356\beta_{\lambda} + 0.9893, \tag{10}$
354	$SSA_{\lambda} = \frac{SC_{\lambda}}{SC_{\lambda} + AAC_{\lambda}},$ (11)
355	$EC_{\lambda} = SC_{\lambda} + AAC_{\lambda}, \tag{12}$
356	where is β_{λ} the ratio of Bsp to SC at wavelength $-\lambda$. Equation (10) is derived from Andrews et al.
357	(2006).
358	Table 4 shows the statistical summary of the surface aerosol optical properties in Nanjing after the
359	correction. The mean value during the cold seasons in 2016 of AAC, SC, Bsp, EC, SSA and ASP
360	at 550 nm, AAE at 470/660 nm and SAE at 450/635 nm are 23.741, 349.502, 35.469, 373.536 Mm ⁻ 16

¹, 0.929, 0.645, 1.600, and 1.192, with a standard deviation of 15.556, 235.291, 21.488, 247.877
 Mm⁻¹, 0.028, 0.052, 0.175, and 0.288, respectively.

363

364 2.3 HYSPLIT model

365 In order to understand the general transport characteristics of air masses recorded at this station, we 366 conducted a 4 d (96 h) backward trajectory simulations during the cold seasons in 2016 using a Lagrangian dispersion model Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 367 368 (version 4.9) provided by the Air Resource Laboratory (ARL) of the USA National Oceanic and 369 Atmospheric Administration (NOAA) (Draxler and Hess, 1998). HYSPLIT - 4 Model is capable of 370 processing multiple gas input fields, multiple physical processes and different types of pollutant 371 emission sources and has been widely used in the study of transport and diffusion of various 372 pollutants in various regions (Mcgowan and Clark, 2008; Wang et al., 2011; Wang et al., 2015). It 373 is one of the most extensively used atmospheric transport and dispersion models for the study of air 374 parcel trajectories (Draxler and Rolph, 2013; Stein et al., 2016). In this study, backward trajectories 375 were calculated and clustered using a stand-alone version of the GDAS (Ground Data Acquisition 376 System) meteorological field (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1)the NCEP / NCAR 377 reanalyzed meteorological field (http://ready.arl.noaa.gov/archives.php). The NCEP_GDAS_data 378 contains 6-hourly basic meteorological fields on pressure surfaces, with the spatial resolution of 379 $2.51.0^{\circ}$, corresponding to the 00, 06, 12, 18 UTC, respectively. In this study, the data are also 380 converted to hemispheric 144 by 73 polar stereographic grids, which is the same grid configuration 381 as the dataset applied in synoptic weather classification. For each synoptic weather pattern, the

382 backward trajectories were started at Gulou station in Nanjing (32°N, 118.8°E).

383 3. Results and discussion

384 **3.1 Characteristics of particulate matter in Nanjing**

- The hourly-mean concentrations of particles at Gulou site during the cold seasons in 2016 are shown
- in Fig 1. Gaps in the time series are missing values.
- 387 Observations show that peaks and valleys of BC, PM_{2.5} and PM₁₀ occur simultaneously in general
- 388 (Fig 1a), probably because the three particles originate mostly from the same sources, i.e., fossil
- 389 fuel burning and traffic activities. It has also been addressed in previous work (e.g., Wang et al.,
- 2008; Chow et al., 2011; Schleicher et al., 2013; Zhuang et al., 2014b; Gong et al., 2015).

391 The averaged values of BC, $PM_{2.5}$ and PM_{10} during the study period are 2.6 \pm 1.7, 58.2 \pm 36.8, and 392 $86.3 \pm 50.8 \,\mu\text{g/m}^3$, respectively. The average of particulate matter — concentrations during the study 393 period are higher than standard concentrations, which are 35 µg/m³ for fine and 70 µg/m³ for PM₁₀. 394 Particles, including BC, PM_{2.5} and PM₁₀ fluctuate similarly, because the three particules originate 395 mostly from the same sources, i.e., transport emissions. BC loadings at Gulou were low in 396 September and October, usually below 6 µg/m³, while the loadings were high in the other months, 397 such as in mid November, early and late December, early January, and mid-to-late February, 398 suggesting occurrences of BC pollution events during these periods. PM_{2.5} loadings and PM₁₀ 399 loadings were generally below 120 and 200 µg/m³, respectively, but higher during early October and in the periods when BC loadings were high. The particle concentrations are affected by various 400 401 factors and progress. For example, the high loadings of particulate matter in early October was 402 mainly due to the increase in aerosols concentrations with high scatter coefficient (SC), and thus the 403 BC loadings did not show such peak during early October.

405	BC concentration ranged from 0.064 to 15.609 µg/m ³ . Seasonal mean of BC concentration was
406	2.126 μ g/m ³ in SON and 3.083 μ g/m ³ in DJF, with a standard deviation of 1.457 and 1.827 μ g/m ³ ,
407	respectively. It was low in September and October, usually below 6 µg/m ³ , but higher in other
408	months. Although BC concentration was relatively low, it was extremely high in particular periods, ,
409	such as in mid-November, early and late December, early January, and mid-to-late February,
410	suggesting occurrences of substantial BC pollution events. PM2.5 and PM10 concentration ranged
411	from 0.8 to 256.4 µg/m3 and from 1.1 to 343.4 µg/m3, respectively. Seasonal mean of PM2.5
412	concentration was 43.1 μ g/m ³ in SON and 73.2 μ g/m ³ in DJF, with a standard deviation of 25.4 and
413	40.0 μg/m ³ , respectively. PM ₁₀ averaged 67.6 μg/m ³ in SON and 105.0 μg/m ³ in DJF, with a standard
414	deviation of 39.1 and 54.0 μ g/m ³ , respectively. PM _{2.5} and PM ₁₀ concentration were generally below
415	120 and 200 µg/m ³ , respectively. Remarkable increases existed especially when BC concentration
416	was high. Additionally, the high concentrations of PMs in early October possibly resulted from the
417	increase in scattering aerosols, since absorption coefficient and BC, one of typical absorbing
418	aerosols, did not show such peak, while scatter coefficient experienced a sharp increase during that
419	period. It is found that both BC and PMs levels in Nanjing became lower compared to those in
420	earlier years, which is possibly due to the strengthening energy conservation and reduction of
421	pollution emissions from 2014. For instance, seasonal average in SON and DJF were reported 4339
422	and 4189 ng/m ³ in urban Nanjing during 2012 in Zhuang et al. (2014b), and Ding et al. (2013b)
423	stated a 1-year average about 75 µg/m ³ of PM _{2.5} in rural area of Nanjing form August 2011 to July
424	2012, while Wang et al. (2014) suggested that annual average of PM _{2.5} and PM ₁₀ were 75 and 135

μg/m³ in Nanjing during 2013, respectively.

427	Monthly variations of particles in the cold seasons in 2016 were obvious (Fig.2). The concentrations
428	increased from October to December and decreased a little afterwards but remained relatively high
429	in January and February. High particle concentrations were observed from November to February
430	while the low ones were in September and October. The lowestsmallest monthly concentrations of
431	BC, $PM_{2.5}$, and PM_{10} occurred in October, being 1.8, 39.2, and 59.8 μ g/m ³ , respectively, while the
432	largest monthly concentrations occurred in December, being 3.7, 85.0, and 123.1 $\mu g/m^3,$
433	respectively, which were about twice of those in October. Monthly variations of BC were different
434	from those in previous studies in YRD. For instance, Pan et al. (2011) pointed out an extremely high
435	concentration in October in Mt. Huang, which was attributed to combustion of biomasses as well as
436	the dynamic transport and stable planetary boundary layer (PBL) stratification in the transitional
437	periods of the winter monsoon (October). For PMs, monthly behavior was basically similar to what
438	has been reported in previous studies in YRD, increasing from September to December in general
439	(Chen et al., 2016), except the decrease in October. In generalGenerally, there are two key factors
440	that could impact particle concentrations: meteorology and emissions. Heavy precipitation with a
441	strong scavenging effect in October when average rainfall was 3.1 mm, and the frequency of daily
442	rainfall exceeding 50mm was over 30% might directly lead to small loadings of particles (Table.2),
443	had a strong scavenging effect, which might directly lead to low levels of particles despite the
444	influence of biomass burning addressed in Pan et al. (2011) Anthropogenic particle emissions from
445	fossil fuel over China increased after summer and showed a sharp increase from November to
446	January (Zhang et al., 2009), , and emission rates in southwest (Sichuan basin), central to north, and

447	northeast China, as well as YRD and PRD were higher in winter (Zhuang et al., 2018), especially
448	in residential, industry and power emissions (Li et al., 2017) which may explain the high particle
449	concentrations during those periods. And during the autumn harvest (September~ November),
450	though not so much as that in summer, the crop burning emissions in still make contribution to
451	pollutants (Yang et al., 2008). Yin et al. (2016) discussed the spatial distribution of crop residue
452	burning from September to December in 2015, suggesting autumn crop residue burning in
453	surrounding regions like Shandong, Anhui and Henan Provinces, thus, particles in Nanjing might
454	also be subject to these large-scale burning of crop residues (Qian et al., 2014). According to Huang
455	et al. (2012) and Li et al. (2016), spatiotemporal distribution of agricultural fire occurrences in China
456	during 2003~ 2010 as well as 2012 has been presented associated with the spatial distribution of
457	CO emission from residue open burning. Both of them suggested the crop residue burning in autumn
458	is noteworthy and Jiangsu as well as the surrounding provinces are the regions with highest
459	emissions. Besides, sub-regional transport also plays an important role, for example, in winter, air
460	masses coming from North China Plain, which accounts for 31%, have high particles concentrations
461	<u>(Sect 3.4).</u>
462	Qian et.al (2014) believed that high particle loadings in Nanjing from late October to early
463	November resulted from the large-scale burning of crop residues. However, PM _{2.5} and PM ₁₀
464	concentrations reached a relative maximal in early October, while the emission in October is relative
465	low compared to the following months (Zhang et al., 2009).
466	i de la construcción de la constru
1	

Substantial diurnal cycles of the particles are also observed (Fig.3). <u>Particles levels were high during</u>
 <u>7:00~9:00 and 22:00~0:00 LT but low in afternoon (13:00~15:00 LT).BC levels were high at rush</u>

469	hours (7~9 am and 8~11 pm) but low in afternoon (1~3 pm). High concentrations during 7:00~9:00
470	LT Zhuang et al. (2014) mentioned that high BC concentrations in these times of the day might be
471	caused by the vehicle emissions (as mentioned in Section 2, several main roads with apparent traffic
472	pollution surround the station). <u>A higher vehicle volume showed during 17:00~20:00 LT in Nanjing</u> ,
473	while the high concentrations occurred during 22:00~ 0:00 LT. A lower temperature and a more
474	stable atmosphere stratification after sunset (17:00~18:00 LT) often lead to frequent temperature
475	inversion and low height of planetary boundary layer (Jiang et al., 2014), which is not conductive
476	to the diffusion of pollutants, and the concentrations of particles accumulate and remain high from
477	the evening to early morning. In addition, temperature was low after midnight, and the atmosphere
478	stratification was stable. Therefore, it was easy for temperature inversion to appear, which was not
479	conductive to the diffusion of pollutants, and the concentrations of particles accumulated and
480	reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature
480 481	reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9~11 pm (Qian et al., 2014).
480 481 482	reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 911 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the
480 481 482 483	reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9-11 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the atmosphere become less stable with the increasing temperature, and strong turbulent exchange as
480 481 482 483 484	reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9-11 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the atmosphere become less stable with the increasing temperature, and strong turbulent exchange as well as vertical diffusion are favorable to the diffusion of pollutants, particles concentrations
480 481 482 483 484 485	 reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9-11 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the atmosphere become less stable with the increasing temperature, and strong turbulent exchange as well as vertical diffusion are favorable to the diffusion of pollutants, particles concentrations decrease to a minimum in the afternoon. As to the low BC in afternoon, which occurred at around
480 481 482 483 484 485 486	reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9-11 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the atmosphere become less stable with the increasing temperature, and strong turbulent exchange as well as vertical diffusion are favorable to the diffusion of pollutants, particles concentrations decrease to a minimum in the afternoon. As to the low BC in afternoon, which occurred at around 3 pm, it was mainly induced by well-developed boundary layer. Because the atmosphere became
480 481 482 483 484 485 486 487	reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9-11 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the atmosphere become less stable with the increasing temperature, and strong turbulent exchange as well as vertical diffusion are favorable to the diffusion of pollutants, particles concentrations decrease to a minimum in the afternoon. As to the low BC in afternoon, which occurred at around 3 pm, it was mainly induced by well-developed boundary layer. Because the atmosphere became
480 481 482 483 484 485 486 487 488	 reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9-11 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the atmosphere become less stable with the increasing temperature, and strong turbulent exchange as well as vertical diffusion are favorable to the diffusion of pollutants, particles concentrations decrease to a minimum in the afternoon. As to the low BC in afternoon, which occurred at around 3 pm, it was mainly induced by well developed boundary layer. Because the atmosphere became less stable with increasing temperature, and strong turbulent exchange and vertical diffusion were favorable to the diffusion of pollutants, BC concentrations decreased to a minimum in the afternoon.
480 481 482 483 484 485 486 487 488 489	 reached a peak at around 8 am. Atmosphere stratification became stable again as the temperature decreased after around 4 pm, which may also explain the peak during 9-11 pm (Qian et al., 2014). For low levels in afternoon, it is mainly induced by well-developed boundary layer. Because the atmosphere become less stable with the increasing temperature, and strong turbulent exchange as well as vertical diffusion are favorable to the diffusion of pollutants, particles concentrations decrease to a minimum in the afternoon. As to the low BC in afternoon, which occurred at around 3 pm, it was mainly induced by well developed boundary layer. Because the atmosphere became favorable with increasing temperature, and strong turbulent exchange and vertical diffusion were favorable to the diffusion of pollutants, BC concentrations decreased to a minimum in the afternoon.

1	
491	site in YRD, due to different emission sources (less vehicle emission) and meteorology effects
492	(effect of valley breezing). Fig. 3 also shows that the peak values of fine particle concentrations
493	often occurred one or two hours $1 \sim 2 h$ later than those of BC concentrations, with high values at
494	around 10 am:00 and low values at around 5 pm17:00 LT. According to Roberts and Friedlander
495	(1976) and Khoder (2002), atmospheric photochemical reactions are extremely active under
496	conditions of strong radiation and high temperature, especially during daytime, thus, during which
497	more secondary aerosol particles (like sulfate particles) generated, so-more secondary aerosol
498	particles (like sulfate particles) are likely to generate, and the concentrations of fine particles in the
499	atmosphere will increase. When solar radiation was strong, ultra-fine particles generated during
500	photochemical reactions contributed greatly to the concentrations of aerosol particles.
501	Generally, the diurnal cycles of BC had a bimodal distribution with two peaks, while PM2.5-and
502	PM ₁₀ had only one peak. However, both magnitude and temporal variations of particles were
503	changed in winter, and there is another peak at around 2 am $(see S1)$, which was possibly due to
504	the affection of BC pollution episodes at night.

3.2 Characteristics of gaseous pollutants in Nanjing

507	Fig.4 shows hourly-mean concentrations of gaseous pollutants at Gulou during the cold seasons in
508	2016, in which, there were few gaps for invalid values. In general, as main precursors of O ₃ , NO _x ,
509	NOy, and CO generally show different pattern with O3, such as when the precursors levels remained
510	high from November to January, O ₃ levels were relatively low (Xie et al., 2016; Wang et al., 2017).
511	Also, the precursors concentrations varied greatly, especially in DJF (with several peaks), possibly

because of the frequent shifting of air masses from the clean interior continent and heavily polluted
urban plumes in the heating period (normally from November to March in Northern China) (Pan et
al., 2011).

515 Concentrations of trace gases, including CO (176~2852 ppb), NO_x (2.7~80.0 ppb), NO_y (3.6~ 516 158.4 ppb), and O₃ (0.2~235.7 ppb), varied a lot in the study period. Seasonal mean of O₃ was 42.3 517 ppb in SON and 33.1 ppb in DJF, with a standard deviation of 40.1 and 24.4 ppb, respectively. The 518 averaged concentrations during the fall and winter of CO, O₃, NO_{*} and NO_{*} at the site are 851 ± 384, 37.7 ± 33.5, 23.5 ± 14.7, and 32.8 ± 22.3 ppb, respectively. As shown in Fig.4, O₃ 519 520 concentrations in the site were was extremely high during the entire whole September in 2016, with 521 a maximum over 200 ppb,- and decreased sharply after mid-October, basically keeping a low level 522 below 100 ppb, until early February when it began to increase. which was mainly due to the strong 523 solar radiation and the high temperature lasting in September. O3 concentrations began to increase 524 in February because of enhanced solar radiation, after a low-concentration period since late October, 525 during which O₃ concentrations were below 100 ppb. Seasonal averages of NO_x and NO_y, were 21.4 526 and 28.6ppb in SON, with a deviation of 20.5, and 40.1 ppb, respectively. In DJF, mean 527 concentrations of NO_x and NO_y were 27.6 and 37.0 ppb, with a deviation of 15.5 and 23.1 ppb. And 528 seasonal averages of CO were 753 ppb in SON, and 950 ppb in DJF, with a deviation of 353 and 529 388 ppb, respectively. The precursors concentrations were high from November to mid-January, 530 and low in September_{NO_x} and NO_y have a similar pattern: the concentrations were high in 531 November, December and February (Fig.5). Moreover, it is suggested that O₃ concentration is 532 higher compared to the results in previous studies in Nanjing (Xie et al., 2016; An et al., 2015; Ding 533 et al., 2013b), implying a more pressing environmental issue of near-surface O₃ problem in urban

It is noticeable that the daily variation of CO concentrations was similar to that of BC.⁻A remarkable
correlation between BC and CO is found in a number of studies (Jennings et al., 1996; Derwent et
al., 2001; Badarinath et al., 2007; Spackman et al., 2008), suggesting that both of the pollutants are
greatly affected by anthropogenic sources and biomass burning in eastern China.

539

540 Monthly variations of trace gases are shown in Fig.5. Fig.5 illustrates monthly variations of O₃₇ 541 nitrogen oxides (NOy and NOx), and CO in the cold seasons in 2016. It is noticeable that the different 542 patterns occur in O₃ and its precursors. Observations show that O₃ concentration decreased after the 543 lasting extremely high level in September until November and increased a little afterwards. Highest 544 concentration of O₃ was found in September and lowest in November, being 74.8 and 23.4 ppb, 545 respectively. This pattern might be attributed to the solar radiation and emissions. For instance, in 546 September when solar radiation was strong (maximum UV over 55 W/m^2), it would contribute 547 greatly to O_3 formation, and precursors were at relatively high levels (CO, NO_x, and NO_y were about 548 600, 15 and 20 ppb, respectively), though not as high as those in cold days. CO, NO_x and NO_y 549 peaked in December correspondingly at 1064, 31.8 and 41.7 ppb. The precursors reached the lowest 550 level in September, being 620, 14.5, and 20.8 ppb, respectively. In addition, the pattern of precursors 551 is analogous to those in previous studies (Xie et al., 2016; Ding et al., 2013b), but with a relatively 552 lower concentration, especially NO_x and NO_y, which might also result from the large-scale reduction 553 of pollution emissions. 554

O₃ peaked in September at 74.8 ppb while NO_y and NO_x peaked in December at 31.8 and 41.7 ppb,
 respectively. O₃ reached minimum at 23.4 ppb in November and NO_y and NO_x ware lowest in

556	September, being 14.5, and 20.8 ppb, respectively. O3 is a secondary pollutant and complicatedly
557	related to its precursors, including NO _x and VOCs. O ₃ precursors and their effects on O ₃ formation
558	are different at different geographical locations, and thus the characterizations of O3- at different
559	sites can vary greatly. O ₃ -NO _* -VOCs relationships can be described by the following reactions:
560	$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$ (R1)
561	$NO_2 + hv \rightarrow NO + O(^3P)$ (R2)
562	$O_3 + NO \rightarrow O_2 + NO_2$ (R3)
563	$HO_2 + NO \rightarrow OH + NO_2$ (R4)
564	$RO_2 + NO \rightarrow OH + NO_2$ (R5)
565	$OH + RH + O_2 \longrightarrow RO_2 + H_2O \tag{R6}$
566	$RO + O_2 \rightarrow HO_2 + carbonyls$ (R7)
567	where (R4), (R5), and (R2) reactions establish an "NO _X -cycle" that could produce O ₃ -without
568	consumption of NO _x , the other important chemistry cycle is the so-called "RO _x (RO _x =OH+HO ₂ +
569	RO ₂) radical cycle" that could continuously supply HO ₂ and RO ₂ to oxidize NO to NO ₂ , and (R7)
570	is usually referred as NO _* titration, which is an important O ₃ removal process related to freshly
571	emitted NO. In general, when NO _* concentrations were high, O ₃ concentrations may experience a
572	depression process since excessive NO are not favorable for the O3 production (Xie et al, 2016)
573	Wang et al., 2018). The CO concentrations varied greatly in winter because of the frequent shifting
574	of air masses from the clean interior continent and heavily polluted urban plumes in the heating

575 period (normally from November to March in Northern China, (Pan et al., 2011). In September and
 576 October, the CO concentrations at Gulou apparently decreased owing to frequent intrusions of clean

577 air mass from the Pacific Ocean, and this seasonal trend was confirmed by HYSPLIT-4 model (see

detailed discussion in Section.4).-

580	Fig. 6 (a) shows the mean-diurnal variations of the gaseous pollutants (O_3 , NO_x , NO_y , and CO)-at
581	Gulou during the cold seasons in 2016. The concentrations of O_3 were is the lowest around <u>7:00</u>
582	LT7 am and rises rapidly until reaching the peak in the middle of the day at 15:00 LT. went up
583	rapidly corresponding with the increase of solar radiation. After reaching the peak in the middle of
584	the day at 3 pm, It keeps decreasing sharply after the afternoon peak till sunset. During the nighttime,
585	the concentration of O ₃ decreases slowly and remains low. the O ₃ concentrations kept decreasing
586	rapidly until sunset. During the nighttime, the concentrations of O3 decreased slowly and maintained
587	low values, attributed to the process of NO _x titration and the lack of solar radiation. With respect to
588	NO_x and NO_y , peak appears at around 9:00 LT, with another high value occurring at night (21:00~
589	0:00 LT), both of which coincide with the rush hours in the city, when two peaks appeared in the
590	diurnal cycles, one around 9 am and the other at 8 pm. Both peaks coincided with the rush hours in
591	the city, during which large amounts of vehicle emissions were are released. The morning peak
592	iswas slightly higher than the evening night one in general. Besides emissions, According to Xie
593	et al. (2016), these diurnal variation patterns of O_3 and NO_x are mainly resulted from the
594	photochemical processes and the meteorological conditions. Simultaneous measurement of O3 and
595	<u>UV shows that the O₃ concentration is highly correlated to UV (R=0.71, Fig. 9(a)).</u> The ultraviolet
596	irradiance (UV) at Gulou startsed to increase at about 7-am:00 LT (Fig.6 (b)), which could induce a
597	series of photochemical reactions including the formation of peroxy radicals (HO ₂ and RO ₂ etc.)
598	and the photolysis of NO ₂ . From 8- $\frac{\text{am}:00}{\text{om}}$ to $\frac{3 \text{ pm}15:00 \text{ LT}}{\text{om}}$, the increase in UV $\frac{\text{enhanced}}{\text{enhances}}$
599	the O_3 formation by <u>promoting</u> the production processes of <u>NO₂ and OH from NO and peroxy</u>

600	radicals(R4) (R5). Simultaneous measurement of O3 and UV shows that the O3 concentrations are
601	highly correlated to UV, with a correlation coefficient of 0.47. The diurnal range of O_3 concentration
602	(the difference between the maximum at 15:00 LT and the minimum at 7:00 LT) is relatively high
603	(45.1 ppb), suggesting the active chemical reactions as well. It is also noticeable that the O ₃ peaks
604	maximum was 2 h after the UV maximum, suggesting the time to take for the chemical reactions.
605	The slightly reduction of O_3 and NO_x after the midnightin the early morning (3:00~7:00 LT) is likely
606	due to $\frac{1}{2}$ NO _x titration. The development of the planetary boundary layer (PBL) can also modulate
607	pollutant concentrations. The concentrations of a pollutant are is diluted when PBL rises during the
608	daytime and enhanced in the low nocturnal PBL that favors pollutant accumulation, after comparing
609	Fig.6 (a) with the reported diurnal variation of PBL height in Nanjing (Jiang et al., 2014; Xie et al.,
610	2016). And that is also the reason for the difference of peak time between the emission rate and NO_x
611	(NOy) concentration, which is similar to particles to some degree. The abovementioned diurnal
612	cycles in O ₃ and NO _x (NO _y) concentrations follow the typical patterns at other sites in Nanjing (Tu
613	et al., 2007; Ding et al., 2013b; Xie et al, 2016). The daily variation of CO concentration is found
614	to be similar to that of BC, such as morning peak during rush hours, afternoon dip at around 15:00
615	LT, and accumulation at night. A remarkable correlation has been found in a number of previous
616	studies (e.g., Jennings et al., 1996; Derwent et al., 2001; Badarinath et al., 2007; Spackman et al.,
617	2008; Pan et al., 2011; Zhuang et al., 2014b). Besides, BC is mostly produced by the incomplete
618	combustion of carbonaceous material, and so is carbon monoxide (CO) (Pan et al., 2011), thus, both
619	BC and CO might come from the same sources, mostly from combustions of domestic bio-fuel,
620	industry-coal, and vehicle-gasoline (Zhuang et al., 2014b). The effect of meteorology, i.e., the
621	development of PBL, influences the diurnal pattern as mentioned in Section 3.1, especially the

afternoon dip and night accumulation. Moreover, as one of main precursors of O₃, increase in O₃ 623 levels in the afternoon might also contribute to the lowest concentration at 15:00 LT.

625 Table 7-5 further provides the statistics of O₃, PM_{2.5} and PM₁₀ mass concentrations with a 626 comparison to the National Ambient Air Quality Standards in China (NAAQS-CN), which were 627 released in 2012 by the China State Council and will be implemented nationwide in 2016 (MEP, 628 2012). According to NAAQS-CN for $PM_{2.5}$ and PM_{10} (75 μ g/m³ of $PM_{2.5}$ concentrations and 150 $\mu g/m^3$ of PM₁₀ concentrations for 24h average), there were 48 days of PM_{2.5} exceedances, 629 630 accounting for about 30% of the 6 months period, and 14 days of PM₁₀ exceedances, lower than the 631 PM_{2.5} exceedances. Days of particulate matterPMs exceedances mainly occurred during DJF. The 632 days of exceedances decreased. Donkelaar et al. (2010) reported that a multi-year average of PM2.5 633 mass concentrations was over 80 µg/m3 in eastern China by using satellite data during 2001-2006, 634 and Ding et al. (2013b) reported stated 99 days of PM_{2.5} exceedances in total from September 2011 635 to February 2012, and Wang et al. (2014) suggested that non-attainment rates in Nanjing from 636 September 2013 to February 2014 were over 40% and 70% in SON and DJF, respectively. an 1-637 year average about 75 µg/m³ in rural area of Nanjing form August 2011 to July 2012. Therefore, the means in Table 7 show lower particle concentrations than what were reported. The days of 638 639 exceedances also were fewer than in 2011 (Ding et al., 2013), during which 99 days of PM2.5 640 exceedances happened during the cold seasons. These results suggest that particles control policies 641 are well-implemented in Nanjing although particles remain a severe pollution problem in the YRD 642 region. According to NAAQS-CN for O₃ (160 µg/m³ for 8 h average and 200 µg/m³ for 1 h average), 643 37 days of exceedances occurred (Table 7 Table 5), covering 20% of the period and mostly appearing

644	in September and February when the air temperature was relatively high. In contrast to particulate
645	matter, days of O ₃ exceedances increases greatly.O ₃ -concentrations increased from 2011 to 2016,
646	and the exceedance days were 10 times of those in 2011. Wang et al. (2014) reported a 11.4%
647	contribution of O ₃ as the major pollutant on non-attainment days in cold seasons in 2013 in south-
648	east China, and Tu et al. (2007) reported frequency of days with O3 exceedance for cold seasons in
649	2000~2002 in urban Nanjing was 6.3%. It was found in previous studies that O ₃ levels in the rural
650	areas were are generally higher than those in the city centers (Zhang et al., 2008; Geng et al., 2008;
651	Xie et al., 2016). Thus, high O ₃ concentrations and severe air pollution in Gulou, an urban site,
652	probably suggest imply a severer O ₃ pollution problem in the entire YRD region. Moreover, Nnote
653	that this study only discussed the O ₃ concentrations in the cold seasons when the concentrations of
654	O ₃ -are lower than in the warm seasonit is relatively low, and it might suggest the problem can bea
655	severer problem in the warm seasons. The emissions of O ₃ precursors (VOCs and NO _y) in Nanjing
656	have significantly increased with the increases of residents (over 200,000 increase since 2011), the
657	number of automobiles (over 65% increase since 2011), and GDP (gross domestic production)
658	(nearly 70% increase since 2011). Consequently, O3 concentrations at ground level has gradually
659	risen (http://www.njtj.gov.cn/).

661 **3.3 Inter-species correlations**

662 Correlations between different species <u>were-have been</u> analyzed to help interpret the data and gain 663 insights into the underlying mechanisms/processes. Because precipitation could impact wet 664 scavenging processes for particles and other aerosols (<u>see S2Table 6</u>), <u>the data in rainy condition</u>

has been eliminated. we eliminated the data in rainy condition.-

668 Fig.7 (a). As discussed in previous studies (Xie et al., 2016; Ding et al., 2013b), measured Qi 669 presents an overall negative correlation with NQ. The negative correlation suggests a titration effect 670 of freshly-emitted NO with O ₄ in the cold-seasons. The negative correlation mainly exists for data 671 of relatively low air temperature, suggesting a titration effect of freshly emitted NO, with O ₃ , 672 especially at nighttime. However, the slope gets less rigid when air temperature rises, and tend to 673 be positive with a high temperature (over 25°C) and low level of NO, (below 30 ppb).In-addition, 674 the slope decreased when air temperature rose. These results possibly_suggest a strong 675 photochemical production of O ₃ in this region under high temperature with strong radiation like in 676 September during high air-temperature, leading toresulting in the seasonal cycle pattern of O ₃ shown 677 in Fig. 5 (a) (Ding et al., 2013). 678 Fig.7 (b) provides a seatter plot of PM _{2.5} and visibility (Vis) color-coded with relative humidity 680 (RH). Previous research has shown that visibility has a good correlation with the concentrations of 681 particles and relative humidity. For a better understanding of the relationship between the variables, 682 we have performed a linear fit of the visibility with the PM _{2.5} concentration	667	The scatter plot of O_3 measured at the site and NO_x color-coded with air temperature is given in
669presents an overall negative correlation with NO ₂ . The negative correlation suggests a titration effect670of freshly emitted NO with O ₃ in the cold seasons. The negative correlation mainly exists for data671of relatively low air temperature, suggesting a titration effect of freshly emitted NO ₂ with O ₃ .672especially at nighttime. However, the slope gets less rigid when air temperature rises, and tend to673be positive with a high temperature (over 25°C) and low level of NO ₂ (below 30 ppb). In addition,674the slope decreased when air temperature rose. These results possibly suggest a strong675photochemical production of O ₃ in this region under high temperature with strong radiation like in676September during high air temperature, leading toresulting in the seasonal cycle pattern of O ₃ shown677in Fig. 5 (a) (Ding et al, 2013).678Fig.7 (b) provides a scatter plot of PM _{2.5} and visibility (Vis) color-coded with relative humidity680(RH). Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH < 70%, 70%	668	Fig.7 (a). As discussed in previous studies (Xie et al., 2016; Ding et al., 2013b), measured O ₃
670 of freshly-emitted-NO-with O ₃ in the cold seasons. The negative correlation mainly exists for data 671 of relatively low air temperature, suggesting a titration effect of freshly-emitted NO ₃ with O ₃ , 672 especially at nighttime. However, the slope gets less rigid when air temperature rises, and tend to 673 be positive with a high temperature (over 25°C) and low level of NO ₃ (below 30 ppb). In addition, 674 the slope decreased when air temperature rose. These results possibly suggest a strong 675 photochemical production of O ₃ in this region under high temperature with strong radiation like in 676 September during high air temperature, leading toresulting in the seasonal cycle pattern of O ₃ shown 677 in Fig. 7 (b) provides a scatter plot of PM _{2.5} and visibility (Vis) color-coded with relative humidity 680 (<u>RH</u>). Previous-research has shown that visibility has a good correlation with the concentrations of 681 particles and relative humidity. For a better understanding of the relationship between the variables, 682 we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH < 70%, 70% 683 < <u>RH</u> < 80%, and 80% < RH < 90%, to find out the relationship among these factors, and the fitting 684 curves are [PM _{2.5}] = 366.72[Vis] ^{0.745} (R ² = 0.7196), [PM _{2.5}] = 337.16[Vis] ^{0.855} (R ² = 0.8692), and 685 [PM _{2.5}] = 248.6[Vis] ^{0.852} (R ² = 0.8279), respectively. It is found that visibility decreases with the 686 concentration of PM _{2.5} in a power function with a negative exponent, and the inverse relationship	669	presents an overall negative correlation with NO _x . The negative correlation suggests a titration effect
671of relatively low air temperature, suggesting a titration effect of freshly emitted NO _x with O ₃ ,672especially at nighttime. However, the slope gets less rigid when air temperature rises, and tend to673be positive with a high temperature (over 25°C) and low level of NO _x (below 30 ppb). In addition,674the slope decreased when air temperature rose. These results possibly suggest a strong675photochemical production of O ₃ in this region under high temperature with strong radiation like in676September during high air-temperature, leading toresulting in the seasonal cycle pattern of O ₃ shown677in Fig. 5 (a) (Ding et.al, 2013).678Fig.7 (b) provides a scatter plot of PM _{2.5} and visibility (Vis) color-coded with relative humidity680(RH). Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH < 70%, 70%	670	of freshly emitted NO with O ₃ -in the cold seasons. The negative correlation mainly exists for data
672especially at nighttime. However, the slope gets less rigid when air temperature rises, and tend to673be positive with a high temperature (over 25°C) and low level of NOx (below 30 ppb).In addition,674the slope decreased when air temperature rose. These results possibly suggest a strong675photochemical production of O3 in this region under high temperature with strong radiation like in676September-during high air temperature, leading toresulting in the seasonal cycle pattern of O3 shown677in Fig. 5 (a) (Ding et.al, 2013).678Fig.7 (b) provides a scatter plot of PM25 and visibility (Vis) color-coded with relative humidity680(RH). Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the PM25 concentration when RH ≤ 70%, 70%683 <rh 80%="" 80%,="" 90%,="" <="" among="" and="" factors,="" find="" fitting<="" out="" relationship="" rh="" td="" the="" these="" to="" ≤="">684curves are $[PM25] = 366.72[Vis]^{-0.745} (R^2 = 0.7196), [PM25] = 337.16[Vis]^{-0.855} (R^2 = 0.8622), and685[PM25] = 248.6[Vis]^{-0.852} (R^2 = 0.8279), respectively. It is found that visibility decreases with the686concentration of PM25 in a power function with a negative exponent, and the inverse relationship$</rh>	671	of relatively low air temperature, suggesting a titration effect of freshly emitted NO_x with O_3 ,
673be positive with a high temperature (over 25°C) and low level of NO _x (below 30 ppb).In addition,674the slope decreased when air temperature rose. These results possibly suggest a strong675photochemical production of O ₃ in this region under high temperature with strong radiation like in676September-during high air temperature, leading toresulting in the seasonal cycle pattern of O ₃ shown677in Fig. 5 (a) (Ding et.al, 2013).678Fig.7 (b) provides a scatter plot of PM _{2.5} and visibility (Vis) color-coded with relative humidity680(RH), Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH ≤ 70%, 70%683 <rh 80%="" 80%,="" 90%,="" <="" among="" and="" factors,="" find="" fitting<="" out="" relationship="" rh="" td="" the="" these="" to="" ≤="">684curves are [PM_{2.5}] = 366.72[Vis]^{0.745} (R² = 0.7196), [PM_{2.5}] = 337.16[Vis]^{0.855} (R² = 0.8692), and685[PM_{2.5}] = 248.6[Vis]^{0.852} (R² = 0.8279), respectively. It is found that visibility decreases with the686concentration of PM_{2.5} in a power function with a negative exponent, and the inverse relationship</rh>	672	especially at nighttime. However, the slope gets less rigid when air temperature rises, and tend to
674the slope decreased when air temperature rose. These results possibly suggest a strong675photochemical production of O_3 in this region under high temperature with strong radiation like in676September during high air temperature, leading toresulting in the seasonal cycle pattern of O_3 shown677in Fig. 5 (a) (Ding et.al, 2013).678Fig.7 (b) provides a scatter plot of $PM_{2.5}$ and visibility (Vis) color-coded with relative humidity680(RH). Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH ≤ 70%, 70%683 <rh 80%="" 80%,="" 90%,="" <="" among="" and="" factors,="" find="" fitting<="" out="" relationship="" rh="" td="" the="" these="" to="" ≤="">684curves are $[PM_{2.5}] = 366.72[Vis]^{-0.745}$ (R² = 0.7196), $[PM_{2.5}] = 337.16[Vis]^{-0.855}$ (R² = 0.8692), and685$[PM_{2.5}] = 248.6[Vis]^{-0.852}$ (R² = 0.8279), respectively. It is found that visibility decreases with the686concentration of PM_{2.5} in a power function with a negative exponent, and the inverse relationship</rh>	673	be positive with a high temperature (over 25°C) and low level of NO _x (below 30 ppb). In addition,
675photochemical production of O_3 in this region under high temperature with strong radiation like in676September-during high air temperature, leading toresulting in the seasonal cycle pattern of O_3 shown677in Fig. 5 (a) (Ding et al, 2013).678679679Fig.7 (b) provides a scatter plot of $PM_{2.5}$ and visibility (Vis) color-coded with relative humidity680(RH), Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the $PM_{2.5}$ concentration when $RH \le 70\%$, 70%683 $, and 80\% < RH \le 90\%, to find out the relationship among these factors, and the fitting684curves are [PM_{2.5}] = 366.72[Vis]^{-0.745} (R2 = 0.7196), [PM_{2.5}] = 337.16[Vis]^{-0.855} (R2 = 0.8692), and685[PM_{2.5}] = 248.6[Vis]^{-0.852} (R2 = 0.8279), respectively. It is found that visibility decreases with the686concentration of PM_{2.5} in a power function with a negative exponent, and the inverse relationship$	674	the slope decreased when air temperature rose. These results possibly suggest a strong
676September during high air temperature, leading toresulting in the seasonal cycle pattern of O3 shown677in Fig. 5 (a) (Ding et.al, 2013).678679Fig.7 (b) provides a scatter plot of $PM_{2.5}$ and visibility (Vis) color-coded with relative humidity680(RH). Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the PM2.5 concentration when RH < 70%, 70%	675	photochemical production of O ₃ in this region under high temperature with strong radiation like in
677 in Fig. 5 (a) (Ding et.al, 2013). 678 679 Fig.7 (b) provides a scatter plot of PM _{2.5} and visibility (Vis) color-coded with relative humidity 680 (RH). Previous research has shown that visibility has a good correlation with the concentrations of 681 particles and relative humidity. For a better understanding of the relationship between the variables, 682 we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH \leq 70%, 70% 683 \leq RH \leq 80%, and 80% $<$ RH \leq 90%, to find out the relationship among these factors, and the fitting 684 curves are [PM _{2.5}] = 366.72[Vis] ^{-0.745} (R ² = 0.7196), [PM _{2.5}] = 337.16[Vis] ^{-0.855} (R ² = 0.8692), and 685 [PM _{2.5}] = 248.6[Vis] ^{-0.852} (R ² = 0.8279), respectively. It is found that visibility decreases with the 686 concentration of PM _{2.5} in a power function with a negative exponent, and the inverse relationship	676	September during high air temperature, leading toresulting in the seasonal cycle pattern of O ₃ shown
678679Fig.7 (b) provides a scatter plot of $PM_{2.5}$ and visibility (Vis) color-coded with relative humidity680(RH). Previous research has shown that visibility has a good correlation with the concentrations of681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the $PM_{2.5}$ concentration when $RH \le 70\%$, 70%683 $, and 80\% < RH \le 90\%, to find out the relationship among these factors, and the fitting684curves are [PM_{2.5}] = 366.72[Vis]^{-0.745} (R2 = 0.7196), [PM_{2.5}] = 337.16[Vis]^{-0.855} (R2 = 0.8692), and685[PM_{2.5}] = 248.6[Vis]^{-0.852} (R2 = 0.8279), respectively. It is found that visibility decreases with the686concentration of PM_{2.5} in a power function with a negative exponent, and the inverse relationship$	677	in Fig. 5 (a) (Ding et.al, 2013) .
Fig.7 (b) provides a scatter plot of $PM_{2.5}$ and visibility (Vis) color-coded with relative humidity (RH). Previous research has shown that visibility has a good correlation with the concentrations of particles and relative humidity. For a better understanding of the relationship between the variables, we have performed a linear fit of the visibility with the $PM_{2.5}$ concentration when $RH \le 70\%$, 70% $RH \le 80\%$, and $80\% < RH \le 90\%$, to find out the relationship among these factors, and the fitting curves are $[PM_{2.5}] = 366.72[Vis]^{-0.745}$ ($R^2 = 0.7196$), $[PM_{2.5}] = 337.16[Vis]^{-0.855}$ ($R^2 = 0.8692$), and $[PM_{2.5}] = 248.6[Vis]^{-0.852}$ ($R^2 = 0.8279$), respectively. It is found that visibility decreases with the concentration of $PM_{2.5}$ in a power function with a negative exponent, and the inverse relationship	678	
680 (RH). Previous research has shown that visibility has a good correlation with the concentrations of 681 particles and relative humidity. For a better understanding of the relationship between the variables, 682 we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH \leq 70%, 70% 683 $<$ RH \leq 80%, and 80% $<$ RH \leq 90%, to find out the relationship among these factors, and the fitting 684 curves are [PM _{2.5}] = 366.72[Vis] ^{-0.745} (R ² = 0.7196), [PM _{2.5}] = 337.16[Vis] ^{-0.855} (R ² = 0.8692), and 685 [PM _{2.5}] = 248.6[Vis] ^{-0.852} (R ² = 0.8279), respectively. It is found that visibility decreases with the 686 concentration of PM _{2.5} in a power function with a negative exponent, and the inverse relationship	679	Fig.7 (b) provides a scatter plot of PM _{2.5} and visibility (Vis) color-coded with relative humidity
681particles and relative humidity. For a better understanding of the relationship between the variables,682we have performed a linear fit of the visibility with the PM2.5 concentration when RH \leq 70%, 70%683 \leq RH \leq 80%, and 80% \leq RH \leq 90%, to find out the relationship among these factors, and the fitting684curves are [PM2.5] = 366.72[Vis] ^{-0.745} (R ² = 0.7196), [PM2.5] = 337.16[Vis] ^{-0.855} (R ² = 0.8692), and685[PM2.5] = 248.6[Vis] ^{-0.852} (R ² = 0.8279), respectively. It is found that visibility decreases with the686concentration of PM2.5 in a power function with a negative exponent, and the inverse relationship	680	(RH). Previous research has shown that visibility has a good correlation with the concentrations of
682 we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH \leq 70%, 70% 683 $\langle \text{RH} \leq 80\%$, and $80\% \langle \text{RH} \leq 90\%$, to find out the relationship among these factors, and the fitting 684 curves are $[\text{PM}_{2.5}] = 366.72[\text{Vis}]^{-0.745}$ (R ² = 0.7196), $[\text{PM}_{2.5}] = 337.16[\text{Vis}]^{-0.855}$ (R ² = 0.8692), and 685 $[\text{PM}_{2.5}] = 248.6[\text{Vis}]^{-0.852}$ (R ² = 0.8279), respectively. It is found that visibility decreases with the 686 concentration of PM _{2.5} in a power function with a negative exponent, and the inverse relationship	681	particles and relative humidity. For a better understanding of the relationship between the variables,
$ \frac{\langle \text{RH} \leq 80\%, \text{ and } 80\% \langle \text{RH} \leq 90\%, \text{ to find out the relationship among these factors, and the fitting}}{(1000)} \\ \frac{\langle \text{RH} \leq 80\%, \text{and } 80\% \langle \text{RH} \leq 90\%, \text{to find out the relationship among these factors, and the fitting}}{(1000)} \\ \frac{\langle \text{RH} \leq 80\%, \text{and } 80\% \langle \text{RH} \leq 90\%, \text{to find out the relationship among these factors, and the fitting}}{(1000)} \\ \frac{\langle \text{RH} \leq 80\%, \text{and } 80\% \langle \text{RH} \leq 90\%, \text{to find out the relationship among these factors, and the fitting}}{(1000)} \\ \frac{\langle \text{RH} \leq 80\%, \text{and } 80\% \langle \text{RH} \leq 90\%, \text{to find out the relationship among these factors, and the fitting}}{(1000)} \\ \frac{\langle \text{RH} \leq 80\%, \text{and } 80\% \langle \text{RH} \leq 90\%, \text{to find out the relationship among these factors, and the fitting}}{(1000)} \\ \frac{\langle \text{RH} \leq 80\%, \text{RH} \leq 90\%, \text{RH} \approx 90\%, \text{RH} $	682	we have performed a linear fit of the visibility with the PM _{2.5} concentration when RH \leq 70%, 70%
684 curves are $[PM_{2.5}] = 366.72[Vis]^{-0.745}$ (R ² = 0.7196), $[PM_{2.5}] = 337.16[Vis]^{-0.855}$ (R ² = 0.8692), and 685 $[PM_{2.5}] = 248.6[Vis]^{-0.852}$ (R ² = 0.8279), respectively. It is found that visibility decreases with the 686 concentration of PM _{2.5} in a power function with a negative exponent, and the inverse relationship	683	\leq RH \leq 80%, and 80% \leq RH \leq 90%, to find out the relationship among these factors, and the fitting
$[PM_{2.5}] = 248.6[Vis]^{-0.852} (R^2 = 0.8279), respectively. It is found that visibility decreases with the concentration of PM_{2.5} in a power function with a negative exponent, and the inverse relationship$	684	curves are $[PM_{2.5}] = 366.72[Vis]^{-0.745}$ (R ² = 0.7196), $[PM_{2.5}] = 337.16[Vis]^{-0.855}$ (R ² = 0.8692), and
686 <u>concentration of PM_{2.5} in a power function with a negative exponent, and the inverse relationship</u>	685	$[PM_{2.5}] = 248.6[Vis]^{-0.852}$ (R ² = 0.8279), respectively. It is found that visibility decreases with the
	686	concentration of PM _{2.5} in a power function with a negative exponent, and the inverse relationship

between visibility and aerosols concentrations as well as relative humidity has also been discussed
in previous studies based on the observations in YRD (e.g., Deng et al., 2011; Xiao et al., 2011;
Jiang et al., 2018). The correlation is stronger than that in Lin'an, a rural site not far from Nanjing
(Jiang et al., 2018). With an increase in the PM_{2.5} concentrations, visibility decreases exponentially
(Fig.7 (b)), because t<u>T</u>he concentrations of particles would increase scattered and absorption
extinction coefficients, while the visibility (Vis) is related to the coefficients through:

$$693 \quad Vis = \frac{3.91}{\sigma} \tag{138}$$

694 where V_{is} is the visibility and σ is the extinction coefficient (EC) (Larson et.al, 1989). As for the 695 effect of relative humidity (RH) on the visibility, according to Mie theory, with the increase of the 696 relative humidity, the radius of the wet particle also increases, and so does the extinction coefficient, 697 which leads to the decrease in visibility-increases. Therefore, the visibility decrease. Moreover, when RHS 80%, the effect of particle concentrations on visibility could become smog, and when 698 699 $80\% < \text{RH} \le 90\%$, the effect could form smog and fog at the same time. Thus, we performed a linear 700 fit of the visibility with differing concentrations of $PM_{2.5}$ when $RH \le 70\%$, $70\% < RH \le 80\%$, and 701 $80\% < \text{RH} \le 90\%$, to find out the relationship among these factors. Although there is no precipitation, 702 there are still water droplets in the air when RH >90%, which become fog. Therefore, we eliminated 703 those data. It is found that the fitting curves are as follows: $[PM_{2.5}] = 366.72[Vis]^{-0.745}$ (R² = 0.7196),

704
$$[PM_{2.5}] = 337.16[Vis]^{-0.855}$$
 (R² = 0.8692), and $[PM_{2.5}] = 248.6[Vis]^{-0.852}$ (R² = 0.8279).

705

According to the scatter plots of PM_{2.5}–O₃ and BC–O₃ color-coded with air temperature (Fig.8),
 PM_{2.5} and BC are negatively correlated with O₃ in general. To figure out the interaction between
 particles and O₃, we give scatter plots of PM_{2.5}–O₃ and BC–O₃ (Fig.8), in which data points are

709	color-coded with air temperature. Overall, particulate matters and black carbon are negatively
710	correlated with O_{37} It is also noticeable that a negative correlation between $PM_{2.5}$ and O_3 could be
711	found for low air temperature samples while a positive correlation exists for those under a high
712	temperature. Similar results were also found at a rural site in Nanjing (Ding et al., 2013b). Besides,
713	BC is in a negative correlation with O ₃ under low air temperature, but tend less-correlated with O ₃
714	when the temperature rises. $PM_{2.5}$ is well-correlated with O_3 precursors, such as NO_x (Fig.10 (b))
715	and CO. Therefore, the anti-correlation in Fig.8 (a) for cold air is likely due to the titration effect of
716	high NO concentrations associated with high primary PM _{2.5} levels. And Additionally, the increasing
717	slope under
718	secondary fine particles associated with high concentrations of O3, which may be related
719	toespecially the high conversion rate of SO ₂ to sulfate under the effect of high concentrations of
720	oxidants (Khoder, 2002O3) and solar radiation (Roberts and Friedlander, 1976; Khoder, 2002).
721	Previous studies of PM _{2.5} chemical compositions in Shanghai and Nanjing (Wang et al., 2002, 2006)
722	and Nanjing (Ding et al., 2013b) suggested that sulfate was the most dominate ion in PM _{2.5} . Ding et
723	al. (2013b) also suggested formation of secondary organic aerosols with high O_3 concentration could
724	lead to the positive correlation because biogenic emission of VOCs is high under a condition of high
725	air temperature and solar radiation in summer. However, the study is performed during cold seasons
726	when air temperature is relatively lower and the biogenic emission of VOCs are likely lower, so the
727	positive correlation is less pronounced. As for BC, it also shows a good correlation with NO_x (Fig.10
728	(c)) and CO, which contributes to the inverse correlation for cold air. Since black carbonBC is
729	insoluble in polar and non-polar solvents and remains stable when air or oxygen is heated to $350 \sim$
730	400°C, it's hard-it cannot to be generated nor cleared through chemical reactions. And that is

731	probably the reason why Thus, when air temperature rises, the correlation between BC and O ₃
732	becomes is obscurer compared to the one between $PM_{2.5}$ and O_3 when air temperature rises.
733	Moreover, as shown in Fig.9, O ₃ is well correlated with UV (daily averages are used due to the
734	remarkable diurnal variation), suggesting the significant role UV plays in O ₃ production, while
735	PM _{2.5} is generally negatively correlated with UV. Previous findings based on various numerical
736	models also suggest that particles can affect actinic flux of UV radiation, and inhibit the photolysis
737	reactions near surface in reducing the photolysis frequencies in the atmosphere, like the frequency
738	of $O_3 \rightarrow O(^1D)$ (e.g., Li et al., 2005; Deng et al., 2010; Li et al., 2011; Li et al., 2018). In central
739	Nanjing, as implied in Li et al. (2017), high concentrations of aerosols could result in a 0.1-5.0 ppb
740	(12.0%) reduction of near-surface O ₃ . Thus, they might result in the decrease of O ₃ concentration
741	near the ground to some degree. because particulates inhibit the photolysis reactions near the surface,
742	reducing the photolysis frequencies in the atmosphere, and resulting in the decrease of O_3
743	concentrations near the ground, which is also addressed using the chemical transport model (HANK)
744	(Li et al., 2005). It is noticeable that a negative correlation could be found for low air temperature
745	samples while a pronounced positive correlation existed for high temperature data points. The
746	negative correlation for cold air is mainly due to the titration effect of high NO concentrations,
747	which was associated with high primary PM2.5 in the cold seasons as well. And the positive
748	correlation for high air temperature is related to the formation of secondary fine particles associated
749	with high concentrations of O ₂ , which may be related to high conversion rate of SO ₂ to sulfate under
750	high concentrations of oxidants (Khoder, 2002). Previous studies of PM _{2.5} chemical compositions
751	in Shanghai and Nanjing (Wang et al., 2002, 2006) suggested that sulfate was the most dominate
752	ion in PM _{2.5} -However, Tthe detailed mechanisms still need to be further investigated addressed by

753 long-term measurement of aerosol chemical composition combined with numerical models. Since 754 black carbon is insoluble in polar and non-polar solvents and remains stable when air or oxygen is 755 heated to 350 ~ 400°C, it cannot be generated nor cleared through chemical reactions. Thus, when 756 air temperature rises, the correlation between BC and O₃ becomes obscurer compared to the one 757 between PM2.5 and O3.

758

759 Scatter plots of CO–NO_x, PM_{2.5}–NO_x, and BC–NO_x, are given in Figs. 910 (a)–9(c), with data 760 points color-coded with concentrations of O_3 . Fig. 9-10 (b) and 9(c) show a good positive correlation 761 between $PM_{2.5}$ and NO_x , as well as BC and NO_x as mentioned above, suggesting that the particles 762 at the site in Nanjing University Gulou Campus wereare mainly associated with combustion sources 763 (Wang et al., 2006; Ding et al., 2013b; Zhuang et al., 2014b)., which is also the reason for the 764 negative correlation between particles and O3-. It is found that high O3 levels are generally associated 765 related with to air masses of high CO/NO_x or particles/NO_x ratio_{τ}. An increase in CO, as well as $PM_{2.5}$ and BC, always results in higher O₃ concentration for NO_x lower than 40 ppb, while NO_x 766 767 reverses. and when NO_{*} concentrations was lower than 40 ppb, an increase in CO or particular 768 matter concentrations would cause a sharp increase in O₃ concentrations while NO_{*} reverses. To be specific, when NO_x reduces for CO lower than 1500 ppb, O₃ has a sharp increase, and an increase 769 770 in the CO level would lead to an in increase in the O_3 concentration, especially when NO_x is lower 771 than 40 ppb. The concentration of O_3 is sensitive to the level of its precursors, and the O_3 formation regime often includes NO_x-sensitive O₃ formation regime and VOCs-sensitive O₃ formation regime. 772 773 If O_3 formation is under VOC-sensitive regime, a reduction in the NO_x concentration will lead to an increase in the O_3 concentration, which is used to determine the O_3 photochemical production in the 774

775	region is VOC-limited or NOx-limited based on observation data (Geng et al., 2008; Ding et al.,
776	2013b). In our study, we have no VOCs measurement, thus CO is chosen as the reference tracer,
777	because mixing ratios of CO showed significant correlations with the measured levels of most
778	anthropogenic VOCs, which has been verified in many previous studies (e.g., Baker et al., 2008;
779	von Schneidemesser et al., 2010; Wang et al., 2014). In addition, as a significant precursor of O ₃ ,
780	CO also plays a similar role as VOCs. HO ₂ produced from the oxidation reaction of CO with OH
781	radicals could initiate photochemical reactions which result in the net formation of O ₃ (Novelli et
782	al., 1998; Atkinson et al., 2000; Gao et al., 2005). Thus, the CO-O3-NOx relationship may reflect
783	the correlation of VOCs, NOx, and O3 in this region to some degree. And we suggest that the region
784	is VOC-sensitive. As discussed in Atkinson et.al (2000), volatile organic compounds (VOCs)
785	generally have good correlation with CO and play a role similar to CO in the photochemical ozone
786	production. Particles also have good correlation with CO, so the particles -O ₃ -NO _* relationship may
787	indicate a VOC-sensitive regime of O3-formation in this region, as the CO-O3-NO* relationship.
788	Geng et al. (2008) reported a VOC-sensitive regime in Shanghai combining the measured and
789	modeling resultsby using measured and modeling results, and Ding et al. (2013b) also reported a
790	VOC-sensitive regime in rural area in Nanjing using the observation data. And the PM _{2.5} -O ₃ -NO _x
791	and BC-O ₃ -NO _x relationship show the similar pattern, possibly because they are well-correlated
792	with CO.

Correlations of PM_{2.5}-O₃ in daytime when UV radiation is relatively strong and nighttime when UV
 radiation is approximately 0 are shown in Fig.10. It is found that the correlation is better with a
 clearer tendency and O₃ are higher during daytime, suggesting strong photochemistry progresses
797during daytime. Some data in the nighttime plots show relatively high O_3 . Most occurred in798September and February when O_3 -concentrations were extremely high. It is also found that some799show relatively high NOx associated with relatively low $PM_{2.5}$. After a further backward trajectories800analysis (Section 3.4), we found that these data are most likely corresponded to air masses coming801from the nearby and northwest in November and December, which may contain high NOx plumes802and transport to Nanjing during nighttime.

803 3.4 Backward Trajectories Analysis

804 The cluster means of the backward trajectories trajectory at 100 m from Gulou, Nanjing, in 2016 805 fall (Fig.11) and winter (Fig. 13) suggest different air flows that were transported to Nanjing from 806 long distances. In general, the aerosol kinds and optical properties are characterized differently with 807 different air masses in the two seasons, which are further analyzed by their origins in SON and DJF 808 (Figs.12 and 14). Figs. 12 and 14 show the main concentrations of particles and trace gases, the ratio 809 of $PM_{2.5}$ to PM_{10} , as well as the values of the aerosol optical properties of different clusters during 810 SON and DJF, respectively. Because PM₁₀ varyies similarly to PM_{2.5}, while NO_x varies similarly 811 to NOy, we only show the variations of PM2.5 and NOy with cluster with cluster here. Also, because σ_a , σ_{ts} and σ_{bs} AAC, SC and Bsp have good correlations with particle concentrations (Zhuang 812 813 et al., 2014a) and g Asp is greatly affected by relative humidity (RH), we discuss the variation of α_{ts} and ω_0 SAE and SSA with cluster here. 814 Most of air masses came from the oceans in fall (40 %, cluster 4 in Fig. 11) and from the north and 815

815 Most of air masses came from the oceans in fail (40 %, cluster 4 in Fig. 11) and from the north and 816 north-west of China in winter (49 %, clusters 1 and 4 in Fig. 13). Although air masses came from 817 north in both fall (cluster 4) and winter (cluster 4), the trajectory cluster in fall came from the oceans

818	more than the one in winter. In winter, considerable air masses arriving at the site were also from
819	places near Nanjing (35%, cluster 2 in Fig. 13). Therefore, the aerosol kinds and optical properties
820	at the study site are characterized differently with different air masses in the two seasons, which are
821	further analyzed by their origins in SON and DJF (Figs.12 and 14).

Figs. 12 and 14 show the main concentrations of particles and trace gases, the ratio of $PM_{2,s}$ -to PM_{105} as well as the values of the aerosol optical properties of different clusters during SON and DJF, respectively. Because PM_{10} vary similarly to $PM_{2,s}$, while NO_{*} varies similarly to NO_{y} , we only show the variations of $PM_{2,s}$ and NO_{y} with cluster here. Also, because AAC, SC and Bsp have good correlations with particle concentrations (Zhuang et al., 2014) and Asp is greatly affected by relative humidity (RH), we discuss the variation of SAE and SSA with cluster here.

829

830 In SON, the dominant air masses are from the East China Sea (passing through urban agglomeration 831 regions (cluster 3), and less-developed regions (cluster 2) of the YRD, and from northern continent 832 away from Nanjing (cluster 4) (passing through oceans and urban agglomeration regions (cluster 833 4)). It is found that although air masses in cluster 3, cluster 4 and cluster 2 all pass through the 834 oceans and have the same level of relative humidity (RH), differences still exist among the clusters. 835 The air masses have to cross the urban agglomeration (from Shanghai to Nanjing) of YRD when 836 they arrive inbefore arriving in Nanjing in cluster 3 but past-pass less-developed regions (north Jiangsu Province) in cluster 4 and cluster 2. In YRD, emissions of the aerosols and trace gases are 837 838 much stronger in urban agglomeration regions than those in other areas (Zhang et al., 2009; Zhuang 839 et al., 2013). It is also noticeable that concentrations of aerosols in cluster 4 are mostly lower, which

840	may result from its avoidance from BTH regions, also a megacities and urban agglomeration. In
841	addition, air masses from the west of cluster 1 contain the highest concentrations levels of particulate
842	matterPMs and precursors, CO and NOy, which Air masses may result from crossing pass central
843	China with high emissions of CO-particles and precursors according to MERRA data
844	(https://gmao.gsfe.nasa.gov/reanalysis/MERRA). Particulate matter and NOy mainly have the same
845	sources as CO, _according to MERRA data (https://gmao.gsfc.nasa.gov/reanalysis/MERRA) and
846	Zhuang et al. (2018), and hAlso, high concentrations of these aerosols are also reflected in a high
847	AOD according to the MISR data_(https://giovanni.gsfc.nasa.gov/giovanni). Zhuang et al. (2015)
848	also suggested that high emission occurred in central China. As for the ratio of PM2.5 to PM10, the
849	ratio represents the amountnumber of particles deriving from secondary pollution progress
850	compared to those from primary pollution progress to some extent. In SON, ratios of clusters 1~3
851	are relatively close (all over 60%) with a maximum of cluster 3, Clusters 1-3 had relatively similar
852	ratios in SON, all over 60% except cluster 4, with the maximum of cluster 3, which means particles
853	derivinggenerating from secondary pollution progress in the three clusters have a similar rate. O ₃
854	concentrations among the four4 cluster were different. Despite negative correlations of O_3 with its
855	precursors and particles, the concentrations of O_3 in cluster 3 was higher than in cluster 4, possibly
856	because radiation in cluster 3 is strongeras UV in cluster 3 was higher that in cluster 4. The size of
857	the aerosols in cluster 1 were finest (α_{ts} <u>SAE</u> is the largest in Fig. 12g), because the other three
858	clusters all pasted through oceans before arriving Nanjing, are more humid going through
859	oceans with higher relative humidity (RH), making it easier for particles' hygroscopic growth. ω_0
860	SSA is also the largest in cluster 1, which means aerosols in cluster 1 are more scattering.

861 (<u>https://giovanni.gsfc.nasa.gov/giovanni</u>). Zhuang et al. (2015) also suggested that high emission

862	occurred in central China. As for the ratio of PM2.5 to PM10, the ratio represents the amount of
863	particles deriving from secondary pollution progress compared to those from primary pollution
864	progress. Clusters 1-3 had relatively similar ratios in SON, all over 60% except cluster 4, with the
865	maximum of cluster 3, which means particles deriving from secondary pollution progress in the
866	three elusters have a similar rate. O3-concentrations among the four cluster were different. Despite
867	negative correlations of O_3 with its precursors and particles, the concentrations of O_3 in cluster 3
868	was higher than in cluster 4, as UV in cluster 3 was higher that in cluster 4. The size of the acrosols
869	in cluster 1 were finest (SAE is the largest in Fig. 12g), because the other three clusters all pasted
870	through oceans before arriving Nanjing, with higher relative humidity (RH), making it easier for
871	particles' hygroscopic growth. SSA is also the largest in cluster 1, which means acrosols in cluster
872	1-are more scattering.

874 In DJF, the air masses come from the local region were from the places near Nanjing (cluster 2), 875 north-west areasnorthern continent away from Nanjing (cluster 1), and northern regionsnorthern 876 continent away far from Nanjing passing through oceans and urban agglomeration regions (cluster 877 4). Air masses from cluster 1 and cluster 2 both account for over 30% of the total aerosol 878 characteristics and are more polluted with relatively high levels of particles, CO, and NOx. Air 879 masses in cluster 1 come from Shandong Province while those in cluster 2 come from local areas. Particles and trace gases concentrations of cluster 2 are higher than those of cluster 1 to some extent, 880 881 implying the severer air pollution problem in YRD region. This is different from that in SON. 882 Therefore, besides what has been discussed of cluster 3 and cluster 4 in SON, it is found that air 883 masses from cluster 1 and cluster 2 both account for over 30% of the total characteristics of the

884	aerosol optical properties and are main sources of pollutants in DJF (particles, CO, and NO _* are
885	higher in Fig.14). Air masses in cluster 1 came from Shandong Province while those in cluster 2
886	came from areas nearby. Particles and trace gases concentrations of cluster 2 are higher than those
887	of cluster 1 to some extent, which may result from the severer pollution in southern YRD than in
888	Shandong Province. The concentrations of O ₃ , similar to that in SON, is affected by radiation
889	besides precursors levels. Thus, O ₃ concentration in cluster 2 is a little higher than that in cluster 1.
890	was affected by the UV (O_3 concentrations in cluster 2 is a little higher than that in cluster 1 in
891	Fig.14). The ratios of $PM_{2.5}$ to PM_{10} of cluster 1 and cluster 2 are approximately equal in DJF, over
892	70%. The size of aerosols in cluster 1 and 2 are <u>coarser</u> , <u>however</u> , <u>probably due to the higher RH</u>
893	(over 65%).finer without passing through oceans, so SAE are larger (Fig.12g). Aerosols in cluster
894	1 are scatter to some extent compared to those in cluster 2. <u>The trajectories of cluster 3 and cluster</u>
895	4 are analogous to those in SON, respectively, but more polluted, probably due to more emissions
896	in DJF especially in north China and weaker flow from ocean in DJF.
897	

3.5 Case Study

- For further understanding of the causes for high pollutants episodes, especially high particulate and
 O₃ episodes, detailed analysis of a typical episode from 2016 December 3-6 is presented in this
 section. we choose a typical episode from 2016 December 3-6 for a detailed analysis.
- Fig.15 (a) and (b) show that high O₃ concentrations (over 80 ppb) occurred on December 4 with

905	broad O ₃ peaks (over 60 ppb) in the following days, while the average O ₃ during the cold seasons
906	was 37.7 ppb. Though there is a lack of particulate matter concentrations because of the instrument
907	breakdown, we could see the high concentrations of particulate matter PMs might possibly occur
908	<u>referring to-from</u> the relatively high $\underline{\sigma_e} \stackrel{\text{EC}}{=}$ value (over 500 Mm ⁻¹) and BC concentrations (over 6
909	μ g/m ³) on December 4th, <u>and bB</u> oth <u>PMs</u> reach a maximum on December 5th (PM _{2.5} over 200
910	$\mu g/m^3$ and PM_{10} over 300 $\mu g/m^3),$ over 3 times of the average concentrations. Besides, $NO_x,$ $NO_y,$
911	have reached high levels since December 4th (NO _x over 70 ppb and NO _y over 100 ppb). It is also
912	noticeable that ω_0 SSA has a relatively sharp decrease from December 4th, especially on December
913	5th when particle concentrations were extremely high, representing probably suggesting that the
914	ratio of PM ₁₀ became higher. Meanwhile, a relatively sharp increase occurred in α_{ts} -SAE, without
915	any obvious variation in α_a AAE, though, which shows implying that scattering aerosols could take
916	the leading role during this episode.are the main components. It is also found that this case occurred
917	under calm conditions before the passage of a cold front, which was at-in the front of a continental
918	high pressure system originating from Mongolia and sweeping over Nanjing (Fig.15 (c)),)). and
919	And the decrease in temperature with high pressure system dominating eastern China were wes also
920	detected on December 6th. Backward trajectories-trajectory analysis for the past 96 hours (Fig.15
921	(d)) were-was_conducted for-from_December 5th at 8-pm20:00 LT, for-including_the maximum
922	concentrations of O ₃ on December 4th and particulate matterPMs on December 5th, which It is
923	suggested that predominant wind was just in time from the NW directions. Therefore, air masses
924	with high particles and O_3 concentrations would be transported to Nanjing, which were It was also
925	clearly detected in Nanjing during these days, such as the relatively high O3 during nighttime on
926	December 5 <u>th</u> and 6 <u>th</u> . The highest O_3 <u>concentration</u> on December 4 <u>th</u> together with high particles

927	and primary pollutants NO _x and NO _y suggests a strong in situ photochemical production in mixed
928	regional plumes under the influence of high-the high-pressure system. Previous studies (Luo et al.,
929	2000; Wang et al., 2006; Ding et al., 2013b) Guo et al. (2009) reported that the anticyclonic
930	conditions, e.g., sunny weather and low wind velocities, are favorable for pollution accumulation
931	and O ₃ production. Results in this case clearly demonstrate sub-regional transport of primary and
932	secondary air pollutants within the YRD region under such weather system.

933 4. Conclusion

934	
935	In this study, particles (BC and PMs) and trace gases (O ₃ and related precursors) in polluted seasons,
936	are investigated based on continuous measurements of concentrations and optical properties in the
937	urban area of Nanjing. The characteristics and underlying reasons are comprehensively discussed
938	from perspectives of temporal variations, inter-species correlations, trajectories analysis, and case
939	studies associated with weather data and Lagrangian dispersion modeling.
940	In this paper, an overview of particles and O3 concentrations, together with trace gases, during 2016
941	the cold seasons in urban Nanjing, China, has been presented based on continuous measurements
942	of aerosols concentrations and optical properties at the Gulou site. The particles, O3 and trace gases
943	concentrations are comprehensively characterized from perspectives of temporal variations, inter-
944	species correlations, trajectories analysis, and case studies based on weather data and Lagrangian
945	dispersion modeling.
946	

947 Measurements show that average concentrations of PM₁₀ was 86.3 µg/m³, with BC and PM_{2.5}

948	accounting for 3% and 67%, respectively. 48 and 14 days of PM _{2.5} and PM ₁₀ exceeded NAAQS-CN,
949	respectively. The results suggested that both BC and PMs levels in Nanjing have decreased because
950	of energy conservation since 2014. The average concentration of O ₃ was 37.7 ppb with 40 days of
951	exceedance. Precursor concentrations, including CO, NO _x and NO _y , averaged 753, 28.4, and 28.6
952	ppb, respectively. Contrast to particles, O ₃ concentration has increased in urban Nanjing, implying
953	a severer pollution in rural area and entire YRD region. All the aerosols have substantially monthly
954	and diurnal variations. Both particles and precursors reached maximum values in December and
955	minimum values in October due to higher emission and less precipitation. O ₃ showed a peak in
956	September because of stronger radiation. Diurnal variations of BC and PMs were similar with peaks
957	around 7:00~9:00 and 22:00~0:00 LT. Both of the peaks were influenced by traffic emissions in
958	rush hours and accumulation of air pollution especially at night-time. The peaks of PMs often
959	occurred 1~ 2 h later than those of BC, possibly due to the production of secondary particles.
960	Precursors and particles varied similarly in time, and the diurnal variation of O ₃ was analogous to
961	that of radiation with peak around 15:00 LT.
962	Measurements show that hourly mean particle concentrations, including BC, PM _{2.5} , and PM ₁₀ at
963	Gulou site, Nanjing, China, are $2.602 \pm 1.720 \ \mu g/m^3$, $58.2 \pm 36.8 \ \mu g/m^3$, and $86.3 \pm 50.8 \ \mu g/m^3$,
964	respectively, with ranges of 0.064-15.608 µg/m ³ , 0.8-256.2 µg/m ³ , and 1.1-343.4 µg/m ³ ,
965	respectively. During the six months, 48 and 14 days when PM2.5 and PM10, respectively, exceeded
966	Class II NAAQS. Measurements also showed that hourly mean O ₃ -concentrations in urban Nanjing
967	ranged from 0.2 to 235.7 ppb, with average concentrations of 37.7 ± 33.5 ppb. There were 40 days
968	excess of O ₃ during the period, suggesting a severe air pollution problem in the region.
1	

970	PM _{2.5} has a quasi-power-law distribution with Vis under RH of different ranges. The correlation is
971	stronger than that in a rural region in YRD, implying greater effects of air pollution on visibility in
972	urban Nanjing. O_3 shows an anti-correlation with NO_x generally, but it tends to be positive with a
973	relatively high temperature and low level of NOx. PM2.5 and BC are overall negatively correlated
974	with O_3 . A positive correlation between $PM_{2.5}$ and O_3 exists under high temperatures, while it is not
975	found in BC-O ₃ correlation. The negative correlation is related to the titration effect of high NO
976	concentration, which is highly correlated with particles due to similar emission sources. And the
977	negative correlation between PM _{2.5} and UV suggests particles could decrease actinic flux of
978	radiation, and thus inhibit the photolysis reactions near surface to degrees. The positive correlation
979	implies the formation of secondary aerosols under the effects of the high concentrations of oxidants
980	and solar radiation. BC is hard to be generated through chemical reactions, which might explain
981	why the correlation between BC and O ₃ is obscurer when temperature rises. An increase in CO, as
982	well as PM _{2.5} and BC, always results in higher O ₃ concentration, while NO _x reverses, which
983	indicates a VOC-sensitive regime for photochemical production of O ₃ in urban Nanjing.
984	
985	The correlation analysis shows a negative PM _{2.5} Vis correlation as well as RH, both of which would
986	promote the extinction coefficient. Negative O3-NOy correlation occurs when temperature is
987	relatively low but the correlation becomes weaker when temperature becomes higher. PM _{2.5} -O ₃ -T
988	correlations reveal the formation of secondary aerosols, especially fine particulate matter under high

990 PM_{2.5}-NO_y-O₃ correlations suggest that a VOC-sensitive regime for photochemical production of
991 O₃ in urban Nanjing.

989

O3 concentration and temperature conditions, while BC O3 T correlations not. CO NOy O3 and

993	Backward trajectories indicate that Nanjing could be affected by local air flow (35% in DJF) and
994	long-distance air flows mostly from western (11% in SON), northwestern (31% in DJF), northern
995	(up to 50 % in SON and DJF), eastern (40% in SON and 17% in DJF). Considerable air pollution
996	in the urban area of Nanjing is due to local and sub-regional emissions. Basically, air masses from
997	the oceans and remote or less-developed areas are relatively clean with low aerosols concentrations
998	α_{ts} at the site is usually low when the relative humidity of air masses is high, possibly suggesting
999	the increased hygroscopicity and more secondary aerosols production under higher RH.
1000	The backward trajectory analysis suggests that the prevailing winds in Nanjing were from the north
1001	and east during the cold seasons in 2016. Air masses that are either from the east without passing
1002	through the urban agglomeration and from northern without crossing BTH regions were clean with
1003	low pollution concentrations. In contrast, air masses from local regions were polluted in winter
1004	suggesting a severe air quality problem in YRD region. SAE and SSA were further studied
1005	indicating that particles from oceans were coarser and less scattering because the airmasses were
1006	under high RH condition and less secondary pollutants were produced.
1007	

1014	Overall, this work highlights the interactions and mechanisms of various aerosols and metrological
1015	fields besides the important environmental impact from human activities and meteorological
1016	conditions in the urban area in YRD region. Considering both results in this study and previous
1017	work, it is suggested that collaborative control measures among different administrative regions are
1018	urgently needed including but not limited to energy conservation and reduction of pollution
1019	emissions to improve air quality in the western part of YRD region.
1020	

- 1021 Data availability. The automobile numbers and GDP are from <u>http://www.njtj.gov.cn/</u>. Satellite CO
- 1022 data are available at: <u>https://gmao.gsfc.nasa.gov/reanalysis/MERRA</u>. The aerosols AOD data are
- 1023 available at: https://giovanni.gsfc.nasa.gov/giovanni. The Lagrangian dispersion model Hybrid
- 1024 Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was supplied by NOAA:
- 1025 <u>http://ready.arl.noaa.gov/HYSPLIT_traj.php</u>. The meteorological data for HYSPLIT are accessible
- 1026 from <u>ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1</u>.
- 1027

1028 Acknowledgements: This work was supported by the National Key R&D Program of China

1029 (2017YFC0209803, 2014CB441203, 2016YFC0203303), the National Natural Science

- 1030 Foundation of China (41675143, 91544230, 41621005). The authors would like to thank all
- 1031 members in the AERC of Nanjing University for maintaining instruments.

1032

1033 References:

Allen, R. J., Sherwood, S. C., Norris, J. R., and Zender, C.S.: Recent Northern Hemisphere tropical
expansion primarily driven by black carbon and tropospheric ozone, Nature, 485,

doi:10.1038/nature11097, 350-353, 2012.

- Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563
 integrating nephelometer, Aerosol Sci. Tech., 29, 57–69, 1998.
- An, J., Zou, J., Wang, J., Lin, X., Zhu, B., 2015. Differences in ozone photochemical characteristics
 between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China.
 Environ. Sci. Pollut. Res. 22, 19607–19617.
- Andrews, E., Sheridan, P. J., Fiebig, M., McComiskey, M., Ogren, J. A., Arnott, P., Covert, D.,
 Elleman, R., Gasparini, R., Collins, D., Jonsson, H., Schmid, B., and Wang, J.: Comparison of
 methods for deriving aerosol asymmetry parameter, J. Geophys. Res., 111, D05S04,
 doi:10.1029/2004JD005734, 2006.
- 1046 Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., and Ogren, J. A.: Towards aerosol
- 1047 light-absorption measurements with a 7-wavelength aethalometer: evaluation with a
- 1048 photoacoustic instrument and 3-wavelength nephelometer, Aerosol Sci. Technol., 39, 17–29,
- 1049 doi:10.1080/027868290901972, 2005.
- 1050 Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos.Environ., 34, 2063-2101,
- 1051 doi:10.1016/S1352-2310(99)00460-4, 2000.
- 1052 Badarinath, K. V. S., Kharol, S. K., Chand, T. R. K., Parvathi, Y. G., Anasuya, T., and Jyothsna, A.
- 1053 N.: Variations in black carbon aerosol, carbon monoxide and ozone over an urban area of
 1054 Hyderabad, India, during the forest fire season, Atmos. Res., 85(1), 18–26, 2007.
- 1055 Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi, S., Simpson, I. J., Blake,
- 1056 D. R., Rowland, F. S.: Measurements of nonmethane hydrocarbons in 28 United States cities,
- 1057 <u>Atmos. Environ., 2008, 42(1): 170–182.</u>
- 1058 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M.

1059	G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C.,
1060	Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda,
1061	S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P.,
1062	Shindell, D., Storlvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon
1063	in the climate system: A scientific assessment, J. Geophys. Res.: Atmos., 118, 5380-5552,
1064	doi:10.1002/jgrd.50171, 2013.
1065	Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, JH., and Klimont, Z.: A technology-
1066	based global inventory of black and organic carbon emissions from combustion, J. Geophys.
1067	Res., 109(D14), D14203, doi:10.1029/2003jd003697, 2004.
1068	Castro, T., Madronich, S., Rivale, S., Muhlia, A., and Mar, B.: The influence of aerosols on
1069	photochemical smog in Mexico City, Atmos. Environ., 35, 1765–1772, 2001.
1070	Chameides, W.L., Bergin, M., 2002. Soot takes center stage. Science 297 (5590), 2214-2215.
1071	Chameides, W. L., Li, X., Tang, X., Zhou, X., Luo, C., Kiang, C. S., John, J. St., Saylor, R. D., Liu,
1072	S. C., Lam, K. S., Wang, T., and Giorgi, F.: Is ozone pollution affecting crop yields in China,
1073	Geophys. Res. Lett., 26, 867–870, 1999b.
1074	Chameides, W. L., Yu, H., Liu, S. C., Bergin, M., Zhou, X., Mearns, L., Wang., G., Kiang, C. S.,
1075	Saylor, R. D., Luo, C., Huang, Y., Steiner, A., and Giorgi, F.: Case study of the effects of
1076	atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in
1077	China through emission controls?, PNAS, 96, 13626–13633, 1999a.
1078	Chen, T.; He, J.; Lu, X.W.; She, J.F.; Guan, Z.Q. Spatial and Temporal Variations of PM2.5 and Its
1079	Relation to Meteorological Factors in the Urban Area of Nanjing, China. Int. J. Environ. Res.
1080	Public Health 2016, 13, 921.

1081	Cheung, V.T.F., Wang, T., 2001. Observational study of ozone pollution at a rural site in the Yangtze
1082	Delta of China. Atmos. Environ. 35, 4947–4958.
1083	Chow, J. C., Watson, J. G., Lowenthal, D. H., Chen, LW. A., Motallebi, N.: PM2.5 source profiles
1084	for black and organic carbon emission inventories. Atmospheric Environment, 2011, 45(31):
1085	<u>5407-5414.</u>
1086	Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H.,
1087	Henzing, J. S., Jennings, S. G., Moerman, M., Petzold, A., Schmid, O., and Baltensperger, U.:
1088	Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five
1089	correction algorithms, Atmos. Meas. Tech., 3, 457-474, doi:10.5194/amt-3-457-2010, 2010.
1090	Deng, J.J., Wang, T.J., Liu, L., Jiang, F.: Modeling heterogeneous chemical processes on aerosol
1091	surface. Particuology 8 (4), 308-318, 2010.
1092	Deng, J., Wang, T., Jiang, Z., Xie, M., Zhang, R., Huang, X., Zhu, J., 2011. Characterization of
1093	visibility and its affecting factors over Nanjing, China. Atmospheric Research 101, 681-691.
1094	Chan, C.K., Yao, X., 2008. Air pollution in mega cities in China. Atmos. Environ. 42, 1–42.
1095	Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H.,
1096	Henzing, J. S., Jennings, S. G., Moerman, M., Petzold, A., Schmid, O., and Baltensperger, U.:
1097	Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five
1098	correction algorithms, Atmos. Meas. Tech., 3, 457-474, doi:10.5194/amt-3-457-2010, 2010.
1099	Crutzen P. 1973. A discussion of the chemistry of some minor constituents in the stratosphere and
1100	troposphere[J]. Pure Appl. Geophys., 106-108 (1): 1385-1399, doi: 10.1007/BF00881092.
1101	Deng, J.J., Wang, T.J., Liu, L., Jiang, F.: Modeling heterogeneous chemical processes on acrosol
1102	surface. Particuology 8 (4), 308-318, 2010.
1103	Derwent, R. G., Ryall, D. B., Jennings, S. G., Spain, T. G., and Simmonds, P. G.: Black carbon
1104	aerosol and carbon monoxide in European regionally polluted air masses at Mace Head,

- 1105 Ireland during 1995–1998, Atmos. Environ., 35(36), 6371–6378, 2001.
- 1106 Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Zheng, L. F., Xie, Y. N., Herrmann, E., Nie, W.,
- 1107 Petaja, T., Kerminen, V. -M., and Kulmala, M.: Ozone and fine particle in the western Yangtze
- 1108 River Delta: an overview of 1 yr data at the SORPEs station, Atmos. Chem. Phys., 13, 5813–
- 1109 5830, 2013b.
- Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT 4 modeling system for trajectories
 dispersion and deposition, Aust. Meteoro. Mag., 47, 295–308, 1998.
- 1112 Draxler, R.R. and Rolph, G.D. (2013) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated
- 1113 Trajectory) Model Access Via NOAA ARL READY Website, NOAA Air Resources 1114 Laboratory, Silver Spring, MD [online].
- 1115 Eichler, H., Cheng, Y. F., Birmili, W., Nowak, A., Wiedensohler, A., Brüggemann, E., Gnauk, T.,
- 1116 Herrmann, H., Althausen, D., Ansmann, A., Engelmann, R., Tesche, M., Wendisch, M., Zhang, Y.
- 1117 H., Hu, M., Liu, S., and Zeng, L. M.: Hygroscopic properties and extinction of aerosol particles at
- 1118 ambient relative humidity in South-Eastern China, Atmos. Environ., 42, 25, 6321-6334.
- 1119 <u>doi:10.1016/j.atmosenv.2008.05.007, 2008.</u>
- Gao, J., Wang, T., Ding, A., and Liu, C.: Observational study of ozone and carbon monoxide at the
 summit of mount Tai (1534 m a.s.l.) in central-eastern China. Atmos. Environ.39, 4779–4791,
- 1122 2005.
- 1123 Geng, F.H., Tie, X.X., Xu, J.M., Zhou, G.Q., Peng, L., Gao, W., Tang, X., Zhao, C.S.:
- 1124Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. Atmos. Environ.112542, 6873–6883, 2008.
- 126 Gong, W., Zhang, T.H., Zhu, Z.M., Ma, Y.Y, Ma, X., Wang, W.: Characteristics of PM1.0, PM2.5

1127	and PM10 and their relation to black carbon in Wuhan, central China. Atmosphere, 2015, 6(9):
1128	<u>1377-1387.</u>
1129	Guo, H., Wang, T., Simpson, I., Blake, D., Yu, X., Kwok, Y., et al., 2004b. Source contributions to
1130	ambient VOCs and CO at a rural site in eastern China. Atmos. Environ. 38, 4551-4560.
1131	Han, S., 2011. Analysis of the relationship between O3, NOandNO2 in Tianjin, China. Aerosol Air
1132	Qual. Res.
1133	Huang, F., Li, X., Wang, C., Xu, Q., Wang, W., Luo, Y., Tao, L., Gao, Q., Guo, J., Chen, S.: PM2.5
1134	spatiotemporal variations and the relationship with meteorological factors during 2013-2014 in
1135	Beijing, China. PLoS ONE 2015, 10, e0141642.
1136	Huang, X., Li, M., Li, J., Song, Y.: A high-resolution emission inventory of crop burning in fields
1137	in China based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment, 2012,
1138	<u>50:9-15.</u>
1139	Huang, X. X., Wang, T. J., Jiang, F., Liao, J. B., Cai, Y. F., Yin, C. Q., Zhu, J. L., Han, Y., 2013.
1140	Studies on a severe dust storm in East Asia and its impact on the air quality of Nanjing, China.
1141	Aerosol Air Qual. Res. 13, 179e193.
1142	Jacobson, M.Z., 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly
1143	the most effective method of slowing global warming. Journal of Geophysical Research 107
1144	(D19), 4410.
1145	Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis rate coefficient and
1146	temperature profiles over an urban airshed, J. Geophys. Res., 103, 10593-10604,
1147	doi:10.1029/9 5 8JD00287, 1998.
1148	Jennings, S. G., Spain, T. G., Doddridge, B. G., Maring, H., Kelly, B. P., and Hansen, A. D. A.:
1149	Concurrent measurements of black carbon aerosol and carbon monoxide at Mace Head, J.
1150	Geophys. ResAtmos., 101(D14), 19447–19454, 1996.
1151	Jennings, S. G., Spain, T. G., Doddridge, B. G., Maring, H., Kelly, B. P., and Hansen, A. D. A.:
1152	Concurrent measurements of black carbon aerosol and carbon monoxide at Mace Head, J.

- 1153 <u>Geophys. Res. Atmos., 101(D14), 19447–19454, 1996.</u>
- 1154 Jerrett, M., Finkelstein, M. M., Brook, J. R., Arain, M. A., Kanaroglou, P., Stieb, D. M., Gilbert, N.
- 1155 L., Verma, D., Finkelstein, N., Chapman, K. R., and Sears, M. R.: A Cohort Study of Traffic-
- 1156 Related Air Pollution and Mortality in Toronto, Ontario, Canada. Environmental Health
- 1157 <u>Perspectives, 2009, 117(5):772-777.</u>
- Jiang, J., Zheng, Y.F., Liu, J.J., and Fan, J.J.: Observational research on planetary boundary layer
 by lidar over Nanjing city. Environ. Sci. Technol. 37, 22–27 (in Chinese), 2014.
- Jiang, L., Zhang, Z. F., Zhu, B., Shen, Y., Wang, H. L., Shi, S. S., Sha, D. D.: Comparison of
 parameterizations for the atmospheric extinction coefficient in Lin'an, China. The Science of the
 total environment., 2018, 621. 507-515. 10.1016/j.scitotenv.2017.11.182.
- 1163 Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature
- 1164 2002, 419, 215–223.
- 1165 Kristjánsson, J.E., 2002. Studies of the aerosol indirect effect from sulfate and black carbon aerosols.
 1166 Journal of Geophysical Research 107 (D15), 4246.
- 1167 Khoder, M. I.: Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide
- 1168 to particulate nitrate and gaseous nitric acid in an urban area, Chemosphere, 49, 675–684, 2002.
- 1169 Kristjánsson, J.E., 2002. Studies of the aerosol indirect effect from sulfate and black carbon aerosols.
- 1170 Journal of Geophysical Research 107 (D15), 4246.
- 1171 Kumar, R., Barth, M.C., Madronich, S., Naja, M., Carmichael, G.R., Pfister, G.G., Knote, C.,
- 1172 Brasseur, G.P., Ojha, N., Sarangi, T., 2014. Effects of dust aerosols on tropospheric chemistry
- during a typical pre-monsoon season dust storm in northern India. Atmos. Chem. Phys. 14,
- 1174 6813-6834.
- 1175 Lal, S., Naja, M., and Subbaraya, B.H.: Seasonal variations in surface ozone and its precursors over

an urban site in India. Atmos. Environ. 34, 2713-2724, 2000.

1177	Lam, K.S., Wang, T.J., Chan, L.Y., Wang, T., and Harris, J.: Flow patterns influencing the seasonal
1178	behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong. Atmos.
1179	Environ. 35, 3121–3135, 2001.
1180	Larson, S.M., and Cass, G.R.: Characteristics of summer midday low-visibility events in the Los
1181	Angeles area. Environmental Science & Technology. 23-281, 1989.
1182	Liao, H., Seinfeld, J.H., 2005. Global impacts of gas-phase chemistry aerosol interactions on direct
1183	radiative forcing by anthropogenic aerosols and ozone. Journal of Geophysical Research 110,
1184	D18208.
1185	Li, G.H., Zhang, R.Y., and Fan, J.W.: Impacts of black carbon aerosol on photolysis and ozone. [J].
1186	Journal of Geophysical Research. Vol. 110, D23206, doi:10.1029/2005JD005898, 2005.
1187	Li, J., Bo, Y., Xie, S.: Estimating emissions from crop residue open burning in China based on
1188	statistics and MODIS fire products. Journal of Environmental Sciences, 2016, 44:158-167.
1189	Li, J., Wang, Z., Wang, X., Yamaji, K., Takigawa, M., Kanaya, Y., Pochanart, P., Liu, Y., Irie, H.,
1190	Hu, B., Tanimoto, H., and Akimoto, H.: Impacts of aerosols on summertime tropospheric
1191	photolysis frequencies and photochemistry over Central Eastern China, Atmos. Environ., 45,
1192	1817–1829, doi:10.1016/j.atmosenv.2011.01.016, 2011.
1193	Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Chen, P.: Agricultural fire impacts on ozone
1194	photochemistry over the Yangtze River Delta region, East China. Journal of Geophysical
1195	Research: Atmospheres, 2018.
1196	Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Chen, P.: Impacts of aerosol-radiation feedback on
1197	local air quality during a severe haze episode in Nanjing megacity, eastern China, Tellus B:
1198	Chemical and Physical Meteorology, 2017, 69(1):1339548.

1199 Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K. B., Lu, Z. F., Ohara, T., Song, Y., Streets, D.

1200	G., Carmichael, G. R., C	Cheng, Y. F., Hong	g, C. P., Huo, H., J	Jiang, X. J., Kan	g, S., Liu, F., Su, H.,

- 1201 Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international
- 1202 collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 2017, 17, 935–963.
- 1203 Lin,W., Xu, X., Ge, B., Zhang, X., 2009. Characteristics of gaseous pollutants at Gucheng, a rural
 1204 site southwest of Beijing. J. Geophys. Res. Atmos. 114, D00G14.
- Lin, W., Xu, X., Zhang, X., Tang, J., 2008. Contributions of pollutants from North China Plain to
 surface ozone at the Shangdianzi GAW Station. Atmos. Chem. Phys. 8, 5889–5898.
- 1207 Liu, P. F., Zhao, C. S., Gobel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., et al.: Hygroscopic

1208 properties of aerosol particles at high relative humidity and their diurnal variations in the North

1209 China Plain, Atmos. Chem. Phys., 3479–3494, doi:10.5194/acp-11-3479-2011, 2011.

- 1210 Luo, C., St. John, J. C., Zhou, X. J., Lam, K. S., Wang, T., and Chameides, W. L.: A nonurban
- 1211 ozone air pollution episode over eastern China: Observation and model simulation, J. Geophys.
- 1212 Res., 105, 1889–1908, 2000.
- Ma, J.Z., Xu, X.B., Zhao, C.S., Yan, P., 2012. A review of atmospheric chemistry research in China:
 photochemical smog, haze pollution, and gas-aerosol interactions. Adv. Atmos. Sci. 29, 1006–
 1215 1026.
- Mcgowan, H. and Clark, A.: Identification of dust transport pathways from Lake Eyre, Australia
 using Hysplit, Atmos. Environ., 42, 6915–6925, 2008.
- 1218 Meng, Z.Y., Xu, X.B., Yan, P., Ding, G.A., Tang, J., Lin, W.L., et al., 2009. Characteristics of trace

gaseous pollutants at a regional background station in Northern China. Atmos.Chem. Phys. 9,
927–936.

- Ministry of Environmental Protection of China (MEP), Ambient air quality standards (GB 3095– 2012), 12 pp., China Environmental Science Press, Beijing, 2012.
- 1223 Müller, T., Laborde, M., Kassell, G., and Wiedensohler, A.: Design and performance of a three-
- 1224 wavelength LED-based total scatter and backscatter integrating nephelometer, Atmos. Meas.

Tech., 4, 1291–1303, doi:10.5194/amt-4-1291-2011, 2011.

1226	Monks, P.S., Archibald, A.T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier,
1227	C., Law, K.S., Mills, G.E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser,
1228	E., Sommariva1, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors
1229	from the urban to the globalscale from air quality to short-lived climate forcer, Atmos. Chem.
1230	Phys., 15, 8889-8973, doi:10.5194/acp-15-8889-2015, 2015.
1231	Tropospheric ozone and its precursors (PDF Download Available). Available from:
1232	https://www.researchgate.net/publication/278623484_Tropospheric_ozone_and_its_precursors_fr
1233	om_the_urban_to_the_global_scale_from_air_quality_to_short-lived_climate_forcer#pf1_
1234	[accessed Jun 24 2018].
1235	Novelli, P.C., Masarilea, K. A., Lang, P.M.: Distributions and recent changes of carbon monoxide
1236	in the lower troposphere. Journal of Geophysical Research Atmospheres, 1998, 103(D15).
1237	Pan, X.L., Kanaya, Y., Wang, Z.F., Liu, Y., Pochanart, P., Akimoto, H., Sun, Y.L., Dong, H.B., Li,
1238	J., Irie, H., Takigawa, M., 2011. Correlation of black carbon aerosol and carbon monoxide in
1239	the high-altitude environment of Mt. Huang in Eastern China. Atmospheric Chemistry and
1240	Physics 11, 9735-9747.
1241	Petzold, A., Kopp, C., and Niessner, R.: The dependence of the specific attenuation cross-section
1242	on black carbon mass fraction and particle size, Atmos. Environ., 31, 661–672, 1997.
1243	Qian, L., Yan, Y., and Qian, J.M.: An Observational Study on Physical and Optical Properties of
1244	Atmospheric Aerosol in Autumn in Nanjing [J]. Meteorological and Environmental Research
1245	2014, 5(2): 24 – 30 <u>.</u>
1246	Roberts, P. T., Friedlander, S. K.: Analysis of sulfur in deposited aerosol particles by vaporization
1247	and flame photometric detection. Atmospheric Environment, 1976, 10(5), 403-408.
•	

- 1248 Sassen, K., 2002. Indirect climate forcing over the western US from Asian dust storms. Geophys..
 1249 Res. Lett. 29.
- Schleicher, N., Cen, K., Norra, S.: Daily variations of black carbon and element concentrations of
 atmospheric particles in the Beijing megacity Part 1: General temporal course and source
 identification. Chemie der Erde Geochemistry, 2013, 73(1):51-60.
- 1253 Schmid, O., Artaxo, P., Arnott, W. P., Chand, D., Gatti, L. V., Frank, G. P., Hoffer, A., Schnaiter,
- 1254 M., and Andreae, M. O.: Spectral light absorption by ambient aerosols influenced by biomass
- 1255 burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement
- 1256 techniques, Atmos. Chem. Phys., 6, 3443–3462, doi:10.5194/acp-6-3443-2006, 2006.
- 1257 <u>Shao, M., Tang, X., Zhang, Y., Li, W., 2006. City clusters in China: air and surface water pollution.</u>
 1258 <u>Front. Ecol. Environ. 4, 353–361.</u>
- 1259 Shen, G. F., Yuan, S. Y., Xie, Y. N., Xia, S. J., Li, L., Yao, Y. K., Qiao, Y. Z., Zhang, J., Zhao, Q.Y.,
- Ding, A. J.: Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in
 the mega-city, Nanjing, in the western Yangtze River Delta, China. J. Environ. Sci. Health Part A
 2014, 49, 171–178.
- 1263 <u>Shi, C., Wang, S., Liu, R., Zhou, R., Li, D., Wang, W., et al., 2015. A study of aerosol optical</u>
 1264 properties during ozone pollution episodes in 2013 over Shanghai, China. Atmos. Res. 153, 235–
 1265 <u>249.</u>
- Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer,

1268 Atmos. Chem. Phys., 15, 8889–8973, doi:10.5194/acp-15-8889-2015, 2015.

- 1269 Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model
- 1270 for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens.
- 1271 Environ. 2014, 154, 1–7.
- 1272 Spackman, J. R., Schwarz, J. P., Gao, R. S., Watts, L. A., Thomson, D. S., Fahey, D. W., Holloway,

- 1273 J. S., de Gouw, J. A., Trainer, M., and Ryerson, T. B.: Empirical correlations between black
- 1274 carbon aerosol and carbon monoxide in the lower and middle troposphere, Geophys. Res. Lett.,
- 1275 35(19), L19816, doi:10.1029/2008GL035237, 2008.
- 1276 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA'S
- Hysplit Atmospheric Transport and Dispersion Modeling System, Bull. Amer. Meteor. Soc.,
 96, 2059–2077. doi: http://dx.doi.org/10.1175/BAMS-D-14-00110.1, 2016.
- 1279 <u>Streets, D.G., Gupta, S., Waldhoff, S.T., Wang, M.Q., Bond, T.C., Bo, Y.Y., 2001. Black carbon</u>
 1280 <u>emissions in China. Atmospheric Environment 35, 4281-4296.</u>
- 1281 <u>Tegen, I., Schepanski, K.:The global distribution of mineral dust. IOP Conference Series: Earth and</u>
 1282 <u>Environmental Science, 2009, 7:012001.</u>
- 1283 Tu, J., Xia, Z. G., Wang, H. S., and Li, W. Q.: Temporal variations in surface ozone and its
- 1284 precursors and meteorological effects at an urban site in China, Atmos. Res., 85, 310–337, 2007.
- 1285 van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., and Villeneuve, P.
- 1286 J.: Global estimates of ambient fine particulate matter concentrations from satellite-based
- aerosol optical depth: development and application, Environ. Health Perspectives, 118, 847–
 855, 2010.
- 1289 <u>Verma, R.L., Sahu, L.K., Kondo, Y., Takegawa, N., Han, S., Jung, J.S., Kin, Y.J., Fan, S., Sugimoto,</u>
 1290 <u>N., Shammaa, M.H., Zhang, Y.H., Zhao, Y., 2010. Temporal variations of black carbon in</u>
- 1291 <u>Guangzhou, China, in summer 2006. Atmospheric Chemistry and Physics 10, 6471-6485.</u>
- 1 292 Virkkula, A., Makela, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hameri, K., and Koponen, I. K.:
 1 293 A simple procedure for correcting loading effects of aethalometer data, J. Air Waste Manage.,
 1 294 57, 1214 1222, doi:10.3155/1047-3289.57.10.1214, 2007.
- 1295 von Schneidemesser, E., Monks, P. S., and Plass-Duelmer, C.: Global comparison of VOC and CO

1296 observations in urban areas, Atmos. Environ., 2010, 44(39): 5053–5064.

- 1297 Wang, G. H., Huang, L. M., Gao, S. X., Gao, S. T., and Wang, L.S.: Characterization of watersoluble
- 1298 species of PM10 and PM2.5aerosols in urban area in Nanjing, China, Atmos. Environ.,
- 1299 36,1299–1307, 2002.
- Wang, H. L., Zhuang, Y. H., Wang, Y., Sun, Y. L., Yuan, H., Zhuang, G. S., Hao, Z. P.: Long-term
 monitoring and source apportionment of PM 2.5/PM 10 in Beijing, China. Journal of
 Environmental Sciences, 2008, 20(11): 1323-1327.
- 1303Wang, M., Shao, M., Chen, W., Yuan, B., Lu, S., Zhang, Q., Zeng, L., Wang, Q.: A temporally and1304spatially resolved validation of emission inventories by measurements of ambient volatile organic
- 1305 <u>compounds in Beijing, China. Atmos. Chem. Phys., 2014, 14(12): 5871–5891.</u>
- Wang, M.Y., Cao, C.X., Li, G.S., and Singh, R.P.: Analysis of a severe prolonged regional haze
 episode in the Yangtze River Delta, China, Atmos. Environ., 102, 112-121, 2015.
- 1308 <u>Wang, P., Zhao, W.: Assessment of ambient volatile organic compounds (VOCs) near major roads</u>
 1309 <u>in urban Nanjing, China[J]. Atmospheric Research, 2008, 89(3):0-297.</u>
- 1310 Wang, T., Cheung, V.T.F., Anson, M., Li, Y.S., 2001a. Ozone and related gaseous pollutants in the
- boundary layer of eastern China: overview of the recent measurements at a rural site. Geophys.
 Res. Lett. 28, 2373–2376.
- 1313 Wang, T., Cheung, T., Li, Y., Yu, X., Blake, D., 2002. Emission characteristics of CO, NOx, SO2
- 1314 and indications of biomass burning observed at a rural site in eastern China. J. Geophys. Res.-
- 1315 <u>Atmos. 107.</u>
- Wang, T., Poon, C.N., Kwok, Y.H., Li, Y.S., 2003. Characterizing the temporal variability and
 emission patterns of pollution plumes in the Pearl River Delta of China. Atmos. Environ.37,
 3539–3550.
- 1319 Wang, T., Wong, C., Cheung, T., Blake, D., Arimoto, R., Baumann, K., et al., 2004. Relationships
- 1320 of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China,
- 1321 during spring 2001. J. Geophys. Res.-Atmos. 109.

- 1322 Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y.F., Li, L., and Zhang, L.: Ozone pollution in China:
- A review of concentrations, meteorological influences, chemical precursors, and effects.
 Science of the Total Environment., 575, 1582–1596, 2017.
- Wang, T.J., Lam, K.S., Xie, M., Wang, X.M., Carmichael, G., and Li, Y.S.: Integrated studies of a
 photochemical smog episode in Hong Kong and regional transport in the Pearl River Delta of
 China. Tellus Ser. B Chem. Phys. Meteorol. 58, 31–40, 2006.
- 1328 Wang, T. J., Zhuang, B. L., Li, S., Liu, J., Xie, M., Yin, C. Q., Zhang, Y., Yuan, C., Zhu, J. L., Ji,
- 1329 L. Q., and Han, Y.: The interactions between anthropogenic aerosols and the East Asian
- 1330 summer monsoon using RegCCMS. J. Geophys. Res. Atmos., 120,
 1331 doi:10.1002/2014JD022877, 2015.
- 1332 Wang, X., Li, J., Zhang, Y., Xie, S., Tang, X., 2009b. Ozone source attribution during a severe
- 1333 photochemical smog episode in Beijing, China. Sci. China, Ser. B: Chem. 52, 1270–1280.
- 1334 Wang, Y.Q., Stein, A.F., Draxler, R.R., de la Rosa, J.D., amd Zhang, X.Y.: Global sand and dust
- storms in 2008: Observation and HYSPLIT model verification, Atmos. Environ., 45, 63686381, 2011.
- 1337 Wang, Y., Ying, Q., Hu, J., Zhang, H.: Spatial and temporal variations of six criteria air pollutants
 1338 in 31 provincial capital cities in China during 2013–2014. Environment International, 2014,
 1339 73:413–422.
- Wang, Y., Wang, X., Kondo, Y., Kajino, M., Munger, J.W., Hao, J., 2011b. Black carbon and its
 correlation with trace gases at a rural site in Beijing: top-down constraints from ambient
 measurements on bottom-up emissions. Journal of Geophysical Research 116, D24304.
- 1343 Wang, Y., Zhuang, G. S., Zhang, X. Y., Huang, K., Xu, Chang, Tang, A. H., Chen, J. M., and An,
- 1344 Z. S.: The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai,
- 1345 Atmos. Environ., 40, 2935–2952, 2006.

1346	Wang, Z., Li, J., Wang, X., Pochanart, P., Akimoto, H.: Modeling of Regional High Ozone Episode
1347	Observed at Two Mountain Sites (Mt. Tai and Huang) in East China. Journal of Atmospheric
1348	<u>Chemistry, 2006, 55(3):253-272.</u>
1349	Wang, Z., Li, Y., Chen, T., Zhang, D., Sun, F., Pan, L.: Spatial-temporal characteristics of PM2.5 in
1350	Beijing in 2013. Acta Geogr. Sin. 2015, 70, 110–120.
1351	Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and Baltensperger, U.:
1352	Absorption of light by soot particles: determination of the absorption coefficient by means of
1353	aethalometers, J. Aerosol Sci., 34, 1445–1463, doi:10.1016/S0021-8502(03)00359-8, 2003.
1354	Wu, D., Liu, Q., Lian, Y., Bi, X., Li, F., Tan, H., Liao, B., Chen, H., Hazy weather formation and
1355	visibility deterioration resulted from fine particulate (PM2.5) pollutions in Guangdong and
1356	Hong Kong. J. Environ. Sci. Circumst. 2012, 32, 2660-2669.
1357	Wu, D., Wu, C., Liao, B., Chen, H., Wu, M., Li, F., Tan, H., Deng, T., Li, H., Jiang, D., and Yu, J.
1358	Z.: Black carbon over the South China Sea and in various continental locations in South China,
1359	Atmos. Chem. Phys., 13, 12257-12270, doi:10.5194/acp-13-12257-2013, 2013.
1360	Wu, Y.; Guo, J.; Zhang, X.; Tian, X.; Zhang, J.; Wang, Y.; Duan, J.; Li, X. Synergy of satellite and
1361	ground based observations in estimation of particulate matter in eastern China. Sci. Total
1362	Environ. 2012, 433, 20–30.
1363	Xiao, Z., Bi, X., Feng, Y., Wang, Y., Zhou, J., Fu, X., Weng, Y., 2012. Source apportionment of
1364	ambient PM10 and PM2.5 in urban area of Ningbo City. Res. Environ. Sci. (China) 5, 549-
1365	555.
1366	Xiao, Z. M., Zhang, Y. F., Hong, S. M., Bi, X. H., Jiao, L., Feng, Y. C., Wang, Y. Q.: Estimation of
1367	the Main Factors Influencing Haze, Based on a Long-term Monitoring Campaign in Hangzhou,
1368	China. Aerosol & Air Quality Research., 2011, 11, 873-882.
1369	Xie, M., Zhu, K.G., Wang, T.J., Chen, P.L., Han, Y., Li, S., Zhuang, B.L., and Shu, L., Temporal

1370	characterization and regional contribution to O3 and NOx at an urban and a suburban site in
1371	Nanjing, China. Science of the Total Environment., 551–552, 533–545, 2016.
1372	Xue, L., Wang, T., Louie, P.K.K., Luk, C.W.Y., Blake, D.R., Xu, Z., 2014a. Increasing external
1373	effects negate local efforts to control ozone air pollution: a case study of Hong Kong and
1374	implications for other Chinese cities. Environ. Sci. Technol. 48, 10769-10775.
1375	Yang, S. J., He, H. P, Lu, S. L., Chen, D., Zhu, J. X.: Quantification of crop residue burning in the
1376	field and its influence on ambient air quality in Suqian, China. Atmospheric Environment,
1377	<u>2008,42(9):1961-1969.</u>
1378	Yan, S.; Cao, H.; Chen, Y.; Wu, C.; Hong, T.; Fan, H. Spatial and temporal characteristics of air
1379	quality and air pollutants in 2013 in Beijing. Environ. Sci. Pollut. Res. 2016, 23, 1-12.
1380	Yin, S., Wang, X.F, Xiao, Y., Tani, H., Zhong, G.S., Sun, Z.Y.: Study on spatial distribution of crop
1381	residue burning and PM2.5 change in China. Environmental Pollution, 2016, 220(Pt A):204-221.
1382	Yang, Y., Liu, X., Qu, Y., Wang, J., An, J., Zhang, Y., Zhang, F.: Formation mechanism of
1383	continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmos.
1384	Res. 155, 192–203, 2015.
1385	Yan, P., Tang, J., Huang, J., Mao, J. T., Zhou, X. J., Liu, Q., Wang, Z. F., and Zhou, H. G.: The
1386	measurement of aerosol optical properties at a rural site in Northern China, Atmos. Chem.
1387	Phys., 8, 2229 2242, doi:10.5194/acp-8-2229-2008, 2008.
1388	Yi, R., Wang, YL., Zhang, YJ., Shi, Y., Li, MS., 2015. Pollution characteristics and influence
1389	factors of ozone in Yangtze River Delta. Acta Sci. Circumst. 35, 2370–2377 (in Chinese).
1390	Yu, J., Wang, W., Zhou, J., Xu, D., Zhao, Q., He, L., 2015. Analysis of pollution characteristics and
1391	sources of PM2.5 in winter of Ningbo City. Environ. Sci. Technol. (China) 8, 150–155.
1392	Zhang, Q., Streets, D.G., Carmichael, G.R., He, K.B., Huo, H., Kannari, A., Klimont, Z., Park, I.S.,
1393	Reddy, S., Fu, J.S., Chen, D., Duan, L., Lei, Y., Wang, L.T., Yao, Z.L., 2009. Asian emissions
1394	in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 9, 5131–5153.

1395	Zhang, Y. H., Hu, M., Zhong, L. J., Wiedensohler, A., Liu, S. C., Andreae, M. O., Wang, W., Fan, S.
1396	J.: Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-
1397	PRD2004): overview. Atmos. Environ. 42, 6157-6173, 2008.
1398	Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S.L., Zhang, Y.M., Sun, T.Y., 2012.
1399	Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature,
1400	regional haze distribution and comparisons with global aerosols. Atmospheric Chemistry and
1401	<u>Physics 12, 779-799.</u>
1402	Zhang, X.Y., Wang, Y.Q., Zhang, X.C., Guo, W., Gong, S.L., 2008. Carbonaceous aerosol
1403	composition over various regions of China during 2006. Journal of Geophysical Research 113,
1404	<u>D14111.</u>
1405	Zhang, Y. L., Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5,
1406	<u>14884.</u>
1407	Zhang, Y., Shao, K., Tang, X., 1998. The study of urban photochemical smog pollution in China.
1408	Acta Scientiarum Naturalium-Universitatis Pekinensis 34, 392-400.
1409	Zheng, J., Zhong, L., Wang, T., Louie, P.K.K., Li, Z., 2010. Ground-level ozone in the Pearl River
1410	Delta region: analysis of data from a recently established regional air quality monitoring
1411	network. Atmos. Environ. 44, 814–823.
1412	Zhang, Y.H., Hu, M., Zhong, L.J., Wiedensohler, A., Liu, S.C., Andreae, M.O., Wang, W., Fan,
1413	S.J.: Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-
1414	PRD2004): overview. Atmos. Environ. 42, 6157-6173, 2008.
1415	Zhu, J. L., Wang, T. J., Talbot, R. H., Mao, H. T., Hall, C. B., Yang, X. Q., Fu, C. B., Zhuang, B.
і 1416	L., Li, S., Han, Y., Huang, X., 2012. Characteristics of atmospheric Total Gaseous Mercury
1417	(TGM) observed in urban Nanjing, China. Atmospheric Chemistry and Physics 12, 12103- 63

1418 12118.

- 1419 Zhuang, B.L., Liu, L., Shen, F.H., Wang, T.J., Han, Y., 2010. Semidirect radiative forcing of
- 1420 internal mixed black carbon cloud droplet and its regional climatic effect over China. Journal
- 1421 of Geophysical Research 115, D00K19.
- 1422 Zhuang, B.L., Liu, Q., Wang, T.J., Yin, C.Q., Li, S., Xie, M., Jiang, F., Mao, H.T., 2013.
- Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol
 over China. Theoretical and Applied Climatology 114, 651-672.
- 1425 Zhuang, B. L., Li, S., Wang, T. J., Deng, J. J., Xie, M., Yin, C. Q., and Zhu, J. L.: Direct radiative
- 1426 forcing and climate effects of anthropogenic aerosols with different mixing states over China, 1427 Atmos. Environ., 79, 349–361, doi:10.1016/j.atmosenv.2013.07.004, 2013b.
- 1428 Zhuang, B. L., Li, S., Wang, T. J, Liu, J., Chen, H. M., Chen, P. L., Li, M. M., Xie, M.: Interaction
 1429 between the Black Carbon Aerosol Warming Effect and East Asian Monsoon Using RegCM4.
 1430 Journal of Climate, 2018, 31(22):9367-9388.
- 1431 Zhuang, B. L., Wang, T. J., Liu, J., Li, S., Xie, M., Han, Y., Chen, P. L., Hu, Q. D., Yang X.Q., Fu,
- 1432 C. B., and Zhu, J. L.: The surface aerosol optical properties in the urban area of Nanjing, west
- 1433
 GTH River Delta, China. Atmos. Chem. Phys., 17, 1143–1160, doi:10.5194/acp-17-1143

 1434
 2017, 2017.
- 1435 <u>Zhuang, B. L., Wang, T. J., Liu, J., Li, S., Xie, M., Yang, X. Q., Fu, C. B., Sun, J. N., Yin, C. Q.,</u>
 1436 <u>Liao, J. B., Zhu, J. L., and Zhang, Y.: Continuous measurement of black carbon aerosol in urban</u>
 1437 <u>Nanjing of Yangtze River Delta, China, Atmos. Environ., 89, 415–424, 2014b.</u>
- 1438 Zhuang, B. L., Wang, T. J., Liu, J., Ma, Y., Yin, C. Q., Li, S., Xie, M., Han, Y., Zhu, J. L., Yang,
- 1439 X. Q., and Fu, C. B.: Absorption coefficient of urban aerosol in Nanjing, west Yangtze River
 1440 Delta, China, Atmos. Chem. Phys., 15, 13633–13646, doi:10.5194/acp-15-13633-2015, 2015.
 1441 Zhuang, B. L., Wang, T. J., Li, S., Liu, J., Talbot, R., Mao, H. T., Yang, X. Q., Fu, C. B., Yin, C. Q.,
 - 64

1442 Zhu, J. L., Che, H. Z., and Zhang, X. Y.: Optical properties and radiative forcing of urban aerosols
 1443 in Nanjing, China, Atmos. Environ., 83, 43–52, 2014a.

1444 Figure Caption

- 1445 Fig 1. Time series of the concentrations of PM₁₀, PM_{2.5}, and BC from September 2016 to February
- 1446 2017 at Gulou site, Nanjing, China.
- 1447 Fig 2. Seasonal variations of (a) BC, (b) PM_{2.5}, and (c) PM₁₀. Red markers represent the monthly
- 1448 averages at Gulou site, Nanjing, China.
- 1449 Fig 3. 6-month mean diurnal variations of BC, PM_{2.5}, and PM₁₀ at Gulou site, Nanjing, China from
- 1450 September 2016 to February 2017.
- 1451 Fig.4 Time series of particles from September 2016 to February 2017 at Gulou site.
- 1452 Fig 5. Seasonal variations of (a) O₃, (b) NO_x, (c) CO, and (d) NO_y. The 10, 25, 50, 75, and 90%
- 1453 percentile values of each are shown in black, and red markers represent the monthly averages.
- 1454 Fig 6. 6-month mean diurnal variations of (a) trace gases and (b) UV (ultra-violate radiation) at
- 1455 Gulou site from September 2016 to February 2017.
- 1456 Fig 7. Scatter plots of (a) O₃-NO_x color-coded with air temperature (T) and (b) PM_{2.5}-Vis color-
- 1457 coded with relative humidity (RH).
- 1458 Fig 8. Scatter plots of (a) PM_{2.5}-O₃ and (b) BC-O₃ color-coded with air temperature (T).
- 1459 Fig 9. Scatter plots of (a) O₃-UV and (b) PM_{2.5}-UV color coded with O₃.Fig 10. Scatter plots of (a)
- 1460 CO-NO_x, (b) $PM_{2.5}$ -NO_x, and (c) BC-NO_x color-coded with O₃.
- 1461 Fig 11. Clusters of 96 h back trajectories arriving at the study site at 100 m in 2016 fall.
- 1462 Fig 12. The 10, 25, 50, 75, and 90% percentile values in each cluster of back trajectories in 2016

- 1463 fall of (a) BC, (b) PM_{2.5}, (c) PM_{2.5}/PM₁₀, (d) CO, (e) O₃, (f) NO_y, (g) α_{ts} , and (h) ω_0 . Black
- 1464 markers represent the averages.
- 1465 Fig 13. Clusters of 96 h back trajectories arriving at the study site at 100m in 2016 winter.
- 1466 Fig 14. The 10, 25, 50, 75, and 90% percentile values in each cluster of back trajectories in 2016
- 1467 winter of (a) BC, (b) PM_{2.5}, (c) PM_{2.5}/PM₁₀, (d) CO, (e) O₃, (f) NO_y, (g) α_{ts} , and (h) ω_0 . Black
- 1468 markers represent the averages.
- 1469 Fig 15. Time series during December 3-6, 2016, for (a) PM_{2.5}, BC and O₃ with associated
- 1470 meteological parameters, trace gases and (b) optical parameters. Red markers represent O₃ over
- 1471 daily maximum average during winter. Weather charts on (c) 4th and (d) 5th December. (f) 96h
- 1472 backward trajectories analysis ending at 1200 UTC on 5th December
- 1473
- 1474
- 1475

Table

Table 1 Measurem	ents at Gulou site.
------------------	---------------------

Measurement		Instrument	Resolution
	T (°C)	Thermo Instruments, THOM 1405-DF	
	P (atm)	Thermo Instruments, THOM 1405-DF	
Meteorological	RH (%)	Thermo Instruments, THOM 1405-DF	
parameters	Rainfall (mm)		
	Vis (m)	Visibility Meter, GSN-1	
	UV (W/m ²)		
	BC (ng/m ³)	Aethalometer, Model AE-31	1 ng/m ³
Particles	PM _{2.5} (µg/m ³)	Thermo Instruments, THOM 1405-DF	$0.1 \mu g/m^3$
	PM ₁₀ (µg/m ³)	Thermo Instruments, THOM 1405-DF	$0.1 \mu g/m^3$
	CO (ppb)	Thermo Instruments, TEI 48i	1 ppb
Cascous pollutant	NO _x (ppb)	Thermo Instruments, TEI 42i	0.4 ppb
Gaseous pollutant	NO _y (ppb)	Thermo Instruments, TEI 42iY	0.4 ppb
	O ₃ (ppb)	Thermo Instruments, TEI 49i	0.01 ppb
	SC (Mm ⁻¹)	Nephelometer, Aurora 3000	10 ⁻³ Mm ⁻¹
Optical parameters	BSP (Mm ⁻¹)	Nephelometer, Aurora 3000	10 ⁻³ Mm ⁻¹
	AAC (Mm ⁻¹)	Aethalometer, Model AE-31	10 ⁻³ Mm ⁻¹

1482Table 2 Statistics of general meteorological parameters at Gulou site for the 6-month period

September 2016~ February 2017.

	Temp	Pres	RH	Rainfall	Vis	UV
Month	(°C)	(hPa)	(%)	(mm)	(km)	(W/m^2)
Sep	24.88	996.97	69.41	2.34	11.84	10.36
Oct	18.37	1003.01	85.01	3.12	9.07	5.28
Nov	12.36	1007.87	77.15	1.19	8.99	5.67
Dec	8.74	1010.53	70.33	0.81	7.61	5.03
Jan	6.49	1010.89	70.65	0.59	9.23	4.94
Feb	7.72	1009.65	59.99	0.45	10.24	7.04

Table 3 Statistics of the three particles during the study period at Gulou site, Nanjing, China

	SON	DJF	Cold seasons		
	Mean \pm STD	Mean \pm STD	Mean \pm STD	Maximum	Minimum
BC (µg/m³)	2.126 ± 1.457	3.083 ± 1.827	2.602 ± 1.720	15.609	0.064
$PM_{2.5} (\mu g/m^3)$	43.1 ± 25.4	73.2 ± 40.0	58.2 ± 36.8	256.2	0.8
$PM_{10} (\mu g/m^3)$	67.6 ± 39.1	105.0 ± 54.0	86.3 ± 50.8	343.4	1.1

Table 4 Statistics of trace gases during the study period

	SON	DJF	Cold seasons		
	Mean \pm STD	Mean \pm STD	Mean \pm STD	Maximum	Minimum
CO (ppb)	753 ± 353	950 ± 388	851 ± 384	2852	176
NO _x (ppb)	21.4 ± 13.4	25.6 ± 15.5	23.5 ± 14.7	80.0	2.7
NO _y (ppb)	28.6 ± 20.5	37.0 ± 23.1	32.8 ± 22.3	158.4	3.6
O ₃ (ppb)	42.3 ± 40.1	33.1 ± 24.4	37.7 ± 35.5	235.7	0.2

1494 Table 5 Statistics of maximum and number of exceedances of O₃ and PM_{2.5} compared with the

National Ambient Air Quality Standards in China.

_				
	Aerosol	Mean \pm STD (µg/m ³)	Max (µg/m³)	N.o.E.
	PM _{2.5}	58.2 ± 36.8	256.2	48
	PM_{10}	86.3 ± 50.8	343.4	14
	O ₃	80.8 ± 71.8	235.7	37

1496 N.o.E. of $PM_{2.5}$ accounts for days with 24 h average over 75 μ g/m³. N.o.E. of PM_{10} accounts for days

1497 with 24 h average over 150 μ g/m³. N.o.E of O₃ accounts for days with maximum 8 h average exceed

1498 160 μg/m³.

Table 6 Statistics of aerosols at Gulou site with and without rainfall for the 6-month period

With Rainfall			Without Rainfall			
Aerosols	Mean ± STD	Maximum	Minimum	Mean ± STD	Maximum	Minimum
BC (µg/m ³)	1.676 ± 1.261	8.256	0.064	2.723 ± 1.735	15.608	0.211
$PM_{2.5}(\mu g/m^3)$	31.2 ± 27.6	218.4	1.2	61.9 ± 36.3	256.2	0.8
$PM_{10}(\mu g/m^3)$	54.3 ± 44.8	307.3	3.9	89.1 ± 47.3	319.6	4.5
CO (ppb)	659 ± 240	2194	176	876 ± 392	2852	228
NO _x (ppb)	20.4 ± 12.7	75.5	2.9	23.9 ± 14.9	80	2.7
NO _y (ppb)	25.2 ± 16.8	110.3	3.6	33.8 ± 22.8	158.4	5.2
O ₃ (ppb)	22.3 ± 17.1	81.7	0.3	39.7 ± 34.6	235.7	0.2

September 2016~ February 2017

1512 Figures

1515Fig 1. Time series of (a) concentrations and (b) optical properties of PM10, PM2.5, and BC from1516September 2016 to February 2017 at Gulou site, Nanjing, China.

1519 Fig 2. Seasonal variations of (a) BC, (b) PM_{2.5}, and (c) PM₁₀. Red markers represent the monthly

averages at Gulou site, Nanjing, China.

1521

1522 Fig 3. 6-month mean diurnal variations of BC, PM_{2.5}, and PM₁₀ at Gulou site, Nanjing, China

1523

from September 2016 to February 2017

1525 Fig.4 Time series of particles from September 2016 to February 2017 at Gulou site.

1526

1528 Fig 5. Seasonal variations of (a) O_3 , (b) NO_x , (c) CO, and (d) NO_y . The 10, 25, 50, 75, and

1529 90% percentile values of each are shown in black, and red markers represent the monthly

1530

averages.

1533 Fig 6. 6-month mean diurnal variations of (a) trace gases and (b) UV (ultra-violate radiation) at

1534

1532

Gulou site from September 2016 to February 2017.

1535

1536

1537 Fig 7. Scatter plots of (a) O₃-NO_x color-coded with air temperature (T) and (b) PM_{2.5}-Vis color-

1538 coded with relative humidity (RH).

1541 Fig 8. Scatter plots of (a) PM_{2.5}-O₃ and (b) BC-O₃ color-coded with air temperature (T).

Fig 9. Scatter plots of (a) O₃-UV and (b) PM_{2.5}-UV color coded with O₃.

Fig 10. Scatter plots of (a) CO-NO_x, (b) PM_{2.5}-NO_x, and (c) BC-NO_x color-coded with O₃.

1550 Fig 11. Clusters of 96 h back trajectories arriving at the study site at 100 m in 2016 fall.

1558 Fig 12. The 10, 25, 50, 75, and 90% percentile values in each cluster of back trajectories in 2016

1559 fall of (a) BC, (b) PM_{2.5}, (c) PM_{2.5}/PM₁₀, (d) CO, (e) O3, (f) NO_y, (g) α_{ts} , and (h) ω_0 . Black 1560 markers represent the averages.

1561

1563 Fig 13. Clusters of 96 h back trajectories arriving at the study site at 100m in 2016 winter.

Fig 15. Time series during December 3-6, 2016, for (a) PM2.5, BC and O3 with associated 1578

1579 meteological parameters, trace gases and (b) optical parameters. Red markers represent O3 over

daily maximum average during winter. Weather charts on (c) 4th and (d) 5th December. (f) 96h 1580

1581 backward trajectories analysis ending at 1200 UTC on 5th December.