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Figure S1: A example of offline radiative transfer calculation showing the effect of BBA on Irradiances. This was
calculated using the SOCRATES radiative transfer model.
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Figure S2: Showing the Gross primary productivity against the total PAR binned by diffuse fraction (top) and Gross
primary productivity against diffuse fraction binned by Total PAR (bottom) based on simulations from the JULES
model (a and b) and the HaddGEM2-ES model (¢ and d).



Q
(o)
O

4000 4000
1000

= = —— Top Leaf [N] = 15.0 gN/kgC
£ - \; —— Top Leaf [N] = 20.0 gN/kgC
S 2 S5 —— Top Leaf [N] = 25.0 gN/kgC
> 3000/ § 3000 ) Top Leat [N] = 30.0 gN/kgC
= i 2 Z 500 | Top Leaf [N] = 35.0 gN/kgC
S 5 g | Top Leaf [N] = 40.0 gN/kgC
3 3 3 Top Leaf [N] = 45.0 gN/kgC
o s & Top Leaf [N] = 50.0 gN/kgC
5 o z Top Leaf [N] = 55.0 gN/kgC
£ 2000 = 2000 £ Top Leaf [N] = 60.0 gN/kgC
e g £ o0 —— Top Leaf [N] = 65.0 gN/kgC
g 5 3 —— Top Leaf [N] = 70.0 gN/kgC
0] 2 x —— Top Leaf [N] = 75.0 gN/kgC
g & £

kel =

3 1000 1000 % 15

Y -500

| I U SRR | I R SR I...I..I...I\J

400 600 800 1000 400 600 800 1000 400 600 800 1000
Days after 2005-01-01 Days after 2005-01-01 Days after 2005-01-01
(30 days smooth average) (30 days smooth average) (30 days smooth average)

Q
®
—ry

3000 [T .= 3000Q [T 800 Ty

2500 2500 700

2000 2000 600

1500 1500 500

1000 1000 400

Gridbox Gross Primary Productivity annual average [gC/m’/yr]
Gridbox Plant Respiration annual average [gC/m®/yr]
Gridbox Net Primary Productivity annual average [gC/m*/yr]

500 500 300

20 30 40 50 60 70 20 30 40 50 60 70 20 30 40 50 60 70
Top Leaf Nitrogen, N,, [gN.kgC™'] Top Leaf Nitrogen, N, [gN.kgC™] Top Leaf Nitrogen, N, [gN.kgC™']

Figure S3: Time series of GPP (a), Plant Respiration (b) and Net Primary Productivity (c) for the French Guyana site
as simulated by the JULES model for varying Leaf nitrogen concentration at canopy top. Corresponfing annual mean
of GPP (d), Plant Respiration (e) and Net Primary Productivity (f) against Leaf nitrogen concentration at canopy top.
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Figure S4: Showing on a), the annual mean of NPP (filled contour), GPP (red iso-contours) and Plant Respiration
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Figure S5: The tile fraction covered by broadleaf tree (a) and C3 grass (b).
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Figure S8: Multi-year mean Seasonal cycle averaged over central Amazon defined by the coordinates EQ-15°S / 70°W-
53°W, for the (a) GPP, (b) NPP, (c) surface precipitation, (d) surface temperature (c), (¢) full sky (f) and clear-sky short
wave surface radiation. Seasonal cycle for HadGEM2-ES BBAx1 simulation is shown in black, while seasonal cycles
derived from observational dataset are shown in blue. Observational dataset/proxy are taken from FLUXCOM (a),
MODIS 17A2 (b), CRU (¢ and d) and CERES (e and f).
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Figure S9: Mean seasonal cycle of GPP anomalies (a), Plant Respiration, R;,, anomalies (b) and NPP anomalies (c) for
the varying BBA emission scenarios (see text, section 2.2) averaged over the Amazon basin defined by the coordinates
EQ-15°S / 70°W-53°W. Differences are calculated with regards to experiment BBAx0 and represented by the plain
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total cloud fraction (c,d) for August (left) and September (right).
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Figure S11: Showing changes in a) Soil moisture availability, b) vegetation evapotranspiration, c) evaporative
fraction and d) Water Use Efficiency for the varying BBA emissions scenarios averaged over the domain of
analysis defined by the coordinates EQ-15°S/ 70°W-53°W (see text).
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carboxylation of the Rubisco enzyme (Vemax) normalised by the maximum rate at 25°C (Vemax,2s, third row ) for
the reference simulation (BBAx0, a, e, i) and for the simulations that include BBA emissions (respectively, BBAx1,
b.f,j; BBAx2, ¢,g,k and BBAx4, d,h,). VPD and Vemax are calculated using the Collatz et al. (1991, 1992) C3
model and assuming the plant functional type traits of broadleaf trees from HadGEM2-ES (Clark et al., 2011).
Calculations are done ‘a posteriori’ (i.e. offline) using the radiation and the meteorological variables derived
from the 3h history of HadGEM?2-ES instantaneous outputs of the first 8 years of simulation which are sampled
over the domain of analysis during daytime when the surface total radiation is superior to 100 W/n’. As Vemax is
solely a function of leaf temperature, we have represented the theoretical curve (in grey). The size of the circles

in the bottom plots represent the frequency of occurrence of a given temperature value in the dataset sampled
over the domain of analysis defined by the coordinates EQ-15°S/ 70°W-53°W.



