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Abstract. The Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) 65 

programme is an international collaborative project focusing on understanding the sources, processes and 66 

health effects of air pollution in the Beijing megacity. APHH-Beijing brings together leading China and 67 

UK research groups, state-of-the-art infrastructure and air quality models to work on four research themes: 68 

(1) sources and emissions of air pollutants; (2) atmospheric processes affecting urban air pollution; (3) 69 

air pollution exposure and health impacts; and (4) interventions and solutions. Themes 1 and 2 are closely 70 

integrated and support Theme 3, while Themes 1-3 provide scientific data for Theme 4 to develop cost-71 

effective air pollution mitigation solutions. This paper provides an introduction to (i) the rationale of the 72 

APHH-Beijing programme, and (ii) the measurement and modelling activities performed as part of it. In 73 

addition, this paper introduces the meteorology and air quality conditions during two joint intensive field 74 

campaigns - a core integration activity in APHH-Beijing. The coordinated campaigns provided 75 

observations of the atmospheric chemistry and physics at two sites: (i) the Institute of Atmospheric 76 

Physics in central Beijing, and (ii) Pinggu in rural Beijing during 10 November – 10 December 2016 77 

(winter) and 21 May- 22 June 2017 (summer). The campaigns were complemented by numerical 78 

modelling and automatic air quality and low-cost sensor observations in the Beijing megacity. In 79 

summary, the paper provides background information on the APHH-Beijing programme, and sets the 80 

scene for more focussed papers addressing specific aspects, processes and effects of air pollution in 81 

Beijing.    82 

1.  Introduction  83 

Air pollution is one of the largest environmental risks. It is estimated that air pollution has led to 7 84 

million premature deaths per year globally (WHO, 2016a, b) and over a million in China (GBD MAPS 85 
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Working Group, 2016). Air pollution also has significant impact on the healthcare system and 86 

ecosystems, which cost about 0.3% of global GDP (OECD, 2016). Air pollution related sickness also 87 

reduces productivity and severe hazes lead to closure of transport systems, causing additional damage to 88 

the economy. Total economic losses related to China’s PM2.5 (particulate matter with aerodynamic 89 

diameter equal to or less than 2.5 µm) pollution in 2007 amounted to 346 billion Yuan (£39 billion, 90 

approximately 1.1% of the national GDP) based on the number of affected Chinese employees whose 91 

work time in years was reduced because of mortality, hospital admissions and outpatient visits (Xia et 92 

al., 2016). 93 

 94 

Considerable research effort has led to huge progress in understanding the sources and pollution 95 

processes in megacities in western countries, e.g., major interdisciplinary and multi-institutional 96 

programmes in Paris and London in the last few years (Beekmann et al., 2015; Bohnenstengel et al., 97 

2014). Although air pollution in developed megacities sometimes breaks country specific limits and 98 

WHO guidelines, traditional London or Los Angeles type smogs which occurred in the early and mid-99 

20th centuries are rare in developing cities to the same extent. In the developing countries however, the 100 

rush to industrialisation and rapid growth in vehicle populations have led to serious air pollution 101 

problems that are more complex than the London or Los Angeles smogs.  102 

Air pollution is particularly severe in developing megacities, such as Beijing, where pollutants from 103 

traditional sources, such as solid fuel combustion are mixed with those from modern vehicles (Guan et 104 

al., 2014), on top of regional pollution from industrial and other anthropogenic activities. Air pollution 105 

in Beijing is different to that in well studied developed megacities, such as Paris and London, in a 106 

number of ways including the lack of diesel emissions in the inner city, the use of coal in surrounding 107 

rural areas for heating and domestic cooking (Tao et al., 2018), the high emissions of air pollutants in 108 

neighbouring provinces (Hebei and Tianjin) and the high oxidising power due to the complex chemistry 109 

(Zhang et al., 2009; Li et al., 2017; Lu et al., 2018).  This makes Beijing a particularly interesting place 110 

to study as it provides an atmospheric environment with major contrasts to developed megacities such 111 

as London and Paris in which to investigate urban pollution processes. 112 

Many research programmes have been initiated in Beijing to study the air pollution processes since the 113 

late 1990s. Earlier research programmes (e.g., early 2000) focused on primary emissions of SO2, NO2, 114 

CO, PM10, volatile organic compounds, and subsequently secondary pollutants such as ground-level 115 

ozone and secondary fine particles. This research contributed to the development of air pollution 116 

mitigation strategies introduced by the Beijing Municipal government.  117 

 118 
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The Beijing Olympic Games (2008) offered additional incentives to improve air quality and this led to 119 

the funding of CAREBEIJING (Campaigns of Air Pollution Research in Megacity Beijing and 120 

Surrounding Region) and other major programmes. The field campaigns were conducted in the summer 121 

of 2006, 2007, and 2008, with the objectives to learn the environmental conditions of the region, to 122 

identify and quantify the processes (transport and transformation) that led to the impact of the surrounding 123 

area on air quality in Beijing, and to formulate policy suggestions for air quality improvement during the 124 

2008 Beijing Olympic Games. Measures developed as a result of this and other programmes successfully 125 

improved air quality during the Olympics Games, and provided valuable examples for developing air 126 

pollution control policy in other cities (Wang et al., 2010). CARE-BEIJING was later extended to 127 

CAREBEIJING-NCP (Campaigns of Air Pollution Research in Megacity Beijing and North China Plain), 128 

in which field campaigns were carried out in the summer of 2013 and 2014 to investigate the transport 129 

and transformation processes of air pollutants in the Beijing megacity and North China Plain. The results 130 

of CAREBEIJING and CAREBEIJING-NCP have been published in three special issues of Atmospheric 131 

Chemistry and Physics (https://www.atmos-chem-phys.net/special_issue198.html) and Journal of 132 

Geophysical Research-Atmospheres 133 

(https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-8996.CARBS1). However, our 134 

understanding of sources and emissions of key air pollutants such as PM2.5 and ozone and the role of the 135 

interactions between physical and chemical processes in the development of pollution events in Beijing 136 

is still far from being accurate or complete. In addition, none of the abovementioned large programmes 137 

have been directly linked to health effect studies.  138 

The adverse health effects of air pollution provide one of the key motivations to control air pollution. 139 

Research has shown that air pollution is one of the leading causes of the disease burden in China (GBD 140 

MAPS Working Group, 2016). Especially, particulate pollution, the leading cause of severe air pollution 141 

events in China, has a significant impact on human health and is associated with high mortality (Zhang 142 

et al., 2017a), with a considerable proportion of this related to cardiorespiratory diseases (namely stroke, 143 

ischemic heart disease, and chronic obstructive pulmonary disease) (Yang et al., 2013; Lozano et al., 144 

2013). Despite this increasing evidence base, the adverse health impact of air pollution remains a complex 145 

issue. For instance, the risk assessment of disease burden due to air pollution in China has relied largely 146 

on the studies undertaken in Europe and North America, which may be subject to error due to the 147 

difference of race, life style, and air pollution settings (Lim et al., 2012). The marked change in air 148 

pollution sources and composition between the heating and non-heating seasons, and the differences 149 

between urban and rural areas may all lead to different biological responses in local populations. However, 150 

to date, such comparative investigations are largely lacking. A further limitation of such work is the lack 151 

of accurate personal exposure estimates which are crucial in high quality health studies. This may be 152 
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especially true when considering household air pollution (both indoors and outdoors) from traditional 153 

biomass and coal stoves which may not be easily captured by typical outdoor monitoring instruments 154 

(Linn et al., 2001; Brook et al., 2002). Thus, understanding the health impact of air pollution in China 155 

remains a major challenge. 156 

To address these issues, the UK Natural Environment Research Council (NERC), in partnership with the 157 

National Science Foundation of China (NSFC), UK Medical Research Council (MRC) and UK-China 158 

Innovation Newton Fund funded a major joint research programme – Atmospheric Pollution and Human 159 

Health in a Chinese Megacity (APHH-Beijing). The APHH-Beijing is an integrated research programme, 160 

incorporating the capabilities and strengths of the UK and Chinese science communities which is taking 161 

a multi-disciplinary approach to investigating the sources, processes and health effects of air pollution in 162 

the Beijing megacity. The new scientific understanding underpins the development of interventions and 163 

solutions to improve air quality and reduce health impacts.  164 

This special issue “In-depth study of air pollution sources and processes within Beijing and its 165 

surrounding region (APHH-Beijing)” documents the research outcomes of this APHH-Beijing 166 

programme, in particular the atmospheric measurement and modelling aspects.  167 

This introduction paper describes the motivation and background of the APHH-Beijing programme, and 168 

presents some of the background air quality and meteorological observations, particularly during the two 169 

intensive field campaigns. These campaigns form one of the core research activities within APHH-Beijing 170 

integrating the different themes / projects. We do not present the key scientific results of APHH-Beijing 171 

in this introduction (not an overview) paper as much of the research activity are still ongoing and 172 

unpublished. Key findings will be published in the Special Issue to which this paper provides key 173 

background information.  174 

2.  APHH-Beijing Programme Objectives  175 

The overall aim of APHH-Beijing is to better understand the sources, atmospheric transformations and 176 

health impacts of air pollutants in the Beijing megacity and to improve the capability of forecasting air 177 

quality and developing cost-effective mitigation measures. Specific objectives include: 178 

 to determine the emission fluxes of key air pollutants and to measure the contributions of different 179 

sources, economic sectors and regional transport to air pollution in Beijing 180 

 to improve understanding of the processes by which pollutants are transformed or removed 181 

through transport, chemical reactions and photolysis and the rates of formation and conversion of 182 

particulate matter (PM) via atmospheric reactions 183 
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 to improve understanding on how the detailed properties of PM evolve and can influence their 184 

physical properties and behaviour in the atmosphere and elucidate the mechanisms whereby those 185 

properties may interact and feedback on urban scale and regional meteorology 186 

 to exploit new satellite observations and regional models to place the in-situ campaigns into a 187 

wider context 188 

 to determine the exposure of Beijing inhabitants to key health related pollutants using personal 189 

air pollution monitors and assess the association between air pollution exposure and key 190 

cardiopulmonary measures  191 

 to determine the contribution of specific activities, environments and pollution sources to the 192 

personal exposure of the Beijing population to air pollutants  193 

 to enhance our understanding of the health effects in susceptible individuals over time periods 194 

when there are large fluctuations in pollutants compared with normal controls, and to identify 195 

health outcomes of air pollution 196 

 to estimate economic loss due to both physical and mental impacts of air pollution and examine 197 

how Beijing can improve its air quality more cost effectively  198 

 199 

3.  Research Themes and Integration within the APHH-Beijing Programme 200 

The APHH-Beijing programme has four themes to address the specific objectives outlined in Section 2, 201 

and is delivered through five inter-related research projects:  202 

- Theme 1 -   Sources and emissions: delivered by the AIRPOLL-Beijing (Source and Emissions of 203 

Air Pollutants in Beijing) project; 204 

- Theme 2 – Atmospheric processes: delivered by the AIRPRO (The integrated Study of AIR 205 

Pollution PROcesses in Beijing) project; 206 

- Theme 3 – Health effects: delivered by two projects - the AIRLESS (Effects of AIR pollution on 207 

cardiopuLmonary disEaSe in urban and peri-urban reSidents in Beijing) and the APIC-ESTEE 208 

(Air Pollution Impacts on Cardiopulmonary Disease in Beijing: An integrated study of Exposure 209 

Science, Toxicogenomics and Environmental Epidemiology) projects; 210 

- Theme 4: Solutions: delivered by the INHANCE (Integrated assessment of the emission-health-211 

socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing) project. 212 

 213 

3.1  Research Themes 214 

3.1.1  Theme 1:  Sources and emissions  215 

AIRPOLL aims to quantify the emission fluxes of key air pollutants in Beijing and the contributions of 216 

different sources, economic sectors and regional transport to air pollution in Beijing. The project has 217 
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carried out two major field observation campaigns jointly with the AIRPRO and AIRLESS projects 218 

(Sections 3.1.2 and 3.1.3) during November-December 2016 and May-June 2017. The campaigns were 219 

carried out at two sites - one within Beijing (at the Institute of Atmospheric Physics (IAP) meteorological 220 

tower site) and the other in the local region (the rural Pinggu site – see 4.1 for site information).  221 

 222 

During the intensive campaigns, the project measured the fluxes of particulate and gaseous air pollutants 223 

from ground-level sources by sampling on the meteorological tower (325 m) at the IAP site, which are 224 

being compared with emissions estimates taken from the inventory for Beijing.  This was complemented 225 

by top-down fluxes inferred from satellite data for nitrogen dioxide, sulphur dioxide and formaldehyde, 226 

the latter indicative of VOC oxidation processes (Palmer et al., 2003; Fu et al., 2007). Through these 227 

means, the emissions inventory is being tested, allowing revisions which are being incorporated into the 228 

atmospheric modelling work. 229 

 230 

AIRPOLL also made very detailed on-line and off-line measurements of airborne particles.  This included 231 

continuous measurements of size distributions from 1 nm to >10 µm diameter.  Large molecules and 232 

molecular clusters were also measured by high resolution mass spectrometry, with a view to better 233 

understanding atmospheric nucleation processes.  The project has monitored the chemical composition of 234 

particles in real time by Aerosol Mass Spectrometry and analysed the time-integrated particle samples 235 

off-line for major and minor constituents, including organic molecular markers. AIRPOLL determined 236 

the carbon-14 in water soluble organic carbon, water insoluble organic carbon and elemental carbon in 237 

selected time-integrated particle samples with an aim to differentiate fossil and non-fossil particulate 238 

carbon.  These data are being brought together for use in receptor modelling of PM sources, which are 239 

compared with other estimates of source contributions to PM concentrations.  Measured ground-level 240 

concentrations both from our campaign sites and the Beijing monitoring network, together with vertical 241 

gradient observations at the tower and source apportionment results are compared with the predictions of 242 

a chemistry-transport model and used to provide a clear distinction between advected regional pollution 243 

and the impact of local sources.  Divergences between measured and modelled pollutant concentrations 244 

will be used to provide critical evaluation of emissions inventories, which will be enhanced iteratively 245 

with a view to improving knowledge of the sources and emissions of pollutants affecting air quality in 246 

Beijing.   247 

 248 

During the campaigns, AIRPOLL and AIRLESS measured the concentrations of key tracers and reactive 249 

species indicative of sources and chemical pathways at the ground-level sites, which complements 250 

AIRPOLL observations. 251 

 252 
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3.1.2  Theme 2:  Atmospheric processes  253 

AIRPRO aims to study the fundamental chemical and physical processes controlling gas and particle 254 

pollution, localised meteorological dynamics, and the links between them within Beijing’s atmosphere. 255 

Central to the project were the intensive in situ measurements at the IAP meteorological tower (325 m) 256 

site, jointly carried out with the AIRPOLL project. AIRPRO made comprehensive and detailed local 257 

observations of both primary emitted chemicals and particles, radical intermediates and secondary 258 

products, for periods of contrasting local and regional emissions, solar insolation and air temperature.  259 

These data allow the performance of local and regional models of air pollution to be robustly tested, both 260 

for final regulated pollutant outcomes and at a more mechanistic level.   261 

Observations made with instruments from multiple Chinese and UK research groups included 262 

complementary measurements of key precursor trace gases such as NOx, HONO, SO2, CO, O3, VOCs 263 

and SVOCs, gas phase radicals such as OH, HO2, RO2, and NO3, and PM including chemical (both on-264 

line and offline analyses), biological, physical and optical properties. Through multiple co-located surface 265 

measurements, there was both instrumental redundancy (e.g. for equipment failures) and capacity to 266 

evaluate through inter-comparison some hard-to-measure atmospheric free radicals and gases such as OH, 267 

HO2, N2O5, HCHO and other oxygenated VOCs. The project determined the local in situ chemical 268 

processing of air pollution in the contrasting winter/summertime periods alongside overall atmospheric 269 

reactivity, both day and at night, through a combination of modelling and proxy measurements such as 270 

measured ozone production efficiency and OH reactivity.  271 

The IAP tower allowed vertical profiles of key pollutants up to 320 m to be obtained and,  with  additional 272 

remote sensing of composition and meteorology, provided insight into boundary layer stability and 273 

evolution over the diurnal cycle. Quantification of shallow mixed layers proved to be vital for explaining 274 

local surface in situ chemical processing and also street level concentrations of relevance to exposure. 275 

The potentially significant vertical gradients anticipated in some chemicals and PM properties were 276 

further quantified using instruments installed on the tall tower and via profiling gondola measurements. 277 

The combined datasets, surface and profiles, provide the basis for evaluation of model performance, and 278 

notably comparisons for those intermediates that provide indicators of whether secondary pollution 279 

production is being correctly simulated.  280 

3.1.3  Theme 3:  Health effects  281 

Health effects of air pollution are studied by two projects – AIRLESS and APIC-ESTEE. AIRLESS aims 282 

to advance air quality and health research in Beijing by bringing together two fields of research that have 283 

made rapid advancements in recent years: measurements of a wide range of pulmonary and cardiovascular 284 

biomarkers in a panel study and personal monitoring of multiple air pollutants with high spatio-temporal 285 

resolution by sensor technology.  AIRLESS is also benefiting from the use of an extensive range of 286 
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pollution metrics and source apportionment results from the AIRPOLL and AIRPRO projects.  These 287 

data are being compared with our personal air quality assessments and used to further understanding of 288 

the nature of the air pollution exposures of residents and how this relates to their health status.  289 

APIC-ESTEE aims to evaluate the impacts of air pollution on cardiopulmonary health through an 290 

integrated study of exposure, epidemiology, and toxicology/toxicogenomics. APIC-ESTEE has 291 

investigated the relationship between ambient air pollution and personal exposures. This is being used to 292 

estimate personal exposures for epidemiological analyses of long term health impacts in a cohort study 293 

and of short-term effects (i.e. biomarkers, blood pressure, heart rhythm, and peak flow) in a panel study.  294 

APIC-ESTEE also studied the real-world exposure-reduction and health benefit potential of face-masks, 295 

a commonly used personal level intervention seen in Beijing. Furthermore, to complement the human 296 

based studies into mechanisms of action, APIC-ESTEE has conducted in vivo analyses of mechanistic 297 

effects and early life toxicogenomics/metabonomics.  298 

3.1.4  Theme 4:  Solutions  299 

INHANCE aims to quantitatively evaluate the performance of China's current air pollution policies and 300 

develop cost-effective solutions to mitigate the impact of air pollution in the Beijing megacity. INHANCE 301 

considered not only the physical and mental health impacts and direct economic impact, but also the 302 

cascading indirect economic losses occurred through inter-industrial and inter-regional linkages on the 303 

supply side of the economy. INHANCE has established and evaluated interactive relationships among 304 

exposure, vulnerability, impact on health, implications for industry and economic consequences. 305 

INHANCE has compared and qualitatively assessed air quality policies between Beijing and other cities, 306 

undertaken policy performance assessment modelling, utilised techno-economic inventories for anti-307 

pollution measures to conduct micro cost-benefit analysis of new policies; measured health and 308 

macroeconomic costs and benefits in mitigating air pollution, and, transformed evidence generated into 309 

practical emission alleviation pathways. On these bases, INHANCE will deliver recommendations 310 

regarding integrated policy design and an assessment for policy cost-effectiveness. 311 

3.2  Integration Between the Themes and Novelty of the APHH-Beijing Programme 312 

The APHH-Beijing programme is highly integrated to ensure the biggest possible scientific and policy 313 

impacts. One of the most significant integration activities between the different themes is the coordinated 314 

joint field campaigns at an urban and a rural site in Beijing for Theme 1, 2 and 3 to fully exploit the 315 

complementary measurements and expertise by different research groups, which is described in the 316 

following sections. Theme 1 and 2 are closely related and in many senses inseparable. For example, our 317 

knowledge of the sources and emissions is essential to interpret the processes while knowledge on the 318 

atmospheric physical and chemical processes will help us to more accurately quantify the source 319 

emissions, both via actual flux-based measurements and model evaluation of the emission inventories. 320 
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Furthermore, to ensure integration, Themes 1 and 2 co-located their rural site at Pinggu as that was 321 

selected for the Theme 3 panel study.  322 

Modelling of airborne concentrations of air pollutants within Themes 1 and 2 is fully integrated, primarily 323 

via the UKCA (UK Chemistry and Aerosol), NAQPMS (Nested Air Quality Prediction Model System) 324 

and GEOS-Chem models. The models simulate spatial and temporal variations of key air pollutants and 325 

are being evaluated using the new observations of pollutant emission fluxes, updated emission inventories, 326 

three-dimensional air quality low cost sensor observations, comprehensive composition and physics 327 

measurements, as well as new process understandings generated from the APHH-Beijing programme. 328 

Furthermore, in Themes 1 and 2, ADMS (Atmospheric Dispersion Modelling System) modelling results 329 

for the campaign periods facilitate the estimation of population exposure in Theme 3. Outcomes of 330 

Themes 1, 2 and 3 help to provide Theme 4 with a more accurate estimate of pollution costs and to develop 331 

cost-effective air pollution control measures in Beijing.  332 

The third stream of integration activities involves regular APHH-Beijing programme science and 333 

stakeholder engagement meetings to stimulate collaboration and knowledge transfer between different 334 

themes and stakeholders. Furthermore, sharing of data was made available via a dedicated depository in 335 

Centre for Environmental Data Analysis (www.ceda.ac.uk). All data in the depository will be made 336 

publically available by the end of 2022.  337 

Together, this interdisciplinary APHH-Beijing programme delivers key scientific values and innovation, 338 

including: 339 

(1) Validation of the bottom-up emission inventories by using novel eddy covariance emission flux 340 

observations from the IAP meteorological tower, integrated with satellite retrievals and numerical 341 

modelling,  342 

(2) Improvement in understanding of air pollution processes through comprehensive observations of 343 

atmospheric gaseous and aerosol species integrated with atmospheric physics measurements, and  344 

 (3) Identification of the sources of air pollution that cause largest adverse human health effects by 345 

carrying out novel cardiovascular health indicator measurements, integrated with personal exposure, 346 

fixed station source apportionment studies and high resolution air quality modelling. 347 

 348 

4.  Overview of the Joint Field Campaigns  349 

The two intensive campaigns took place from 10th November to 10th December 2016 and 20th May to 22nd 350 

June 2017. The campaigns were carried out at both urban and rural sites.  351 

 352 

4.1  Site Information  353 

http://www.ceda.ac.uk/
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The winter campaign had two main sites. The urban site (39.97N, 116.38 E) is located in the Tower 354 

Section of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences where the 325 m 355 

meteorological tower is located. The site, between the fourth and third North ring roads of Beijing (Figure 356 

1), is in a residential area. Typical of central Beijing, there are various roads nearby. To the south, north 357 

and west there are roads about 150 m away. On site there are 2 to 3 floor buildings to the south, and the 358 

east and west of the tower surrounded by small trees and grass. There is a canal right to the north of the 359 

site. Further to the west is a park covered mainly by conifer pine trees (Yuan Dynasty Wall Heritage 360 

Park).  361 

 362 

The rural Pinggu site in Xibaidian village (40.17N, 117.05 E) in north-eastern Beijing, was collocated 363 

with the AIRLESS project cohort. Xibaidian village is about 4 km northwest of Pinggu town centre, and 364 

about 60 km from IAP. There are several similar small villages nearby. The monitoring station and the 365 

clinic used an unoccupied house at the north end of the village away from significant local combustion 366 

sources. A two-lane road is about 300 m north of the site. With no centralised heating infrastructure 367 

available, residents mainly use coal and biomass for heating and cooking in individual homes.  368 

 369 

In the summer, an additional site was operated in Gucheng (39.2N 115.7E), Dingxing County, Hebei 370 

Province. This site, about 120 km to the southwest of central Beijing, is on one of the main high pollutant 371 

transport pathways from Hebei province to Beijing from the southwest. The site is in a meteorological 372 

observatory surrounded by farm fields. The nearest town is about 10 km to the northeast. The nearest road 373 

is 500 m to the north and the nearest village ~1 km to the west. Several villages are located around the 374 

site.  375 

 376 

In addition to the two highly instrumented urban (IAP) and rural (Pinggu) sites, 21 SNAQ (Sensor 377 

Network for Air Quality) boxes, which measure CO, NO, NO2, CO2, OX, size resolved particulates (0.38-378 

17.4 µm), temperature, relative humidity, wind speed and direction (Popoola et al., 2018), were deployed 379 

during the summer and winter campaigns across the urban and rural areas of Beijing to map air pollutant 380 

variations (red tags, Figure 1). Six additional SNAQ boxes were deployed at six different heights (8, 32, 381 

102, 160, 260, and 320 m) on the IAP tower from 9-23 November 2016 and 25 January-31 December 382 

2017.  383 

 384 

Figure 1 also shows the location of the 12 national air quality monitoring stations. Hourly data for criteria 385 

air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) from January 2013 to December 2017 from the stations 386 

were also obtained from official sources. The closest air quality station to the urban IAP site is about 3 387 

km away at the Olympic Park (G11, Figure 1).  388 
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 389 

4.2  Instrumentation  390 

4.2.1  Urban site 391 

Table 1 lists all instruments deployed during the campaigns at the IAP site. Most instruments ran during 392 

both campaigns. A majority of the instruments were situated in the nine containers, which were at ground 393 

level on the campus grass. A number of online instruments and high volume PM samplers were also 394 

deployed at different heights on the meteorological tower. Vertical profile measurements of atmospheric 395 

species including HONO were made during pollution events using baskets attached to the tower. 396 

Additional online measurements and offline PM samplers were deployed at ground-level, on the roof of 397 

a two storey building to the west (WB) and in a third-floor laboratory at the south end of the campus. In 398 

addition, high-, medium- and low-volume PM samplers were placed on the roof of WB for offline 399 

characterization and source apportionment. 400 

4.2.2  Rural sites 401 

At Pinggu, online instruments (Table 2) were run within an air-conditioned room on the ground floor with 402 

inlets on top of the building. High-, medium- and low-volume PM samplers were deployed on a newly 403 

modified flat-roof of the single storey building.  404 

 405 

At Gucheng (summer only), a high volume Digitel sampler and a single particle sampler were set up on 406 

a deserted basketball court. An Aethalometer AE33 was located on top of a container at the edge of the 407 

basketball court. CO and O3 were also measured in a nearby container.   408 

 409 

4.3  Synoptic Scale Meteorology During the Field Campaigns  410 

Synoptic circulation patterns (e.g., horizontal advection and wet deposition) play a key role in the 411 

variations of air quality in Beijing (Miao et al., 2017; Wu et al., 2017; Zhang et al., 2012). To provide the 412 

synoptic context of the APHH-Beijing observations, the daily mesoscale flow patterns have been 413 

classified and put into context using a 30-year climatology (Section 5.4). 414 

 415 

Circulation types (CT) are classified using the software produced by the COST Action 733 416 

“Harmonisation and Applications of Weather Type Classifications for European regions” (Philipp et al., 417 

2010) with (ECMWF Re-Analysis) ERA-Interim 6-h 925 hPa geopotential reanalysis data (Dee et al., 418 

2011) at its native 0.75° spatial resolution for the domain of interest (103-129° E, 31 - 49° N) centred on 419 

Beijing (40° N, 116.5° E) covering the period 1988-2017. ERA-Interim 10 m U and V wind components 420 

are used to facilitate the interpretation of the flow patterns. Of the COST733 methods (Huth et al., 2008; 421 

Philipp et al., 2010, 2016; Tveito and Huth, 2016) two are used: T-Mode PCA (Principal Component 422 

Analysis) and SANDRA (Simulated Annealing And Diversified RAndomization clustering). The former 423 
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have been used in Beijing previously (e.g. Miao et al., 2017; Zhang et al., 2012). The latter is considered 424 

to perform well in clustering pressure fields and discriminating environmental variables (e.g. Demuzere 425 

et al., 2011; Philipp et al., 2016). Classification is performed with the number of CTs ranging from 7 to 426 

18. 11 CTs from the SANDRA method are selected (Figure 2; Table 3) to adequately represent the general 427 

flow conditions around Beijing during the 30 y climatology period (Beck and Philipp, 2010).  428 

 429 

As expected, the CTs that occurred during the two field campaign periods are different (Figure 3). During 430 

the winter field campaign, the most frequent circulation type was CT 11 (24 % of the 6 h periods) which 431 

was often preceded by a period of CT 9 (total 13%). Circulation types 9-11 are associated with air masses 432 

that may stagnate over the Beijing urban area (Figure 2). CT 1 (accounting for 12% of the time) and CT 433 

2 (17 %) are associated with the Asian winter monsoon which brings cold and dry air masses to eastern 434 

China. North-westerly flow (over Beijing) is driven by high pressure in the west of the domain (Figure 435 

2), which are followed by  CTs 5, 3 and 7 occurred 14, 7, and 5% of the time, respectively. CTs 3 and 5 436 

are associated with relatively low pressure in the northeast (Sep-May period) while CT 7 has a south-437 

easterly winds from the Bohai Sea. CTs 4, 6 and 8 did not or hardly occur during the winter campaign. 438 

During the summer campaign (Figure 3b), the most frequent CTs were 8, 7, 4, and 6 (23, 25, 19, and 10 439 

% of the time, respectively). CTs 8 and 6, which did not occur during the winter campaign period,  are 440 

associated with the summer monsoon advecting moist, warm air from the South and Southeast (Figure 441 

2). While southerly and northerly flows converge over Beijing for CT 6, slightly weaker low pressure to 442 

the Northeast means North-westerly flow dominates for CT 4. High pressure to the West or South of 443 

Beijing is rare during the summer campaign so that CTs 1, 2, 9, and 11 do not occur and CTs 3 and 5 are 444 

rather rare (6 and 1%, respectively).  445 

4.4  Meteorological Conditions During the Field Campaigns  446 

To assess how local-scale flow related to ERA-Interim fields (Section 4.3) compared to local conditions, 447 

the link between the coarse gridded data and tower-based sonic anemometer observations are explored 448 

based on wind roses (Figure 4). The 30 y climatology (Figure 4a, d) confirms the clear seasonality in 449 

wind direction affecting the occurrence of CTs discussed (Sect. 4.3), i.e. during winter intensive campaign 450 

period (10 November – 10 December) north-easterly flow clearly dominates while southerly wind 451 

directions are most common during the summer campaign period (20 May – 22 June). The wind roses for 452 

winter 2016 and summer 2017 (Figure 4b, e) are slightly nosier, but show similar tendencies as the 453 

climatology. The general large-scale patterns are consistent with the in-situ wind measurements (Figure 454 

4c, f). However, a slight diversion towards northerly and south-westerly flow and lower wind speeds 455 

occurred in winter and summer (Figures 4c and f), respectively, when compared to the larger scale data 456 

(Figures 4b and d).  In addition, south-westerly flows were more frequent in winter 2016 (Figures 4b and 457 
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c) than during the 30 year average climatology (Figure 4a), which had the potential to bring more polluted 458 

air in the upwind Hebei province to the observation sites in Beijing.  459 

 460 

At 102 m, the flow is consistent with northerlies and north-westerlies in the winter campaign and 461 

dominantly southerly and easterlies during the summer campaign (Figure S1). The measured hourly mean 462 

wind speed, temperature and relative humidity were 3.1 m s-1, 8.3 oC and 43.8 % in winter, and 3.6 m s, 463 

25 oC and 46.7 % in summer, respectively. Typical diurnal patterns were observed with higher wind speed 464 

and temperature during the day and RH at night. During the winter haze events (defined in Figure 5) wind 465 

speed at 102 m were low (an average of 1.8 m s-1) and mainly from the south-west direction (Figure S1).  466 

 467 

5 . Air Quality During the Field Campaigns 468 

5.1  Winter 469 

During the winter campaign, the daily average concentration of PM2.5  at IAP was 91.2 µg m-3 from the 470 

Partisol gravimetric measurements (Table 4) and 94.0 µg m-3 from an online FDMS (Filter dynamic 471 

measurement system). The maximum hourly PM2.5 concentration was 438 µg m-3 (Figure 5 which shows 472 

the haze events listed in Table 5). PM2.5 concentrations significantly exceeded both the daily air quality 473 

limit of China (75 µg m-3) and WHO (25 µg m-3). During the whole winter campaign period, nearly 50% 474 

of the hours had PM2.5 mass concentration higher than 75 µg m-3 (Figure 5). The online PM10 475 

concentration observed at the Olympic Park national air quality monitoring station was up to 560 µg m-3 476 

during the campaign with an average of 130.6 µg m-3. Average concentrations of NO2, O3, SO2 and CO 477 

were 69.7 ± 33.3, 16.4 ± 17.0 and 14.9 ± 11.1 µg m-3 and 1.53 ± 1.02 mg m-3, respectively (Table 4). 478 

Most of the criteria pollutants showed a similar temporal pattern (Figure 5), except O3.  479 

 480 

The daily average concentration of PM2.5 was 99.7 µg m-3 at Pinggu (Table 4; based on Partisol 481 

gravimetric measurements). The maximum hourly PM2.5 concentration was 617 µg m-3 (Figure 5). Similar 482 

to that at IAP, nearly 50% of the hours had PM2.5 mass concentrations greater than 75 µg m-3. Average 483 

concentrations of NO2, O3, SO2 and CO are 46.4  ± 25.5, 22.3 ± 22.2, and 15.4 ± 6.7 µg m-3,  and 1.47 ± 484 

1.17 mg m-3 respectively (Table 4). PM2.5 was slightly higher at the rural site but NO, CO and SO2 were 485 

comparable between the two sites.  PM2.5 and O3 each had similar temporal patterns at the urban and rural 486 

sites (Figure 5), indicating a synoptic scale meteorological impact. The larger difference in the temporal 487 

variation of NO, NO2 and SO2 may reflect the varying contribution of more local sources. Large 488 

differences in temporal patterns of air pollutants were found on 4 December 2016 when PM2.5, SO2 and 489 

NO concentrations were much higher at Pinggu than at IAP.  490 
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Diurnal cycles of particles, NO2 and CO showed no distinct peak but an increment during the nighttime, 491 

suggesting the possible impact of boundary layer and/or anthropogenic emissions in winter (Figure 6). 492 

The peak NO levels at 7 am are likely caused by the morning rush hour road traffic. PM2.5 concentration 493 

increased sharply from 6 pm at Pinggu (not shown), suggesting important local emissions, likely domestic 494 

heating and cooking. SO2 and O3 had their highest levels in mid-morning or at noon (Figure 6).  495 

Variations of particles, NOx and SO2 show that higher levels of these pollutants when air masses were 496 

from the south or southwest (Figure S2), indicating it was impacted by regional transport. All pollutants, 497 

except O3, had higher mass concentrations when wind speeds were low, suggesting an influence from the 498 

local sources. The NO wind rose suggests a strong local source with little contribution from long-range 499 

transport. The O3 concentration was higher during northerlies and when the concentrations of other 500 

pollutants such as NOx and PM2.5 were lower (Figure S2).  501 

SNAQ box measurements at six levels (8 to 320 m) during the winter campaign (Figure 7) have similar 502 

overall temporal patterns of CO and NO to that measured by standard gas analyser (Figure 5). In most 503 

cases, the air pollutant levels are similar at different levels of the tower. There are notable differences in 504 

NO, CO and CO2 on 11, 12 and 16 / 17 November, which suggests that the mixed layer height was low 505 

(e.g., <150 m). Interestingly, the Ox (NO2 + O3) levels are relatively homogeneous across the different 506 

levels. These measurements have implications on the role atmospheric chemistry play in transformation 507 

of species in the boundary layer, and the measurements also provide useful information that confirm 508 

mixed layer height determinations from independent methods such as the ceilometer (Table 1). 509 

According to the meteorological standards (QX/T113-2010), haze is defined as: i) visibility < 10 km at 510 

relative humidity (RH) <80%; or ii) if RH is between 80 and 95%, visibility < 10 km and PM2.5 > 75 µg 511 

m-3. During the winter campaign 640 of the 1633 h were classified as haze periods using visibility data 512 

from Beijing Capital Airport (Figure S3); within the haze hours, 75% had PM2.5 greater than 75 µg m-3 513 

(Area A, Figure S3) and the rest had a visibility less than 10 km but with a RH <80% (Area B, Figure S3).   514 

Characteristics of five major haze events during the winter campaign (Figure 5) show that PM2.5, NO2, 515 

SO2 and CO had similar trends but  O3 levels dropped to very low concentration (<2 ppb). The events are 516 

defined in Table 5. 517 

5.2  Summer 518 

Concentrations of air pollutants excluding ozone during the summer campaign were much lower than in  519 

winter (Figure 8, Table 4).  Average daily concentration of PM2.5 and PM10 at IAP were 31.4 ± 14.7 and 520 

74.9 ± 29.3 µg m-3 (based on gravimetric method), respectively. These levels were slightly higher than at 521 

Pinggu (27.8 ± 13.3 and 62.9 ± 29.3 µg m-3). Concentrations of ozone were four to five times higher 522 

during the summer campaigns (106.9 ± 71.6 µg m-3 at IAP, and 91.8 ± 62.7 µg m-3 at Pinggu) than in the 523 
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winter campaign.  Average concentration of NO2, SO2 and CO were 41.3 ± 23.5 and 6.3 ± 6.8 µg m-3 and 524 

0.61 ± 0.32 mg m-3at IAP respectively (Table 4). The concentrations of NO2 and CO were lower at Pinggu 525 

while that of SO2 was similar. All pollutants except PM2.5 show more or less different temporal patterns 526 

(Figure 8), suggesting differences in sources at Pinggu and IAP during the summer campaign.  527 

Diurnal patterns of NO, NO2, and CO at IAP showed a distinct peak in the early morning, suggesting the 528 

contribution of traffic emissions (Figure 6). O3 and Ox concentration peaked in mid-afternoon.  The IAP 529 

PM2.5 pollution rose suggests that both local and regional sources (from the south and south-east direction) 530 

impact the site (Figure S2). Unlike winter, high ozone concentrations occur during southerlies to 531 

southwesterlies, suggesting a regional source of this pollutant. NO and NOx were largely from local 532 

sources during the summer campaign.  533 

Characteristics of two minor haze events (IAP) during the summer campaign (Figure 8) are shown in 534 

Table 5. 535 

 536 

5.3  Air quality in the Wider Beijing Megacity During the Field Campaigns 537 

To assess if the IAP air quality is broadly representative of the wider Beijing megacity, variables were 538 

correlated with the 12 national air quality station data (Figure 9). A high correlation is observed with 539 

PM2.5 across all sites except the rural background air quality station at Ming Tombs (G2, Figure 1); PM10, 540 

CO and NO2 at the urban sites are highly correlated but not with the rural and suburban sites (G2, G9 and 541 

G10, Figure 1) suggesting a more local source for these pollutants, comparing to PM2.5 and O3; SO2 542 

between sites shows a lower correlation compared to all other pollutants. The particularly high spatial 543 

correlations of both PM2.5 and O3 across almost all sites indicates a regional pollution phenomenon for 544 

the two pollutants. These results suggest that the air quality at the IAP urban site was broadly consistent 545 

with that at the other urban sites.  546 

 547 

In general, PM2.5 mass concentrations are similar at all the urban sites including IAP which are higher 548 

than at the suburban and rural background national monitoring sites (G2, G9 and G10, Figure S4). The 549 

Pinggu site has relatively high PM2.5 pollution during the winter campaign but has the lowest 550 

concentrations during the summer campaign. This suggests that local anthropogenic sources have a major 551 

impact on PM2.5 at this site during the winter campaign. Source apportionment results, notably high time 552 

resolution data are being used to explore this.   553 

 554 

The PM2.5 concentrations measured at IAP are highly correlated with those at the nearly national air 555 

quality station (Olympic Park, or Aotizhongxin, see Figure 1) (Figure S5), which gives confidence that 556 



17 
 

national air quality stations are of sufficient quality to provide valuable information on the spatial and 557 

temporal variation of key pollutants to supplement campaign measurements.   558 

 559 

Table 4 shows that the IAP concentration data for all air quality variables are very close to the five year 560 

mean of the 12 national air quality monitoring stations. This lends further confidence that the chosen 561 

urban site represented well the overall pollution in the Beijing urban area. 562 

 563 

5.4 Synoptic Circulation and Air Quality 564 

The average mixed layer height observed at IAP varies with season and CT type (Figure 10a). Lower 565 

mixed layer height is usually linked to air pollution events. The 11 CTs (Section 4.3) are clearly associated 566 

with distinct air quality conditions based on analysis of hourly air quality data for 2013-2017 at one of 567 

the national urban air quality stations (G11, Olympic Park, Figure 1). Relatively low wind speeds  of CT 568 

7 may contribute to the long haze event from 15/11/2016 to19/11/2016 (Fig. 5). Most haze events during 569 

the winter campaign are cleared out by fresh air masses being advected from the North in CTs 3 or 5 570 

(Figure 3), which is also marked by the increase in wind speed observed (Figure S1). Relatively lower 571 

PM2.5 concentrations occurred (Figure 10b) under NE flow conditions (CTs 1-5), and higher 572 

concentrations during southerly flow (CTs 6-8, 10). The highest PM2.5 concentrations occur during the 573 

heating season when regional flow showed stagnation (CT 9, 11). All haze events during the winter 574 

campaign (Figures 3&5) are dominated by those CTs although CTs with NE flow conditions occurred for 575 

short periods within the haze events (e.g. 18/11/2016, 04/12/2-16).  Ozone levels are highest during CTs 576 

5-8 (Figure Error! Reference source not found.10c), which predominate during spring and summer 577 

(Figure 10d).  578 

 579 

In the Oct 2016 – Sept 2017 period (Figure 10e), the relative frequency of CTs differs slightly from the 580 

long-term climatology (Figure 10d). During the winter campaign, clean air advection from the NE (CTs 581 

1-3) was less frequent than in the 30-y climatology. Given synoptic circulation types associated with 582 

stagnation do have a similar occurrence during the winter campaign compared to the same time period 583 

within the previous five years (with CT 9 8% less frequent and  CTs 10 and 11 2% and 10% more frequent; 584 

Figure 10f), PM2.5 concentrations were similar to the 5 year mean (Figure 10g, winter campaign period 585 

compared to the same dates during 2013-2017). During the summer campaign, south-north contrasts in 586 

geopotential were apparently reduced so CT 6 was 12% less frequent, while CT 7 was 11% more frequent 587 

(Figure 10f). The reduced advection of particles from southerly directions might have contributed to a  588 

33% lower PM2.5 concentrations compared to the five year average for the same time of year (Figure 10g). 589 

The relative decrease in O3 (Figure 10g) during the winter campaign (24%) might be explained by cloud 590 

cover differences, which is being investigated. 591 
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5.5 Summary of Air Quality during the Campaigns 592 

In summary, the winter campaign was characterised by several high PM2.5 pollution events with peak 593 

hourly concentrations at the urban site ranging up to 617 µg m-3 (at Pinggu) whereas the summer 594 

experienced events of high ozone concentrations with the highest hourly average of 335 µg m-3 (at IAP)  595 

Air quality was generally poor during the winter campaign with an average PM2.5 concentration of 91 µg 596 

m-3 in urban Beijing, but less severe than in the same period in 2015. Synoptic scale meteorological 597 

analysis suggests that the greater stagnation and weak southerly circulation in November/December 2016 598 

contributed to the poor air quality during all haze events detected, and overall the PM2.5 pollution level 599 

was similar to the five year average (2013-2017). PM2.5 levels were relatively low during the summer 600 

campaign with the highest daily concentration of only 79 µg m-3, matching the cleanest periods over the 601 

previous five years.   602 

 603 

6.  Preliminary Air Quality Modelling and Pollution Climatology of the Campaign Periods 604 

Air quality modelling is a key component of the APHH-Beijing programme. A range of models have 605 

been applied that span global (UKCA, GEOS-Chem), regional (WRF-Chem, CMAQ, NAQPMS) and 606 

urban to street scales (ADMS). This section provides an example of the comparison between model 607 

simulated pollutant concentrations and APHH-Beijing observations made at IAP to demonstrate model 608 

capabilities. Results from specific modelling studies will be published separately.  609 

 610 

Figure 11 shows that the magnitude and variation of wintertime PM2.5 concentrations are reasonably 611 

reproduced by NAQPMS during the winter campaign, although there are some weakness in capturing 612 

the highest PM2.5 levels during the haze events at the end of November and start of December. This is 613 

partly due to the representation of local meteorological features during this period, which bring these 614 

episodes to an end 6-12 hours early. The diurnal variations in O3 during the summertime are reproduced 615 

relatively well by UKCA, which captures the rapid daytime formation of O3 and strong nighttime 616 

removal. The very highest levels of daytime O3 are underestimated with the model, particularly during 617 

the episode at the end of May. However, there is a strong local contribution to this as evident from the 618 

lower concentrations measured at Pinggu (Figure 8), and these local differences are not fully resolved 619 

with the model. Despite this, the day-on-day build-up of daytime O3 during the periods of 22-27 May 620 

and 11-16 June is captured, and demonstrates that the model reproduces the synoptic drivers of local O3 621 

formation well. 622 

 623 

We also investigated how representative the campaign periods were of the selected seasons in Beijing by 624 

comparing pollutant levels with those from the same period each year over the 2013-2017 period. The 625 
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NAQPMS model was run for the full 5-year period driven by NCEP meteorology and using temporally 626 

varying emissions for a single year that is broadly representative of 2013 conditions. The same emissions 627 

were used each year so that the meteorological contribution to pollutant levels could be assessed. This 628 

provides important information that cannot be obtained from the monitoring data (as emission varies year 629 

by year). The frequency distribution of PM2.5 over each campaign period for each year is shown in Figure 630 

12.  Winter 2016 was broadly typical of the 5-year period, with similar characteristics to winter 2014, but 631 

both years show higher PM2.5 under the same emissions than in 2013 or 2017. In addition, winter 2015 632 

had substantially less favourable conditions for air quality, and more stagnant conditions led to three 633 

extended pollution episodes over the period with PM2.5 exceeding 200 μg m-3. In contrast, the summer 634 

period in 2017 was cleaner than average, with PM2.5 levels very similar to 2015, and about 25% less than 635 

in 2013, 2014 or 2016. These results are broadly consistent with those based on synoptic weather analyses 636 

(section 5.4) as well as by Vu et al. (2019). 637 

7.  Summary   638 

APHH-Beijing is an integrated and multidisciplinary research programme conducted by leading UK and 639 

Chinese researchers to (1) quantify sources and emissions of urban atmospheric pollutants; (2) elucidate 640 

processes affecting urban atmospheric pollution events; (3) estimate the personal exposure and impacts 641 

of air pollution on human health, and (4) develop intervention strategies to improve air quality and reduce 642 

health impacts in the Beijing megacity. This introduction paper outlines the motivation of the APHH-643 

Beijing programme as well as providing the background air quality and meteorological conditions during 644 

the two intensive field campaigns that form the basis of data interpretation for campaign observations.   645 

APHH-Beijing has measured the fluxes of key air pollutants, including NOx, CO, BC, VOCs and 646 

speciated particulate matter, applied a suite of traditional and modern techniques to apportion the sources 647 

of particulate matter, determined a wide range of pulmonary and cardiovascular biomarkers linking to 648 

direct personal exposure and extensive fixed-station monitoring as well as source apportionment results, 649 

and has evaluated the effectiveness of Beijing’s air pollution control policies using both chemical 650 

transport models and novel machine learning techniques. A number of papers have already been published 651 

by the APHH-Beijing programme including those in this special issue (Wang et al., 2019; Pan et al., 2019; 652 

Xia et al., 2018; Zhou et al., 2018; Wang et al., 2018b; Lyu et al., 2019; Hollaway et al., 2019; Du et al., 653 

2018; Liu et al., 2018a,b; Smith et al., 2019; Vu et al., 2019; El zein et al., 2019). More papers are being 654 

prepared for publication in this special issue and elsewhere, which will cover (but are not limited to) 655 

emission fluxes of air pollutants, chemical composition and source apportionment of fine particles, 656 

satellite observations of trace gases and aerosols, sources and processes leading to haze events and 657 

photochemical smogs, physical and optical properties of aerosol particles, formation processes of 658 

secondary aerosols, urban meteorology, feedbacks between haze, photochemistry and meteorology, 659 
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integrated regional and urban scale modelling, personal exposure to air pollutants and human health 660 

effects of air pollution.  661 
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Table 1:  Overview of measurements in APHH-Beijing at the urban site. 1190 
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Table 2  Overview of measurements at the Pinggu site. 1192 
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Table 3:   Mean and standard deviation (sd) of climatological conditions in Beijing for each 1194 

circulation type (CT) for 1988-20  17 from ERA-Interim data with frequency of the CT 1195 

during the W (winter) and S (summer) campaigns (% of 6 h periods (p)) compared to  1196 

long- term (1988-2017) averages. 1197 
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Table 4:  Haze periods during the summer and winter campaign periods. 1199 
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Table 5:   Average air quality variables at IAP, Pinggu and 12 national monitoring sites (12N) 1201 

during the field campaigns (10 November – 11 December 2016; and 21 May – 22 June 1202 

2017). The 12 national sites five-year mean concentrations for same times of the years 1203 

(12N -5Y) and for the same time of the year (campaign period) (12N-campaign).  Data 1204 

are mean ± s.d. (range).  1205 

 1206 

 1207 

FIGURE LEGENDS 1208 

 1209 

Figure 1:   Study area topography (source: googlemap) of Beijing / Tianjing / Hebei region (a) with 1210 

the rectangle showing enlarged study area;  locations of measurement sites (Institute of 1211 

Atmospheric Physics (IAP)– urban Beijing, Pinggu – rural Beijing; and Gucheng – 1212 

upwind site in Hebei province), SNAQ box sites (red symbols) and the 12 national air 1213 

quality monitoring stations (G1 to G12, blue symbols) (b)..  The shaded area shows the 1214 

Beijing builtup area. (Source: a and b - Goggle Map topographic background imagery; c 1215 

– taken by Jian Zhao from IAP).  G1: Wangshouxigong; G2: Dingling (Ming 1216 

Tombs); G3: Dongsi; G4: Tiantan; G5: Nongzhanguan; G6: Guanyuan; G7: 1217 

Haidianquwanliu; G8: Shunyxicheng; G9: Huairouzhen; G10:Changpingzhen; G11: 1218 

Aotizhongxin (Olympic Park); G12: Gucheng. Categories: Urban: G1, G3, G4, G5, G6, 1219 

G7, G8, G11, G12; Suburban: G9, G10; Rural: G2.  1220 

 1221 

Figure 2:   ERA-Interim (1988-2017) average 925 hPa geopotential with 10 m horizontal wind 1222 
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 vector for 11 circulation types classified for Beijing (municipal boundary thin solid line) 1223 

surroundings (103-129° E, 31 - 49° N) determined with the SANDRA method 1224 

(COST733 class software). Frequency of occurrence is given in cluster caption. For 1225 

discussion of conditions associated with each CT see Section 4.3. 1226 

 1227 

Figure 3: Time series of circulation types (CTs) during the two field campaigns: (a) winter and (b) 1228 

summer. The 11 CTs are shown in Figure 2. See text for more description. Shading 1229 

shows the pollution events identified in Section 5 and Figure 5.  1230 

 1231 

Figure 4:  Beijing wind roses: (a, b, d, e) ERA-Interim 10 m horizontal wind (40° N, 116.5° E) and (c, 1232 

f) sonic anemometer (Table 1)  at IAP 320 m agl for (a) 5 November – 10 December in 1233 

1988-2017, (d) 15 May – 22 June in 1988-2017, (b, c) 5 November – 10 December 2016, 1234 

and (e, f) 15 May – 22 June 2017. 1235 

 1236 

Figure 5:   Time-series of air quality variables at the urban and rural sites during the winter 1237 

campaign; Five haze events are indicated (shading; see also Table 4). 1238 

 1239 

Figure 6:   Diurnal patterns of gaseous pollutants normalized by average concentrations at IAP 1240 

during winter and summer campaigns. Line shows the mean concentrations and shaded 1241 

area as 95% confidence interval in the difference in mean concentrations 1242 

 1243 

Figure 7:   Time series of CO2, CO, NO, Ox (NO2+O3) and wind speed at six heights (colour) 1244 

measured with SNAQ boxes on the IAP tower during the winter intensive field 1245 

campaign.  1246 

 1247 

Figure 8:   Time-series of air quality variables at the urban and rural sites during the summer 1248 

campaign. Two minor haze events are indicated (shading). 1249 

 1250 

Figure 9:    Correlations between the air quality at IAP, PQ and 12 monitoring station around 1251 

Beijing. Stations G1-G12 (Figure 1(b)) are labelled 01-12, PG = Pinggu. 1252 

 1253 

Figure 10: Analysis by circulation type (CT; Sect. 4.3) of: (a) daily maximum mixed layer height 1254 

(MLH) determined from ALC observations at IAP between November 2016 – June 2017 1255 

(analysis method, Kotthaus and Grimmond, 2018b); concentration of (b) PM2.5 and (c) 1256 

O3 at the Olympic Park (i.e. Aotizhongxin) in 2013-2017 from the national air quality 1257 
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network for different CTs; occurrence of CTs in (d) 1988-2017 and (e) Oct 2016 – Sept 1258 

2017; (f) anomaly of CT frequency during the campaigns compared to 5 y (2013-2017) 1259 

averages; and (g) anomaly of PM2.5 and O3 during the campaigns compared to 5 y (2013-1260 

2017) averages. IOP = intensive observation period (i.e., campaign period). 1261 

 1262 

Figure 11: Comparison of observed (at IAP) and modelled pollutant concentrations showing (a) PM2.5 1263 

concentrations during the winter campaign compared with NAQPMS simulations, and 1264 

(b) O3 mixing ratios in summer compared with UKCA simulations. 1265 

 1266 

Figure 12:  Frequency distribution of PM2.5 in Beijing over the winter (top) and summer (bottom) 1267 

campaign periods from the NAQPMS model compared with those from the same periods 1268 

over the past five years under the same emission conditions. 1269 

  1270 
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Table 1:  Overview of measurements in APHH-Beijing at the urban site. 1271 

 Instrument Measurements Institute References 

C
o

n
ta

in
er

 2
 

FAGE 
OH (Chem and Wave)X, HO2, 

RO2 
Leeds Whalley et al. (2010) 

OH reactivity OH reactivity Leeds Stone et al. (2016) 

Spectral radiometer Photolysis rates Leeds Bohn et al. (2016) 

Filter radiometer J(O1D) Leeds Bohn et al. (2016) 

Dew point 

hygrometer 
Water vapour Leeds Whalley et al. (2010) 

Davis met station 
Wind speed, direction, temp, 

RH, pressure 
Leeds  

Vaisala CL31 ALC 

Ceilometer + 

Cloud-base height, mixing 

height, attenuated backscatter 

profiles 

Reading 
Kotthaus and Grimmond 

(2018a) 

Personal air 

monitors (PAMS) 

CO, NO, NO2, PM1, PM10, 

PM2.5  
Cambridge Moore et al. (2016) 

MicroPEMs Personal PM exposure IOM Sloan et al. 2015 

     

C
o
n

ta
in

er
 2

 

DC-GC-FID C2-C7 VOCs and oVOCs York Hopkins et al. (2011) 

GCxGC FID C6 - C13 VOCs and oVOCs York Dunmore et al. (2015) 

TEI 42i NO Birmingham  

Teledyne CAPS NO2 York  

TEI 42c  Total NOy York  

TEI 49i O3 York  

TEI 43i SO2 York  

Sensor box CO York Smith et al. (2017) 

BBCEAS HONO, NO3, N2O5 Cambridge Le Breton et al. (2014) 

     

C
o

n
ta

in
er

 3
 

LOPAP HONO Birmingham Crilley et al. (2016) 

LIF HCHO HCHO Leeds Cryer et al. 2016 

LOPAP HONO IC-CAS Zhang et al. (2019) 

GC-MS Organic nitrates East Anglia Mills et al. (2016) 

ROS online 

analyser 
Reactive Oxygen Species Cambridge Wragg et al. (2016) 

     

C
o
n

ta
in

er
 4

 

*
 FAGE OH (wave)x, HO2 Peking  Lu et al., 2012 
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FAGE OH (chem)x Peking  Tan et al., 2017 

TEI 42i NO Peking  Tan et al., 2017 

Teledyne CAPS NO2 Peking   

TEI 42c with Moly 

converter  
NO2 Peking   

TEI 49i O3 Peking   

TEI CO Peking   

Spectral radiometer Photolysis rates Peking   

GC-ECD PAN Peking  Zhang et al., 2011 

GC-MS VOCs Peking  Wang et al., 2015a 

     
     

C
o

n
ta

in
er

 5
 *

 

H-TDMA/V-

TDMA 
Hygroscopicity/volatility Peking  Wu et al., 2013 

SMPS+APS 
Particle Number size 

distribution 
Peking  Wu et al., 2016 

Particle size 

magnifier 

Size distribution of < 3nm 

particles 
Peking  Vanhanen et al., 2011 

IGAC-IC Water-soluble ions Peking  Yu et al. (2018) 

Xact Metal Peking  Yu et al. (2018) 

Sunset OC/EC EC/OC Peking  Zhang et al. (2017b) 

     

C
o
n

ta
in

er
 6

 

IBBCEAS HONO, NO2 AIOFM Duan et al. (2018) 

CRDS NO3 and N2O5 AIOFM Li et al. (2018) 

Nitrate Api-TOF-

CIMS Organics, clusters (HOMs) Birmingham Junninen et al. (2010) 

SMPS Particle size distribution Birmingham Shi et al. (1999) 

Particle size 

magnifier 

Size distribution of < 3 nm 

particles Birmingham Vanhanen et al. (2011) 

     

C
o

n
ta

in
er

 7
 

Fast NOx NOx fluxes York Vaughan et al. (2016) 

AL5002 CO 

analyser 
CO fluxes York Gerbig et al. (1999) 

HR-TOF-AMS 
Fluxes of PM1 non-refractory 

(NR) species 
CEH Nemitz et al. (2008) 

SP2 BC fluxes Manchester Liu et al. (2017) 

PTR-TOF-MS VOC fluxes 
GIG 

Lancaster  
Huang et al. (2016) 
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SYFT-MS Voice 

200 Ultra 
VOC fluxes York Storer et al. (2014) 

     

C
o

n
ta

in
er

 8
 

SMPS3968-

APS3321 

Particle number size 

distribution 
BNU Du et al. (2017) 

H/V TDMA Particle hygroscopicity BNU Wang et al. (2017b) 

CCNC-100 CCN BNU Wang et al. (2017b) 

PAX (870nm) 
Extinction & absorption 

coefficient 
IAP Xie et al. (2018) 

Ammonia analyzer NH3 IAP Meng et al. (2018) 

Sunset OC/EC 

analyzer 
Online OC/EC IAP Zhang et al. (2017b) 

     

C
o
n

ta
in

er
 9

 

Iodide FIGAERO-

TOF-CIMS 

Particle and gas phase molar 

molecule 
Manchester Le Breton et al. (2018) 

CPMA-SP2 
Black carbon mass and mixing 

state 
Manchester Liu et al. (2017) 

Micro reactor oVOCs York Pang et al. (2014) 

     

T
o

w
er

 ~
1

0
0
 m

 

QCL NH3 Ammonia fluxes CEH 

McManus et al. (2010) 

 

IRGA LiCOR-

7500 
CO2 / H2O flux CEH 

McDermitt et al. (2011) 

 

DMT UHSAS 
Size resolved particle flux 

(0.06-1 µm) 
CEH Deventer et al. (2015) 

TSI APS3021 
Size-resolved particle flux 

(0.5-25 µm) 

CEH 

Nemitz et al., (2002)  

 

TSI CPC3785 

Total particle number flux 

CEH 

Petäjä  et al., (2006)  

 

ROFI O3 flux CEH Coyle et al., 2009  

Sonic anemometer 

R3-50 
Turbulence, sensible heat flux CEH 

Högström and Smedman 

(2004) 

 

WXT530 weather 

station 

T, P, RH, wind speed & 

direction, precipitation 
CEH 

 

file:///C:/Users/shiz/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/BLCKN02Q/AIRPOLL_InstrumentReferencesCEH.docx%23_ENREF_6
file:///C:/Users/shiz/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/BLCKN02Q/AIRPOLL_InstrumentReferencesCEH.docx%23_ENREF_5
file:///C:/Users/shiz/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/BLCKN02Q/AIRPOLL_InstrumentReferencesCEH.docx%23_ENREF_3
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2B O3 analyser O3 concentration CEH Johnson et al. (2014) 
T

o
w

er
 ~

1
2

0
 m

 

High-vol sampler PM2.5 filter samples IAP 
 

Anderson sampler Size-resolved PM samples IAP 
 

T
o

w
er

 ~
2

6
0

 m
 

High-vol sampler PM2.5 filter samples IAP 
 

Anderson sampler Size- resolved PM samples IAP 
 

ACSM NR PM1 species IAP Sun et al. (2012) 

CAPS-PM-Ext 

(630nm) 
Extinction IAP Wang et al. (2015b) 

SMPS 3938 
Particle Number size 

distribution 
IAP Du et al. (2017) 

Gas analyser CO, O3 and SO2 IAP Zhou et al. (2018) 

Aethalometer 

AE33 
Black carbon IAP Xie et al. (2018) 

Single particle 

sampler 
Individual particles CUMTB Wang et al. (2018a) 

T
o

w
er

 a
n

d
 t

o
w

er
 b

a
sk

et
 m

ea
su

re
m

en
ts

 

SNAQ boxes (x 6 

at different 

heights) 

CO, NO, NO2, SO2, PM1, 

PM10, PM2.5 
Cambridge Popoola et al. (2018) 

LOPAP  HONO (3 min avg) Birmingham  Crilley et al. (2016) 

Spectral radiometer Photolysis rates Leeds Bohn et al. (2016) 

SNAQ 
CO, NO, NO2, SO2, PM1, 

PM10, PM2.5  
Cambridge  Popoola et al. (2018) 

WIBS 
Fluorescent biological aerosol 

particles (FBAP) 
IAP  Yue et al. (2016) 

AE33 BC  IAP  Xie et al. (2018) 

Los Gatos NH3 

Analyzer 
NH3 IAP Meng et al. (2018) 

PAX Light scattering / absorption IAP Xie et al. (2018) 

    

IA
P

 g
ro

u
n

d
 

High-Vol sampler PM2.5 filter samples Peking  

4-channel sampler PM2.5 filter samples Peking  

file:///C:/Users/shiz/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/BLCKN02Q/AIRPOLL_InstrumentReferencesCEH.docx%23_ENREF_4
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High Vol sampler 
High time resolution PM2.5 

filter samples 
York   

 
FDMS+Thermo Sc

ientific 1405-DF 
Online PM2.5 mass conc. IAP  

IA
P

 r
o

o
f/

la
b
 

Partisol sampler PM2.5 + PM2.5-10 Birmingham Taiwo et al. (2014) 

Streaker sampler 

Hourly elements in PM2.5 and 

PM2.5-10 Birmingham Taiwo et al. (2014) 

Digitel High Vol  PM2.5 daily IAP 
 

Digitel High Vol  PM1 - 3 hourly IAP  

Andersen sampler Size resolved PM IAP  

WIBS 

Fluorescent biological 

particles  IAP Yue et al. (2016) 

CAPS-NO2 NO2 IAP Ge et al. (2013) 

Aethalometer 

AE33 Black carbon IAP Xie et al. (2018) 

CAPS-PMSSA 

(630nm) Extinction, Scattering IAP Han et al. (2017) 

HR-ToF-AMS NR-PM species IAP Sun et al. (2016) 

SP-AMS 

Refractory BC and coated 

aerosol composition  Wang et al. (2017a) 

Iodide FIGAERO- 

ToF-CIMS 

Particle and gas phase molar 

molecule IAP Zhou et al. (2018) 

Single particle 

sampler 
Individual particles CUMTB Wang et al. (2018) 

 1272 

Institution names: AIOFM = Anhui Institute of Fine Optics and Mechanics; BNU = Beijing Normal 1273 

University; CEH = Centre for Ecology and Hydrology; CUMTB = China University of Mining and 1274 

Technology (Beijing); GIG = Guangzhou Institute of Geochemistry, Chinese Academy of Sciences; 1275 

NUIST = Nanjing University of Information Science &Technology; IC-CAS = Institute of Chemistry, 1276 

Chinese Academy of Sciences 1277 

+ Deployment of instruments both campaigns unless: 10/11/2016 to 25/6/2017 1278 

*  Winter campaign only  1279 

X OH wave and OH chem refer to the method used to obtain the background signal for the FAGE 1280 

instruments which are equipped with a scavenger inlet 1281 

  1282 
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Table 2:  Overview of measurements at the Pinggu site. 1283 

 1284 

Instruments Measurements Insitutue Reference 

Thermo gas 

analysers 
NOx/SO2/CO/O3 Peking Liang et al., 2017 

BAM 1020 PM2.5 mass concentration Peking Liang et al., 2017 

High vol sampler PM2.5 samples IAP Zhao et al., 2018 

Medium vol sampler PM2.5 samples IAP Zhao et al., 2018 

Low vol Andersen 

sampler 
Size resolved PM samples IAP Zhao et al., 2018 

Partisol sampler PM2.5 samples Birmingham Taiwo et al. (2014) 

Streaker sampler 
Hourly elements in PM2.5 

and PM2.5-10 
Birmingham Taiwo et al. (2014) 

High vol sampler 
Filters of PM2.5; high time 

resolution 
Birmingham  

Four Channel 

sampler 
PM2.5 samples Peking Liang et al., 2017 

Thermo MAAP Online Black Carbon Peking Lin et al., 2011 

Sunset OC/EC 

analyzer 
Online OC/EC Peking Han et al., 2014 

Xact Hourly metals Peking Yu et al. (2018) 

TOF-ACSM 
NR-chemical composition 

(summer) 
Peking Sun et al., 2012 

Thermo Metone Meteorological parameters Peking Liang et al., 2017 

SNAQ Meteorological parameters Cambridge Popoola et al. (2018) 

SP-AMS 
Individual particle 

composition 
CQIGIT Chen et al. (2017) 

SMPS Size distribution Tsinghua Wang et al., 2009 

ACSM 
NR-chemical composition 

(winter) 
Tsinghua Li et al. (2016) 

CQIGIT = Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences 1285 

  1286 
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Table 3:  Mean and standard deviation (sd) of climatological conditions in Beijing for each circulation type (CT) for 1988-2017 from ERA-Interim 1287 

data with frequency of the CT during the W (winter) and S (summer) campaigns (% of 6 h periods (p)) compared to long- term (1988-2017) average-A 1288 

  WS WSsd WD WDsd T2m T2msd TD2m TD2msd MSLP MSLPsd RH RHsd Season Frequency (%) 

CT Description m s-1 m s-1 ° ° °C °C °C °C hPa hPa % %  W S A 

1 H - west of the 

domain 

3.38 1.63 298.3 62.6 0.1 7.1 -12.6 7.9 1026.50 4.14 41 18 Winter 

monsoon 

16 7 9.3 

2 H - west of the 

domain 

2.91 1.49 265.9 107.0 -2.8 6.2 -13.8 7.5 1034.34 4.47 45 18 Winter 

monsoon 

1 0 7.2 

3 relatively L in NE 3.21 1.65 281.2 71.3 6.8 8.9 -6.4 9.3 1017.77 4.35 43 20 Sep- May 12.5 0 8.3 

4 further reduction 

L (cf. CT3, 5) in 

NE winds start to 

turn over Yellow 

Sea 

3.05 1.73 240.1 104.1 19.2 7.5 7.0 10.4 1007.20 3.63 50 24 Mar-Aug 

Spring - 

summer 

11.8 4 7.8 

5 relatively L in NE 2.57 1.37 189.1 125.0 8.2 8.9 -0.9 10.4 1020.82 4.62 57 23 Sep-May 7.6 34 8.3 

6 further reduction 

L (cf. CT3, 5) in 

NE 

2.58 1.32 197.4 87.6 24.6 5.9 14.7 8.0 1000.99 2.96 59 23 Summer 

monsoon 

8.3 12 8.9 

7 when winds are 

oriented 

westward from 

the Bohai Sea 

2.29 1.12 167.5 100.2 18.9 7.8 10.7 9.5 1012.59 3.61 63 21  1 p 11 10.2 

8 like CT 6 2.35 1.11 165.4 75.4 24.0 5.3 15.9 6.8 1006.47 2.69 65 21 Summer 

monsoon 

 32 12.9 

9 Air mass stagnant 

over Beijing 

2.03 0.94 208.7 107.4 2.1 7.9 -6.2 8.4 1028.66 4.18 58 20   0 9.6 

10 Air mass stagnant 

over Beijing 

2.67 1.17 211.1 68.7 14.2 9.4 3.1 10.0 1013.98 3.84 52 22  25 0 7.2 
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11 Air mass stagnant 

over Beijing 

2.23 0.98 209.1 86.5 8.1 9.4 -0.4 9.6 1021.83 4.06 59 20  16 0 10.3 

 1289 

Note: WS- wind speed, WD wind direction, T2m – 2 m air temperature, TD2m – 2 m dewpoint temperature, MSLP – mean sea level pressure, RH – 1290 

relative humidity; L – low pressure; H – High pressure 1291 

  1292 
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Table 4:  Average air quality variables at IAP, Pinggu and 12 national monitoring sites (12N) during the field campaigns (10 November – 11 1293 

December 2016; and 21 May – 22 June 2017). The 12 national sites five-year mean concentrations for same times of the years (12N -5Y) and for the 1294 

same time of the year (campaign period) (12N-campaign).  Data are mean ± s.d. (range).  1295 

Pollutant1 

Winter (10 Nov-11 Dec 2016) Summer (21 May-22 June 2017) 

IAP PG 12N-5Y 12N - campaign IAP PG 12N-5Y 12N- campaign 

PM2.5 
2 

91.2 ± 63.7 

(10.3-239.9) 

99.7 ± 77.8 

(13.3-294.3) 

84.01 ± 89.1 

(3.2-593.3) 

95.3 ± 79.6 

(4.7-408.8) 

31.4 ± 14.7 

(12.2-78.8) 

27.8 ± 13.3 

(10.6-70.3) 

58.7 ± 40.0 

(4.2-250.3) 

41.7 ± 22.3 

(8.9- 134.1) 

PM10
 2 

130.6 ± 87.0 

(20.0-329.2) 

121.9 ± 80.4 

(10.4-312.1) 

112.8 ± 102.2 

(5-662.0) 

134.5 ± 100.4 

(6.0-550.1) 

74.9 ± 29.3 

(22.5-164.6) 

62.9 ± 29.3 

(15.1-141.9) 

94.6 ± 52.7 

(5.0-463.2) 

81.9 ± 37.1 

(6.0-277.8)  

NO2 
69.7  ± 33.3 

(10.2-167.3) 

46.4  ± 25.5 

(2.3-132.4) 

57.7 ± 33.9 

(3.9-166.4) 

66.4 ± 31.3 

(7.3-156.6)  

41.3 ± 23.5 

(9.2-142.9) 

29.3 ± 10.3 

(9.3-84.0) 

40.6 ± 17.9 

(8.1-132.4) 

37.6 ± 16.2 

(12.5-92.8) 

SO2 
14.9 ± 11.1   

(0.1-50.8) 

15.4 ± 6.7   

(6.2-44.4) 

16.6 ± 16.2 

(1.4-112.0) 

14.2 ± 9.4 

(2.1-51.4) 

6.3 ± 6.8     

(0.1-38.2) 

8.9 ± 4.7     

(4.2-41.2) 

10.1 ± 10.6     

(1.8-82.3) 

7.4 ± 6.6 (1.8-

64.5)  

CO  
1.53 ± 1.02 (0.7-

5.0) 

1.47 ± 1.17 

(0.1-6.9) 

1.65 ± 1.38 

(0.1-9.6) 

1.86 ± 1.17 

(0.3-5.7) 

0.61 ± 0.32 

(0.1-2.5) 

0.52 ± 0.29 

(0.1-2.3) 

0.93 ± 0.74 

(0.2-8.7) 

0.74 ± 0.33 

(0.2-2.5) 

O3 
16.4 ± 17.0 (0.3-

63.3) 

22.3 ± 22.2 

(2.9-78.0) 

21.8 ± 20.5 

(1.0-72.9) 

17.5 ± 19.2 

(2.1-67.4) 

106.9 ± 

71.6 (2.0-

349.3) 

91.8 ± 62.7 

(0.2-291.4) 

100.4 ± 

67.8 (2.2-

343.5) 

110.8 ± 66.5 

(3.6-335.9) 

1, Units: µg m-3 except CO units: mg m-3 1296 

2, PM2.5 and PM10 from IAP and Pinggu measured by a gravimetric method; all other data are online measurements hourly mean. 1297 
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  1298 
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Table 5:  Haze periods during the summer and winter campaign periods. 1299 

 1300 

Event Time PM2.5 (µg m-3) Visibility (km) 

Winter Haze Event 1 11/08 21:00- 11/10 16:00 158 (79 - 229) 4.1 (2.3-8) 

Winter Haze Event 2 11/15 21:00- 11/19 08:00 143 (56 - 244) 4.2(0.6-8) 

Winter Haze Event 3 11/24 12:00- 11/27 02:00 210 (68-363) 4.2(1.5-8) 

Winter Haze Event 4 12/02 16:00- 12/05 02:00 239 (58 -530) 3.9(0.9-8) 

Winter Haze Event 5 12/06 09:00- 12/08 10:00 144 (64 -229) 4.6(2.2-8) 

Summer Haze Event 1 27/05 12:00 -28/05 13:00 107(62- 163) 6.8(4.5-9) 

Summer Haze Event 2 17/06 09:00-18/06 17:00 90.5(60-153.3) 9.3(7-13) 

Note: data in parentheses show the range 1301 
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 1302 

 1303 

 1304 

 1305 

 1306 

 1307 

 1308 

 1309 

 1310 

 1311 

 1312 

 1313 

 1314 

 1315 

 1316 

 1317 

 1318 

 1319 

 1320 

Figure 1: Study area topography (source: googlemap) of Beijing / Tianjing / Hebei region (a) with 1321 

the rectangle showing enlarged study area;  locations of measurement sites (Institute of 1322 

Atmospheric Physics (IAP)– urban Beijing, Pinggu – rural Beijing; and Gucheng – upwind site in 1323 

Hebei province), SNAQ box sites (red symbols) and the 12 national air quality monitoring stations 1324 

(G1 to G12, blue symbols) (b).  The shaded area shows the Beijing buildup area. (Source: a and b - 1325 

Goggle Map topographic background imagery). G1: Wangshouxigong; G2: Dingling (Ming 1326 

Tombs); G3: Dongsi; G4: Tiantan; G5: Nongzhanguan; G6: Guanyuan; G7: Haidianquwanliu; G8: 1327 

Shunyxicheng; G9: Huairouzhen; G10: Changpingzhen; G11: Aotizhongxin (Olympic Park); G12: 1328 

Gucheng. Categories: Urban: G1, G3, G4, G5, G6, G7, G8, G11, G12; Suburban: G9, G10; Rural: 1329 

G2.   1330 

 

 

a 

b 
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  1331 

Figure 2:  ERA-Interim (1988-2017) average 925 hPa geopotential with 10 m horizontal wind 1332 

vector for 11 circulation types classified for Beijing (municipal boundary thin solid line) 1333 

surroundings (103-129° E, 31 - 49° N) determined with the SANDRA method (COST733 class 1334 

software). Frequency of occurrence is given in cluster caption. For discussion of conditions 1335 

associated with each CT see Section 4.3. 1336 

  1337 
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 1338 

Figure 3: Time series of circulation types (CTs) during the two field campaigns: (a) winter and (b) 1339 

summer. The 11 CTs are shown in Figure 2. See text for more description. Shading shows the 1340 

pollution events identified in Section 5 and Figure 5.  1341 

  1342 

a 

b 
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 1343 

a

 

b

 

c

 

d

 

e

 

f

 

 1344 

Figure 4:  Beijing wind roses: (a, b, d, e) ERA-Interim 10 m horizontal wind (40° N, 116.5° E) and 1345 

(c, f) sonic anemometer (Table 1)  at IAP 320 m agl for (a) 5 November – 10 December in 1988-1346 

2017, (d) 15 May – 22 June in 1988-2017, (b, c) 5 November – 10 December 2016, and (e, f) 15 1347 

May – 22 June 2017.  1348 
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 1349 

Figure 5: Time-series of air quality variables at the urban and rural sites during the winter 1350 

campaign; Five haze events are indicated (shading; see also Table 4). 1351 

  1352 
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 1353 

Figure 6: Diurnal patterns of gaseous pollutants normalized by average concentrations at IAP 1354 

during winter and summer campaigns. Line shows the mean concentrations and shaded area as 95% 1355 

confidence interval in the difference in mean concentrations.  1356 
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 1357 

Figure 7: Time series of CO2, CO, NO, Ox (NO2+O3) and wind speed at six heights (colour) 1358 

measured with SNAQ boxes on the IAP tower during the winter intensive field campaign.  1359 
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 1362 

Figure 8: Time-series of air quality variables at the urban and rural sites during the summer 1363 

campaign. Two minor haze events are indicated (shading). 1364 
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 1366 

  1367 

Figure 9:  Correlations between the air quality at IAP, PQ and 12 monitoring station around 1368 

Beijing. Stations G1-G12 (Figure 1(b)) are labelled 01-12, PG = Pinggu. 1369 
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 1371 

 1372 

Figure 10: Analysis by circulation type (CT; Sect. 4.3) of: (a) daily maximum mixed layer height 1373 

(MLH) determined from ALC observations at IAP between November 2016 – June 2017 (analysis 1374 

method, Kotthaus and Grimmond, 2018b); concentration of (b) PM2.5 and (c) O3 at the Olympic 1375 

Park (i.e. Aotizhongxin) in 2013-2017 from the national air quality network for different CTs; 1376 

occurrence of CTs in (d) 1988-2017 and (e) Oct 2016 – Sept 2017; (f) anomaly of CT frequency 1377 

during the campaigns compared to 5 y (2013-2017) averages; and (g) anomaly of PM2.5 and O3 1378 

during the campaigns compared to 5 y (2013-2017) averages. IOP = intensive observation period 1379 

(i.e., campaign period). 1380 
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 1382 

Figure 11: Comparison of observed (at IAP) and modelled pollutant concentrations showing (a) 1383 

PM2.5 concentrations during the winter campaign compared with NAQPMS simulations, and (b) O3 1384 

mixing ratios in summer compared with UKCA simulations. 1385 
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 1389 

Figure 12: Frequency distribution of PM2.5 in Beijing over the winter (top) and summer (bottom) 1390 

campaign periods from the NAQPMS model compared with those from the same periods over the 1391 

past five years under the same emission conditions 1392 
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