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Abstract. Interannual variations in temperature and precipitation impact the carbon balance of terrestrial ecosystems, leav-

ing an imprint in atmospheric CO2. Quantifying the impact of climate anomalies on the net ecosystem exchange (NEE) of

terrestrial ecosystems can provide a constraint to evaluate terrestrial biosphere models against, and may provide an emergent

constraint on the response of terrestrial ecosystems to climate change. We investigate the spatial scales over which interannual

variability in NEE can be constrained using atmospheric CO2 observations from the Greenhouse Gases Observing Satellite5

(GOSAT). NEE anomalies are calculated by performing a series of inversion analyses using the GEOS-Chem model to assimi-

late GOSAT observations. Monthly NEE anomalies are compared to “proxies”, variables which are associated with anomalies

in the terrestrial carbon cycle, and to upscaled NEE estimates from FLUXCOM. Strong agreement is found in the timing of

anomalies in the GOSAT flux inversions with soil temperature and FLUXCOM. Strong correlations are obtained (P< 0.05,

R>RNINO3.4) in the tropics on continental and larger scales, and in the northern extratropics on sub-continental scales during10

the summer (R2 ≥ 0.49). These results, in addition to a series of observing system simulation experiments that were conducted,

provide evidence that GOSAT flux inversions can isolate anomalies in NEE on continental and larger scales. However, in both

the tropics and northern extratropics, the agreement between the inversions and the proxies/FLUXCOM is sensitive to the

flux inversion configuration. Our results suggest that regional scales are likely the minimum scales that can be resolved in the

tropics using GOSAT observations, but obtaining robust NEE anomaly estimates on these scales may be difficult.15
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1 Introduction

Organisms within terrestrial ecosystems have evolved to fit their climatic environment. Anomalous variations in temperature

and and precipitation about the mean climate can have significant impacts on the functioning of these organisms (Berry and

Bjorkman, 1980; Gutschick and BassiriRad, 2003; Smith, 2011), which can be reflected in anomalies in the carbon balance

of ecosystems. In fact, interannual variability (IAV) in the atmospheric growth rate of CO2 is largely explained by changes in5

the carbon balance of terrestrial ecosystems in response to climate variability (Keeling et al., 1976a, b; Conway et al., 1994;

Keeling et al., 1995; Battle et al., 2000). A number of studies have taken advantage of this fact to estimate anomalies in net

ecosystem exchange (NEE). In these studies, data assimilation methods are employed to estimate NEE anomalies consistent

with measured variations in atmospheric CO2 (Bousquet et al., 2000; Rödenbeck et al., 2003; Bruhwiler et al., 2011; Peylin

et al., 2013; Marcolla et al., 2017; Rödenbeck et al., 2018; Shiga et al., 2018a). These studies have generally used CO2 mea-10

surements from the global network of in situ instruments for observational constraints. This network provides by far the longest

direct record of atmospheric CO2 measurements, with many sites functioning for decades. However, the spatial distribution

of sites is inhomogeneous, with sites most densely located in North America and Europe and comparatively few elsewhere.

Therefore, in situ observations from the global observation network are relatively insensitive to CO2 fluxes over much of Asia

and in the tropics (Byrne et al., 2017), where IAV is the largest. Recently, space-based observations of atmospheric CO2 have15

provided expanded observational coverage for atmospheric CO2. One of the satellites, the Greenhouse Gases Observing Satel-

lite (GOSAT), has been providing measurements of atmospheric CO2 since 2009. With multiple years of measurements, it is

now possible to investigate IAV in the carbon cycle with GOSAT data.

In this study, we investigate interannual flux anomalies estimated from GOSAT measurements using the “flux inversion”

method, wherein surface fluxes are estimated from atmospheric CO2 measurements using a tracer transport model and Bayesian20

inverse methods. A series of flux inversions using the GEOS-Chem four-dimensional variational (4D-Var) data assimilation

system (Henze et al., 2007) are performed with different spatial resolutions, prior fluxes and prior error covariances. We also ex-

amine the posterior fluxes from two publicly available flux inversion estimates, the GOSAT Level 4 product (Maksyutov et al.,

2013) and CarbonTracker, version CT2016 (Peters et al., 2007, with updates documented at http://carbontracker.noaa.gov),

which is a flux inversion that assimilates CO2 observations from the surface network. Posterior anomalies in NEE from the25

inversions are compared with “proxies”, variables that are known to be closely associated with IAV in the carbon cycle. Agree-

ment between the anomalies in the inversions and proxies provides corroborating evidence that the inversions are correctly

recovering anomalies in NEE (Deng et al., 2016; Mabuchi et al., 2016; Liu et al., 2017). Three proxies are examined: soil

temperature (Tsoil) anomalies from the MERRA-2 reanalysis (Reichle et al., 2011, 2017), the Monthly Self-calibrated Palmer

Drought Severity Index (scPDSI) (Dai, 2017), and solar-induced chlorophyll fluorescence (SIF) observed by GOME-2 (Joiner30

et al., 2016). We also use flux data from FLUXCOM, which provides data-driven NEE anomaly estimates (Tramontana et al.,

2016; Jung et al., 2017).

Anomalies in temperature and water availability are closely linked to anomalies in terrestrial ecosystems. On the local scales

of FLUXNET sites (Baldocchi et al., 2001), temperature and precipitation have both been shown to be major controls on
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NEE (see Baldocchi et al. (2018) for a review). On regional and larger scales, stronger correlations have been found with

temperature anomalies than with precipitation anomalies (Wang et al., 2013; Jung et al., 2017), particularly in the tropics.

Jung et al. (2017) suggest that this is partially due to sub-regional-scale spatial variability in water availability anomalies that

compensate, thereby reducing the influence of these anomalies on larger scales, while temperature anomalies are generally more

spatially coherent. Nevertheless, both temperature and water availability anomalies strongly influence NEE anomalies over a5

wide range of scales. The largest driver of IAV in the carbon cycle is El Niño-Southern Oscillation (ENSO) variability, which

most strongly impacts tropical ecosystems (Bacastow, 1976; Bacastow et al., 1980; Bousquet et al., 2000; Ciais et al., 2013).

During the warm phase of ENSO (El Niño) large areas of tropical land become dryer and warmer, leading to a net emission

of CO2 from the land to the atmosphere, which amplifies the atmospheric CO2 growth rate. During the cold phase of ENSO

(La Niña), much of the tropical land is cooler and wetter than average, leading to anomalously low CO2 growth rates (Jones10

and Cox, 2005). In the extratropics, there is also significant variability in the carbon balance of terrestrial ecosystems related to

temperature and moisture anomalies (Conway et al., 1994; Bousquet et al., 2000). Wunch et al. (2013) show that the summer

minima in column-averaged dry-air mole fraction of CO2 (XCO2 ) observed at northern midlatitude Total Carbon Column

Observing Network (TCCON) sites is correlated with surface temperature, indicating that midlatitude positive temperature

anomalies correspond to reduced uptake by the northern extratropical biosphere during the growing season. Similarily, He15

et al. (2018) show that GOSAT XCO2 anomalies are correlated with indicators surface environmental parameters (such as

temperature and drought index). Many studies have examined extreme heatwaves or droughts in the extratropics, such as

the 2003 European heatwave (Ciais et al., 2005) and 2010 Russian heat wave and wildfires (Guerlet et al., 2013; Ishizawa

et al., 2016). In these cases, positive temperature anomalies and drought conditions result in a release of CO2 from terrestrial

ecosystems to the atmosphere. Zscheischler et al. (2014) show that relatively few extreme events dominate anomalies in gross20

primary productivity (GPP), and likely NEE. Due to the large seasonal cycle of temperature, precipitation and insolation in the

extratropics, the relationship between anomalies in NEE and the proxies is likely a function of time of year. We focus our study

of the northern extratropics to the Northern Hemisphere summer (JJA).

SIF is the emission of radiation by chlorophyll during photosynthesis and thus provides a measure of GPP (Papageorgiou

and Govindjee, 2007; Frankenberg et al., 2011; Guanter et al., 2012; Yang et al., 2015; Damm et al., 2015; Zhang et al., 2016a,25

b; Wood et al., 2017). Therefore, reduced GPP is associated with reduced SIF, and vice-versa. The relationship to anomalies in

NEE is less direct because GPP and ecosystem respiration anomalies are highly correlated (Baldocchi et al., 2018). Therefore,

the extent to which SIF anomalies and NEE anomalies should be correlated is not well understood. One study, Shiga et al.

(2018b), shows that SIF can be used to inform the spatiotemporal distribution of NEE over North America.

Upscaled NEE estimates from eddy-covariance measurements at flux towers can be used to generate an observation-based30

estimate of NEE anomalies at regional to continental scales. Kondo et al. (2015) compared the GOSAT L4 product and em-

pirical eddy flux upscaling and found similar responses to climate anomalies in temperate and boreal regions, while poorer

agreement was found in the tropics. Here, we use upscaled NEE estimates from FLUXCOM that are generated using upscaling

approaches based on machine learning methods that integrate FLUXNET site level observations of CO2 fluxes, satellite remote

3

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-909
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 2 January 2019
c© Author(s) 2019. CC BY 4.0 License.



sensing, and meteorological data (Tramontana et al., 2016; Jung et al., 2017). For this study, upscaled fluxes generated using

multivariate regression splines (MARS) are used. Similar results were found for other upscaling algorithms.

It is important to acknowledge that none of these proxies (or FLUXCOM) should be expected to be perfectly correlated with

the true NEE anomalies. Therefore, when there is disagreement between the inversions and proxies, it unclear whether this

should be attributed to the inversion NEE or the proxy. Comparisons of flux inversions with the proxies are most useful for5

identifying “positive” results for which the assimilation of atmospheric CO2 observations has introduced a strong correlation

with the proxies. However, these comparisons are less useful for identifying the limits of the inversions with “negative” results,

in which the null hypothesis (no correlation) cannot be rejected.

In addition to comparing our flux inversions with the proxies and the FLUXCOM data, we also compare several terrestrial

biosphere models (TBMs) with the proxies and the FLUXCOM data. TBMs simulate GPP and ecosystem respiration, and10

therefore provide estimates of NEE. TBMs are widely applied to simulate projections of the future carbon cycle, however,

different models show large disagreements on the relative importance of different processes driving the uptake (Huntzinger

et al., 2017). One of the primary goals of atmospheric flux inversions is to provide better constraints on NEE to evaluate these

models. Therefore, it is useful to determine whether the agreement between flux inversions and the proxies is closer than the

agreement between TBMs and the proxies.15

This paper has three main objectives. The first is to quantify the agreement between GOSAT flux inversions and the flux

proxies. This will be useful for identifying the utility of using proxies to corroborate flux inversions results. The second is to

determine the spatial scales over which the GOSAT inversions constrain flux anomalies. GOSAT observations are expected to

best constrain fluxes on large scales, such as the entire tropics. As scales decrease, finer scale structures in the atmospheric

CO2 fields are required to constrain fluxes, the smallest scales at which GOSAT observations provide useful constraints on20

NEE anomalies is currently unclear. We quantify the ability of GOSAT flux inversions to quantify NEE anomalies over a

range of spatial scales by, first, examining the agreement between the inversions and proxies over a range of spatial scales and,

second, examine the ability of GOSAT inversions to recover true flux anomalies by performing a series of Observing System

Simulation Experiments (OSSEs). Monthly anomalies in the tropics are examined throughout the year while anomalies in the

northern extratropics are examined during the summer (June-July-August, JJA). The third objective is to quantify the sensitivity25

of the results for the first two objectives to the inversion setup. This is investigated with a series of GOSAT flux inversions with

different model resolution, prior fluxes, and prior error covariances.

This paper is structured as follows. In Sect. 2, we describe the datasets used, flux inversions performed, and how anomalies

are calculated. Sect. 3 presents the results of our analysis. Flux inversion NEE anomalies are compared with the proxies in the

tropics and northern extratropics individually. We then present an OSSE to examine the smallest spatial scales for which NEE30

anomalies can be recovered from GOSAT observations. Sect. 4 discusses the agreement in anomalies between the GOSAT flux

inversions and proxies, the scales constrained by GOSAT flux inversions, and the sensitivity of these results to the inversion

setup. Finally, conclusions are given in Sect. 5.

4
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2 Data and methods

2.1 FLUXCOM NEE Data

FLUXCOM products are generated using upscaling approaches based on machine learning methods that integrate FLUXNET

site level observations, satellite remote sensing, and meteorological data (Tramontana et al., 2016; Jung et al., 2017). Explana-

tory variables from remote sensing measurements are averaged to produce a mean seasonal cycle (Tramontana et al., 2016),5

such that all NEE IAV is introduced by the driving reanalysis (NCEP CRU). In particular, NEE IAV is driven by air temper-

ature, incoming global radiation combined with the mean seasonal cycle of NDVI, and model-based water availability index.

Jung et al. (2017) generate NEE products using several machine learning methods. We downloaded these products from the

Data Portal of the Max Planck Institute for Biochemistry (https://www.bgc-jena.mpg.de). We find that the different algorithms

generally give similar results, therefore we only present results using the multivariate regression spline (MARS) NEE in this10

study.

2.2 Proxies

2.2.1 Dai Global Palmer Drought Severity Index

The monthly self-calibrated Palmer Drought Severity Index (scPDSI) (Dai, 2017) provides a measure of drought severity on

a 2.5◦× 2.5◦ grid. The scPDSI is computed using observed monthly surface air temperature and precipitation and provides a15

measure of surface aridity anomalies and changes on seasonal to longer time scales (Dai et al., 2004; Dai, 2011). We note that

scPDSI may not be a good proxy of soil moisture content over the high latitudes (>50◦).

2.2.2 SIF

We use the monthly gridded “SIF daily average” product from the NASA Level 3 GOME-2 version 27 (V27) terrestrial

chlorophyll fluorescence data (NASA-SIF, 2016; Joiner et al., 2013, 2016). SIF anomalies are multiplied by negative one to20

change the sign of the anomalies, so that positive correlations will be obtained if negative SIF anomalies are correlated with

positive NEE anomalies (emission of CO2 to the atmosphere).

2.2.3 Soil temperature

For the soil temperature proxy, we use soil temperatures from the MERRA-2 (Reichle et al., 2011, 2017) reanalysis. Specifially,

we use the average soil temperature over levels 1–3 (TSOIL1,TSOIL2,and TSOIL3), which reaches a depth of 0.73 m.25

2.2.4 NINO 3.4 index

For the phase of ENSO, we use the sea surface temperature (SST) anomaly in the NINO 3.4 region (5◦S–5◦N, 120◦S–170◦N)

of the tropical Pacific Ocean. This region has been widely used to diagnose ENSO activity. The SST values are calculated from

the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) dataset. The SST anomalies were downloaded

5
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from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) website

(https://www.esrl.noaa.gov).

2.3 Inversion analyses

2.3.1 CarbonTracker

We use optimized NEE from the NOAA’s CarbonTracker, version CT2016 (Peters et al., 2007, with updates documented at5

http://carbontracker.noaa.gov). CT2016 optimizes NEE by assimilating in situ observations of boundary layer atmospheric

CO2. It employs the ensemble Kalman filter approach to assimilate CO2 with atmospheric chemical transport simulated by the

TM5 offline atmospheric model (Krol et al., 2005). For CT2016, TM5 is driven by ERA-Interim assimilated meteorology from

the European Centre for Medium-Range Weather Forecasts (ECMWF), with a horizontal resolution of 3°×2° globally and

1°×1° in a nested grid over North America. CT2016 also has IAV in biomass burning. Therefore, when analyzing posterior10

IAV in CT2016 we examine the IAV in NEE alone (referred to as CT2016) and IAV due to NEE and biomass burning combined

(referred to as CT2016w/BB).

2.3.2 GOSAT level 4 data

We use the GOSAT level 4 data product (Maksyutov et al., 2013) produced by the National Institute for Environmental Studies

(NIES). This product is produced by assimilating NIES Level 2 retrievals of XCO2 into the NIES global atmospheric tracer15

transport model (NIES-TM) to optimize monthly CO2 fluxes for 64 sub-continental regions. The Vegetation Integrative SImu-

lator for Trace gases (VISIT), a prognostic biosphere model (Ito, 2010; Saito et al., 2014), is used to generate prior biospheric

fluxes for the inversion analyses. The GOSAT L4 product also has IAV in biomass burning. Therefore, when analyzing pos-

terior IAV, we examine IAV in NEE alone (referred to as GOSAT L4) and IAV due to NEE and biomass burning combined

(referred to as GOSAT L4w/BB).20

2.3.3 GEOS-Chem

We perform a series of flux inversions using the GEOS-Chem 4D-Var assimilation system (Henze et al., 2007). The GEOS-

Chem forward model (www.geos-chem.org) is a global 3-D chemical transport model driven by assimilated meteorology from

the Goddard Earth Observing System (GEOS-5) of the NASA Global Modeling an Assimilation Office (GMAO). The native

resolution of the model is 0.5°×0.67° with 72 vertical levels from the surface to 0.01 hPa, but we run the model at lower25

resolution (either 2°×2.5° or 4°×5°, depending on the inversion) with 47 vertical layers. Our model configuration is based

on the configuration of Nassar et al. (2011). To optimize surface fluxes, the 4D-Var cost function is minimized as described

in Deng et al. (2014) to retrieve monthly scaling factors for prior ocean and terrestrial biosphere fluxes in each grid cell. We

use an assimilation window of nine months and keep posterior fluxes from the first six months, then shift the inversion widow

forward six months. Using this method, we optimize NEE spanning 2010–2013 (in addition to a six month spin up inversion30

starting in July 2009). Monthly ocean fluxes are from Takahashi et al. (2009), anthropogenic emissions are from Andres et al.

6
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(2016), and biomass burning emissions are from the Global Fire Emission Database GFEDv3 (van der Werf et al., 2006). We

repeat the 2010 GFEDv3 biomass burning emissions for all years so that there is no prior NEE IAV. Error covariance matrices

are taken to be diagonal, such that there are no spatial or temporal covariances. Prior errors are assigned as a percentage of

the prior flux estimate rather than an absolute value. We assign 16% error to fossil fuels and 38% error to biomass burning

following Deng et al. (2014).5

The GEOS-Chem flux inversions performed in this study are shown in Table 1. The flux inversions are performed with dif-

ferent model configurations to examine the sensitivity of the results to the inversion setup. We perform inversions at two spatial

resolutions, 2°×2.5° and 4°×5°. The spatial resolution is varied to examine whether changes in model transport significantly

impact our results. It has previously been shown that there are significant differences in tracer transport as model resolution is

decreased in GEOS-Chem (Yu et al., 2018; Stanevich, 2018). In particular, Stanevich (2018) show that resolution-induced bi-10

ases of up to 30% can be introduced on the scale of TransCom regions for 4°×5° relative to 2°×2.5° for atmospheric methane

(CH4) inversions.

The prior error statistics are varied between inversions. The prior error covariance provides a metric of the uncertainty

in the prior fluxes. If prior fluxes are well known then small errors are applied. If they are poorly known then large prior

errors are applied and the observations will have a larger impact on the posterior fluxes. However, in general, atmospheric15

CO2 observations underconstrain the fluxes and additional regularization considerations are required. To prevent overfitting of

assimilated observations, prior flux errors are typically tighter than the true uncertainty in NEE fluxes. Therefore, the motivation

for varying prior errors in this study is to examine the sensitivity of the posterior flux anomalies to these prior constraints.

Finally, the prior NEE fluxes are varied between flux inversions. For all GEOS-Chem inversions, the prior NEE fluxes

are based on the posterior fluxes from CT2016. CT2016 fluxes are used because they are informed by atmospheric CO220

observations, and thus provide a seasonal cycle of NEE which is closer to observed atmospheric CO2 than a TBM forward

run (Byrne et al., 2018). Using prior fluxes which are closer to the observed atmospheric CO2 then justifies tighter prior flux

error covariances. We use two different setups of the CT2016 posterior fluxes in the inversions. For four inversions we remove

the NEE IAV from the CT2016 fluxes. To do this, the fluxes are averaged over the four years (2010–2013) to generate a mean

seasonal cycle. We then repeat this climatology of NEE fluxes for each year of the inversion. The reason for removing prior25

NEE IAV is so that all posterior NEE anomalies will be introduced through the assimilation of GOSAT observations. This setup

is different from many previous flux inversion studies which have included NEE IAV in the prior fluxes. Therefore, to examine

the sensitivity of the posterior NEE IAV to prior NEE IAV, we also perform two inversions that employ three-hourly CT2016

NEE fluxes over 2010–2013 unchanged from those available at http://carbontracker.noaa.gov, other than spatial interpolation to

fit our grid, so that NEE IAV is present on the prior NEE for these inversions. The inversions are given names with a subscript30

following the convention “model resolution – percentage error applied to prior fluxes – presence of prior NEE IAV”, such that,

an inversion analysis at 4◦× 5◦ resolution with 100% uncertainty applied to prior fluxes and with prior NEE IAV is named

“GC4×5−100%−IAV.”

For GOSAT observations, we use version v3.5 of the NASA Atmospheric CO2 Observations from Space (ACOS) GOSAT

lite files from the CO2 Virtual Science Data Environment (https://co2.jpl.nasa.gov/#mission=ACOS). Information on the35
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ACOS retrieval algorithm is available in O’Dell et al. (2012) and Crisp et al. (2012). We selected all measurements from

the TANSO-FTS shortwave infrared (SWIR) channel, including ocean glint, high gain and medium gain nadir, which pass the

quality flag requirement and have warn levels less than or equal to 15. We generate “super-obs” from the GOSAT retrievals by

aggregating the observations to the grid size of our inversion. We generate error estimates using the method described by Ku-

lawik et al. (2016). The reduction in error with aggregation can be calculated using the expression error2 = a2 +b2/n, where a5

represents systematic errors that do not decrease with averaging, b represents random errors that decrease with averaging, and n

represents the number of satellite observations that are averaged (Kulawik et al., 2016). Kulawik et al. (2016) give a= 0.8 ppm

and b= 1.6 ppm as mean Northern Hemisphere geometric (co-located) values for GOSAT, and these are the values that we

use.

2.3.4 Observing system simulation experiments10

Five OSSEs are performed, for which pseudo-data are generated by simulating atmospheric CO2 with GEOS-Chem at 4°×5°

spatial resolution and with year-specific NEE from the Joint UK Land Environment Simulator (JULES). The GEOS-Chem

CO2 distribution is sampled according to the GOSAT observational coverage. We generate pseudo XCO2 using the GOSAT

averaging kernel weighting and apply random errors to the XCO2 pseudo-obs consistent with the error estimates described in

Sect. 2.3.3. The inversion configuration for three of the OSSEs is identical to GC4×5−44%, GC4×5−100%, and GC4×5−100%−IAV,15

which use the posterior CT2016 fluxes as their prior NEE (see Table 1). These OSSEs are referred to as OSSECT2016−44%,

OSSECT2016−100%, and OSSECT2016−100%−IAV, respectively. Two more OSSEs use the same setup as GC4×5−44% and

GC4×5−100%, except that for these we use the 2010-2013 mean NEE fluxes from JULES as the prior fluxes. These two OSSEs

are referred to as OSSEJULES−44% and OSSEJULES−100%.

2.4 Terrestrial biosphere models20

2.4.1 JULES

JULES is a community land surface model that has evolved from the UK Met Office Surface Exchange Scheme. Phenology

in JULES affects leaf growth rates and timing of leaf growth/senescence based on temperature alone (Clark et al., 2011).

Vegetation cover is predicted based on nine plant functional types that compete for space based on their relative productivity

and height but are excluded from growing on agricultural land, based on a fraction of agriculture in each grid cell (Harper et al.,25

2018). CRU-NCEP was used as model forcing data.

2.4.2 VISIT

VISIT is a prognostic biosphere model (Ito, 2010; Saito et al., 2014) that simulates carbon exchanges between the atmo-

sphere and biosphere and among the carbon pools within terrestrial ecosystems at a daily time step. Modeling of plant CO2

assimilation in VISIT is based on a model of light extinction in the canopy, following the formulation of Monsi and Saeki30

(1953). Autotrophic respiration is formulated as the sum of growth respiration and maintenance respiration. Growth respira-

8
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tion is simulated as the cost to produce new biomass, while maintenance respiration is represented as a function of ground

surface temperature. Heterotrophic respiration is the sum of respiration from two layers, litter and humus, which is regulated

by soil temperature and soil moisture at each depth. VISIT is driven by reanalysis/assimilation climate datasets provided by the

Japan Meteorological Agency (JMA): the Japan 25-year reanalysis (JRA-25)/JMA Climate Data Assimilation System JCDAS)

(Onogi et al., 2007) for the period 1979–present.5

2.4.3 Carnegie-Ames-Stanford Approach (CASA) Global Fire Emissions Database (GFED) Carbon Monitoring

System (CMS) model

The version of the CASA model used here, referred to as CASA CMS, was modified from Potter et al. (1993) as described

in Randerson et al. (1996), van der Werf et al. (2006) and Liu et al. (2014). It is driven by MERRA reanalysis and satellite-

observed Normalized Difference Vegetation Index (NDVI) to track plant phenology. These flux estimates were computed10

at monthly time steps with 0.5◦ horizontal resolution. Monthly NEE fluxes were downloaded from the CarbonTracker ftp

(ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/CT2016/fluxes/priors/).

2.4.4 CASA GFED 4.1

The version of the CASA model used here, CASA GFED 4.1, was modified from Potter et al. (1993) as described in van der

Werf et al. (2017). It is driven by ECMWF reanalysis and satellite-observed NDVI to track plant phenology. These flux esti-15

mates were computed at monthly time steps with 0.25◦ horizontal resolution. Monthly NEE fluxes were downloaded from the

CarbonTracker ftp (ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/CT2016/fluxes/priors/).

2.5 Anomalies and correlations

Monthly anomalies are calculated by subtracting the mean 2010-2013 value for a given month from the monthly value for a

specific year. For example, the NEE anomaly for a given month and year is calculated using:20

ANOM [year,month] =NEE[year,month]− 1
4

2013∑

i=2010

NEE[i,month]. (1)

Anomalies are calculated over a range of spatial scales. In each case, the quantity of interest is first averaged into a spatial mean

for each month, then anomalies are calculated. The same procedure is followed for JJA anomalies except that the anomaly is

calculated over the entire three month period instead of for a single month.

In the tropics, temporal correlations are performed to quantify agreement between NEE anomalies and proxy/FLUXCOM25

anomalies. We want to test the hypothesis that the assimilation of CO2 observations will significantly increase the correlation

between the posterior NEE IAV and the proxies relative to the prior NEE IAV and the proxies. We choose a null hypothesis

in which the correlation is zero. This is the correct null hypothesis for flux inversions for which the prior NEE fluxes have no

IAV. In flux inversions for which there is IAV in the prior NEE, the correlation between the proxies and prior NEE IAV should

be used as the null hypothesis. However, this would be a significantly more difficult null hypothesis to test, so for simplicity30
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we choose a null hypothesis of zero correlation for all cases. This is equivalent to testing whether the posterior NEE IAV is

significantly correlated with the proxies, regardless of the prior IAV. The threshold for rejection of the null hypothesis (α) is

chosen to be 0.05, such that the null hypothesis is rejected if the P-value (P) is less than 0.05. We acknowledge that this α

threshold is largely arbitrary but is widely used in the literature (Benjamin et al., 2018; Lakens et al., 2018). Throughout the

manuscript, correlations that satisfy this criterion are called “strong”. In most cases a second test is performed, in which we test5

if the correlation between the flux inversion NEE IAV and the proxy is greater than that between the NINO 3.4 index and the

proxy, and conclude that the inversion and proxy only show good agreement if both of these thresholds are met. The coefficient

of correlation is referred to as R.

We also perform a series of linear regressions. In the tropics, linear regressions are performed after aggregating over all trop-

ical land, such that the regression is performed on a single 48 point time series. In the northern extratropics, linear regressions10

are performed for the set of four JJA anomalies across five sub-continental regions resulting in a 20 point dataset. For all re-

gressions the y-intercept is close to zero, and thus is not reported. The slope of the regressions and coefficient of determination

(R2) are reported.

3 Results

3.1 Tropics15

Monthly anomalies in the tropics are examined over a range of spatial scales. The anomalies are aggregated to 4◦×5◦, 8◦×10◦,

sub-continental regions (shown in Fig. 1), continents, and the entire tropics. Figure 2 shows the mean correlation coefficient

between the inversions/TBMs and proxies/FLUXCOM on scales ranging from 4◦×5◦ grid cells to the entire tropics. Correla-

tions between the NINO 3.4 index and flux proxies are also shown over the range of spatial scales. It is important to consider

correlations between the inversions/TBMs and proxies/FLUXCOM with the influence of ENSO variability in mind, as ENSO20

is the primary driver of large scale NEE IAV in the tropics. Therefore, to understand how well the flux inversions are capturing

NEE IAV it is useful to contrast correlations between the inversion and proxies to correlations between the NINO 3.4 index

and proxies.

The correlation between posterior NEE anomalies and proxy/FLUXCOM anomalies increase with aggregation (Fig. 2).

This is expected as atmospheric CO2 observations are expected to best constrain fluxes on large scales, such as the entire25

tropics. As scales decrease, the signal from variations in the fluxes become weaker and more difficult to constrain with the

atmospheric CO2 observations. Correlations between the proxies and the NINO 3.4 index also increase with aggregation. This

is because the NINO 3.4 index reflects the large scale ENSO-driven variability in the tropics. Therefore, increasing correlation

with aggregation for the NINO 3.4 index is a reflection of the large-scale variability having a larger impact.

To categorize the agreement between the flux inversions and the proxies/FLUXCOM, we state that the flux inversions30

agrees with a proxy on a given scale only if the correlation is strong (P< 0.05) and greater than the correlation of the

proxy/FLUXCOM with the NINO 3.4 index (R> RNINO3.4). For the GEOS-Chem inversions, this occurs at regional and

larger scales for correlations with FLUXCOM NEE and at continental and larger scales for Tsoil. For the GOSAT L4 inversion,
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the correlation only reaches this threshold for Tsoil at the largest aggregation scale. These results suggest that GOSAT observa-

tions provide flux information on continental and larger scales, while regional-scale constraints may be possible. The fact that

the correlation coefficient is variable between GOSAT inversions indicates that the agreement between posterior fluxes and the

proxies/FLUXCOM is sensitive to the inversion configuration.

We investigate the influence of the inversion configuration by comparing the correlations for the six GEOS-Chem inversion.5

The 2◦× 2.5◦ inversions generally show slightly better agreement with the proxies/FLUXCOM than the 4◦× 5◦ inversions

at regional and continental scales. This could be due to improved transport with higher spatial resolution, however, other

aspects of the inversion were changed such as the aggregation of assimilated observations and prior error covariances, which

may have also influenced the results. The influence of prior NEE IAV can be evaluated by comparing the 4◦× 5◦ inversions

with and without prior NEE IAV. Correlations are stronger for the inversions without NEE IAV at regional and continental10

scales. This suggests that the presence prior NEE IAV can degrade posterior NEE IAV and is discussed in more detail in Sec.

4.3.3. The influence of prior error covariances can be evaluated by comparing the inversions with small (44% for 4◦× 5◦ and

66% for 2◦× 2.5◦) and large (100% for 4◦× 5◦ and 200% for 2◦× 2.5◦) prior error. Larger prior errors generally result in

larger correlations on regional and larger scales. Large prior errors means that more movement away from the prior during the

inversion is allowed, therefore, better agreement with larger prior errors suggests that the GOSAT data information content is15

sufficiently large that loose prior errors can be applied without degrading the posterior results by over-fitting the observations.

For CT2016, strong correlations that are greater than those for the NINO 3.4 index are only obtained for SIF and only on the

scale of the entire tropics. The reason for the strong correlation with SIF is unclear, but it could be a result of the fact that NEE

IAV in one of the CT2016 priors (CASA GFED 4.1) is strongly correlated with SIF. The poorer agreement between CT2016

and the proxies/FLUXCOM than for GOSAT inversions suggests that the network of surface observations does not provide20

sufficient information to constrain tropical fluxes. However, it is also possible that the inversion setup could play a role.

For the TBMs, correlations are highly model dependent. Of the models, JULES shows the best agreement with the prox-

ies/FLUXCOM. JULES shows strong correlations greater than for the NINO 3.4 index at all scales for FLUXCOM NEE,

regionally and over the entire tropics for Tsoil, and regionally for scPDSI. These results suggest that JULES predicts NEE

anomalies in the tropics as well as the GOSAT inversion on continental and larger scales, and may be better at regional and25

smaller scales. This suggests that it may be challenging to use GOSAT flux inversions to evaluate IAV in JULES NEE. For the

other models, less agreement is seen with the proxies/FLUXCOM. The one exception is CASA GFED 4.1 which shows strong

correlations with SIF at all scales. This may be due to the fact that this model assimilates greenness indices to estimate GPP

fluxes. Anomalies in the greenness indices are likely well correlated with SIF anomalies, therefore, if anomalies in CASA NEE

are driven by anomalies in GPP, it may explain the strong correlation.30

We now investigate the magnitude of tropical NEE IAV in the inversions and the TBMs. The magnitude of NEE IAV relative

to the proxies/FLUXCOM can be obtained by performing linear regressions of the inversion/TBM NEE anomalies against

proxy/FLUXCOM anomalies. Linear regressions are only calculated for the scale of the entire tropics, where the inversions

and proxies/FLUXCOM agreed best. Table 2 shows the slope and coefficient of determination (R2) for the regressions. There

is a large amount of variability in the slopes between inversions/TBMs for each proxy/FLUXCOM. The GOSAT inversions35
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are quite consistent with each other relative to CT2016 and the TBMs. The GOSAT inversions give slopes of 1.03–2.10 for

FLUXCOM and 0.061–0.12 for Tsoil. Comparing the GEOS-Chem inversions, the largest differences in the slopes are related

to the magnitude of the prior error covariances. Looser prior constraints result in slopes that are 30–80% larger. There are also

large differences in the magnitude of posterior NEE IAV between the inversions with and without prior NEE IAV. For example,

the slopes for the regression between FLUXCOM and the 4◦× 5◦ GEOS-Chem inversions with prior anomalies are 25–50%5

larger than for GEOS-Chem inversions without prior NEE IAV. The GOSAT L4 product gives slopes which are consistent with

the GEOS-Chem inversions. Furthermore, the agreement between the GOSAT L4 product and proxies (or FLUXCOM) is not

sensitive to the inclusion of biomass burning. For CT2016, the best agreement is found with Tsoil (0.24≤R2 ≤ 0.27), for

which CT2016 gives a smaller slope than the GOSAT inversions. The agreement between CT2016 and proxies/FLUXCOM is

not sensitive to the inclusion of biomass burning. For the TBMs, JULES gives good fits with Tsoil (R2 = 0.56) and FLUXCOM10

(R2 = 0.47) and gives slopes that are similar in magnitude to the flux inversions. The rest of the TBMs have R2 that are too

small to make meaningful comparisons.

3.1.1 Detailed analysis of GC2×2.5−200%

We examine the agreement between the GC2×2.5−200% inversion and the proxies/FLUXCOM in the tropics in more detail.

Figure 3 (left column) shows the correlation coefficient for each grid cell between the GC2×2.5−200% NEE anomalies and15

the proxy/FLUXCOM anomalies. There are broad positive correlations with the NINO 3.4 index across Central and South

America, tropical and southern Africa, and much of the Asia-Pacific. Generally, positive correlations are present between

GC2×2.5−200% and SIF, scPDSI, Tsoil, and FLUXCOM NEE in the Americas, southern Africa, and the Asia-Pacific. Figure 3

(center column) shows the correlation coefficient between the NINO 3.4 index and the proxies over the tropics. Generally, the

proxies show strong correlations with the NINO 3.4 index in many of the same regions for which these proxies show strong20

correlations with GC2×2.5−200%. This suggests that grid-scale correlations between GC2×2.5−200% and the proxies may be a

reflection of the large-scale anomalies across the tropics and do not necessarily imply that the inversion is able to isolate the

spatial footprint of ENSO-driven flux anomalies on smaller scales. Alternatively, it is also possible that the proxies themselves

do not correlate well with the true NEE at these scales.

We examine whether GC2×2.5−200% is able to isolate flux anomalies that are separate from the large-scale tropical signal by25

comparing NEE anomalies for FLUXCOM NEE and GC2×2.5−200% as a function of time. First, we aggregate GC2×2.5−200%

IAV and FLUXCOM NEE anomalies to the entire tropics and the following continental-scale regions: the Americas, Africa plus

the Middle East, and the Asia-Pacific plus the Indian sub-continent (Fig. 1). Figure 4 shows GC2×2.5−200% and FLUXCOM

NEE anomalies as a function of time over the entire tropics and the continental-scale regions. We show raw and smoothed (3-

month running mean) monthly NEE anomalies as a function of time. Over the entire tropics, FLUXCOM and GC2×2.5−200%30

are highly correlated (R2 = 0.69) (which is shown in Fig. 2). On continental scales, the agreement between FLUXCOM and

GC2×2.5−200% is variable, ranging from R2 = 0.08 for Africa plus the Middle East to R2 = 0.61 for the Americas. All cor-

relations improve after smoothing, suggesting that monthly scale variations are not correctly represented in GC2×2.5−200%,

FLUXCOM NEE, or both. We attempt to isolate anomalies specific to each continent by removing the large-scale anomaly
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across the entire tropics. This is done by subtracting a mean tropical anomaly (scaled to have the same variance as the conti-

nental anomaly) from the continental anomaly using the following equation:

DIFFcontinent−tropics = ANOMcontinent−ANOMtropics×
STD(ANOMcontinent)
STD(ANOMtropics)

, (2)

where STD() represents standard deviation. DIFFcontinent−tropics provides an estimate of anomalies in NEE for a given

continent that are not associated with the large-scale ENSO-driven anomalies across the tropics. DIFFcontinent−tropics is shown5

for each continent in Fig. 4e,h,k. The magnitude of the anomalies are reduced after removing the tropical mean anomalies.

Positive correlations are obtained for the Americas (R2 = 0.18), Africa plus the Middle East (R2 = 0.07), and the Asia Pacific

and India (R2 = 0.30). These results suggest that GC2×2.5−200% is partially able to isolate NEE anomalies on continental

scales that are separate from the large-scale ENSO-induced variability, and suggests that GOSAT flux inversions can be used

to examine continental scale flux anomalies in the tropics. We note, however, that the the agreement in NEE IAV between10

GC2×2.5−200% and FLUXCOM is not as strong in Africa and the Middle East.

3.2 Northern extratropics

In the northern extratropics, the observational coverage of GOSAT is highly seasonal and so we limit our analysis of anomalies

in the northern extratropics to the summer (JJA), when observational coverage is the best (Liu et al., 2014; Byrne et al., 2017).

Fig. 5 shows the anomalies for the proxies, FLUXCOM NEE, and GC2×2.5−200% NEE across the northern hemisphere for15

JJA 2010–2013. The proxies and FLUXCOM generally show high coherence in anomalies. Events for which FLUXCOM

NEE gives enhanced emission to the atmosphere also show reduced SIF, increased scPDSI, and increased Tsoil. We have

highlighted (with boxes) major climate anomalies over this time period: the 2010 Russian heat wave, the 2011 drought in

Mexico and southern USA, the 2012 North American drought, and the 2013 California drought. GC2×2.5−200% NEE indicates

positive anomalies for all of these major events, suggesting that the inversion can recover sub-continental NEE IAV. However,20

there are also instances where the inversion and proxies tend to disagree. For example, in 2010, GC2×2.5−200% indicates a

positive anomaly in North America, whereas, the proxies indicate near neutral or negative anomalies.

To examine agreement with the proxies on regional scales, we have aggregated the inversions, the TBMs, proxies, and

FLUXCOM into the five extratropical subcontinental regions shown in Fig. 1. The JJA anomalies in these regions over 2010–

2013 provide 20 data points. We performed a linear regression of these anomalies against the proxies and FLUXCOM. Table 325

shows the slope andR2 values of the regressions. For the GOSAT inversions, the 2◦× 2.5◦ and 4◦× 5◦ with no prior NEE IAV

show the closest agreement with FLUXCOM NEE and Tsoil (0.49≤R2 ≤ 0.65), while the inversions with prior NEE IAV

show substantially poorer agreement (0.15≤R2 ≤ 0.36). This is a larger difference between the inversions with and without

prior NEE IAV than was found for the tropics (see Sec. 4.3.3). The inversions with NEE IAV also give a smaller slope indicating

a smaller magnitude of NEE IAV, which is the opposite of what was found in the tropics. Comparing the inversions without30

prior NEE IAV, tight prior errors give 0.57≤R2 ≤ 0.65, whereas loose prior constraints give 0.49≤R2 ≤ 0.62. As with the

tropics, the inversions with looser prior constraints give larger slopes, suggesting larger NEE IAV.
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Comparing the other inversions, the GOSAT L4 product shows agreement with FLUXCOM NEE (R2 = 0.33) and Tsoil

(R2 = 0.43). CT2016 shows poor agreement with all proxies, indicating that this inversion is unable to isolate zonally asym-

metric fluxes in the northern extratropics, which is surprising given the high sensitivity of the surface CO2 network to northern

extratropical surface fluxes (Byrne et al., 2017). However, consistent with this result, Polavarapu et al. (2018) show that flux in-

versions assimilating measurements from the surface network are less able to recover zonally asymmetric flux signals than flux5

inversions assimilating GOSAT measurements. CT2016 also includes prior NEE IAV in the inversion, which may negatively

impact the posterior NEE IAV, based on the GEOS-Chem inversion results.

For the TBMs, VISIT shows close agreement with FLUXCOM NEE, scPDSI, and Tsoil anomalies and to a lesser extent

SIF anomalies. This is notable as VISIT generally showed poor agreement with the proxies in the tropics. JULES shows close

agreement with Tsoil anomalies and some agreement with the other proxies. CASA GFED 4.1 shows good agreement with SIF10

anomalies, but comparatively poorer agreement with the other proxies. CASA GFED CMS shows some agreement with SIF

anomalies, but little agreement with the other proxies.

3.3 Observing system simulation experiments

We performed a series OSSE experiments to investigate the minimum spatial scales that can be constrained by GOSAT obser-

vations. In these experiments pseudo-observations were assimilated from a GEOS-Chem forward model run which had JULES15

NEE fluxes prescribed. See Sect. 2.3.4 for additional details of the OSSE setup.

3.3.1 Tropics

Figure 6 shows the mean correlation coefficient between the posterior and true NEE anomalies in the tropics over a range of

scales. The results are highly reminiscent of the results between the GOSAT inversion and the proxies. The mean correlation

between the posterior and true NEE anomalies increases with aggregation for all OSSEs. Strong correlations are obtained for20

all OSSEs on regional and larger scales. The inversion setup also has an impact on the correlations between the posterior

and true NEE IAV. The largest differences between OSSEs are obtained on regional and continental scales. On these scales,

OSSEJULES−100% has the largest correlation. This suggests that having a climatological seasonal cycle close to the true NEE

IAV is important for recovering NEE IAV in the tropics. The inclusion of prior NEE IAV (OSSECT2016−100%−IAV) does not

appear to significantly degrade the correlation relative to a prior NEE without IAV (OSSECT2016−100%). In fact, inclusion of25

prior NEE IAV actually improves the correlations (except for continental-scale), in contrast to what was found with the real

data GOSAT inversions. The prior error constraints generally have a large influence on the correlation with the true NEE IAV.

Loose prior constraints give better agreement for all OSSEs, consistent with the GOSAT inversions.

On the scale of the entire tropics, we performed linear regressions between the posterior and true anomalies, which are

shown in Table 4. For all regressions, the magnitude of IAV in the posterior fluxes is less than the true NEE IAV (slope of30

0.42–0.75). This suggests that the inversions do not recover the full magnitude of NEE IAV. In addition to comparing posterior

and true anomalies, we examine the similarities in posterior anomalies between OSSEs. The right column of Table 4 shows

the results of linear regressions between posterior and OSSEJULES−100% NEE anomalies. The OSSEs without prior NEE IAV
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show better agreement with OSSEJULES−100% posterior anomalies than the true anomalies. This suggests that the assimilation

of pseudo-data is introducing NEE anomalies in a similar way for all OSSEs and recovering the true NEE IAV is primarily

limited by the observational coverage rather than the inversion setup. However, differences between the OSSEs and true NEE

IAV may also be due to systematic biases introduced due to factors such as uneven observational coverage (Liu et al., 2014;

Byrne et al., 2017).5

We examine the continental-scale anomalies in detail for OSSEJULES−100%, OSSECT2016−100%, and OSSECT2016−100%−IAV

in Figure 7, which shows the timeseries of continental scale flux anomalies in the tropics for the OSSEs. The correlation be-

tween the OSSEs and true anomalies improves after performing a three month running mean, consistent with the GOSAT

inversion results. Strong correlations between the OSSEs and true NEE IAV are obtained after removing the mean tropical

signal (using equation 2). These results provide further evidence that GOSAT inversions can largely recover continental scale10

flux anomalies in the tropics.

3.3.2 Northern extratropics

Table 4 shows the slope and R2 for linear regressions of flux anomalies from the OSSEs against the true NEE IAV on sub-

continental regions in the northern extratropics during JJA. In all cases the slope is less than one, indicating that the OSSEs are

not recovering the full magnitude of NEE IAV. The R2 values are less than between the GOSAT inversions and proxies. This15

may be due to the fact that temporal anomalies in JULES NEE are highly variable month-to-month and may have a shorter

temporal correlation length scales than the true anomalies. Comparing the different OSSE setups, the OSSECT2016−100%−IAV

performs substantially worse than the OSSEs with no prior NEE IAV (R2 = 0.15 versus R2 = 0.30–0.48). This is consistent

with comparisons between GOSAT inversions and proxies, and suggests that employing prior NEE IAV in the northern extrat-

ropics degrades posterior NEE IAV on sub-continental scales during JJA. OSSEs with tighter prior constraints give larger R2,20

consistent with the GOSAT inversions. OSSEs with JULES mean seasonal cycle also agree better with the true NEE IAV than

those which employ the mean seasonal cycle from CT2016.

4 Discussion

4.1 Implications of correlations between flux inversions and proxies

The results of this study show varying degrees of agreement between anomalies in GOSAT flux inversions and anomalies in25

proxies and FLUXCOM. We consistently find that Tsoil and FLUXCOM NEE show the strongest agreement with the flux

inversions, whereas scPDSI and SIF show weaker agreement. In this section, we discuss agreement between the proxies and

flux inversions in detail.
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4.1.1 Agreement with Tsoil and scPDSI

The results show high consistency in the timing of anomalies between Tsoil and GOSAT flux inversions on continental and

larger scales in the tropics, and on sub-continental scales in the northern extratropics during JJA. These results indicate that Tsoil

is a useful proxy for corroborating NEE IAV in flux inversions in both the tropics and northern extratropics. Linear regressions

between GOSAT flux inversion and scPDSI IAV indicate moderate agreement on the scale of the entire tropics (R2 ≤ 0.27) and5

on sub-continental scales in the northern extratropics (R2 ≤ 0.29). The GOSAT flux inversion NEE IAV consistently shows

closer agreement with Tsoil anomalies than with scPDSI in both the tropics and northern extratropics. This is consistent with

previous research that has mostly shown that NEE IAV is most closely related to temperature anomalies on large scales (Wang

et al., 2013; Jung et al., 2017).

Although the results of this study indicate that Tsoil is a useful metric for corroborating NEE IAV in flux inversions, inferring10

the sensitivity of NEE anomalies to temperature anomalies directly is not advised for the fits given in Tables 2 and 3. This is

because a number of factors have not been considered in this analysis. One factor is that temperature anomalies are also

correlated with moisture and biomass burning anomalies. Keppel-Aleks et al. (2014) show that accounting for these covariances

results in reduced sensitivity of NEE anomalies to temperature anomalies. A second factor is that the relationship between NEE

anomalies and temperature and moisture anomalies is variable, depending on large scale climate modes. For example, Fang15

et al. (2017) show that either temperature or precipitation anomalies can be the primary driver NEE anomalies based on ENSO

phase. A third factor is that the impact of temperature and moisture on NEE anomalies may be lagged (Braswell et al., 1997).

Ecosystems can take a months to years to recover from droughts (Frank et al., 2015; Schwalm et al., 2017; Sippel et al., 2018).

Baldocchi et al. (2018) found that flux anomalies at number of FLUXNET sites are negatively correlated with themselves after

a one-year lag, implying a highly oscillatory behavior in the net carbon fluxes from year to year.20

This leaves many opportunities for future work to further investigate the relationship between NEE anomalies and climate

variability in more detail. A further limit to the comparisons of flux inversions with Tsoil and scPDSI anomalies in the tropics is

that we do not distinguish between seasons. The relationship between NEE, Tsoil and scPDSI anomalies likely have substantial

seasonal differences (Rödenbeck et al., 2018). We encourage future studies to examine the seasonally-dependent relationships

using longer flux inversions, as well as studies which investigate lagged correlations and climate mode relationships between25

inversion NEE anomalies and temperature and water availability anomalies.

4.1.2 Agreement with SIF

It is notable that correlations with SIF are weaker than those with the other proxies. Linear regressions indicate that SIF

anomalies show some correspondence to GOSAT flux inversion anomalies on sub-continental scales in the northern extratropics

during JJA (0.14≤R2 ≤ 0.27), but little agreement is found in the tropics (R2 ≤ 0.05). These results are not all that surprising,30

as it is not clear that one should expect SIF and NEE to be highly correlated, since SIF is a proxy of GPP rather than NEE. It has

previously shown than NEE and GPP anomalies are only moderately correlated (Baldocchi et al., 2018). However, we also note

that spurious trends have been found in the observations (Zhang et al., 2018), which could impact the calculated anomalies.
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Furthermore, due to GOME-2’s large field of view, clouds are almost always present for measurements in the tropics. To test

if the GOME-2 SIF anomalies used here, we examined the correlation between FLUXCOM MARS GPP and SIF anomalies

(Fig. 8). Spatially heterogeneous agreement is found between the two datasets, with the closest agreement occurring over semi-

arid regions. However, correlations are generally positive over the majority of the globe, suggesting that IAV from GOME-2

SIF is reliable.5

4.1.3 Agreement with FLUXCOM NEE

The GEOS-Chem GOSAT flux inversions with no prior NEE IAV showed close agreement with FLUXCOM NEE anomalies

in the tropics on regional and larger scales, and in the northern extratropics on regional scales during JJA. This is a remarkable

finding as these data-driven estimates of NEE IAV are independent, and agreement between the two estimates provides a strong

indication that the results are robust. Therefore, comparisons with FLUXCOM NEE may provide a method for corroborating10

results from flux inversion studies. However, it should be noted that the net annual NEE fluxes produced by FLUXCOM are

quite unrealistic (Tramontana et al., 2016; Jung et al., 2017), with annual net draw-down by the biosphere of 18–28 PgCyr−1.

It may also be possible to evaluate the magnitude of NEE IAV in FLUXCOM NEE through comparisons with flux inversions.

Here we compare the magnitude of NEE IAV between the GOSAT flux inversions and FLUXCOM. The slope of the linear

regression between the inversions indicates the relative magnitude of the inversion and FLUXCOM NEE anomalies. Over the15

entire tropics, the GOSAT inversions give slopes of 1.03–2.10 (mean of 1.56), suggesting that the magnitude of NEE anomalies

are underestimated by FLUXCOM NEE. For JJA in the northern extratropics, the GOSAT inversions give slopes of 0.79–1.59

(mean of 1.31), again suggesting that the magnitude of NEE anomalies are underestimated by FLUXCOM. Furthermore, the

OSSEs suggested that the inversions do not recover the full magnitude of NEE IAV, providing further evidence that FLUXCOM

underestimates the magnitude of NEE IAV. This result is consistent with previous studies which indicate that FLUXCOM20

underestimate the magnitude of NEE IAV (Jung et al., 2011, 2017).

4.2 Scales constrained

We investigated the agreement between monthly anomalies in flux inversions and proxies/FLUXCOM over a range of spa-

tial scales in the tropics. The results showed that the agreement between the inversions and the proxies/FLUXCOM were

scale-dependent, which was corroborated by OSSEs. Here we synthesize these results and discuss the ability of GOSAT flux25

inversions to recover IAV in NEE over the range of scales examined in this study.

The results provide strong evidence that GOSAT flux inversion can constrain monthly flux anomalies on the scale of the

entire tropics. All of the GEOS-Chem GOSAT flux inversions obtained R2 ≥ 0.55 for linear regressions with Tsoil, and R2 ≥
0.51 with FLUXCOM NEE. The OSSEs provide further evidence that the true NEE anomalies could be recovered, as linear

regressions between the posterior and true anomalies give R2 ≥ 0.53. These results provide strong evidence that the GOSAT30

inversions are recovering the timing of tropical NEE anomalies, however, there is less agreement on the magnitude of flux

anomalies over the tropics. The OSSEs indicate that GOSAT flux inversions can recover 42–68% of the magnitude of NEE

anomalies, depending on the inversion setup.
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On continental scales in the tropics, the results suggest that GOSAT flux inversion can constrain monthly flux anomalies. The

GEOS-Chem inversions show good agreement with FLUXCOM NEE and Tsoil anomalies. However, the agreement between

the inversions and proxies/FLUXCOM on this scale is strongly influenced by the large-scale ENSO anomalies. We isolated

the continental scale anomalies by subtracting a mean tropical anomaly for GC2×2.5−200% and FLUXCOM (Fig. 4), and for

the OSSEs (Fig. 7). We found that the anomalies were still correlated after removing the mean tropical signal, suggesting that5

the continental-scale anomalies are largely recovered in the inversions. However, we also found that the inversion setup can

have a significant influence on posterior anomalies on continental scales. The strongest correlations between the proxies and

inversions were obtained with higher resolution, looser prior constraints, and no prior NEE IAV. Similarly, OSSEs showed

the best agreement with the true NEE IAV when looser prior constraints were employed, but suggested that the presence

of prior NEE IAV generally improved agreement with the true NEE IAV. The OSSEs also showed that correlations with10

the true NEE IAV were improved on continental scales when the prior mean seasonal cycle was closer to the true NEE IAV.

Overall, these results suggest that GOSAT observations contain information on continental-scale NEE anomalies in the tropics;

however, recovering the correct NEE IAV from these observations may be sensitive to the flux inversion setup. Furthermore,

the magnitude of NEE anomalies are likely underestimated.

On regional scales in the tropics, the results were more ambiguous. The GOSAT inversions generally showed good agreement15

with FLUXCOM NEE IAV on regional scales, but only marginal agreement with Tsoil. The OSSEs also indicate marginal

ability to recover regional scale fluxes. From these results, we caution against making conclusions about NEE IAV on regional

scales in the tropics using GOSAT flux inversions without corroborating evidence. On smaller scales, correlations do not meet

the threshold of P < 0.05.

In the northern extratropics during JJA, the results of this study suggest that regional-scale constraints are possible. We20

found that large flux anomalies due to major climate events are recovered in the inversion for GC2×2.5−200% (Fig 5), while

linear regressions showed close agreement for the GOSAT flux inversions with FLUXCOM NEE and Tsoil. However, we also

found evidence that the posterior NEE IAV was sensitive the the inversion setup. The inversion analyses with prior NEE IAV

(GC4×5−44%−IAV, GC4x5−100%−IAV, and GOSAT L4) showed weaker agreement with the proxies relative to the inversions

without prior NEE IAV. Similarly, the OSSEs showed prior NEE IAV reduced agreement between the posterior and the “true”25

NEE IAV in the northern extratropics during JJA.

4.3 Influence of the inversion configuration

4.3.1 Model horizontal resolution

The results of this study indicate that the spatial resolution of the model used in the inversion analysis (2◦× 2.5◦ or 4◦× 5◦)

has a relatively minor impact on posterior NEE anomalies. This somewhat surprising since recent studies (Yu et al., 2018;30

Stanevich, 2018) have shown significant transport differences for different resolution versions of GEOS-Chem. Also, Deng

et al. (2015) showed that there are large biases in CO2 in the upper troposphere and lower stratosphere in GEOS-Chem that

impact inferred flux estimates. It is possible that, although the model transport errors influence the flux estimates, the resolution-
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dependent transport processes are not sensitive to NEE IAV for the time period considered here. It could also be related to the

information content of GOSAT observations. As we have shown in this study, GOSAT observations only constrain NEE IAV

on regional and larger scales. If transport errors have the largest impact on smaller scales, it may explain why model resolution

did not have a major impact on our results.

4.3.2 Prior error covariances5

All of the GEOS-Chem inversions were performed with tight (44% for 4◦× 5◦ and 66% for 2◦× 2.5◦) and loose (100% for

4◦× 5◦ and 200% for 2◦× 2.5◦) prior error covariances. The prior error covariances generally had a significant impact on the

posterior NEE IAV. In the tropics, inversions with loose prior constraints gave larger correlations with Tsoil and FLUXCOM

NEE on regional and continental scales. Similarly, for the OSSEs, looser prior constraints gave larger correlations with the

true NEE IAV on regional and continental scales. This suggests that the information content of the GOSAT observations is10

sufficiently large in the tropics that prior error covariances of 100% for 4◦× 5◦ or 200% for 2◦× 2.5◦ can be applied without

degrading the posterior results by over-fitting the observations.

In the northern extratropics, the inversions with tighter prior constraints gave larger correlations with Tsoil and FLUXCOM

NEE on regional and continental scales. Similarly, tight prior constraints gave larger correlations with the true NEE IAV for

the OSSEs. These results are the opposite of what was found for the tropics, and suggests that tighter error constraints (as a15

percentage of NEE) should be applied in the northern extratropics than in the tropics. These results suggest that, when the prior

error covariances are loose in the northern extratropics, the inversion over-fits the GOSAT observations which degrades the

agreement with proxies (or the true NEE IAV for OSSEs).

The largest impact of varying the prior error covariances is in the magnitude of posterior NEE IAV. When loose prior

constraints are applied the magnitude of NEE anomalies increases by 30–80% (15–30% for OSSEs) in the tropics and 5–60%20

(0–30% for OSSEs) in the northern extratropics. These results imply that care should taken when making conclusions about

the magnitude of NEE anomalies from this analysis. Based on the OSSEs, it seems likely that the inversions underestimate the

magnitude of NEE IAV on all scales, but the inversions with looser prior constraints result in a more realistic magnitude of

NEE IAV. This suggests that there is a trade off between obtaining a more realistic magnitude of IAV using looser constraints

and obtaining more realistic timing of anomalies with tighter prior constraints.25

4.3.3 Prior fluxes

We investigated the influence of prior NEE IAV on posterior NEE anomalies in flux inversions by performing inversions with

prior NEE IAV (GC4×5−100%−IAV and GC4×5−44%−IAV) and without prior NEE IAV (GC4×5−100% and GC4×5−44%), as well

as OSSEs with and without prior NEE IAV. In the tropics, the impact of prior NEE IAV is generally small. For the GOSAT

inversions, the presence of prior NEE IAV degrades agreement with the proxies on all scales. In the OSSEs, the presence of30

prior NEE IAV degrades the agreement with the true NEE IAV on continental scales, but improves agreement on regional

scales and over the entire tropics. In the northern extratropics, the presence of prior NEE IAV has a large negative impact on

agreement with proxies for GOSAT inversions and on agreement with the true NEE IAV in the OSSEs.
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Why does the presence of prior NEE IAV degrade the posterior NEE IAV for many of these inversions? Presumably, the

reason is related to the fact that the observations under-constrain NEE IAV, such that the prior NEE IAV strongly influences the

spatiotemporal distribution of IAV in the posterior NEE. To investigate this, we examined how closely the posterior NEE IAV

resembles the prior NEE IAV. Figure 9 shows the agreement between the posterior and prior NEE IAV for GC4x5−100%−IAV

in the tropics and northern extratropics. Posterior NEE IAV is strongly correlated with IAV in the prior NEE, particularly on5

smaller scales. The fact that correlations between the prior and posterior NEE IAV are strong at 4◦ × 5◦ and 8◦ × 10◦ is not

surprising, as the NEE fluxes are strongly under-constrained at these spatial scales. However, the correlation with the prior NEE

IAV is substantially larger than with FLUXCOM on regional (R2 = 0.55 versus R2 = 0.15) and continental (R2 = 0.46 versus

R2 = 0.26) scales as well. This suggests that NEE IAV is still under-constrained even on continental scales. Only on the scale

of the entire tropics is the correlation with the prior NEE (R2 = 0.42) less than with the proxies (R2 = 0.61 for FLUXCOM10

NEE and R2 = 0.56 for Tsoil), indicating that the observations are influencing the posterior NEE IAV more than the prior NEE

IAV. These results suggests that the impact of prior NEE IAV on the inversion is likely strongly dependent on how well the

prior NEE IAV reflects the true NEE IAV. Realistic prior NEE IAV would likely improve the posterior NEE IAV, conversely,

unrealistic prior NEE IAV will degrade the posterior NEE IAV. This implies that the realism of the prior NEE IAV should be

investigated before including it in an inversion analysis. If the objective of the experiment is to examine the timing of posterior15

NEE IAV introduced through the assimilation of observations, then we recommend that annually-repeating prior fluxes be used

to investigate NEE IAV. However, a trade off in using annually-repeating prior fluxes is that the magnitude of NEE IAV will

likely be significantly underestimated.

We also investigated the impact of the prior mean seasonal cycle on posterior NEE IAV. We performed a series of OSSEs

to examine the impact of the mean seasonal cycle of the prior fluxes on the inversion and found that correlations with the true20

NEE IAV were significantly improved on continental scales when the mean seasonal cycle was closer to the true NEE IAV. In

particular, OSSECT2016−100% gives much weaker correlations with the true NEE IAV than OSSEJULES−100% after removing

the mean tropical signal (Fig. 7). These results suggest that it is important to use prior fluxes with a realistic seasonal cycle to

recover IAV in NEE from GOSAT observations.

5 Conclusions25

In this study, we examined the constraints on interannual anomalies in NEE provided by GOSAT observations by performing a

series of flux inversions. We addressed three main objectives in this analysis. The first objective was to quantify the agreement

between GOSAT flux inversions and flux proxies, which are associated with IAV in the terrestrial carbon cycle, and FLUXCOM

NEE. We found strong correlations (P< 0.05, R>RNINO3.4) with FLUXCOM NEE and Tsoil in the tropics on continental

and larger scales, and in the northern extratropics on sub-continental scales during the summer (R2 > 0.49), when there is30

no prior NEE IAV. These results demonstrate that both FLUXCOM NEE and Tsoil can be useful tools for corroborating flux

inversion results. We found flux anomalies from GOSAT inversions were less correlated with scPDSI and SIF. For scPDSI we

found some agreement on the scale of the entire tropics (R2 ≤ 0.27) and on sub-continental scales in the northern extratropics
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(R2 ≤ 0.29). For SIF, there was some agreement on sub-continental scales in the northern extratropics during JJA (0.14≤
R2 ≤ 0.27), however, little agreement was found in the tropics (R2 ≤ 0.05).

The second objective was to determine the spatial scales over which the GOSAT inversion constrain flux anomalies. In the

tropics, we found that continental and larger scale flux anomalies can be captured in GOSAT inversions. This conclusion is

supported by strong agreement (P< 0.05, R>RNINO3.4) with Tsoil and FLUXCOM NEE, and a series of OSSEs which5

showed that the true NEE IAV can be largely recovered on these scales. On regional scales in the tropics, the GOSAT flux

inversions showed some agreement with the proxies and FLUXCOM, but the OSSEs indicated that the GOSAT observations

likely underconstrain NEE IAV on these and smaller scales. In the northern extratropics, we found that flux anomalies are

recovered by GOSAT flux inversions on sub-continental regions during JJA. Strong agreement was found with anomalies in

Tsoil (0.57≤R2 ≤ 0.65) and FLUXCOM NEE (0.49≤R2 ≤ 0.65), when no prior NEE IAV is used. OSSEs supported these10

findings, indicating that GOSAT observations can recover regional scale flux anomalies in the northern extratropics during JJA.

The third objective was to quantify the sensitivity of the results from the first two objectives to the inversion setup. We found

that the agreement between the flux inversions and proxies can be sensitive to the inversion setup. Posterior flux anomalies

were most sensitive to the prior fluxes and error covariances. In general, the inclusion of prior NEE IAV from CT2016 in the

inversion degraded the agreement with FLUXCOM NEE and Tsoil, particularly in the extratropics. This result was supported15

by the OSSEs in the northern extratropics but not in the tropics. We compared the impact of the mean seasonal cycle on the

posterior NEE IAV by performing OSSEs and found that having a prior climatological seasonal cycle that was close to the

true NEE IAV improved posterior NEE anomalies on continental scales in the tropics. The prior error constraints also had a

significant impact on the results. We found that looser constraints in the tropics gave better agreement with the proxies, while

tighter constraints in the northern extratropics gave better agreement with the proxies. The magnitude of the prior constraints20

had a large impact on the magnitude of NEE anomalies. Also, the OSSEs showed that the magnitude of NEE anomalies are

underestimated even with loose prior constraints. These results indicate that the prior fluxes and error covariances need to be

carefully considered. The inclusion of prior NEE IAV is an important factor to consider. Including prior NEE IAV may produce

a more realistic magnitude of NEE IAV in posterior fluxes but could also degrade the correlation between the posterior and

true NEE IAV. If prior NEE IAV are included in future inversions, attempts should be made to test the realism of the prior25

NEE IAV. If the objective of the experiment is to examine the timing of posterior NEE IAV introduced through the assimilation

of observations, then we recommend that annually-repeating prior fluxes be used to investigate NEE IAV. The mean seasonal

cycle of the prior NEE fluxes is also an important factor in the inversion, and the realism the seasonal cycle should be evaluated

before performing the inversion. The results also indicate that defining the prior error covariance to be a fraction of the prior

flux may produce either overfitting of GOSAT data in the northern extratropics or underfitting of the data in the tropics.30

Overall, our results show that Tsoil and FLUXCOM NEE are useful for evaluating NEE IAV in flux inversions. Furthermore,

comparisons with the anomalies in Tsoil and FLUXCOM NEE suggest that GOSAT flux inversions are useful tools for con-

straining IAV in NEE on continental and larger scales in the tropics, and on regional scales in the northern extratropics during

JJA.
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Figure 1. Land area at 4◦× 5◦ resolution grouped into sub-continental regions in (a) the northern extratropics and (b) the tropics. In the

tropics, we generate three continents by combining the regions in the Americas, Africa and the Middle East, and the Asia-Pacific and Indian

sub-continent.
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Figure 2. Correlation in the tropics over a range of scales for models and inversions with (top) NINO 3.4 index, (second) (−1)×SIF, (third)

scPDSI, (fourth) Tsoil, and (bottom) FLUXCOM NEE in the tropics. Squares represent correlations with terrestrial ecosystem model NEE

IAV: VISIT (cyan), JULES (blue), CASA GFED CMS (green), CASA GFED 4.1 (magenta) and the black circle shows the mean correlation

of the models. Triangles represent correlations with the GOSAT flux inversion NEE IAV: GOSAT L4 (cyan up-triangle), GC4×5−44%−IAV

NEE IAV (green up-triangle), GC4x5−100%−IAV NEE IAV (green down-triangle), GC4×5−44% NEE IAV (red up-triangle), GC4×5−100%

NEE IAV (red down-triangle), GC2×2.5−66% NEE IAV (orange up-triangle), and GC2×2.5−200% NEE IAV (orange down-triangle). The

green star show the correlation with CT2016 NEE IAV. The grey circle shows the correlation with the NINO 3.4 index. Dashed black lines

indicate the correlation required for an α of 0.05, therefore, all correlations greater than the dashed black line indicate P<0.05.
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Figure 3. Correlations of monthly anomalies over tropical land at 4◦× 5◦ spatial resolution. Columns show coefficient of correlation (R)

of (left) GC2×2.5−200% NEE IAV, (center) NINO 3.4 index, and (right) the difference between the two with (top row) the NINO 3.4 index,

(second row) (−1)×SIF, (third row) scPDSI, (fourth row) Tsoil, and (bottom row) FLUXCOM NEE.
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Figure 4. NEE anomalies (gC m−2 day−1) for FLUXCOM and GC2×2.5−200% in the tropics. (left column) Monthly anomalies, (center

column) smoothed (3-month running mean) monthly anomalies, and (right column) DIFFcontinent−tropics (see Sect. 3.1.1 to see how this

is calculated) for (a–b) the entire tropics, (c–e) the Americas, (f–h) Africa and the Middle East, and (i–k) the Asia Pacific and Indian sub-

continent. For each sub-plot, R2 shows the coefficient of determination between GC2×2.5−200% and FLUXCOM NEE anomalies within the

sub-plot.
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Figure 6. Mean correlation coefficient (R) with the true OSSE NEE IAV over a range of spatial scales for CT2016 NEE IAV (white star),

OSSECT2016−100%−IAV NEE IAV (white down-triangle), OSSECT2016−44% NEE IAV (grey up-triangle), OSSECT2016−100% NEE IAV

(grey down-triangle), OSSEJULES−44% NEE IAV (black up-triangle), and OSSEJULES−100% (black down-triangle) NEE IAV.
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Figure 7. Monthly NEE anomalies (gC m−2 day−1) for OSSEJULES−100% (red), OSSECT2016−100% (green), OSSECT2016−100%−IAV

(blue) and true NEE IAV (black) in the tropics. (left column) Monthly anomalies, (center column) smoothed (3-month running mean)

monthly anomalies, and (right column) DIFFcontinent−tropics (see Sect. 3.1.1 to see how this is calculated) for (a–b) the entire tropics, (c–e)

the Americas, (f–h) Africa and the Middle East, and (i–k) the Asia Pacific and Indian sub-continent.
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Figure 8. Correlation between FLUXCOM MARS GPP anomalies and SIF anomalies at 2◦× 2.5◦ spatial resolution.
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Figure 9. Comparison of GCIAV posterior and prior NEE IAV. (a) Correlation coefficient (R) between the posterior and prior NEE IAV in the

tropics at the spatial scale of 4◦× 5◦. (b) Mean correlation coefficient (R) between posterior and prior NEE IAV in the tropics for different

degrees of spatial aggregation. (c) Northern extratropical anomalies during JJA for (top) prior and (bottom) posterior NEE for (left–right

columns) 2010–2013.
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Table 1. Setup of GEOS-Chem flux inversions. Differences are in model transport resolution, prior fluxes, and prior errors.

Name Resolution Prior flux error Prior flux IAV

GC2×2.5−200% 2°×2.5° 200% No (mean 2010–2013)

GC2×2.5−66% 2°×2.5° 66% No (mean 2010–2013)

GC4×5−100% 4°×5° 100% No (mean 2010–2013)

GC4×5−44% 4°×5° 44% No (mean 2010–2013)

GC4×5−100%−IAV 4°×5° 100% Yes

GC4×5−44%−IAV 4°×5° 44% Yes
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Table 2. Slope and coefficient of determination (R2) for linear regressions of inversion/TBM NEE anomalies against proxy/FLUXCOM

anomalies across the entire tropics.

Model/Inversion

gCm−2day−1

FLUXCOM NEE

gCm−2day−1

SIF

mWm−2 nm−1 sr−1
scPDSI Tsoil (K)

NINO 3.4 index

K

slope R2 slope R2 slope R2 slope R2 slope R2

GC2×2.5−200% 1.87 0.69 0.90 0.03 0.078 0.27 0.100 0.61 0.026 0.26

GC2×2.5−66% 1.03 0.62 0.65 0.05 0.045 0.27 0.061 0.66 0.015 0.26

GC4×5−100% 1.70 0.69 0.54 0.01 0.067 0.24 0.093 0.63 0.022 0.24

GC4×5−44% 1.06 0.65 0.65 0.05 0.044 0.26 0.061 0.66 0.014 0.21

GC4×5−100%−IAV 2.10 0.61 0.94 0.03 0.071 0.16 0.12 0.56 0.024 0.16

GC4×5−44%−IAV 1.57 0.51 0.03 0.00 0.06 0.16 0.087 0.55 0.017 0.12

GOSAT L4 1.59 0.34 -0.30 0.00 0.017 0.01 0.106 0.46 0.020 0.11

GOSAT L4w/BB 1.69 0.33 -0.02 0.00 0.007 0.00 0.107 0.40 0.016 0.06

CT2016 0.66 0.12 1.58 0.14 0.042 0.11 0.057 0.27 0.001 0.02

CT2016w/BB 0.79 0.14 1.73 0.14 0.027 0.04 0.059 0.24 0.001 0.00

VISIT -0.50 0.03 -1.15 0.04 -0.13 0.45 0.006 0.00 -0.021 0.11

CASA 4.1 0.38 0.06 1.88 0.32 0.030 0.09 0.023 0.07 0.004 0.01

CASA CMS 0.33 0.04 -0.09 0.00 -0.010 0.01 0.029 0.08 -0.002 0.00

JULES 1.85 0.47 0.96 0.027 0.10 0.31 0.116 0.56 0.033 0.31
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Table 3. Slope and coefficient of determination (R2) for linear regressions of regional inversion/TBM NEE anomalies against

proxy/FLUXCOM anomalies during JJA in the northern extratropics.

Model/Inversion

gCm−2day−1

FLUXCOM NEE

gCm−2day−1

SIF

mWm−2 nm−1 sr−1
scPDSI Tsoil (K)

slope R2 slope R2 slope R2 slope R2

GC2×2.5−200% 1.56 0.54 4.07 0.14 0.052 0.21 0.17 0.56

GC2×2.5−66% 1.28 0.65 3.32 0.16 0.041 0.24 0.13 0.57

GC4×5−100% 1.36 0.49 4.13 0.17 0.054 0.28 0.16 0.62

GC4×5−44% 1.29 0.64 3.36 0.17 0.045 0.29 0.14 0.65

GC4×5−100%−IAV 1.28 0.26 6.8 0.27 0.05 0.16 0.16 0.36

GC4×5−44%−IAV 0.79 0.15 4.66 0.20 0.026 0.06 0.10 0.21

GOSAT L4 1.59 0.33 5.86 0.17 0.086 0.35 0.19 0.43

GOSAT L4w/BB 1.59 0.34 6.52 0.21 0.090 0.39 0.18 0.39

CT2016 0.21 0.01 4.03 0.13 0.000 0.00 0.04 0.03

CT2016w/BB 0.18 0.006 4.59 0.16 0.002 0.00 0.03 0.01

VISIT 0.93 0.47 3.25 0.21 0.059 0.67 0.10 0.50

CASA 4.1 0.37 0.12 3.96 0.48 0.020 0.11 0.05 0.20

CASA CMS 0.16 0.01 4.13 0.34 0.00 0.00 0.02 0.02

JULES 1.58 0.29 7.26 0.23 0.075 0.23 0.23 0.52
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Table 4. Slope and coefficient of determination (R2) for linear regressions of OSSE posterior NEE anomalies against the true NEE IAV and

OSSEJULES−100%.

Tropics

Inversion true NEE IAV OSSEJULES−100%

slope R2 slope R2

OSSEJULES−100% 0.67 0.53

OSSEJULES−44% 0.58 0.53 0.91 0.91

OSSECT2016−100% 0.55 0.61 0.84 0.84

OSSECT2016−44% 0.42 0.59 0.69 0.77

OSSECT2016−100%−IAV 0.75 0.69 0.70 0.48

CT2016 0.31 0.19 0.50 0.15

Northern Extratropics

Inversion true NEE IAV OSSEJULES−100%

slope R2 slope R2

OSSEJULES−100% 0.35 0.39

OSSEJULES−44% 0.27 0.48 0.76 0.80

OSSECT2016−100% 0.30 0.30 1.04 0.88

OSSECT2016−44% 0.31 0.43 1.06 0.62

OSSECT2016−100%−IAV 0.63 0.15 0.55 0.41

CT2016 0.48 0.46 0.18 0.05
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