High efficiency of livestock ammonia emission controls on alleviating 1 particulate nitrate during a severe winter haze episode in northern China 2 3 Zhenying Xu¹, Mingxu Liu¹, Minsi Zhang², Yu Song^{1*}, Shuxiao Wang^{3*}, Lin Zhang⁴, 4 Tingting Xu¹, Tiantian Wang¹, Caiqing Yan¹, Tian Zhou¹, Yele Sun⁵, Yuepeng Pan⁵, 5 Min Hu¹, Mei Zheng^{1*} and Tong Zhu¹ 6 7 ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, 8 Department of Environmental Science, Peking University, Beijing, 100871, China 9 ²National Center for Climate Change Strategy and International Cooperation (NCSC) 10 ³State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China 11 12 ⁴Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and 13 Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China 14 ⁵State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric 15 Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 16 17 *Corresponding author: Yu Song (songyu@pku.edu.cn), Shuxiao Wang 18 (shxwang@tsinghua.edu.cn), Mei Zheng (mzheng@pku.edu.cn). 19 20 21 22 23 24 25 26 27 28 29 30

Abstract

Although nitrogen oxide (NO_x) emission controls have been implemented for several years, northern China is still facing high particulate nitrate (NO₃⁻) pollution during severe haze events in winter. In this study, the thermodynamic equilibrium model (ISORROPIA-II) and the Weather Research and Forecast model coupled chemistry (WRF-Chem) were used to study the efficiency of NH₃ emission controls on alleviating particulate NO₃⁻ during a severe winter haze episode. We found that particulate NO₃⁻ formation in extremely high pollution is almost NH₃-limited, not NO_x-limited often happened in the other days. The improvements in manure management of livestock husbandry could reduce 40% of total NH₃ emissions (currently 100 kiloton per a month) in winter of northern China. Consequently, particulate NO₃⁻ was reduced by approximately 40% (averagely from 40.8 to 25.7 μg/m³). Our results indicate that reducing livestock NH₃ emissions would be highly effective to reduce particulate NO₃⁻ during severe winter haze events.

1 Introduction

In northern China (including Beijing, Tianjin, Hebei, Shandong, Shanxi and Henan), severe haze pollution events occur frequently during wintertime, with the concentration of PM_{2.5} (particles with an aerodynamic diameter less than 2.5 μm) reaching hundreds of micrograms per cubic meter and SIA (secondary inorganic aerosol) accounting for more than 50% of PM_{2.5} (Zheng et al., 2016;Tan et al., 2018). To mitigate fine particle pollution, the Chinese government has been taking strong measures to control SO₂ emissions (http://www.gov.cn/zwgk/2011-12/20/content_2024895.htm). Since 2007, SO₂ emissions have been reduced by 75% in China (Li et al., 2017). Consequently, the particulate sulfate concentration has also been declining continuously in the past decade (Geng et al., 2017).

Although NO_x emissions in 48 Chinese cities decreased by 21% from 2011 to 2015 (Liu et al., 2017a), unfortunately, no obvious decreasing trend for particulate NO_3^- had been observed in northern China during recent years (Zhang et al., 2015). In October 2015, a severe haze episode was reported in North China Plain (NCP), with the hourly peak concentration of particulate NO_3^- exceeding 70 μ g/m³ (Zhang et al., 2018b). Even in November 2018, during a heavy haze episode in northern China, the hourly peak concentration of $PM_{2.5}$ still exceeded 289 μ g/m³, of which particulate NO_3^- accounted for 30% (http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201811/t20181116_674022.html).

Another way to alleviate the particulate NO₃⁻ pollution is to control NH₃ emissions. Previous studies were performed to demonstrate the necessity of NH₃ emissions abatement in reducing PM_{2.5} concentrations in the United States (Pinder et al., 2007;Tsimpidi et al., 2007;Pinder et al., 2008;Wu et al., 2016) and Europe (de Meij et al., 2009;Bessagnet et al., 2014;Backes et al., 2016). Recently, a feature article pointed out that NH₃ could be key to limiting particulate pollution (Plautz, 2018). In contrast with low particulate matter pollution levels in the United States and Europe, what we are facing in northern China is the extremely high particulate NO₃⁻ pollution especially happened in severe winter haze

73 events.

Although Fu et al. (2017) proposed that the NH₃ emission controls are urgently required in China, the effectiveness of NH₃ emissions mitigation to alleviate the particulate NO₃⁻ peaks during severe winter haze episodes was seldom reported. Only Guo et al. (2018b) used a thermodynamic model to estimate the sensitivity of particulate NO₃⁻ to TA (sum of ammonia and ammonium) during one winter haze episode in Beijing. In their study, the atmospheric chemistry simulations based on NH₃ emission controls scenario were lacking to demonstrate the regional effects.

To alleviate severe particulate NO_3^- pollution in northern China is urgent, the study on the effectiveness by NH_3 emission controls is necessary. In this study, we firstly compile a comprehensive NH_3 emission inventory for northern China in winter of 2015, and estimate the NH_3 emission reductions by improving manure management. Then, the ISORROPIA-II and WRF-Chem models are used to investigate the effectiveness of NH_3 emission reductions on alleviating particulate NO_3^- during a severe haze episode. The molar ratio based on observations is used to explore the efficiency of particulate NO_3^- reductions during the severe haze conditions in wintertime.

2 Methods and Materials

2.1 Observational data

Hourly time-resolution aerosol and gas measurements were conducted at the Peking University urban atmosphere environment monitoring station (PKUERS) (39.991N, 116.313E) in Beijing in December 2015 and December 2016. A commercialized semicontinuous In-situ Gas and Aerosol Composition (IGAC) Monitor was used to measure the concentrations of water-soluble ions (e.g., NH₄+, SO₄²⁻, NO₃-, Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻) in PM_{2.5} and inorganic gases (e.g., NH₃, HNO₃, HCl). Relative humidity (RH) and temperature were observed at 1-min resolution at the same site. The quality assurance and control for the IGAC was described in Liu et al. (2017b). A typical severe haze episode occurred during the 6 to 10 in December 2015, with daily average concentrations of PM_{2.5} exceeding 150 μ g/m³ for three days (PM_{2.5} data are from China National Environmental Monitoring Centre). The average RH and temperature in this haze event were 60.9 ± 11.4% and 276.5 ± 1.4 K. The south wind was dominant with wind speed mostly less than 3 m/s. The average concentrations of particulate NO₃-, NH₄+ and SO₄²- were 39.8 ± 14.7 μ g/m³, 27.7 ± 8.6 μ g/m³ and 42.4 ± 16.0 μ g/m³, respectively. The ratios of particulate NO₃- concentrations to SNA (including sulfate, nitrate and ammonium) were 36.5 ± 4.0%.

2.2 NH₃ emission inventory

A comprehensive NH_3 emission inventory of northern China (including the six provinces mentioned above) in December 2015 at a monthly and 1 km \times 1 km resolution is developed based our previous studies (Huang et al., 2012;Kang et al., 2016). Here is a brief introduction to our inventory. More detailed descriptions and validation are in our previous studies. Our NH_3 emission inventory is a bottom-up process-based and statistical model which considers a diverse range of sources, including both agricultural (livestock manure and chemical fertilizer) and non-agricultural sectors (e.g., traffic, biomass burning etc.). According to our inventory, the estimated NH_3 emission amount in northern China

was 100 kiloton in December 2015. The largest source was livestock waste (57 kiloton, 57.0% of the total emissions), following by vehicle (12.2%), chemical industry (8.8%), biomass burning (5.4%), waste disposal (4.0%), synthetic fertilizer applications (2.4%) and other minor sources (9.1%). The proportion of chemical fertilizer is small due to the limited fertilization activity in winter. In the past few years, our inventory has been compared with many studies to prove its reliability. For example, the spatial pattern of NH₃ emissions calculated in our inventory agreed well with the distribution of the NH₃ column concentrations in eastern Asia retrieved from the satellite measurements of Infrared Atmospheric Sounding Interferometer (IASI) (Van Damme et al., 2014). Specially, our estimation of livestock NH₃ emissions in China is comparable to the results of Streets et al. (2003) and Ohara et al. (2007).

Another method for estimating NH₃ emissions is the inverse modeling method, which provides top-down emission estimates through optimizing comparisons of model simulations with measurements. For example, Paulot et al. (2014) used the adjoint of a global chemical transport model (GEOS-Chem) and data of NH₄⁺ wet deposition fluxes to optimize NH₃ emissions estimation in China. Zhang et al. (2018a) applied TES satellite observations of NH₃ column concentration and GEOS-Chem to provide top-down constraints on NH₃ emissions in China. Their estimates are 10.2 Tg a⁻¹ and 11.7 Tg a⁻¹ respectively, which are close to our results (9.8 Tg a⁻¹) (Paulot et al., 2014;Zhang et al., 2018a). The accuracy of this method relies on many factors, such as the accuracy of initial conditions, the emission inventories, meteorological inputs, reaction rate constants, and deposition parameters in the chemical transport model. Errors of these parameters could cause biases in the top-down estimation of NH₃ emissions. In addition, measurements of NH₃ or NH₄⁺ used in this method, including surface and satellite date, are usually sparse in spatial coverage and have uncertainties, which will also affect the estimation of NH₃ emissions.

2.3 ISORROPIA-II and WRF-Chem models

The thermodynamic equilibrium model, ISORROPIA-II (Fountoukis and Nenes, 2007), being used to determine the phase state and composition of an NH_4^+ - $SO_4^{2^-}$ - NO_3^- - K^+ - Ca^{2^+} - Mg^{2^+} - Na^{+-} - Cl^- - H_2O aerosol system with its corresponding gas components in thermodynamic equilibrium, was used to investigate the response of particulate NO_3^- to NH_3 emission reductions. Using measurements of water-soluble ions, T and RH from PKUERS as inputs, ISORROPIA-II can avoid the inherent uncertainty in estimates of emission inventories, pollutant transport, and chemical transformation. In this study, ISORROPIA-II was run in the "forward mode" and assuming particles are "metastable" with no solid precipitates, which is due to the relatively high RH range observed during this haze event ($RH = 60.9 \pm 11.4\%$).

We assess the performance of ISORROPIA-II by comparing measured and predicted particulate NO_3^- , NH_4^+ and gaseous HNO_3 , NH_3 . An error metric, the mean bias (MB), is used to quantify the bias (the description of MB is shown below Figure S1). The predicted particulate NO_3^- , NH_4^+ and NH_3 agree well with the measurements and the value of R^2 are 0.99, 0.94 and 0.84, respectively (Figure S1). The MB is only 1.0 $\mu g/m^3$, 0.3 $\mu g/m^3$ and -1.8 $\mu g/m^3$, respectively. However, the model performs poorly on HNO_3 , with an R^2 of only 0.06 and a MB of -1.0 $\mu g/m^3$. This is because particulate NO_3^- is predominantly in the particle phase (the mass ratio of particulate NO_3^- to the total nitric acid (TN = NO_3^- + HNO_3)

was $99.2 \pm 1.9\%$), small errors in predicting particulate NO_3^- are amplified in HNO_3 predicting. Since the MB of HNO_3 is much smaller than the observed particulate NO_3^- (39.8 \pm 14.7 $\mu g/m^3$) and NH_4^+ (27.7 \pm 8.6 $\mu g/m^3$), this bias have little influence on simulating the efficiency of particulate NO_3^- reductions.

In the real atmosphere, changes in the level of TA ($TA = NH_4^+ + NH_3$) can affect the lifetime of TN (Pandis and Seinfeld, 1990). This is because the gaseous HNO₃ has a faster deposition rate in the atmosphere than particulate NO₃, and reductions in NH₄⁺ may prompt particulate NO₃ partitioning into the gas phase. In such a case, the concentration of TN would not remain constant but decrease. In order to consider these, we use the Weather Research and Forecast Model coupled Chemistry (WRF-Chem) model (ver. 3.6.1) to investigate the effect of NH₃ emission controls on particulate NO₃ formation in the regional scale. The simulations were performed for the severe haze event during 6 to 10 December 2015. The modeling domain covered the whole northern China with horizontal resolution of 25 km and 24 vertical layers from surface to 50 hPa. The initial meteorological fields and boundary conditions were taken from the 6 h National Centers for Environmental Prediction (NCEP) global final analysis with a $1^{\circ} \times 1^{\circ}$ spatial resolution. The inorganic gas-aerosol equilibrium was predicted by Multicomponent Equilibrium Solver for Aerosols (MESA) in WRF-Chem (Zaveri et al., 2005). The Carbon-Bond Mechanism version Z (CBMZ) photochemical mechanism and Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol model were used in this study (Fast et al., 2006). Anthropogenic emissions from power plants, industrial sites, residential locations, and vehicles were taken from the Multi-resolution Emission Inventory for China (MEIC; available at www.meicmodel.org).

The performance of WRF-Chem is evaluated by comparing measured and simulated NO₃-, NH₄+, SO₄²⁻ and TA. Specifically, the observed and simulated values are, respectively: (1) NO₃-, 39.8 \pm 14.7 $\mu g/m^3$ versus 39.1 \pm 15.6 $\mu g/m^3$; (2) NH₄+, 27.7 \pm 8.6 $\mu g/m^3$ versus 26.5 \pm 11.7 $\mu g/m^3$; (3) SO₄²⁻, 42.4 \pm 16.0 $\mu g/m^3$ versus 39.7 \pm 20.8 $\mu g/m^3$ and (4) TA, 34.6 \pm 8.5 $\mu g/m^3$ versus 32.1 \pm 11.0 $\mu g/m^3$. The MB of these four species are -0.7, -1.2, -2.7 and -2.5 $\mu g/m^3$, respectively. Simulated particulate NO₃-, NH₄+, SO₄²⁻ and TA approximately agreed with the measurements (Figure S2). There are still some simulation biases that may affect the simulation of particulate NO₃- reductions efficiency. This is discussed in detail in Sect 3.3.

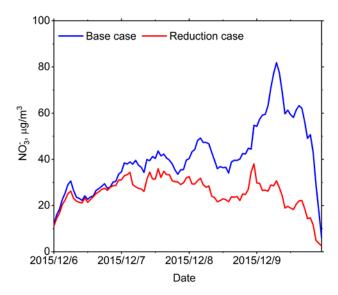
3 Results

3.1 High potential reduction of wintertime NH₃ emissions in northern China

Livestock husbandry accounts for the largest proportion of NH₃ emissions in winter of northern China (approximately 60%), which is mainly caused by the poor manure management. There are three main animal-rearing systems in China: free-range, grazing and intensive. On the one hand, the proportion of intensive livestock husbandry in China is only about 40%, far lower than that of developed countries (Harun and Ogneva-Himmelberger., 2013). As a result, the widespread free-range and grazing animal rearing systems contribute more than half of the total livestock NH₃ emissions due to lacking manure collection and treatment (Kang et al., 2016). On the other hand, there were no relevant regulations about storage of manure for intensive farms in China in the past few

decades. This causes most livestock farms also lack necessary measures and facilities for manure collection and storage (Chadwick et al., 2015).

Due to the current poor manure management in China, the improved manure management may have great potential for NH₃ emission reductions from livestock husbandry (Wang et al., 2017). The improved manure management mainly includes three phases: in-house handling, storage and land application (Chadwick et al., 2011). For winter, the emission reduction measures mainly focus on in-house handling and storage, since land application mainly occurs in spring and summer. According to previous studies, for in-house handling, regularly washing the floor and using slatted floor or deep litter to replace solid floor could both reduce NH₃ emissions by more than 50% (Groenestein and VanFaassen, 1996;Monteny and Erisman, 1998;Gilhespy et al., 2009;Hou et al., 2015). For storage, covering slurry and manure could reduce NH₃ emissions by about 50%-70% (Balsari. et al., 2006;Petersen et al., 2013;Hou et al., 2015;Wang et al., 2017).


Based on the above research results, the livestock NH₃ emission reductions strategies applied in this study include the following steps. Firstly, the proportion of intensive livestock production was raised from 40% to 80% in our NH₃ emission inventory model. In our model, the animals in free-range and grazing animal rearing systems are assumed to live outdoors for half a day, and the improved manure management is only effective for indoor animals. Therefore, increasing the proportion of intensive livestock production is conducive to better manure management (Hristov et al., 2011). Secondly, the ratios of NH₃ emission reductions mentioned above were multiplied by NH₃ emission factors in two phases of manure management: 50% reduction at in-house handling and 60% (average value of 50% and 70%) reduction at storage. With these measures, we estimate that the NH₃ emission factors for the livestock in China could be comparable to those in Europe and the USA (shown in Table S1). Meanwhile, our NH₃ emission model predicted that the livestock NH₃ emissions were reduced by 60% (from 57 to 23 kiloton), causing approximately 40% reduction in total NH₃ emissions. Spatially, NH₃ emissions decreased significantly in Hebei, Henan and Shandong, where the livestock NH₃ emissions accounted for a large proportion of the total (shown in Figure S3).

3.2. Simulations of NO₃ reduction due to NH₃ emission controls

In the ISORROPIA-II simulation, 40% reduction of TA was used to reflect the effects of reducing NH₃ emissions by 40%. This approach has been used in many previous studies (Blanchard and Hidy, 2003; Vayenas et al., 2005). However, in the real atmosphere, the reductions of NH₃ emission are not always equal to the reductions of TA due to the regional transmission. Their differences are discussed in the WRF-Chem simulation.

In this haze event (from 6 to 10 December, 2015), the mean concentration of particulate NO₃⁻ decreased from 40.8 to 25.7 $\mu g/m^3$ (a 37% reduction). In addition, the peak hourly concentration of NO₃⁻ decreased from 81.9 to 30.7 $\mu g/m^3$ (a 63% reduction) (shown in Figure 1). The fundamental thermodynamic processes of TA reductions on decreasing particulate NO₃⁻ are explained below. Firstly, we found that NH₃ was quite available to react with HNO₃ in the thermodynamic equilibrium system, because NH₃ was 6.6 \pm 3.8 $\mu g/m^3$ while HNO₃ was only 0.4 \pm 1.1 $\mu g/m^3$. Secondly, almost all of particulate NO₃⁻ condensed into aerosol phase (the mass ratio of particulate NO₃⁻ to TN was 99.2 \pm 1.9%) under such low temperature conditions (276.5 \pm 1.4 K). Thirdly, the NH₃-HNO₃ partial

pressure production (Kp) was as low as about 0.1 ppb^2 (calculated from ISORROPIA-II outputs, depending not only on temperature and RH but also sulfate concentration). The value of K_P would remain constant, if the temperature, RH and sulfate concentration remained unchanged. In general, NH_4NO_3 was not easy to volatilize into gas phase under these circumstances.

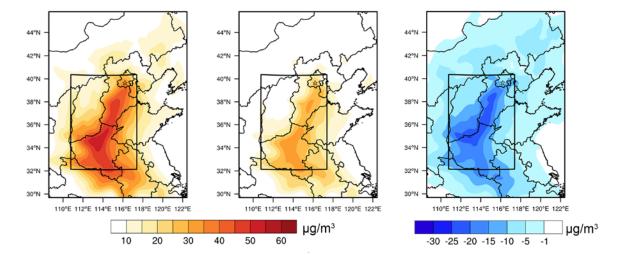
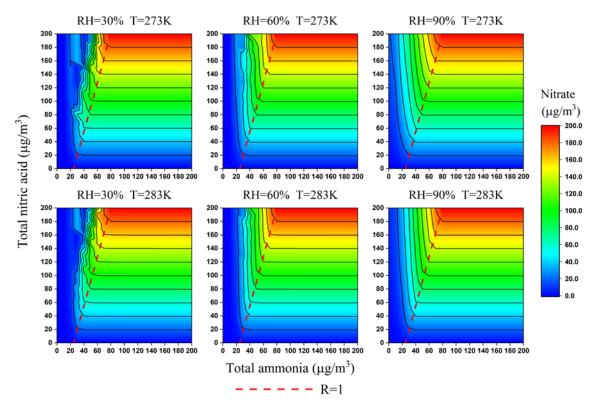


Figure 1. A comparison of particulate nitrate (NO₃⁻) between the base (blue line) and emission reductions cases (red line) simulated by the ISORROPIA-II model in this severe haze episode.

When TA was reduced by 40%, the average mass concentration of gaseous NH₃ decreased from 6.6 to 0.01 $\mu g/m^3$ (from 8.8 ppb to 0.05 ppb). In order to keep the value of K_P constant in the thermodynamic equilibrium state, the reductions of NH₃ increased HNO₃, which shifted the particulate NO₃⁻ partitioning toward the gas phase. Hence, when NH₃ in gas phase was almost completely depleted, HNO₃ increased from 0.4 to 15.5 $\mu g/m^3$ (from 0.1 ppb to 5.6 ppb), leading to a reduction of particulate NO₃⁻ from 40.8 to 25.7 $\mu g/m^3$ (a 37.0 % reduction). Meanwhile, NH₄⁺ also decreased from 27.9 to 20.6 $\mu g/m^3$ and there was almost no change in sulfate level (decreased from 39.7 to 39.3 $\mu g/m^3$), with only trace amount of NH₄HSO₄ produced. This indicated that the reduction of particulate NH₄⁺ and NO₃⁻ was mainly due to the reduction of NH₄NO₃. The sum of particulate NO₃⁻ and NH₄⁺ decreased from 68.7 to 46.3 $\mu g/m^3$ (a 32.6% reduction).

We also conducted WRF-Chem simulations to quantify the impacts of NH₃ emission controls on particulate NO₃⁻ regionally. A 60% reduction in livestock NH₃ emissions was used as an emission reductions scheme and Figure 2 shows the spatial distribution of particulate NO₃⁻ under the base case and the emission reductions case. The spatial distribution of particulate NO₃⁻ was mainly concentrated in most parts of Henan (HN) and Hebei (HB), with the average concentration over 30 μg/m³ (included in the black box shown in Figure 2a). The highest particulate NO₃⁻ concentrations, more than 60 μg/m³, were mainly located in central south of Hebei and northern Henan. In the emission

reductions case, the mean concentration of particulate NO₃ decreased from 30.6 to 18.5 μg/m³ (a 39.4% reduction) in the range of the black box. Meanwhile, the particulate NH₄⁺ decreased from 16.3 to 11.7 μg/m³ (a 28.1% reduction). The sum of particulate NO₃⁻ and NH_4^+ decreased from 46.9 to 30.2 $\mu g/m^3$ (a 35.6% reduction). Besides, the sulfate concentration slightly changed from 19.7 to 17.6 µg/m³, and PM_{2.5} concentration dropped from 143.4 to 125.4 μg/m³. The largest reductions in particulate NO₃ were mainly located in the central north of Henan and central Hebei, where the percentage reduction was generally more than 60% (shown in Figure 2b). In some areas with high particulate NO₃⁻ concentrations, particulate NO₃⁻ had been effectively reduced by more than 30 µg/m³ (shown in Figure 2c). In these regions, severe haze events occurred frequently due to their large emissions of air pollutants, including NH₃ (Wang et al., 2014; Zhao et al., 2017). In addition, TN was reduced by 34.1% (from 31.8 µg/m³ to 21.0 µg/m³), which was in line with the assumption in Sect 2.3. Correspondingly, TA decreased by 40.7% (from 17.2 $\mu g/m^3$ to 10.2 $\mu g/m^3$), very close to the reductions of NH₃ emission (40%). This indicates that it is reasonable to use TA reductions to represent NH₃ emission reductions in the ISORROPIA-II simulation.


Figure 2. (a) Spatial distribution of particulate NO₃⁻ concentrations in northern China predicted by WRF-Chem from 6 to 10 December, 2015, for (a) the base case, (b) the emission reductions case and (c) the difference between the base case and the emission reductions case. The scope of this study focuses on the black box, including Beijing (BJ), Tianjin (TJ), Hebei (HB), Shanxi (SX), Shandong (SD) and Henan (HN).

3.3 The particulate NO₃ reduction efficiency during the wintertime

The sensitivity of particulate NO₃⁻ to NH₃ is often determined by the availability of ambient NH₃, which can be represented by the observable indicator (Seinfeld and Pandis, 2006). In this study, we use the observed molar ratio (R) of TA to the sum of sulfate, total chlorine and TN minus Na⁺, K⁺, Ca²⁺ and Mg²⁺ to represent the availability of ambient NH₃ and predict the sensitivity of the particulate NO₃⁻ to changes in TN and TA.

$$R = \frac{TA}{2SO_4^{2-} + NO_3^{-} + HNO_3(g) + Cl^{-} + HCl(g) - 2Ca^{2+} - Na^{+} - K^{+} - 2Mg^{2+}}$$
(1)

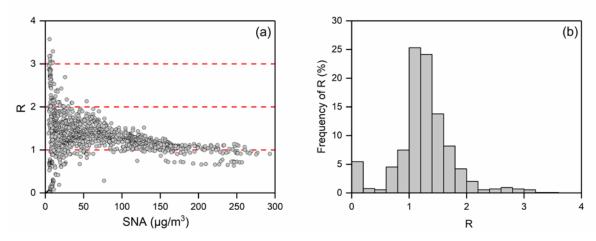

The accuracy of R was examined by constructing the isopleths of particulate NO_3^- concentrations as a function of TN and TA (shown in Figure 3). The NO_3^- concentration was constructed by varying the input concentrations of TA and TN from 0 to $200 \,\mu\text{g/m}^3$ in increments of $10 \,\mu\text{g/m}^3$ independently in ISORROPIA-II, while using the observed average value for the other components. Over a range of temperatures (273–283 K) and RHs (30–90%), the dashed line of R=1 divides each isopleth into two regions with tiny bias, which indicates that R can be used to qualitatively predict the response of the particulate NO_3^- to changes in concentrations of TN and TA.

Figure 3. Isopleths of the particulate NO₃⁻ concentration (μg/m³) as a function of TN and TA under average severe haze conditions in winter. The concentration of SO₄²-, Cl̄-, K⁺, Ca²⁺, Na⁺, and Mg²⁺ was 60.2, 9.3, 0.56, 0.04, 0.75, and 0.03 μg/m³, respectively. Values are averages from all severe hazes during the observation period.

In the right side of the dashed line (R>1), particulate NO_3^- formation is HNO_3 -limited. The NH_3 is surplus and almost all particulate NO_3^- exists in the aerosol phase. The TA reductions mainly reduce NH_3 , with negligible effects on particulate NO_3^- . By contrast, particulate NO_3^- formation is NH_3 -limited in the left of the dashed line (R<1). There is less NH_3 present in the gas phase, and TA reductions could reduce particulate NO_3^- efficiently. For example, when the concentrations of TN and TA are 100 and 50 $\mu g/m^3$ (RH=60% and T=273 K), the concentration of particulate NO_3^- is about $100 \mu g/m^3$ and the value of R is close to one (typical observational values during the severe haze in this study). In such cases, if TA were reduced by 50% to 25 $\mu g/m^3$, the particulate NO_3^- would be significantly reduced from 100 to 20 $\mu g/m^3$, an 80% reduction.

Under the typical winter conditions in northern China, the value of R was generally greater than one and gradually declining with the increase in SNA concentrations (shown in Figure 4a). When the concentration of SNA is greater than 150 $\mu g/m^3$, the values of R become close to and frequently lower than one. This indicated that particulate NO_3^- formation would easily become NH₃-limited under severe haze conditions when NH₃ emissions were reduced. In general, particulate NO_3^- will be reduced effectively by a 40% reduction of NH₃ emissions in the condition that the value of R is less than 1.4 (shown in Figure S4). This situation accounts for 68.1% of the entire December (shown in Figure 4b). It should also be noted that the particulate NO_3^- is insensitive to a 40% reduction in NH₃ emissions when the value of R is greater than 1.4 (shown in Figure S4). This situation mainly occurs in relatively clean days (the concentration of SNA is less than 75 $\mu g/m^3$), accounting for only 31.9% of the entire December (shown in Figure 4a and 4b). Overall, reducing 40% of NH₃ emissions could effectively reduce the levels of particulate NO_3^- under typical severe winter haze conditions in northern China.

Figure 4. (a) The observed molar ratio (R) and the concentrations of SNA in PKUERS in December 2015 and December 2016. (b) The frequency of R during the same period.

The observed R provides a simple method to rapidly estimate the efficiency of NH₃ emission reductions on the particulate NO₃⁻ reductions, which can avoid the shortage of the air quality model, especially the uncertain estimates of meteorology. However, it also needs to be examined in more detail for specific pollution and meteorological conditions. Therefore, the observed indicator and air quality models should be used in a complementary way to assess the effectiveness of NH₃ emission controls strategies.

Based on the above analysis, the influence of WRF-Chem simulation biases on particulate NO₃⁻ reduction efficiency simulation mainly depends on the simulation bias of R. During the simulation case, the average simulated value of R is 1.3, which is equivalent to the observed value (1.3). Since WRF-Chem has a good estimation of the availability of ambient NH₃, its estimation of the efficiency of particulate NO₃⁻ reductions is reliable.

It is noteworthy that the efficiency of particulate NO₃⁻ reductions by NH₃ emission controls in northern China during severe winter hazes may be higher than that in the United States and Europe. Compared with our results (40% NH₃ emission reductions lead to about

40% particulate NO₃⁻ reductions), in the United States and Europe, NH₃ emissions often need to be reduced by more than 70% before particulate NO₃⁻ begin to decrease (Pozzer et al., 2017;Guo et al., 2018a). This is mainly because the strict emission controls of SO₂ and NO_x in these areas lead to a more ammonia-rich environment, which makes particulate NO₃⁻ insensitive to NH₃ emission reductions.

4 Conclusions

In this study, we found that during severe winter haze episodes, the particulate NO_3^- formation is NH_3 -limited, resulting in its high sensitivity to NH_3 emission reductions. Meanwhile, livestock NH_3 emission controls is a very efficient way to alleviate particulate NO_3^- pollution during severe winter hazes. The estimations showed that the improvements in manure management of livestock husbandry could effectively reduce total NH_3 emissions by 40% (from 100 kiloton to 60 kiloton) in winter of northern China. It would lead to a reduction of particulate NO_3^- by about 40% (averagely from 40.8 to 25.7 $\mu g/m^3$) during severe haze conditions.

NO_x emission controls could be a more direct and effective way to reduce the particulate NO₃⁻ than NH₃ emission reductions. However, in northern China, the target of NO_x emission reductions is only about 25% in the 13th Five-Year Plan (2016-2020) (http://www.gov.cn/zhengce/content/2017-01/05/content_5156789.htm). Due to the dominance of free-range animal rearing systems and the lack of emission controls policies, livestock NH₃ emission reductions in China could be practicable. In order to control PM_{2.5} pollution more effectively in northern China, measures to improve manure management in livestock urgently need to be implemented.

Acknowledgement

This study was funded by the National Key R&D Program of China (2016YFC0201505), National Natural Science Foundation of China (NSFC) (91644212 and 41675142) and National Research Program for Key Issues in Air Pollution Control (DQGG0208). The model input data and the NH₃ emission inventory used in this study are available from the corresponding author. The authors declare no competing interests.

References

- Backes, A. M., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.: Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols, Atmos. Environ., 126, 153-161, 10.1016/j.atmosenv.2015.11.039, 2016.
- Balsari., P., Dinuccio;, E., and Gioelli;, F.: A low cost solution for ammonia emission abatement from slurry storage, International Congress Series, 10.1016/j.ics.2006.02.045, 2006.
 - Bessagnet, B., Beauchamp, M., Guerreiro, C., de Leeuw, F., Tsyro, S., Colette, A., Meleux, F., Rouil, L., Ruyssenaars, P., Sauter, F., Velders, G. J. M., Foltescu, V. L., and van

- Aardenne, J.: Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards?, Environ Sci Policy, 44, 149-163, 10.1016/j.envsci.2014.07.011, 2014.
- Blanchard, C. L., and Hidy, G. M.: Effects of changes in sulfate, ammonia, and nitric acid on particulate nitrate concentrations in the southeastern United States, J Air Waste Manage, 53, 283-290, Doi 10.1080/10473289.2003.10466152, 2003.
- Chadwick, D., Sommer, S. G., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B., and Misselbrook, T.: Manure management: Implications for greenhouse gas emissions, Anim Feed Sci Tech, 166-67, 514-531, 10.1016/j.anifeedsci.2011.04.036, 2011.
- Chadwick, D., Jia, W., Tong, Y. A., Yu, G. H., Shen, Q. R., and Chen, Q.: Improving manure nutrient management towards sustainable agricultural intensification in China, Agr Ecosyst Environ, 209, 34-46, 10.1016/j.agee.2015.03.025, 2015.
- de Meij, A., Thunis, P., Bessagnet, B., and Cuvelier, C.: The sensitivity of the CHIMERE model to emissions reduction scenarios on air quality in Northern Italy, Atmos. Environ., 43, 1897-1907, 10.1016/j.atmosenv.2008.12.036, 2009.
- Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, 10.1029/2005jd006721, 2006.
- Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for $K^+-Ca^{2+}-Mg^{2+}-NH_4^+-Na^+-SO_4^{2-}-NO_3^--Cl^-$ +29 aerosols, Atmos. Chem. Phys., 7, 4639-4659, 10.5194/acp-7-4639-2007, 2007.
- Fu, X., Wang, S. X., Xing, J., Zhang, X. Y., Wang, T., and Hao, J. M.: Increasing Ammonia Concentrations Reduce the Effectiveness of Particle Pollution Control Achieved via SO₂ and NOx Emissions Reduction in East China, Environ. Sci. Technol. Lett., 4, 221-227, 2017.
- Geng, G., Zhang, Q., Tong, D., Li, M., Zheng, Y., Wang, S., and He, K.: Chemical composition of ambient PM_{2.5} over China and relationship to precursor emissions during 2005–2012, Atmos. Chem. Phys., 17, 9187-9203, 10.5194/acp-17-9187-2017, 2017.
- Gilhespy, S. L., Webb, J., Chadwick, D. R., Misselbrook, T. H., Kay, R., Camp, V., Retter,
 A. L., and Bason, A.: Will additional straw bedding in buildings housing cattle and
 pigs reduce ammonia emissions?, Biosyst Eng, 102, 180-189,
 10.1016/j.biosystemseng.2008.10.005, 2009.
- Groenestein, C. M., and VanFaassen, H. G.: Volatilization of ammonia, nitrous oxide and nitric oxide in deep-litter systems for fattening pigs, J Agr Eng Res, 65, 269-274, DOI 10.1006/jaer.1996.0100, 1996.
- Guo, H., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., and Weber, R. J.: Effectiveness of Ammonia Reduction on Control of Fine Particle Nitrate, Atmospheric Chemistry and Physics Discussions, 1-31, 10.5194/acp-2018-378, 2018a.
- Guo, H. Y., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., and Weber, R. J.: Effectiveness of ammonia reduction on control of fine particle nitrate, Atmos Chem Phys, 18, 12241-12256, 10.5194/acp-18-12241-2018, 2018b.

- 452 Harun, S. M. R., and Ogneva-Himmelberger., Y.: Distribution of Industrial Farms in the 453 United States and Socioeconomic, Health, and Environmental Characteristics of 454 Counties, Geography Journal, org/10.1155/2013/385893, 2013.
- 455 Hou, Y., Velthof, G. L., and Oenema, O.: Mitigation of ammonia, nitrous oxide and 456 methane emissions from manure management chains: a meta-analysis and integrated 457 assessment, Glob. Change Biol., 21, 1293-1312, 2015.
- 458 Hristov, A. N., Hanigan, M., Cole, A., Todd, R., McAllister, T. A., Ndegwa, P. M., and 459 Rotz, A.: Review: Ammonia emissions from dairy farms and beef feedlots, Can J 460 Anim Sci, 91, 1-35, 2011.
- 461 Huang, X., Song, Y., Li, M. M., Li, J. F., Huo, Q., Cai, X. H., Zhu, T., Hu, M., and Zhang, 462 H. S.: A high-resolution ammonia emission inventory in China, Glob. Biogeochem. 463 Cycle, 26, 10.1029/2011gb004161, 2012.

464

465

466

467

478

479

484

485

- Kang, Y. N., Liu, M. X., Song, Y., Huang, X., Yao, H., Cai, X. H., Zhang, H. S., Kang, L., Liu, X. J., Yan, X. Y., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043-2058, 10.5194/acp-16-2043-2016, 2016.
- 468 Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., 469 Ren, X., Li, Z., and Dickerson, R. R.: India Is Overtaking China as the World's 470 Largest Emitter of Anthropogenic Sulfur Dioxide, Sci Rep, 7, 14304, 471 10.1038/s41598-017-14639-8, 2017.
- 472 Liu, F., Beirle, S., Zhang, Q., van der, A. R., Zheng, B., Tong, D., and He, K.: NOx 473 emission trends over Chinese cities estimated from OMI observations during 2005 to 474 2015, Atmos Chem Phys, 17, 9261-9275, 10.5194/acp-17-9261-2017, 2017a.
- 475 Liu, M. X., Song, Y., Zhou, T., Xu, Z. Y., Yan, C. Q., Zheng, M., Wu, Z. J., Hu, M., Wu, 476 Y. S., and Zhu, T.: Fine particle pH during severe haze episodes in northern China, 477 Geophys. Res. Lett., 44, 5213-5221, 10.1002/2017gl073210, 2017b.
- Monteny, G. J., and Erisman, J. W.: Ammonia emission from dairy cow buildings: A review of measurement techniques, influencing factors and possibilities for reduction, 480 Neth J Agr Sci, 46, 225-247, 1998.
- 481 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: 482 An Asian emission inventory of anthropogenic emission sources for the period 1980-483 2020, Atmos. Chem. Phys., 7, 4419-4444, DOI 10.5194/acp-7-4419-2007, 2007.
 - Pandis, S. N., and Seinfeld, J. H.: On the Interaction between Equilibration Processes and Wet or Dry Deposition, Atmos Environ a-Gen, 24, 2313-2327, 10.1016/0960-1686(90)90325-H, 1990.
- 487 Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia 488 emissions in the United States, European Union, and China derived by high-489 resolution inversion of ammonium wet deposition data: Interpretation with a new 490 agricultural emissions inventory (MASAGE NH₃), J. Geophys. Res.-Atmos., 119, 491 4343-4364, 10.1002/2013jd021130, 2014.
- 492 Petersen, S. O., Dorno, N., Lindholst, S., Feilberg, A., and Eriksen, J.: Emissions of CH₄, 493 N₂O, NH₃ and odorants from pig slurry during winter and summer storage, Nutr Cycl 494 Agroecosys, 95, 103-113, 10.1007/s10705-013-9551-3, 2013.
- 495 Pinder, R. W., Adams, P. J., and Pandis, S. N.: Ammonia emission controls as a cost-496 effective strategy for reducing atmospheric particulate matter in the eastern United 497 States, Environ. Sci. Technol., 41, 380-386, 10.1021/es060379a, 2007.

- Pinder, R. W., Gilliland, A. B., and Dennis, R. L.: Environmental impact of atmospheric NH₃ emissions under present and future conditions in the eastern United States, Geophys. Res. Lett., 35, Artn L1280810.1029/2008gl033732, 2008.
- 501 Plautz, J.: Piercing the Haze, Science, 361, 1060-1063, 10.1126/science.361.6407.1060, 502 2018.
- Pozzer, A., Tsimpidi, A. P., Karydis, V. A., de Meij, A., and Lelieveld, J.: Impact of agricultural emission reductions on fine-particulate matter and public health, Atmos. Chem. Phys., 17, 12813-12826, 10.5194/acp-17-12813-2017, 2017.
- Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 2nd ed., Wiley, New York, xxviii, 1202 p. pp., 2006.
- Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont,
 Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An
 inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J.
 Geophys. Res.-Atmos., 108, Artn 880910.1029/2002jd003093, 2003.
- Tan, T. Y., Hu, M., Li, M. R., Guo, Q. F., Wu, Y. S., Fang, X., Gu, F. T., Wang, Y., and Wu, Z. J.: New insight into PM_{2.5} pollution patterns in Beijing based on one-year measurement of chemical compositions, Sci. Total Environ., 621, 734-743, 10.1016/j.scitotenv.2017.11.208, 2018.

516

517

518

- Tsimpidi, A. P., Karydis, V. A., and Pandis, S. N.: Response of inorganic fine particulate matter to emission changes of sulfur dioxide and ammonia: The eastern United States as a case study, J Air Waste Manage, 57, 1489-1498, 10.3155/1047-3289.57.12.1489, 2007.
- Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., and Coheur, P. F.: Global distributions, time series and error characterization of atmospheric ammonia (NH₃) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905-2922, 10.5194/acp-14-2905-2014, 2014.
- Vayenas, D. V., Takahama, S., Davidson, C. I., and Pandis, S. N.: Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM_{2.5} control strategies, J. Geophys. Res.-Atmos., 110, Artn D07s1410.1029/2004jd005038, 2005.
- Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang, Q.: The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications, Atmos. Chem. Phys., 14, 3151-3173, 10.5194/acp-14-3151-2014, 2014.
- Wang, Y., Dong, H. M., Zhu, Z. P., Gerber, P. J., Xin, H. W., Smith, P., Opio, C., Steinfeld,
 H., and Chadwick, D.: Mitigating Greenhouse Gas and Ammonia Emissions from
 Swine Manure Management: A System Analysis, Environ. Sci. Technol., 51, 4503 4511, 2017.
- Wu, Y. Y., Gu, B. J., Erisman, J. W., Reis, S., Fang, Y. Y., Lu, X. H., and Zhang, X. M.:
 PM_{2.5} pollution is substantially affected by ammonia emissions in China, Environ.
 Pollut., 218, 86-94, 10.1016/j.envpol.2016.08.027, 2016.
- Zaveri, R. A., Easter, R. C., and Peters, L. K.: A computationally efficient multicomponent equilibrium solver for aerosols (MESA), J. Geophys. Res.-Atmos., 110, 10.1029/2004jd005618, 2005.
- Zhang, L., Chen, Y. F., Zhao, Y. H., Henze, D. K., Zhu, L. Y., Song, Y., Paulot, F., Liu, X. J., Pan, Y. P., Lin, Y., and Huang, B. X.: Agricultural ammonia emissions in China:

- reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339-355, 10.5194/acp-18-339-2018, 2018a.
- Zhang, R., Sun, X. S., Shi, A. J., Huang, Y. H., Yan, J., Nie, T., Yan, X., and Li, X.:
 Secondary inorganic aerosols formation during haze episodes at an urban site in
 Beijing, China, Atmos. Environ., 177, 275-282, 10.1016/j.atmosenv.2017.12.031,
 2018b.
- Zhang, X. Y., Wang, J. Z., Wang, Y. Q., Liu, H. L., Sun, J. Y., and Zhang, Y. M.: Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors, Atmos. Chem. Phys., 15, 12935-12952, 10.5194/acp-15-12935-2015, 2015.
- Zhao, B., Wu, W. J., Wang, S. X., Xing, J., Chang, X., Liou, K. N., Jiang, J. H., Gu, Y.,
 Jang, C., Fu, J. S., Zhu, Y., Wang, J. D., Lin, Y., and Hao, J. M.: A modeling study
 of the nonlinear response of fine particles to air pollutant emissions in the BeijingTianjin-Hebei region, Atmos. Chem. Phys., 17, 12031-12050, 10.5194/acp-1712031-2017, 2017.
- Zheng, G. J., Duan, F. K., Ma, Y. L., Zhang, Q., Huang, T., Kimoto, T., Cheng, Y. F., Su,
 H., and He, K. B.: Episode-Based Evolution Pattern Analysis of Haze Pollution:
 Method Development and Results from Beijing, China, Environ. Sci. Technol., 50,
 4632-4641, 10.1021/acs.est.5b05593, 2016.