1	In-cloud formation of secondary species in iron-containing
2	particles
3	Qinhao Lin ¹ , Xinhui Bi ¹ , Guohua Zhang ¹ , Yuxiang Yang ^{1,2} , Long Peng ^{1,2} , Xiufeng
4	Lian ^{1,2} , Yuzhen Fu ^{1,2} , Mei Li ³ , Duohong Chen ⁴ , Mark Miller ⁵ , Ji Ou ⁶ , Mingjin Tang ¹ ,
5	Xinming Wang ¹ , Ping'an Peng ¹ , Guoying Sheng ¹ , and Zhen Zhou ³
6	
7	¹ State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
8	Environmental Resources Utilization and Protection, Guangzhou Institute of
9	Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
10	² University of Chinese Academy of Sciences, Beijing 100039, PR China
11	³ Institute of Mass Spectrometer and Atmospheric Environment, Jinan University,
12	Guangzhou 510632, PR China
13	⁴ State Environmental Protection Key Laboratory of Regional Air Quality Monitoring,
14	Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China
15	⁵ Department of Environmental Sciences, Rutgers, the State University of New Jersey,
16	New Brunswick, NJ 08901, USA
17	⁶ Shaoguan Environmental Monitoring Center, Shaoguan 512026, PR China
18	
19	*Correspondence to: Xinhui Bi (bixh@gig.ac.cn)
20	
21 22	
23	

25

Figure S1. Hourly mean in temperature and relative humidity during the study period. The black lines represent the period that GCVI and PM_{2.5} inlets alternately sample with an interval of one hour. The PM_{2.5} inlet (gray lines) was only used to correct interstitial particles during cloud processing.

³³ Figure S2. The number fraction of the Fe-dust cloud residues and cloud-

34 free particles in diameter < 1 μ m and >1 μ m.

Figure S3. Number fractions of chloride, nitrate, sulfate, and oxalate internally mixed with the Ca-containing particles in the four Fe-containing cloud residual types.

Figure S4. Number fraction of oxalate with and without its precursor in the
Fe-containing cloud residues, interstitial particles, and cloud-free particles.

Figure S5. The comparison for oxalate peak area in with and withoutoxalate precursors.

Figure S6. Number fraction of oxalate in the non-Fe cloud residues,
interstitial particles, and cloud-free particles.

- 52 Figure S7. Peak area ratio of oxalate to its precursors with sulfate, nitrate,
- chloride, ammonium, and Ca in the Fe-containing cloud residues.