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Dear Prof. Maria Kanakidou, 

 

Thank you very much for your handling our submission and the evaluation and helpful comments to 

improve the quality of our manuscript. 

 

We have revised the manuscript regarding the latest comments. Details of the point-by-point responses 

to the comments and the corresponding revisions in the manuscript are described in the responding letter. 

The manuscript with the corresponding corrections marked yellow is attached to the end of this cover 

letter. 

 

Sincerely,  

 

Jinhui Shi     

College of Environmental Science and Engineering 

Ocean University of China 

Qingdao, 266100 

P.R. China 

 

 

 

Responses to Reviewer’s Comments 

 

Co-Editor Decision: Publish subject to minor revisions (review by editor) (27 Dec 2018) by Maria 

Kanakidou 

Comments to the Author: 

Thank you very much for the thorough revision of your manuscript. There are some additional 

corrections needed before the manuscript can be accepted for publication in ACP. 

 

1- First of all the most appropriate naming for ‘Panth’ is ‘Pnondust’ since what is calculated by 

equation (2) is the residual P once the P from dust is removed based on Al concentrations in the 

aerosols. In addition, there are cases where aerosols of biological origin (page 11, line 4) or even one 

could claim sea-salt aerosol that contains P and Cl- (for instance how the points with high Cl-to-TP 

ratio in Figure 6c are explained?) 

 

Response: Panth is revised to Pnd (Pnon-dust) as suggested.  

 

In the revision, we added “Kanakidou et al (2012) provided an organic phosphorus budget showing a 

relatively large marine source (almost 80% with large uncertainties in magnitude). The organic P in the 

two samples with high Cl-/TP molar ratio might be, at least partly, caused by the contribution from marine 

biological sources besides terrestrial biological sources.” (Page 11, Lines 7-10). 

 

2- Concerning the DOP from soil dust (page 7, 2nd paragraph and abstract line 28):  

What the authors show with their data is that high DOP values are associated with the presence of 

crustal elements in the aerosol; the correlation with crustal elements does not necessarily mean that soil 
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dust is a source of DOP. The coexistence of bioaerosols with dust under intensive dust events has been 

observed in the Mediterranean and in the Atlantic (see for instance Griffin et al Atmos. Environ. 2007 

and discussion in Kanakidou et al. Environmental Research Letters, 2018).  

Therefore I would argue that the observed correlation between DOP and crustal elements could 

indicate the co-existence of bioaerosols rich in organic phosphorus and of dust with crustal material. 

 

Also Kanakidou et al (2012) provided an organic phosphorus budget showing a relatively large marine 

source (almost 80%; but very uncertain in magnitude) and for the continental sources contributions of 

4.5% (soil dust), 9% (bioaerosols) and 7% (fossil fuel and biomass burning). 

 

Furthermore, Myriokefalitakis et al (2016) reported that, at the global scale, approximately half of 

atmospheric TDP (and not DOP as stated in the manuscript page7 line 15) is from primary biological 

aerosol particles. Myriokefalitakis et al (2016) also provided budgets (in their supplementary material) 

that show contributions of various sources to the total source of TDP (referred as DP in their manuscript) : 

about 39% from soil dust, 3.5% from biomass burning, 8% from anthropogenic sources and 45% from 

bioaerosols. Note that these numbers are associated with large uncertainty. 

 

Please correct the numbers and the discussion accordingly. 

 

Griffin DW, Kubilay N, Kocak M, Gray M A, Borden T C and Shinn E A 2007 Airborne desert dust and 

aeromicrobiology over the Turkish Mediterranean coastline Atmos. Environ. 41, 4050–62 

 

Kanakidou M., Myriokefalitakis S., Tsigaridis K.: Aerosols in atmospheric chemistry and 

biogeochemical cycles of nutrients, Environ. Res. Lett. 13 063004, 2018. https://doi.org/10.1088/1748-

9326/aabcdb  

 

Response: We thank the reviewer for the careful comments, and we totally agree with these comments. 

In the revision, we added the sentence “In addition, bioaerosols were enriched in long-range transported 

dust plumes in Beijing and the Northwestern Pacific for Asian dust and in the Mediterranean and the 

Atlantic for African dust (Yuan et al., 2017; Hara and Zhang, 2012; Griffin et al., 2007; Kanakidou et al., 

2018). Therefore, the observed correlation between DOP and crustal elements could be the consequence 

of the presence of bioaerosols in dust plumes.” in the revision. The references of Griffin et al. (2007), 

Kanakidou et al. (2018) for African dust, and also Yuan et al. (2017) and Hara and Zhang (2012) for 

Asian dust were added (Page 7, Lines 17-20).  

Yuan, H., Zhang, D., Shi, Y., Li, B., Yang, J., Yu, X., Chen, N., and Kakikawa M.: Cell concentration, 

viability and culture composition of airborne bacteria during a dust event in Beijing, J. Environ. Sci., 55, 

33-40, 2017. 

Hara, K., and Zhang, D.: Bacterial abundance and viability in long-range transported dust, Atmos. 

Environ., 47, 20-25, 2012. 

 

The reference of Kanakidou et al (2012) providing the organic phosphorus budget is cited in the revision 

(Page 11, Lines 7-8). 

 

The sentence “Myriokefalitakis et al. (2016) reported that, at the global scale, approximately 50 % of 

https://doi.org/10.1088/1748-9326/aabcdb
https://doi.org/10.1088/1748-9326/aabcdb
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DOP is from primary biological aerosol particles, ……” was not accurately described in the original 

manuscript. We intended quoting the data in Table 3 of the reference (Myriokefalitakis et al., 2016), 

which is “Secondary DP sources (in Tg-P yr-1) due to OP ageing contained in biomass burning, 

anthropogenic combustion, sea spray and dust as well as due to dust (apatite) dissolution via the acid-

solubilization mechanism”. In the revision, we modified this sentence into “Myriokefalitakis et al. (2016) 

reported that, on the global scale, approximately 50 % of secondary DOP was attributed to the ageing of 

biological P primarily contained in aerosols, and the contributions of soil dust, anthropogenic combustion 

and biomass burning ageing to secondary DOP were approximately 25 %, 15.6 % and 9.4 %, respectively.” 

Please see Page 7, Lines 14-17. 

 

3- Page 2, line 31: remove ‘oceanic’ this range refers to the global scale. 

 

Response: Removed in the revision. 

 

4- Page 2, line 32: add Myriokefalitakis et al., 2016 reference there also. 

 

Response: Added the reference as suggested. 

 

5- Page 3, line 11: Myriokefalitakis et al. (2016) estimated that acid-driven solubilisation flux of P from 

mineral dust contributed about one third to the total TDP source. 

 

Response: In the revision, we added “Myriokefalitakis et al. (2016) estimated that acid-driven 

solubilization flux of P from mineral dust contributed about one third to the global TDP atmospheric 

source.” (Page 3, lines 11-12). 

 

6- Page 5, lines 24-25: ‘ which comprises 8% mineral aerosol mass’ do you mean : ‘ in which Al 

comprises 8% of the mineral aerosol mass’ ? please check phrasing. 

 

Response: Yes. The description was revised to “……, in which Al comprises 8% of the mineral aerosol 

mass (Taylor, 1964).” (page 5, lines 24-25). 

 

7- Page 7, line 26: add also reference by Nenes et al., 2011 

 

Response: We added Nenes et al (2011) in the revision. 

 

 

We express again our appreciation to the reviewers and the co-editor for their comments and suggestions, 

which have helped us to greatly increase the readership of this paper. In the Acknowledgments, “We 

express the appreciations to the two anonymous reviews and the editor for their helpful comments and 

suggestions, for which the readership was largely increased compared to the initial submission.” 
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Abstract. The continent-to-ocean supply of phosphorus (P) in the soluble state, recognized as bioavailable P, via the 

atmosphere is hypothesized to be crucial to the biological cycle in offshore surface seawater. To investigate the solubility of P 

in aerosol particles moving towards the Northwestern Pacific from the Asian continent, we measured the total P (TP), total 15 

dissolved P (TDP) and dissolved inorganic P (DIP) in aerosols at Qingdao (36°06′ N, 120°33′ E), a coastal city in eastern 

China. The samples were collected in December 2012 and January 2013 (winter) and in March and April 2013 (spring), when 

the middle latitude westerly wind was prevailing. On average, P solubility, i.e., the ratio of TDP to TP, was 32.9  16.7 % in 

winter and 21.3  9.8 % in spring, and the TP concentrations in the two seasons were similar. This seasonal solubility difference 

is attributed to the aerosol sources containing the P. Particles in winter were predominantly anthropogenic particles from local 20 

and regional areas, and particles in spring were significantly influenced by natural dust from the arid and semiarid areas in the 

inland part of the continent. Moreover, acidification processes associated with the formation of sulfate and nitrate in the winter 

samples enhanced P solubility, suggesting that the P in anthropogenic particles was more susceptible to the production of 

acidic species than that in natural dust particles. There was a strong positive correlation between P solubility and relative 

humidity (RH). P solubility was usually less than 30 % when RH was below 60 %, even when the content of acidic species 25 

and/or anthropogenic particles in the aerosols was high, suggesting humidity had a critical role in the production of TDP. In 

addition, the proportion of DIP in TDP was high when the particles were predominantly anthropogenic, and the proportion of 

dissolved organic P (DOP; quantified as TDP-DIP) in TDP was high when the particles were dominated by natural dust. These 

results indicate that, as the contents of bioavailable P in Asian continent outflows are closely dependent on the aerosol particle 

origins, atmospheric acidic processes could convert P into a bioavailable state under certain meteorological conditions. 30 

Therefore, the recent severe air pollution over East Asia might have enhanced the input of bioavailable P to downwind marine 

areas. 



2 

 

1 Introduction 

Phosphorus (P) is one of the limiting nutrients for primary production in marine ecosystems, affecting marine phytoplankton 

growth, community structure composition and nitrogen fixation (Elser et al., 2007; Paytan and McLaughlin, 2007; Peñuelas et 

al., 2013). Atmospheric P deposition likely has an important contribution to phosphate and induces the growth of 

phytoplankton in surface seawater outside estuary areas, especially in offshore areas and regions where P limits phytoplankton 5 

growth (Karl and Tien, 1997; Paytan and McLaughlin, 2007; Mackey et al., 2012a). Recent studies have found that the 

atmospheric input of anthropogenic N to the North Pacific and its marginal sea is increasing (Kim et al., 2013; Kim et al., 

2014), while the P concentration in the surface seawater has been declining for nearly 40 years (Kodama et al., 2016), indicating 

that the nutrient structure of marine ecosystems is changing to P limitation. 

Atmospheric P is derived from natural and anthropogenic sources, including mineral dust, sea salt, primary biogenic sources, 10 

volcanic eruptions, biomass burning, fossil fuel combustion, and agricultural fertilizers (Mahowald et al., 2008; Anderson et 

al., 2010; Tipping et al., 2014; Weinberger et al., 2016). It has been widely recognized that mineral dust is the main source of 

atmospheric P. Based on a combination of model simulations and field observations, Mahowald et al. (2008) reported that 

mineral aerosols contributed to approximately 82 % of atmospheric P at a global scale, while anthropogenic P contributed to 

approximately 5 % of atmospheric P globally. Recent studies have highlighted the contributions of anthropogenic sources. 15 

Weinberger et al. (2016) suggested that coal combustion is a substantial source of atmospheric P and that the relative content 

of P in coal fly ashes could be as high as 3500 μg g-1. Srinivas and Sarin (2015) studied the sources of P in the atmospheric 

aerosols of Bengal Bay in the northern Indian Ocean and found that 75 % of aerosol P was from agricultural fertilizers and 

biomass burning. A recent estimation by Wang et al. (2015) showed that combustion-related emissions could contribute more 

than 50 % of the global atmospheric P. These results suggest that anthropogenic emissions of P have likely increased 20 

considerably in recent years and that the states of P in atmospheric aerosols need to be carefully quantified. 

P solubility, i.e., the ratio of TDP to TP, is usually used to characterize the bioavailability of atmospheric P (Anderson et al., 

2010) because the soluble fraction of P in aerosols is believed to be the form that can be directly assimilated by marine 

phytoplankton (Mackey et al., 2012b). Unfortunately, observational data on the solubility of atmospheric P are very limited, 

and the available data show a wide range of P solubility, ranging from 2 % to 100 % in different sea areas (e.g., Baker et al., 25 

2006a, b; Mahowald et al., 2008). 

Dissolved P in aerosols includes dissolved inorganic P (DIP) and dissolved organic P (DOP). Only DIP has been frequently 

analyzed by previous studies of P solubility in aerosols (Srinivas and Sarin, 2015) because DIP is considered directly available 

to marine phytoplankton and the predominant component of total dissolved P (Mahowald et al., 2008). However, some studies 

have found that DOP can be converted to bioavailable P by enzymatic reactions (Mackey et al., 2012a) and accounts for 20-30 

83 % of TDP in global atmospheric depositions (Kanakidou et al., 2012), although the contribution of DOP to TDP is 

sometimes very low (Izquierdo et al., 2012; Myriokefalitakis et al., 2016). 



3 

 

P solubility in aerosols from different sources varies greatly and is generally low in particles from mineral sources and high 

in particles from anthropogenic sources. In the Mediterranean atmosphere, P solubility ranges from 2-20 % with an average of 

10 % in aerosols affected by Saharan dust, whereas P solubility ranges from 30-79 % with an average of 50 % in aerosols with 

anthropogenic sources (Herut et al., 2002). Similar results were also observed in the Atlantic atmosphere, where the P solubility 

in aerosols affected by Saharan dust is approximately 8 % and can be up to 87 % in aerosols originating from terrestrial air 5 

masses in South America (Baker et al., 2006a; 2006b). In the South China Sea, P solubility in aerosols related to biomass 

combustion ranges from 50 ± 14 % (Hsu et al., 2014). These results imply that an increase in the relative amounts of aerosols 

from anthropogenic sources might lead to the increase of bioavailable P. In addition, atmospheric acidic processes associated 

with anthropogenic pollutants may transform unreactive P to bioavailable P. Recent model studies predict that acid dissolution 

process increases the fraction of bioavailable P from ~10% globally at labile pools to 42% in the Pacific Ocean, with the mean 10 

value of 22% in global marine atmosphere (Herbert et al., 2018). Myriokefalitakis et al. (2016) estimated that acid-driven 

solubilization flux of P from mineral dust contributed about one third to the global TDP atmospheric source. 

The Yellow Sea is a marginal sea of the Pacific Ocean that is frequently affected by both Asian dust from arid and semiarid 

areas in inland regions of the Asian continent and anthropogenic pollutants from urban agglomerations in northern China (e.g., 

Zhang and Gao, 2007; Zhang et al., 2018; Shi, et al., 2012; Wang, et al., 2013). For example, a dust storm that occurred in 15 

May 2017 moved across the North Pacific within a week and deposited 5.3 Tg of aeolian dust across the North Pacific Ocean 

(Zhang et al., 2018). In recent years, anthropogenic emissions have rapidly increased with the acceleration of industrialization 

and urbanization over North China. Prevailing westerly winds in the Northern Hemisphere middle latitudes can carry 

anthropogenic aerosols travelling over the North Pacific (Lyu et al., 2017; Joos et al., 2017). Over the last 30 years, the structure 

of nutrients in the Yellow Sea water has exhibited an alternation from N limitation to potential P limitation (Wei et al., 2015). 20 

However, there are no data on P solubility in the atmospheric aerosols outflowing from the Asian continent towards the Yellow 

Sea and the northern Pacific, which hinders further understanding of the influence of P deposition on the biological cycles in 

the surface seawater of those ocean areas. 

In this study, we investigated TP and TDP, including DIP and DOP, in aerosols collected at Qingdao. The city of Qingdao 

is located in the coastal area of the Yellow Sea. In winter and spring, when westerly winds prevail, aerosol particles originating 25 

from the Asian continent, including natural dust and anthropogenic particles, are frequently blown from the continent and enter 

the marine air over the Yellow Sea and subsequently over the northern Pacific (Zhang et al., 2005; Joos et al., 2017; Qi et al., 

2018; Zhang et al., 2018). The objectives of this paper are to characterize (1) the concentrations of TP, TDP, DIP and DOP in 

aerosols in the coastal areas of the Yellow Sea, (2) the relative contribution of DOP and DIP to TDP, (3) P solubility in aerosols 

in the Asian continental outflow, and (4) the influences of dust loads, particle sources, atmospheric acidification and ambient 30 

relatively humidity on P solubility. 
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2 Methods 

2.1 Sample collection 

Aerosol samples of total suspended particulates (TSP) were collected between December 1, 2012 and January 31, 2013 (winter) 

and between March 1 and April 30, 2013 (spring). The aerosol sampler used for collection was a high-volume TSP sampler 

(KC-1000, Qingdao Laoshan Elec. Inc., China) set up on the roof of a building at the Ocean University of China in Qingdao 5 

(36°06′ N, 120°33′ E). The roof was approximately 65 m above sea level, and the building was < 1000 m from the coast of the 

Yellow Sea. In total, 112 samples were collected, of which sixty were collected in the winter period and fifty-two were 

collected in the spring period. Each aerosol sample was collected onto an acid-washed fiber filter (Whatman-41, 20.3 cm × 

25.4 cm) at a flow rate of 1.05 m3 min-1 for 24 h, and the total sampling air was approximately 1500 m3. Operational filter 

blanks were also collected. All samples were sealed in polyethylene bags and stored in a freezer at -20 ℃ until subsequent 10 

analyses.  

During the sampling periods, the particle concentrations in six size ranges were measured using a laser optical particle 

counter (OPC, ARTI Model HHPC-6). The OPC had 6 channels (i.e., 0.3, 0.5, 0.7, 1.0, 2.0 and 5.0 μm) and was run at a flow 

rate of 2.83 L·min-1 with a 15 min time resolution. Meteorological conditions, including temperature, relative humidity, wind 

speed and direction, and visibility were obtained from the Micaps meteorology data provided by the China Meteorological 15 

Administration. The 24 h average values of these variables during the sampling periods are illustrated in Fig. S1. 

2.2 Sample analysis 

The sample filters and blank filters were subdivided into portions using an acid-cleaned ceramic knife under a class-100 

laminar flow hood. For the analysis of TP, a piece of the filter was digested with 4 mL of 70 % HNO3 and 1 mL of 49 % HF 

(all ultra-pure grades) in a high-pressure Teflon jar at 180 ℃ for 48 h. Then, the digested sample solution was heated on an 20 

electrothermal board at 160 ℃ until the acid fumes dissipated. After being cooled to room temperature, the residue was 

redissolved, transferred to a colorimetric tube, and made up to a volume of 25 mL for determination of TP. For the analysis of 

soluble P, another piece of the sample filter was ultrasonically extracted with 15 mL Milli-Q water (≥ 18.2 MΩ·cm) for 20 

min at 0 ℃. The extract was then filtered through a microporous membrane (pore size of 0.45 μm). The extraction was repeated 

once, and then the filter was rinsed three times with Milli-Q water. All the extractive solutions were combined and finally 25 

made up to a volume of 50 mL. The filtered extract was divided into two equal parts: one directly for the determination of DIP 

and the other autoclaved with 2.5 mL alkaline potassium persulfate solution (0.375 mol L-1 NaOH, 0.185 mol L-1 K2S2O8 and 

0.484 mol L-1 H3BO3 mixed solution) at 120 ℃ for 30 min for the determination of TDP. DOP was obtained by the difference 

between TDP and DIP.  

Phosphorus in the prepared sample solutions was measured by the molybdenum blue technique with colorimetric detection. 30 

A color reagent comprising a mixture of sulfuric acid, ammonium molybdate, ascorbic acid and antimony potassium tartrate 

was added into the solutions, and P in the solutions was quantified using a UV spectrophotometer (T-6 new century, Beijing 
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General analysis) with a 5-cm quartz cell at 880 nm once the color was developed. The detection limit was 0.07 μmol L-1 

(approximately 0.6 ng m-3), defined as three times the standard deviation of the blanks. The values for the blanks (i.e., blank 

filters and reagents) were below the detection limit. The relative standard deviations of replicate analysis of the sample extracts 

were within 3 %. The accuracy of the TP analysis procedure used in this study was checked using a soil sample standard 

reference material as a substitute (GBW07408, provided by the Geophysical and Geochemical Survey Institute, China). 5 

GBW07408 was included in all analytical runs with the same treatment as sample filters, and the P recoveries were 95-105 % 

with an average of 98 % (n = 10). 

Total and soluble trace elements, including Al, Fe, Mn, Ba, Ca, Zn, Ni, As, Cd, Pb and K, in samples were analyzed using 

an Agilent 7500c octopole-based inductively coupled plasma mass spectrometer (ICP-MS). Water-soluble inorganic ions, 

including Na+, K+, Mg2+, NH4
+, Ca2+, Cl-, NO2

-, NO3
- and SO4

2-, were analyzed using a Dionex ICS-3000 ion chromatograph. 10 

The full details of the sample extraction and analytical procedures for aerosol trace element and ion analyses are described in 

Shi et al. (2012, 2013). 

2.3 Aerosol-specific surface area calculation 

The specific surface areas of aerosol particles were calculated to investigate the possible dependence of P solubility on 

chemical conversions occurring in the aerosol surface layer. The specific surface area of an aerosol sample was defined as the 15 

ratio of the surface area of the particles to the particle mass loading. The aerosol surface area was estimated from the size-

segregated number concentrations of aerosol particles measured by the optical particle counter in the sample collection period. 

We made a simplistic assumption of spherical particles, and hence: 

           (1) 

where Si is the total surface area of the particles in the ith aerosol sample, Ci,j is the average number concentration of the 20 

corresponding aerosol sample in the jth size range, and dj is the diameter of the particulates in the jth size range. Although the 

smallest detectable diameter of the particle counter was 0.3 m, we consider the estimated specific areas to represent the areas 

associated with P in the samples because more than 90% of TP is in the >0.32 m particles (Vicars et al., 2010). The particle 

mass loading was estimated from Al contents by assuming that all aerosol Al was derived from mineral dust, in which Al 

comprises 8% of the mineral aerosol mass (Taylor, 1964).  25 

3 Results and Discussion 

3.1 P concentration 

The concentration of TP ranged from 24.7 to 392.6 ng m-3, and the mean TP concentration was 125.5 ± 59.8 ng m-3 (Fig. 1, 

Table 1). The highest and second highest values were observed in the samples on March 9 and April 8, when dusty weather 
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occurred and the concentration of both total Fe and total Al, the representative elements of mineral dust, exceeded 10000 ng 

m-3. The TDP concentration ranged from 5.1 to 114.6 ng m-3, and the mean TDP concentration was 32.4 ± 23.2 ng m-3. Unlike 

TP, the highest concentration of TDP did not appear in the two dust samples and was rather measured in the samples collected 

during the haze and foggy days, mostly in January. 

The DIP concentration in the TDP ranged from 1.5 to 102.6 ng m-3, with an average concentration of 21.8 ng m-3, accounting 5 

for 8.5-98.7 % of the TDP (Fig. 2). The DOP concentration in the TDP ranged from below the detection limit to 41.0 ng m-3, 

with an average concentration of 10.7 ng m-3, accounting for 1.3-91.5 % of the TDP.  DIP and DOP accounted, on average, 

for approximately 60 % and 40% of the TDP, respectively, indicating an appreciable contribution of DOP to the TDP. 

Table 1 also shows the results of previous studies on coastal and marine aerosol P concentrations. The TP concentration we 

observed in this study was lower than that observed in Singapore in spring (He et al., 2011) but slightly higher than the values 10 

obtained at Huaniao Island in the East China Sea (Guo et al., 2014) and higher than those observed at coastal sites of Spain 

and USA (Izquierdo et al., 2012; Zamora et al., 2013). The TP concentration at Qingdao was approximately one order of 

magnitude higher than that in the marine atmosphere (Baker et al., 2006b; Hsu et al., 2014; Sun et al., 2015). The DIP 

concentration in this study was obviously higher than those in the South China Sea, the Gulf of Aqaba and Miami, USA (Hsu 

et al., 2014; Chen et al., 2007; Zamora et al., 2013) but was lower than the values reported in Singapore and the Indian Ocean 15 

(He et al., 2011; Srinivas and Sarin, 2012). In fact, DOP was not measured in those studies (Table 1). Chen et al. (2007) studied 

DOP in aerosols over the Gulf of Aqaba and reported a DOP concentration and contribution of DOP to TDP that were similar 

to the results of this study. 

There was a difference in the concentrations of total and dissolved P between the winter and spring (Fig. 1, Fig. 2). The 

average TP concentration in the spring was 128.6 ± 73.2 ng m-3, slightly higher than that in the winter, i.e., 122.9 ± 45.6 ng m-20 

3. However, there was no statistically significant difference between the TP values of the two seasons (p > 0.05). Guo et al. 

(2014) also found that the atmospheric TP concentration in spring was higher than that in other seasons at Huaniao Island in 

the East China Sea. In contrast, over the Gulf of Aqaba, a higher aerosol TP concentration occurred in winter than in other 

seasons, although there were no statistically significant seasonal variations in TP (Anderson et al., 2010). 

In contrast to the small seasonal difference in TP, TDP was higher in winter, with an average concentration of 40.5 ± 27.7 25 

ng m-3, and lower in spring, with an average concentration of 23.0 ± 11.0 ng m-3. In TDP, the DIP in winter averaged 31.9 ± 

23.4 ng m-3, significantly higher than that in spring, which had an average of 10.0 ± 10.2 ng m-3; in contrast, DOP in spring, 

with an average concentration of 13.0 ± 7.5 ng m-3, was higher than that in winter, with an average concentration of 8.6 ± 7.4 

ng m-3. Furthermore, the ratio of DOP to TDP in spring was approximately 61 %, which was significantly higher than that in 

winter, i.e., 23 %. This result was probably caused by the release of primary biological particles and agriculture activities in 30 

spring (Mahowald et al., 2008; Kanakidou et al., 2012; Paytan and McLaughlin, 2007). Chen et al. (2006) also reported that, 

among all seasons, aerosols in spring had the largest percentage of organic P loads, a result potentially associated with 

terrestrial and marine biological activity. 
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TP was closely correlated with Al, Fe, Ca, Mn and Ba (Table S1). This is consistent with the fact that mineral particles from 

surface soils are the main origin of P. TP was also  correlated with heavy metals of Cd, As, Ni, Zn and Pb,  and with K. These 

results again support that the TP was derived from natural mineral dust, anthropogenic particles, biogenic particles, and 

emissions from biomass burning. Moreover, the correlation coefficients between TP and crustal elements (Al, Fe, Ca, Mn and 

Ba) were larger in spring than in winter, while the close correlation between the TP and anthropogenic elements was observed 5 

in winter. This result suggests that a large proportion of TP in the winter was from anthropogenic sources. In contrast, the TP 

in the spring aerosols was substantially from crustal origins. 

The DIP fraction in the TP also showed a significant correlation with Cd, As, Ni, Zn, Pb, K, non-sea salt (nss)-SO4
2- and 

nss-K+ but had a miniscule correlation with Al, Fe, Ca and Ba (Table S1). This suggests that the DIP mainly originated from 

anthropogenic sources (particularly fossil fuel combustion and biomass burning) and biogenic sources (Weinberger et al., 2016; 10 

Zamora et al., 2013). Aerosol DOP is considered to be mainly derived from primary biological particles and biomass burning 

(Chen et al., 2006), which is supported by the correlation between DOP and K and nss-K+ in the samples. We found that the 

DOP had a significant correlation with crustal source indicators (Al, Fe, Mn, Ba) and anthropogenic source indicators (Cd, As, 

Zn, Pb). Therefore, soil dust and anthropogenic emissions are potential sources of atmospheric DOP. Myriokefalitakis et al. 

(2016) reported that, on the global scale, approximately 50 % of secondary DOP was attributed to the ageing of biological P 15 

primarily contained in aerosols, and the contributions of soil dust, anthropogenic combustion and biomass burning ageing to 

secondary DOP were approximately 25 %, 15.6 % and 9.4 %, respectively. In addition, bioaerosols were enriched in long-

range transported dust plumes in Beijing and the Northwestern Pacific for Asian dust and in the Mediterranean and the Atlantic 

for African dust (Yuan et al., 2017; Hara and Zhang, 2012; Griffin et al., 2007; Kanakidou et al., 2018). Therefore, the observed 

correlation between DOP and crustal elements could be the consequence of the presence of bioaerosols in dust plumes. 20 

3.2 P Solubility  

P solubility ranged from 7.3 % to 69.8 % (Fig. 1). Two low solubility values occurred in the dust samples due to the high 

concentration of TP and low concentration of TDP. High values occurred in the haze and foggy day samples, mostly in January. 

The average P solubility was 27.5 %, which is in agreement with the values reported at various coastal sites (Table 1). Anderson 

et al. (2010) reported that 15-30 % of P in Gulf of Aqaba aerosols was soluble. Guo et al. (2014) reported that the solubility of 25 

P was 0.6-63 % in the aerosols collected at the Huaniao Island of the East China Sea, and the median value was 21 % in spring. 

He et al. (2011) studied the atmospheric dry and wet deposition of P in Singapore and reported that DIP comprised 38 % of 

TP in aerosols. In the dust samples of this study, however, the P solubility was approximately 8 %, which was close to the 

value of 10 % measured in dust aerosols collected at the Mediterranean coast (Carbo et al., 2005; Herut et al., 2002; Nenes et 

al., 2011) but was considerably lower than the value of 20 % measured in Asian dust at the coastal site of the East China Sea 30 

and in African dust in the western subtropical North Atlantic (Guo et al., 2014; Zamora et al., 2013). There are few available 

data for P solubility in the marine atmosphere (Hsu et al., 2014; Baker et al., 2006a, b), and the limited data show that the 

solubility of P in marine aerosols is generally higher than that in coastal aerosols (Table 1). 
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The ratio of DIP/TP has frequently been used as a proxy for P solubility in previous studies with no consideration of the 

contribution of DOP. The fraction of DOP in TDP was approximately 40 % in this study (Fig. 2) and 31 % in the aerosols at 

the Gulf of Aqaba (Chen et al., 2007). Our DOP results indicate that using the DIP/TP ratio as a proxy for the solubility of P 

could largely underestimate the real P solubility in aerosols by approximately 30-40 %. 

Seasonally, the P solubility in winter was 32.9 ± 16.7 %, which was much higher than the value of 21.3 ± 9.8 % for P 5 

solubility in spring (Fig. 1, Table 1). In winter, the P solubility was negatively correlated with Al (Table S1) and positively 

correlated with anthropogenic elements such as Zn, As, Cd, Pb and ions such as nss-K+, nss-SO4
2- and NO3

-. The correlations 

likely result from the effects of crustal and anthropogenic sources, as well as the effects of atmospheric processes on P solubility. 

However, in spring, P solubility did not have a clear relationship with anthropogenic source indicators, i.e., Cd, As, Zn, Pb, 

nss-SO4
2- and NO3

-, but was still negatively correlated with crustal elements such as Al, Fe, Ca, Mn and Ba. Therefore, the 10 

variation in P solubility could also be caused by changes in the dominant aerosol particles. 

3.3 Factors influencing P solubility 

3.3.1 Aerosol sources and mineral dust loading 

Mineral dust aerosols are generally considered the dominant sources of atmospheric TP (Mahowald et al., 2008). As mentioned 

above, TP had statistically significant correlations with the contents of mineral elements. We choose Al as the indicator of the 15 

mineral origin of aerosols to investigate the effect of aerosol sources and dust loading on P solubility. Because the content of 

Al in mineral particles is stable, Al has few sources other than mineral particles (Arimoto et al., 2006). TP showed a strong 

linear relationship with total Al (Fig. 3a), and all data points were significantly above the line of P/Al = 0.013, which is the 

ratio of P to Al in the crust (Taylor, 1964). Therefore, there were sources of TP other than the crustal source.  

The concentration of non-dust P (Pnd) was estimated with the following formula (2): 20 

crust
nd

crust

P  
P = TP - TAl  

Al
           (2) 

where TP is the total P concentration, TAl is the total Al concentration, and Pcrust / Alcrust is the ratio of P to Al in continental 

crust. We consider the excess P relative to P/Al in the mineral dust to represent the fraction of P derived from anthropogenic 

activities, because atmospheric P is mainly caused by anthropogenic activities and natural dust besides a small fraction of 

biological P (Wang et al., 2015). Results show that the maximum concentration of anthropogenic P was about 75.8 ng m-3, as 25 

shown by the intercept of the regression line in Fig. 3a, and the maximum contribution of anthropogenic P to TP was as high 

as 60 % on average. Part of the TP was also from primary biological sources, especially in spring. Therefore, the value 60 % 

overestimates the P contribution of anthropogenic sources. 

Aerosol P from anthropogenic sources usually has a higher solubility than that from mineral sources. The reason is that 

anthropogenic P tends to associate loosely with particulates, dissolve more readily than mineral P, and, consequently, interact 30 

easily with acid gases to produce more bioavailable P (Herut et al., 2002; Baker et al., 2006a; 2006b; Anderson et al., 2010; 
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Hsu et al., 2014; Herbert et al., 2018). Our results indicate that the P solubility was approximately 35 % in the aerosols when 

the fraction of anthropogenic P in the TP was more than 70 %. In contrast, the value was approximately 15 % in the aerosols 

when the fraction of anthropogenic P in the TP was less than 50 %. Therefore, the high fraction P from anthropogenic sources 

in the TP in winter is likely one reason that winter P solubility was higher than spring P solubility.  

Total dissolved P also showed a correlation with soluble Al (Fig. 3b). The slope of the regression line between P and Al was 5 

0.13 in the soluble fraction, which was higher than that in the total fraction. This result is reasonable because the solubility of 

P is considerably higher than that of Al (Hsu et al., 2014) and/or because anthropogenic sources directly contribute to more 

soluble-fraction P (Anderson et al., 2010). 

The P solubility and total Al concentration (as dust loading) displayed an inverse power-law relationship (Fig. 4). The data 

in the China Sea from the literature also conforms to this fitting relationship (Hsu et al., 2014; Guo et al., 2014), except for the 10 

data observed over the East China Sea in July and August 2010, when the air mass was mainly from the open ocean (Guo et 

al., 2014). These results indicate the potential to extrapolate the discussion of this study to the seas to eastern China. A 

characteristic inverse relationship with Al has also been observed for aerosol Fe over large regions of the global ocean 

(Sholkovitz et al., 2012). Similarly, the relationship between P and Al can be attributed to the mixing of two end-members, 

i.e., mineral dust with a low P solubility and high Al loading and anthropogenic aerosols with a high P solubility and low Al 15 

loading. 

For the samples with high Al loading, i.e., a concentration of more than 6000 ng m-3, the P solubility was frequently below 

15 %. The TP in these samples was mainly derived from mineral dust, which contributed more than 60 % of the TP. The 72 h 

back trajectories for samples with high Al loading indicate that the air masses originated from the arid and semiarid areas in 

the inland Asian continent, where aerosol particles are dominated by natural mineral dust (Fig. S2). Moreover, the air masses 20 

were rapidly transported in the elevated layer; the average highest altitude was approximately 2,600 m during the transport of 

these air masses, and the average transport speed in the 36 h before arrival at Qingdao was 47 km h-1. These air masses passed 

populated areas in a short period of time and experienced little interferences by anthropogenic pollutants; therefore, the high 

Al loading and low P solubility end-member exhibited a relatively high mineral dust characteristic. 

For samples with a low Al loading below 2000 ng m-3, the P solubility was usually above 25 %, and the average P solubility 25 

was approximately 35 %. The TP in these samples was mainly from anthropogenic sources, which contributed approximately 

70 % of TP. The 72 h back trajectories for the samples indicated that, very different from the air masses with high Al loading, 

these air masses moved slowly at a low altitude (Fig. S3). The highest altitude during the air mass transport was approximately 

1,300 m on average, and the transport speed in the 36 h prior to arrival at Qingdao was an average of 23 km h-1. The air masses 

passed populated areas and were influenced directly by anthropogenic pollutants. Therefore, the low Al loading and high P 30 

solubility end-member exhibited a relatively high concentration of anthropogenic aerosols. 

The inverse relationship between P solubility and total Al loading may also reflect the effects of particle size, similar to 

aerosol Fe (Baker and Jickells, 2006; Baker and Croot, 2010). A dust population with a small modal size has a large surface 

area, which more efficiently serves as a sink for acidic constituents and easily leads to an increase in the solubility of dust-
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derived elements. There was a clear linear correlation between the P solubility and the specific surface areas of the aerosols, 

and the solubility increased with decreases in the particle size (Fig. 5). This result is consistent with previously reported results 

on this subject (Baker et al. 2006a; b). 

3.3.2 Atmospheric acidification processing 

Some data points, for P solubility against total Al and the specific surface area, deviated from the fitting curves (Fig. 4, Fig. 5 

5), and most of these points presented in the samples containing more anthropogenic particles. This result suggests that the 

two end-member mixtures of mineral dust and anthropogenic particles could not completely explain the P solubility. Nenes et 

al. (2011) proposed that the atmospheric acidification processes that mineral aerosols experience could be a primary 

mechanism to enhance aerosol P solubility. Nenes et al. found that the solubility of P in the Sahara surface soil and dust 

aerosols increased by 10-40 times after acid treatment using a pH 2 sulfuric acid solution. Stockdale et al. (2016) also found 10 

that the amount of P dissolved is directly proportional to the amount of H+ consumed at H+ > 10−4 mol g-1 of dust. Similar 

processes have been demonstrated to affect the fraction of soluble Fe in mineral dust (e.g., Baker and Croot, 2010; Shi et al., 

2015; Longo et al., 2016; Li et al, 2017). However, a corroboration of direct observational data on aerosol P solubility remains 

insufficient. Hsu et al. (2010) reported that soluble P correlated well with nss-SO4
2- and NO3

- in aerosols collected over the 

East China Sea and implied that the dissolution of aerosol P was enhanced by the presence of acidic constituents. In the present 15 

study, we confirmed that both soluble P and P solubility were statistically correlated with nss-SO4
2-, NO3

- and Cl-, indicating 

the potential enhancement of the dissolution of aerosol P by acid processing and the consequent increase in P solubility. 

Following Hsu et al. (2014) who used the ratio of acids/total Fe to investigate the influence of aerosol acidification on the 

Fe solubility, we use the ratio of acids/total P to investigate the influence of aerosol acidification on the P solubility. We found 

that both the nss-SO4
2-/TP and NO3

-/TP molar ratios were statistically correlated with P solubility in all samples (r = 0.36, p < 20 

0.01) (Fig. 6a, 6b). In contrast, there was no such relationship between the Cl-/TP molar ratio and P solubility (Fig. 6c). The 

combination of nss-SO4
2- and NO3

-, the two major acidic constituents in atmospheric aerosols, was further examined (Fig. 6d). 

The samples were classified into three groups based on the relative contribution of non-dust P (Pnd) to TP (Pnd/TP) (Fig. 6). 

The P solubility increases with the acidification degree (the molar ratio of [2nss-SO4
2-+NO3

-]/TP) of aerosols. However, the P 

solubility versus the acid/TP ratio followed different regression curves corresponding to the ranges of Pnd/TP, e.g., the slope 25 

of 0.22 in samples with Pnd/TP > 70 %, while of 0.01 in samples with Pnd/TP < 50 %. The aerosol specific surface area in the 

samples with Pnd/TP > 70 % was 4.54 m2 g-1, three times larger than that of the samples with Pnd/TP < 50 %, i.e., 1.45 m2 g-1. 

The samples with Pnd/TP > 70 % had more areas to react with acidic constituents, leading to more TDP. However, this 

explanation can only explain approximately 15 % of the difference between the slopes of the two fitted curves. The remaining 

difference should be due to the different natures of P in the aerosols; therefore, P in anthropogenic particles should be more 30 

susceptible to acidic processing than that in natural mineral dust. Notably, the anthropogenic P in the aerosols had an 

intrinsically higher solubility than the soil-derived mineral P (Baker et al., 2006a; 2006b). This means that changes in the 

dominant aerosol particles could also cause differences between the slopes of the two fitting curves. Hsu et al. (2014) also 
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found that the relationship of aerosol P solubility vs. ∑(nss-sulfate+nitrate)/TP in a February-March cruise and June cruise 

over the South China Sea followed two regression curves. They attributed the discrepancy to the discernible dominance of the 

respective sources vs. the susceptibility to acidic processes.  

Two data points largely deviated from the fitting curve of the Pnd/TP > 70 % samples (Fig. 6). Analysis of the characteristics 

of the two samples revealed that their DOP content was relatively high and was approximately 21 % of the TP, while the DOP 5 

value for other samples was 7 % of the TP. Aerosol organic P is originally associated with organic matter in biological sources 

rather than anthropogenic sources (Chen et al., 2006). Kanakidou et al (2012) provided an organic phosphorus budget showing 

a relatively large marine source (almost 80% with large uncertainties in magnitude). The organic P in the two samples with 

high Cl-/TP molar ratio might be, at least partly, caused by the contribution from marine biological sources besides terrestrial 

biological sources. Therefore, the contribution of anthropogenic P to TP was significantly overestimated in the two samples 10 

due to the high organic P content. In addition, insoluble organic P could be converted to DOP due to the uptake of oxidants 

and the formation of large chains of soluble multifunctional groups (Ariya et al., 2009; Myriokefalitakis et al., 2016). The 

conversion mechanism of organic P from insoluble to soluble, which is different from the acid-solubilization of P, may also 

be responsible for the deviation of the two samples from the fitted curve. 

3.3.3 Relative humidity and coordinated effect of aerosol sources and acidity  15 

The data points of P solubility against acids/total P for the samples of 50 % < Pnd/TP < 70 % were frequently between the two 

fitted curves of Pnd/TP > 70 % and Pnd/TP < 50 % (Fig. 6), and had a statistically significant correlation at the 99 % confidence 

(r = 0.383, p = 0.006). Some data points largely deviated from the fitted curves, showing high P solubility at low degrees of 

acidification. We focused on the seven deviating data points at P solubility > 45 % and acid/TP < 200 nmol nmol-1 (the Pnd/TP 

in the samples was approximately 60 %, and these data points are highlighted in red circles in Fig. 6). The relative humidity 20 

during the collection of these samples was approximately 80 % on average, much higher than the value of 65 % for the other 

samples in this group. Elevated RH can result in particle phase conversion from a semisolid to a liquid state (Liu et al., 2017). 

The presence of aqueous layers on the aerosol particles can enhance insoluble trace elements, such as Fe, to dissolve under 

acidic conditions (Shi et al., 2015). This was likely caused by the acidification of particles as they cycled from cloud droplets 

to wet aerosols and back (Nenes et al., 2010; Stockdale et al., 2016). We further investigated the relationship of RH with P 25 

solubility and confirmed that the two factors showed a significant correlation (r = 0.62, p < 0.01), suggesting the significance 

of RH as one of the factors influencing aerosol P solubility. 

The coordinated effect of RH, aerosol sources and acidity on P solubility was further investigated (Fig. 7). Because the 

threshold of RH for particle conversion from the semisolid to liquid state was frequently approximately 60 % (Liu et al., 2017), 

we used 60 % RH as the threshold of wet aerosol formation. The P solubility was frequently lower than 30 % when RH < 30 

60 %, even in samples with a relatively high acidification degree or a large fraction of anthropogenic P. On average, the P 

solubility was approximately 13 % in the aerosols of Pnd/TP < 50 %, while the value was approximately 21 % in the aerosols 

of Pnd/TP > 50 %. The aerosol acidification had little effect on the P solubility when the RH was less than 60 %.  
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At RH > 60 %, the P solubility ranged from approximately 10 % to approaching 70 %. To examine the influence of acidity 

or humidity on P solubility, the samples were classified into two groups according to the acidification degree of 150 nmol 

nmol-1, which was close to the average acidification degree of all aerosol samples. For the aerosols of Pnd/TP < 50 %, the P 

solubility was higher than 13 %. Under similar acidic conditions, P solubility increased with the increase in RH. However, the 

increase was not significant and was only approximately 2 % when the RH changed from < 60 % to > 60 %. For the aerosols 5 

of 50 % < Pnd/TP < 70 %, the P solubility was frequently higher than 21 %. P solubility increased with the increase in RH. 

When RH increased from less than 60 % to more than 60 %, the P solubility increased from, on average, 20 % to 30 % under 

the acid/TP < 150 nmol nmol-1 condition and approximately 20 % to 35 % under the acid/TP > 150 nmol nmol-1 condition. For 

the aerosols of Pnd/TP > 70 %, the P solubility was higher than 21 %. Under similar acid conditions, the P solubility was in the 

range of 40 %-60 % at RH > 80 % and in the range of 20 %-40 % at 60 % < RH < 80 %. 10 

Overall, the enhancement of P solubility by RH increase in the mineral aerosols was much lower than in the anthropogenic 

aerosols, in which P was more susceptible to acidification, e.g., at RH>60%. All of these results indicate that RH is also likely 

one of the factors significantly impacting aerosol P solubility; high humidity could facilitate the dissolution of aerosol P under 

acidic conditions and hence increase its solubility.  

4 Conclusions 15 

In this study, we quantified the levels and seasonal variability of TP, TDP, DIP, DOP and P solubility at Qingdao, a coastal 

city of the Yellow Sea, China, aiming to demonstrate the solubility of P in aerosol particles from Asian continental outflow. 

The P solubility in Qingdao aerosols was 7.3-69.8 %, which overlapped with the range of values reported in other coastal areas. 

P solubility in winter was significantly higher than that in spring, which was related to the aerosol sources, atmospheric 

acidification processes and ambient relative humidity. Our data indicated that the P in aerosols from anthropogenic sources 20 

had a higher solubility than the P in aerosols from mineral sources. The acid processing associated with sulfate and nitrate 

formation could increase the solubility of P, with P from anthropogenic sources demonstrating a greater susceptibility to acid 

processing than P from mineral dust. In addition, we found that DOP has an important contribution to dissolved P, with an 

average contribution of 40 % in some cases. Furthermore, ambient relative humidity was an important factor influencing P 

solubility. At RH < 60 %, it was difficult for P solubility to exceed 30 %, even with a high aerosol acidity and anthropogenic 25 

P contribution. High RH levels increased the dissolution of aerosol P to a greater degree under acidic conditions, consequently 

increasing P solubility. These results imply and support that anthropogenic inputs could provide more soluble P to the ocean 

via the atmosphere, thus increasing the bioavailable P in the ocean and potentially impacting ocean biogeochemistry. 
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Table 1 Comparison of the concentrations of various forms of P and P solubility in aerosols from the coastal Yellow Sea (this study) and other previously 

studied coastal and marine sites. 

Region Period Type TP (ng m-3) DIP (ng m-3) DOP (ng m-3) P solubility (%) Reference 

Coastal site        

Qingdao,China December 2012- April 2013 TSP 125.5±59.8 21.8±21.4 10.7±7.7 27.5±15.0 This work  
December 2012-January 2013 TSP 122.9±45.6 31.9±23.4 8.6±7.4 32.9±16.7 

 

  March -April 2013 TSP 128.6±73.2 10.0±10.2 13.0±7.5 21.3±9.8 
 

Huaniao Island, East China Sea April 2-30, 2010 TSP 15-307     0.6-58 Guo et al., 2014 

  July 29-August 27, 2010 TSP 14-115     6.9-14 
 

  November 12-December 11, 2010 TSP 14-159     1.8-63 

  March 4-30, 2011 TSP 2.6-113     4.5-56 

Singapore April 2007-March 2008 TSP 430±320 120±120   38 He et al., 2011 

Mediterranean coast March 2002-December 2003 TSP 22.9±1.1       Izquierdo et al., 2012 

Miami, Florida, USA 

Barbados, West Indies, USA 

January 2007-August 2008 

July 1988–September 2008 

Bulk aerosols 

Bulk aerosols 

11.8±10.8 

11.8±9.7 

3.1±2.8 

2.6±1.3 

  23 

21 

Zamora et al., 2013 

Gulf of Aqaba August 2003-November 2004 TSP 
 

    15-30 Anderson et al, 2010 

Gulf of Aqaba August 2003-September 2005 TSP   12.4±6.2 6.2±3.1   Chen et al., 2007 

Marine site        
East China Sea and Japan Sea June-September 2008 TSP 7.9±6.4       Sun et al., 2015 

South China Sea February 18-March 8, 2013 TSP 10±11 5.6±4.7   55±14 Hsu et al., 2014 

  June 17-30, 2013 TSP 36±22 16±12   45±17 
 

Western North Pacific June-September 2008 TSP 6.9±6.6       Sun et al., 2015 

Atlantic Ocean September 10-October 24, 2001 Bulk aerosols 0.1-5.6     0.01-87 Baker et al., 2006b 

Indian Ocean January 2009 PM10   40.3±15.5     Srinivas and Sarin., 2012 

  March-April 2006 PM10   34.1±12.4     
 

Arctic Ocean June-September 2008 TSP 7.0±6.8    Sun et al., 2015 
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Figure 1: Time series of total and dissolved P concentrations (TP and TDP) and P solubility. 
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Figure 2: Time series of dissolved inorganic and organic P concentrations (DIP and DOP) and the percentage of DOP in TDP. 
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Figure 3: Correlations of TP with total Al (a) and TDP with soluble Al (b). The line of P/Al = 0.013 represents the ratio of P to Al in 

the crust. 
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Figure 4: Relationships of P solubility against total Al. Data in the South China Sea are from Hsu et al. (2014) (triangles), and data 

in the East China Sea are from Guo et al. (2014) (squares). Different color symbols are used to highlight different observation periods. 

The green and red triangles represent the averages of observations in the South China Sea during cruises in February-March 2013 

and June 2013, respectively; the blue triangles represent the observed values of the samples affected by biomass burning in the June 

cruise. The blue, green, yellow and red squares represent the averages of observations over Huaniao Island in the East China Sea 

during April, July-August and November-December 2010 and March 2011, respectively. 
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Figure 5: Relationships between P solubility and the specific surface area of particles. 
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Figure 6: Correlations between P solubility and the nss-SO4
2-/TP molar ratio (a), NO3

-/TP molar ratio (b), Cl-/TP molar ratio (c) and 

(nss-SO4
2-+NO3

-)/TP neq/molar ratio (d) in aerosols with different relative contributions of non-dust P (Pnd) to TP (Pnd/TP). Data 

points within the circle were not included in the regression fitting. 
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Figure 7: Relationships of P solubility with the relative humidity and acidification degree in aerosols with different ranges of Pnd/TP. 
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