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Abstract 1 

To better characterize the anthropogenic emission relevant aerosol species, the GSI-WRF/Chem data 2 

assimilation system was updated from the GOCART aerosol scheme to MOSAIC-4BIN scheme. Three year 3 

(2015-2017) winter-time (January) surface PM2.5 observations from 1600+ sites were assimilated hourly using 4 

the updated 3DVAR system in the assimilation experiment CONC_DA. Parallel control experiment that did 5 

not employ DA (NO_DA) was also performed. Both experiments were verified against the surface PM2.5 6 

observations, MODIS 550-nm AOD and also 550-nm AOD at 9 AERONET sites. In the NO_DA experiment 7 

using 2010_MEIC emissions, modeled PM2.5 are severely overestimated in Sichuan Basin (SB), Central China 8 

(CC), YRD (Yangzi River Delta), and PRD (Pearl River Delta) which indicated the emissions for 2010 are not 9 

appropriate for 2015-2017, as strict emission control strategies were implemented in recent years. Meanwhile, 10 

underestimations in Northeastern China (NEC) and Xin Jiang (XJ) were also observed. The assimilation 11 

experiments significantly reduced the high biases of surface PM2.5 in SB, CC, YRD, and PRD, and also the 12 

low biases in NEC. However the improvement of the low biases in XJ is relatively small due to the large 13 

differences between the observations and the model background in the DA process, likely indicating that the 14 

emissions in the model are seriously underestimated in this region. Assimilating surface PM2.5 also 15 

significantly changed the column AOD and resulted in closer agreement with MODIS data and observations 16 

at AERONET sites.  17 

The observations and the reanalysis data from assimilation experiment were used to investigate the year-18 

to-year changes. As the differences of the reanalysis data (CONC_DA) among years reflect combining effects 19 

of meteorology and emission and the differences of modeling result from control experiment (NO_DA, with 20 

same emissions) among years reflect the separate effect of meteorology, the important roles of emission and 21 

meteorology in driving the changes in the three years can be distinguished and analyzed quantitatively. The 22 

analysis indicated that meteorology played different roles in 2016 and 2017: the higher pressure system, lower 23 

temperature and higher PBLH in 2016 are favorable for pollution dispersion (compared with 2015) while the 24 

situation is almost the opposite in 2017 (compared with 2016) that leads to the increasing PM2.5 from 2016 to 25 

2017 although emission control strategies were implemented in both years. There are still large uncertainties 26 

in this approach especially the inaccurate emission input in the model brings large biases in the analysis. 27 
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1. Introduction 1 

Anthropogenic PM2.5 (fine particulate matter with aerodynamic diameters less than 2.5 µm) is known as 2 

a robust indicator of mortality and other negative health effects associated with ambient air pollution. PM2.5 3 

components are complicated not only from primary emissions but also from secondary formations from 4 

various precursors (e.g. SO2, NOx, VOCs). Regional haze with extremely high PM2.5 concentrations 5 

(exceeding the WHO standard tenfold) has become the primary air quality concern in China, especially over 6 

the northern China (e.g. Wang et al. 2014a, 2014b; Han et al. 2015; Sun et al. 2015). To control the PM2.5 7 

pollution and improve the overall air quality, a series of strict pollution control strategies have been 8 

implemented by the government since 2010, such as Guiding Options on Promoting the Joint Prevention and 9 

Control of Air Pollution to Improve Regional Air Quality (The Central Government of the People’s Republic 10 

of China, 2010),  Atmospheric Pollution Prevention and Control Action Plan (The Central Government of 11 

the People’s Republic of China, 2013), in which it regulated that the environmental-related equipment (Flue-12 

gas desulfurization and Selective Catalyst Reduction, exhaust dust removal etc.) are mandatory for industries 13 

and vehicles. In addition to the long-term pollution control strategies, different emergency measures under 14 

different pollution alerts were also implemented occasionally. For example, large industrial sources (coal-15 

burning, cement) were under limited production to reduce emission, construction sites were restricted to 16 

prevent fugitive dust pollution, traffic restrictions were implemented on even- and odd-numbered license 17 

plates etc. Those emission control strategies were even stricter and implemented more often in northern China 18 

in winter-time when the haze events occurred more frequently. These control strategies were expected to bring 19 

significant precursor (e.g. SO2, NOx) and PM2.5 emission reductions.  20 

Although with those strict emission control strategies, the ambient PM2.5 concentrations in major cities 21 

still fluctuated in winter-time from year to year. For example, the overall January PM2.5 concentrations in 74 22 

cities generally decreased from 2015 to 2016, but the concentrations in January 2017 were still higher than 23 

that in 2016 (Ambient Air Quality Monthly Report 2015-01/2016-01/2017-01, 24 

http://www.cnemc.cn/kqzlzkbgyb2092938.jhtml). While annual emission reduction trends were expected 25 
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from 2015 to 2017, the overall increase of surface concentrations in January 2017 is kind of contradictory, 1 

which may indicate other factors (especially meteorology) in addition to emission may play important roles. 2 

Some studies attempted to investigate the variability of air pollution and also the effects of climate changes 3 

on winter-time air pollution by using statistical data. Li et al. (2016) indicated that wintertime fog-haze days 4 

across central and eastern China have close relation with East Asian Winter Monsoon; Zuo et al. (2015) 5 

concluded that significant weakening (strengthening) Siberia high and East Asia trough are the two main key 6 

factors for the extreme cold events and extreme warm events over china in winter while warm boost air 7 

pollution. In addition to statistical methodology, it’s necessary to distinguish the roles of emissions and 8 

meteorology to further investigate the driving factors of the inter-annual air pollution changes.  9 

Regional air quality models are important tools, either scientifically to understand the formation of hazes 10 

or technically to make forecasts, or evaluate the effects of control strategies. For regional modeling studies, 11 

emission inventory is an important part to reflect the emission input in the atmosphere. Generally, emission 12 

inventory is based on the “bottom-up” methodology relying on the statistics of energy activity and emission 13 

factors etc. However, uncertainties in energy statistics caused variations in the emission estimates (Zhao et al., 14 

2017; Hong et al., 2017; Zhi et al., 2017). For regional model application, the total emissions based on 15 

statistics are then spatially-temporally distributed according to relevant factors (He, 2012). While the 16 

occasional emission control strategies implemented in winter time caused large uncertainties in not only the 17 

total emission estimation but also the spatially-temporally allocations, which would lead to large biases in the 18 

model simulations.    19 

In addition to the uncertainties of emission inventory, the deficiencies in chemistry also caused model 20 

uncertainties. Recently, more and more observations revealed that the anthropogenic emission relevant aerosol 21 

species, such as sulfate, nitrate and ammonium (denoted as SNA) are the predominant inorganic species in 22 

PM2.5 in China. Observations during the winter of 2013 (e.g. Wang et al., 2014c) and autumn of 2014 (Yang 23 

et al., 2015) show that SNA increases rapidly during the highest haze episodes over the Northern China Plain 24 

(NCP) and makes up approximately half of the total PM2.5 mass. However, the WRF/Chem model failed to 25 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-890
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 October 2018
c© Author(s) 2018. CC BY 4.0 License.



5 
 

 

reproduce the highest PM2.5 concentrations due to missing heterogeneous/aqueous reactions with either 1 

GOGART (Goddard Chemistry Aerosol Radiation and Transport, Chin et al., 2000, 2002) or MOSAIC (Model 2 

for Simulating Aerosol Interactions and Chemistry)-4BIN aerosol schemes. In Chen et al. (2016, hereafter 3 

Chen16), we added three heterogeneous reactions (SO2-to-H2SO4 and NO2/NO3-to-HNO3) in the WRF/Chem 4 

model based on the MOSAIC-4BIN aerosol scheme. The new MOSAIC-4BIN aerosol scheme significantly 5 

improved the simulation of sulfate, nitrate, and ammonium on polluted days in terms of both concentrations 6 

and partitioning among those species.  7 

Data assimilation (DA), combining observations with numerical model output, has proved to be skillful 8 

at improving aerosol forecasts (e.g. Collins et al., 2001; Pagowski et al., 2010; Liu et al., 2011; Liu et al., 9 

2016; Zhang et al., 2016). Liu et al. (2011, hereafter Liu11) implemented AOD DA within the National Centers 10 

for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational 11 

(3DVAR) DA system coupled to the GOCART aerosol scheme within the Weather Research and 12 

Forecasting/Chemistry (WRF/Chem) model (Grell et al., 2005). Schwartz et al. (2012, hereafter S12) and 13 

Jiang et al. (2013, hereafter Jiang13) extended the system to assimilate surface PM2.5 and PM10. Verification 14 

results demonstrated improved aerosol forecasts from the DA system in studies over East Asia and also in the 15 

United States. 16 

Following Liu11, S12 and Chen16, we updated the GSI-WRF/Chem system: changing from the 17 

GOCART aerosol scheme to MOSAIC-4BIN aerosol scheme to better characterize the complex PM2.5 18 

pollution in China. We applied the updated system to assimilate the PM2.5 concentrations in January 2015, 19 

2016 and 2017, with two purposes: 1) to reproduce the PM2.5 trends by the DA system, and 2) to investigate 20 

the different roles of meteorology and emissions for PM2.5 pollution in different years. In this paper, section 2 21 

gives model description, observations and methodology, addressing the updated GSI-WRF/Chem coupled DA 22 

system with MOSAIC-4BIN aerosol scheme. In section 3, the assimilation results on PM2.5 concentrations in 23 

the January of 2015, 2016 and 2017 are presented and compared with surface observations (PM2.5 total mass 24 

and individual species) and also MODIS 550-nm AOD for evaluation of the DA system. Different from the 25 
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previous applications emphasizing the forecast skill improvement by the DA system, we try to make full use 1 

of the reanalysis data to investigate the driving factors of the pollutions, and also to separate the roles of 2 

meteorology and emissions in different years by analyzing the reanalysis data and model simulations. The 3 

results are given in section 4. Conclusions are given in section 5. 4 

2. Model description, observations and methodology  5 

The WRF/Chem settings are very similar to those of Chen16, while Chen16 focused on the Sulfate-6 

Nitrate-Ammonia (SNA) aerosols in Northern China Plain during October 2014 and several heterogeneous 7 

reactions were newly added to the original chemistry modules to improve the SNA simulation performance. 8 

The DA system used here was based upon the NCEP GSI system extended by Liu11 and S12. We assimilated 9 

surface PM2.5 observations and the only difference is that the MOSAIC-4Bin aerosol scheme (32 species for 10 

PM), instead of the GOCART aerosol scheme, was chosen in the WRF/Chem model. Thus the 3-D mass 11 

mixing ratios of those MOSAIC species at each grid point comprised the analysis (or control) variables in the 12 

GSI 3DVAR minimization process.    13 

Here, only a brief summary of the WRF/Chem configurations follows before a description of the updated 14 

GSI DA system and settings used in this work. The important differences are noted, e.g. the observation 15 

forward operator in the GSI system. 16 

2.1 WRF/Chem model and emissions  17 

As in Chen16, version 3.6.1 of the WRF/Chem model was used in this study (Grell et al., 2005; Fast et 18 

al., 2006). The physical parameterizations employed in WRF/Chem were identical to those of Chen16 and 19 

listed in Table 1. The Carbon-Bond Mechanism version Z (CBMZ) and Model for Simulating Aerosol 20 

Interactions and Chemistry (MOSAIC) were used as the gas-phase and aerosol chemical mechanisms, 21 

respectively, in this study. Aerosol species in MOSAIC are defined as black carbon (BC), organic compounds 22 

(OC), sulfate (SO4), nitrate (NO3), ammonium (NH4), sodium (NA) and chloride (CL) and other inorganic 23 

compounds (OIN). We used 4 size bins with aerosols diameters ranging from 0.039-0.1, 0.1-1.0, 1.0-2.5, and 24 
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2.5-10 µm. The 24 variables in the first three bins (8 species times 3 bins) consist of the PM2.5 total. The newly 1 

added relative humidity (RH) dependent SO2-to-H2SO4 and NO2/NO3-to-HNO3 heterogeneous reactions 2 

(details in Chen16) were also applied in the simulations.   3 

The model domain with a 40-km horizontal grid spacing covers most of China and the surrounding region 4 

(Fig. 2). There are 57 vertical levels extending from the surface to 10 hPa. The simulation started from Dec. 5 

20 of previous year and the first eleven days were treated as a spin-up period and were not used in our analyses. 6 

Table 1. WRF/Chem model configurations. 7 

Aerosol scheme  MOSAIC (4 bins) (Zaveri et al., 2008) 

Photolysis scheme Fast-J (Wild et al., 2000) 

Gas phase chemistry CBM-Z (Zavier et al., 1999) 

Cumulus parameterization Grell 3D scheme  

Short-wave radiation Goddard Space Flight Center Shortwave radiation scheme (Chou 

and Suarez, 1994) 

Long-wave radiation RRTM (Mlawer et al., 1997) 

Microphysics Single-Moment 6-class scheme (Grell and Devenyi, 2002) 

Land-surface model  NOAH LSM  (Chen and Dudhia, 2001) 

Boundary layer scheme  YSU  (Hong et al., 2006) 

Meteorology initial and boundary 

conditions  

GFS analysis and forecast every 6 hour 

Initial condition for chemical species  11-day spin-up  

Boundary conditions for chemical 

species  

averages of mid-latitude aircraft profiles (McKeen et al., 2002) 

Dust and sea salt Emissions GOCART 

As in Chen16, the Multi-resolution Emission Inventory for China (MEIC) (Zhang et al., 2009; Lei et al., 8 

2011; He 2012; Li et al., 2014) for January 2010 is used as the emission input. The original grid spacing of 9 

this emission inventory is 0.25º × 0.25º and it has been processed to match the model grid spacing (40 km). 10 

The spatial distributions of primary PM2.5 emission are shown in Fig. 1. The MEIC-2010 emission inventory 11 

has already been applied in other studies (e.g. Wang et al., 2014a; Zheng et al., 2015) for simulations over 12 

China for recent years. They found that this inventory provides reasonable estimates of total emissions but is 13 

subject to uncertainties in the spatial allocations of these emissions over small spatial scales. For our 14 

simulation, uncertainties may also arise from two other aspects: the difference between the emission base year 15 
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(2010) and our simulation year (2015-2016-2017), and the monthly allocations. As the China government has 1 

implemented strict control strategies to insure the air quality during winter seasons since 2013, significant 2 

emission reductions including the primary PM and precursor (SO2, NOx) in those strictly implemented regions 3 

compared to the year 2010 are expected for our simulation periods. Besides, the uncertainties of the emission 4 

allocation in the winter season would be much larger compared to other seasons. For example, Zhi et al. (2017) 5 

conducted village energy survey and revealed a huge amount of missing rural raw coal for winter heating in 6 

northern China which implies an extreme underestimation of rural household coal consumptions by the China 7 

Energy Statistical Yearbooks. 8 

2.2 Updated GSI 3DVAR DA system  9 

NCEP’s GSI 3DVAR DA system was used to assimilate surface PM2.5 observations. The GSI 3DVAR 10 

DA system calculates a best-fit “analysis” considering the observations (hourly surface PM2.5 concentrations 11 

in our case) and background fields (a 1-hr short-term WRF/Chem forecast in our case) weighted by their error 12 

characteristics. The GSI 3DVAR DA system produces an analysis in model grid space. The analysis is obtained 13 

through the minimization of a scalar objective function J(x) given by  14 

                𝐽(x) =
1

2
(x − xb)

TB−1(x − xb)+
1

2
[𝐻(x) − y]TR−1[𝐻(x) − y],                   (1) 15 

where 𝐱𝐛 denotes the background vector (dimension m), y is a vector of observations (dimension p), B and 16 

R represent the background and observation error covariance matrices of dimensions m×m and p × p 17 

respectively. The covariance matrices determine the relative contributions of the background and observation 18 

terms to the final analysis. H is the potentially nonlinear “observation operator” that interpolates the model 19 

grid point values to observation spaces and converts model-predicted variables to observed quantities. 20 

2.2.1 PM2.5 observation operator 21 

In our updated DA system, GSI was used to assimilate surface PM2.5 total mass observations. While 22 

WRF/Chem model predicts PM2.5 total mass in the forms of different prognostic variables depending on the 23 

chosen aerosol scheme. As we chose the MOSAIC-4Bin aerosol schemes, the analysis variables here were the 24 
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3D mass mixing ratios of the 24 MOSAIC aerosol variables at each grid point. Model simulated PM2.5 1 

observations ∏𝑚 were computed by summing the 24 species, given as 2 

,           (2) 3 

where i denotes the Bin numbers in the MOSAIC aerosol scheme, here the first three bins consist of the PM2.5 4 

total; BC, OC, SO4, NO3, NH4, NA, CL, and OIN are black carbon, organic compounds, sulfate, nitrate, 5 

ammonium, sodium, chloride and other inorganic compounds respectively. This formula is identical to the one 6 

used in WRF/Chem MOSAIC scheme to diagnose PM2.5. WRF-Chem simulated aerosol mixing ratios of the 7 

species (inside the brackets of Eq. 2) are in μg kg−1, so dry air density 𝜌𝑑 is multiplied to convert the unit 8 

to μg m−3 for consistency with the observations.  9 

This speciated approach to aerosol DA within a variational system was introduced by Liu11 and further 10 

applied by S12 and Jiang13. By using individual aerosol species as control variables, no assumptions were 11 

made regarding the contribution of each species’ mass to the total aerosol mass or shapes of the vertical profiles. 12 

2.2.2 PM2.5 observations and errors 13 

Hourly surface PM2.5 observations for January 2015-2017 were obtained from the China National 14 

Environmental Monitoring Center (CNEMC). There are 1600+ sites in our modeling domain. As the 1600+ 15 

monitoring sites fall into 531 model grids, the observations within the same grid are averaged ( the latitude 16 

and longitude too) for the purpose of statistics and verification. The observation sites (Fig. 3) spanned mostly 17 

in the northern, central and eastern China and are relatively sparse in western China.    18 

The observation error covariance matrix R in equation (1) contains both measurement and 19 

representativeness errors. Similar to S12 and Jiang13, the measurement error ε0 is defined as ε0 = 1.0 +20 

0.0075 ×∏0 , where ∏0 denotes PM2.5 observational values (unit: μg m−3). Following S12 and Jiang13, 21 

representativeness errors is calculated as  22 

ε𝑟 = 𝛾ε0√
∆𝑥

𝐿
,                                         (3) 23 

where 𝛾 is an adjustable parameter scaling ε0 (𝛾 = 0.5 was used), ∆𝑥 is the grid spacing (here, 40-km) 24 

 𝑚 = 𝜌𝑑 [BC𝑖 + OC𝑖 + SO4𝑖
+ NO3𝑖

+ NH4𝑖
+ CL𝑖 + NA𝑖 + OIN𝑖]

3

𝑖=1

 1 
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and L is the radius of influence of an observation and was set to 2-km for urban sites, respectively. The total 1 

PM2.5 error (ε𝑃𝑀2.5) is defined as  2 

ε𝑃𝑀2.5 = √𝜀0
2 + 𝜀𝑟2,                                        (4) 3 

which constituted the diagonal elements in the R matrix. As those PM2.5 data were provided in near-real time 4 

without any data quality control. To ensure data quality before DA, PM2.5 observational values larger than 5 

500μg m−3 were deemed unrealistic and not assimilated. And observations leading to innovations/deviations 6 

(observations minus the model-simulated values determined from the first guess fields) exceeding 120 μg m−3 7 

were also omitted.  8 

2.2.3 Background error covariance 9 

As similar to Jiang13, the background error covariance (BEC) statistics for each analysis variable 10 

required by the 3DVAR algorithm were computed by utilizing the “NMC method” (Parrish and Derber, 1992) 11 

based upon the one-month WRF/Chem forecasts for the winter month of January 2015. No cross-correlation 12 

between the different species was considered. Standard deviations and horizontal/vertical correlation length 13 

scales of the background errors (separated for each aerosol species) were calculated using the method 14 

described by Wu et al. (2002). It is important to have the phenomena-specific background error statistics to 15 

allow for an appropriate adjustment of individual species. As a function of vertical model level, the domain-16 

averaged standard deviations of the background errors for 6 aerosol species (BC, OC, SO4, NO3, NH4, OIN) 17 

in the first three size bins are shown in Fig. 1. CL and NA are not shown here as they are relatively too small. 18 

By using the MOSAIC aerosol schemes, the characteristic of different aerosol species in different size bins 19 

are more appropriately described for China region in the model. As shown in Fig. 1, the standard deviations 20 

of different aerosol species errors are different in the three size bins; the errors of NO3, OIN and SO4 are 21 

relatively larger than those of other species in the three size bins; OC is also important especially in the second 22 

(0.1-1.0 μm ) and third (1.0-2.5 μm) size bins. A larger background error of those species allowed larger 23 

adjustment of the field, which is crucial for the aerosol analyses in this study. 24 
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2.3 Observations for verification 1 

In addition to the surface PM2.5 total mass observations for data assimilation, two types of observations 2 

were also used for verification: (1) MODIS monthly 550-nm AOD, (2) Surface observed 550-nm AOD at 3 

AErosol RObotic NETwork (AERONET) sites. The monthly MODIS data were downloaded from 4 

http://ladsweb.modaps.eosdis.nasa.gov. The Terra monthly L3 dataset (daily pass time at 10:30 Local Standard 5 

Time) was used. The data resolution is 1º× 1º. As the retrieval process in winter is much difficult than the 6 

other seasons, there are much missing data in western and northern China. Model simulations are averaged 7 

monthly at 03 UTC (11:00 Local Standard Time) for comparison. Actually it’s also an attempt to see if the 8 

assimilation experiment combining regional model and surface observations can generate reasonable column 9 

AOD fields; if so, this approach can be used for a complement when the satellite data are not available in 10 

special cases (difficult for retrieval in certain regions). The simulated 550-nm AODs at nine AERONET sites 11 

are also compared to verify the aerosol DA performance. The locations of the nine AERONET sites are shown 12 

as black dots in Fig. 2. The observations obtained from AERONET are interpolated to 550-nm for comparisons 13 

(Eck et al., 1999). 14 

2.4 Experimental design 15 

We conducted two sets of experiments (NO_DA and CONC_DA) for January of 2015, 2016 and 2017. 16 

In both cases, the MEIC_2010 emission inventory was used. The NO_DA experiment initialized a new 17 

WRF/Chem forecast every 6-hr starting 00 UTC, 20 December of previous year to spin up aerosol fields and 18 

run through 23 UTC, 31 January. Only simulations in January were used for analysis. In the NO_DA 19 

experiment, chemical/aerosol fields were simply carried over from cycle to cycle (similar to a continuous 20 

aerosol forecast) while the meteorological IC/BC were updated from GFS analysis data every 6-hr to prevent 21 

meteorology simulation drifting. For CONC_DA, GSI 3DVAR updated the MOSAIC aerosol variables every 22 

hour starting from 00 UTC, 1 January. The background of the first cycle at 00 UTC, 1 January was from the 23 

NO_DA experiment and the later ones were from the previous cycle’s 1-hr forecast. In CONC_DA, the GFS 24 
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analysis data in 6-hr frequency were interpolated into 1-hr data and were used to update meteorological IC/BC 1 

in each 1-hr cycle. In both the NO_DA and CONC_DA experiments, the newly added heterogeneous reactions 2 

were all activated.  3 

2.5 The approach to distinguish the roles of meteorology and emission  4 

As introduced in section 1, the inter-annual air quality changes are strongly influenced by both emissions 5 

and meteorological conditions. It’s challenging to distinguish and quantify the roles of the two aspects solely 6 

based on observation or modelling. In climate forcing studies (e.g. Xu et al. 2017), the role of 7 

climate/meteorology are diagnosed by analyzing the differences between two sets of modeling simulations 8 

(with the same emission inventory but different climate/meteorology conditions). As the emission input are 9 

the same, the differences between the two simulations are usually attributed to the changes of 10 

climate/meteorology fields. The approach to diagnose the role of emission is somewhat similar. Gao et al. 11 

(2017) conducted WRF/Chem simulations to distinguish the roles of meteorology and emissions during the 12 

2014 APEC week in NCP when strict emission control measures were applied. As the exact emission reduction 13 

ratios were publicly available in BMEPB (Beijing Municipal Environmental Protection Bureau) reports for 14 

this whole event period (before, during and after the APEC week), two simulations with different emission 15 

scenarios (with normal and reduced emissions) but same meteorology fields were conducted. The differences 16 

between the two simulations were attributed to the changes of emissions. 17 

For our case, the same methodology can be used for meteorology aspect. As for NO_DA, the emission 18 

input for January of the three years (2015-2017) were all from MEIC_2010 emission inventory, the only 19 

differences among the three months’ simulations were meteorological condition which was from the GFS 6-20 

hr analysis data. Therefore, we can assume that the differences of simulated NO_DA PM2.5 concentrations 21 

among the three months could be driven purely by the differences in meteorological conditions (as similar to 22 

Xu et al. 2017). However, it’s difficult to distinguish the role of emission by using the same approach as in 23 

Gao et al. (2017). As temporary emission control measures were applied according to the pollution severity 24 

(alarm levels) thus the emission reduction ratios were actually kept changing during the winter season and no 25 
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exact emission reduction ratios were provided for those days. The approach by simulations with different 1 

emission scenarios is just impossible when lacking the exact emission reduction ratios. Instead, we propose 2 

here a method by subtracting the meteorological effects from the total effects by utilizing the reanalysis data 3 

and pure model simulations. The CONC_DA result, in which hourly surface PM2.5 observations from 531 4 

lumped sites were utilized, can be treated as a reanalysis dataset that reflects the actual conditions (very close 5 

to observations). Therefore the differences of assimilated CONC_DA PM2.5 concentrations among the three 6 

months actually reflect combining effects of both meteorology and emissions. As the two experiments 7 

generated gridded aerosol fields, thus we can separate the effect of emission from the total combining effects 8 

by subtracting the NO_DA differences form CONC_DA differences. That gives us an idea how meteorology 9 

and emission play different roles in driving the changes among the three years. Table 2 illustrates this approach 10 

by taking 2015 and 2016 as an example. However, there might be some uncertainties in this approach which 11 

will be discussed in detail in section 4.2.  12 

 Table 2. The approach to distinguish different roles of meteorology and emission by calculation from 13 

different scenarios (take 2015 and 2016 as example). 14 

A. Assimilated total 

changes 

CONC_DA_2016-

CONC_DA_2015 

Reflecting the combining effects of all the driving 

factors from 2015 to 2016, e.g. emission, 

meteorology etc. 

B. Simulated changes 

due to meteorology 

differences 

NO_DA_2016-

NO_DA_2015 

As NO_DA_2015 and NO_DA_2016 were 

conducted with same emission but different 

meteorology, thus the differences reflect the effects 

from meteorological differences from 2015 to 2016 

C. Calculated changes 

due to emission 

differences = (A-B)  

(CONC_DA_2016-

CONC_DA_2015) - 

(NO_DA_2016-

NO_DA_2015) 

Mostly reflecting the effects from emission 

differences from 2015 to 2016 

3. Verification of assimilated PM2.5   15 

This section presents results from the NO_DA and assimilation experiments outlined above. As PM2.5 16 

has significant impact on AOD, we performed verification not only against surface PM2.5 but also against 17 

MODIS and AERONET AOD data. Slightly different from S12 and Jiang13, our purpose is to reproduce the 18 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-890
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 October 2018
c© Author(s) 2018. CC BY 4.0 License.



14 
 

 

spatial-temporal variations of surface PM2.5 in the reanalysis dataset, rather than to provide the IC of aerosol 1 

fields for improving forecasts.  2 

3.1 Statistics of comparison with surface PM2.5 observations 3 

Figure 3 shows the observed and modeled monthly average of surface PM2.5 for January in 2015, 2016 4 

and 2017. Eight regions were illustrated as rectangles in the figure, including NCP (North China Plain), NEC 5 

(Northeastern China), EGT (Energy Golden Triangle), XJ (Xinjiang), SB (Sichuan Basin), CC (Central China), 6 

YRD (Yangzi River Delta), and PRD (Pearl River Delta). Both observation and model show that the high 7 

values are mostly in NCP, SB and CC. In the NO_DA case, model results are over-predicted in SB, NCP and 8 

CC for all the three months while the overestimations are more severely in SB. As the NO_DA case generally 9 

overestimates (underestimates) surface PM2.5 in NCP, SB and CC (XJ) in the three years, it may indicate that 10 

the 2010 EI are not appropriate for the simulations in 2015-2017 with overestimation (underestimation) 11 

respectively. 12 

Compared to the NO_DA case, the assimilation experiment CONC_DA well reproduces the spatial 13 

distribution of surface PM2.5 for the three months, in terms of the relatively higher values in NCP, SB and CC 14 

and also some “hot spots” in NEC, which are closer to the observations. Observations also show some “hot 15 

spots” in XJ especially in 2016 and 2017 which are not captured by the NO_DA cases but much improved in 16 

the CONC_DA case.   17 

Basic statistical measures, including bias (BIAS), standard deviation (STDV), root-mean-square error 18 

(RMSE) and correlation coefficient (CORR), are applied to evaluate the experiments. Figure 4 show the time 19 

series of BIAS, STDV and RMSE for all the data used in the entire domain. The statistics are conducted for 20 

each 1-hr DA cycle. After quality control, the number of PM2.5 observations used in the DA process was 21 

different from time to time, normally around 500-520 but with minimal of 320-450 for occasional times. The 22 

reasons for the data filtering were from two aspects, either the PM2.5 observational values were larger than 23 

500 μg m-3, or innovations/deviations (observations minus the model-simulated values determined from the 24 

first guess fields) exceeded 120 μg m-3, while the latter occurred more in our CONC_DA experiment. From 25 
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the time series, we can see that the bias, STDV and RMSE are greatly improved in the CONC_DA case. The 1 

maximum biases are around 50 μg m-3 for January 2015 and around 80 μg m-3 for 2016 and 2017 in NO_DA, 2 

which are reduced to around ±10 μg m-3 in CONC_DA. The STDV and RMSE are also reduced by at least 3 

50% for most of the times. 4 

Figure 5 shows the spatial distribution of the error statistics (BIAS, RMSE and CORR) at each 5 

observational site (with more than 2/3 valid data in the month) in January of 2015, 2016 and 2017. We start 6 

from the comparison in 2015 and then address the differences in 2016 and 2017. In NO_DA for 2015, surface 7 

PM2.5 in eastern China (NCP, SB, CC, PRD and YRD) are generally overestimated by 20-60 μg m-3, but it is 8 

underestimated in NEC, the Energy Golden Triangle (EGT) and especially XJ. The high biases in eastern 9 

China are greatly corrected in CONC_DA. However, the low biases in EGT and XJ still exist as most of the 10 

observations are just filtered out in the data QC processes. That means those observations would lead to 11 

innovations exceeding 120 μg m-3 while such large increment probably indicates the emissions there in the 12 

model are severely underestimated. Consistent with the BIAS changes in CONC_DA, the RMSE and CORR 13 

in eastern China and NEC are also greatly improved with RMSE reduced by at least 50% and CORR increased 14 

by 0.2-0.7. Without enough good observations being assimilated, the improvements in EGT and XJ are 15 

relatively smaller. For the years of 2016 and 2017, the inhomogeneous distribution of biases in NO_DA is 16 

very similar to 2015 (overestimated in eastern China but underestimated in NEC, EGT and XJ). However, the 17 

high biases in CC and PRD and low biases in XJ are even larger in the latter two years. Similar to the 18 

comparisons between NO_DA and CONC_DA for the year 2015, improvements are generally achieved except 19 

for those sites in XJ and EGT for 2016 and 2017.       20 

3.2  Comparison with MODIS AOD and AERONET AOD 21 

As the improvement in surface PM2.5 would bring changes in the optical depth, we also compare the 22 

modeled monthly 550-nm AOD with Level-3 MODIS TERRA AOD data (Fig. 6). The MODIS AOD data are 23 

of 1º×1º while model resolution is 40 km×40 km , the different resolution between the two datasets may 24 

bring some uncertainties in the comparison. Besides, the MODIS TERRA AOD data are missing in NEC and 25 
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western China due to the retrieval process, comparisons can only be conducted for eastern China. Spatially, 1 

MODIS data show the high AOD values mostly in SB and CC, around 0.5-1.0. In NO_DA, the simulated 2 

AOD reached 1.4-2.8 and even larger for SB and CC which are significantly higher than the MODIS AOD. 3 

After assimilation, the AOD in SB and CC are significantly decreased, which are around 1.0-2.0 in the most 4 

polluted regions. It’s interesting to see that although CONC_DA did reproduce the high surface PM2.5 in NCP 5 

(Fig. 3), no obvious high AOD occurred there (Fig. 6c) indicating different vertical profiles of this region. The 6 

relatively simple comparison here can’t be used as evidence that the 550-nm AOD after assimilation is closer 7 

to MODIS data, while it did show that by assimilating surface PM2.5, the optical depth also changed greatly.  8 

The simulated 550-nm AODs at nine AERONET sites (Fig. 2) are also compared with observations to 9 

verify the aerosol DA performance. As the data are only available at several time slots with large fraction of 10 

missing data, thus time series are not shown here. The statistics between modeled (NO_DA/CONC_DA) 11 

experiments and the observations are listed in Table 3. At most of the sites (Beijing/Beijing-12 

CAMS/Xianghe/Taihu/Hong_Kong_Poly_U/Chiayi), the NO_DA and CONC_DA are all biased low, while 13 

CONC_DA didn’t correct the bias but did improve the correlations. At three sites in Hongkong and Taiwan 14 

(Hong_Kong_Sheung/EPA-NCU/Taipei_CWB), NO_DA results are biased high and CONC_DA help to 15 

correct the overestimation and also improve the correlation. Although there are no surface PM2.5 observations 16 

in the two regions, the assimilation in surrounding regions also helps due to the transport.  17 

Table 3. AERONET sites observed and model simulated 550-nm AOD 18 

Site 
N Pairs 

of Data 

MEAN RMSE CORR 

OBS NO_DA CONC_DA NO_DA CONC_DA NO_DA CONC_DA 

1. Beijing 511 0.300 0.174 0.166 0.216 0.235 0.833 0.903 

2. Beijing-CAMS 519 0.334 0.189 0.181 0.261 0.276 0.861 0.908 

3. XiangHe 481 0.365 0.202 0.170 0.270 0.302 0.841 0.870 

4. Taihu 49 0.278 0.224 0.122 0.127 0.187 0.595 0.833 

5. Hong_Kong_PolyU 124 0.388 0.321 0.260 0.205 0.231 0.640 0.641 

6. Hong_Kong_Sheung 39 0.313 0.642 0.134 0.486 0.224 0.520 0.663 

7. EPA-NCU 58 0.269 0.470 0.254 0.390 0.178 -0.001 0.127 

8. Taipei_CWB 83 0.284 0.431 0.316 0.377 0.252 0.515 0.537 

9.  Chiayi 254 0.457 0.233 0.163 0.330 0.371 0.545 0.363 
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4. Trends in 2015-2017 1 

Given reliable PM2.5 reanalysis fields produced by assimilating the surface PM2.5 (CONC_DA), changing 2 

trends among the three years can be analyzed not only on scattered observational sites but also for different 3 

regions. To distinct the roles of meteorology and emissions in driving the changes, analysis based on NO_DA 4 

and CONC_DA simulations are discussed. As assumed in section 2.5, meteorology-driven changes can be 5 

analyzed in the NO_DA simulations with different meteorology but the same emission inventory for different 6 

years; while the changes of the reanalysis data in different years are actually the combination of all the driving 7 

forces, including meteorology and emission. By analyzing the two sets of simulations, we attempted to 8 

distinguish the roles of meteorology and emissions in determining the changes.  9 

4.1 Spatial distribution  10 

The monthly-mean PM2.5 differences for January of the three years (2015-2017) are shown in Fig. 7, in 11 

terms of surface concentrations from observational sites (Fig. 7a) and also that from assimilation experiment 12 

(Fig. 7b). Surface observations show mostly reductions from 2015 to 2016 except for a few sites in the 13 

southern parts of NCP and EGT, and also in XJ. For the changes from 2016 to 2017, surface observations 14 

show increases at almost all the sites, especially the sites in the southern part of NCP; the only exceptions are 15 

the sites along the coastline in YRD. The assimilated (CONC_DA) differences are consistent with surface 16 

observations, that the decreasing trend from 2015 to 2016 and increasing trend from 2016 to 2017 for most of 17 

the regions are reproduced. The assimilation experiment failed to reproduce the increasing trend at XJ from 18 

2015 to 2016 as some of the highest observations were just filtered out (section 3.1) due to the large 19 

innovations in the 3Dvar process. As already shown in Fig. 3 and indicated here again, the January of 2016 is 20 

the cleanest month among the three years.  21 

In addition to surface PM2.5 concentrations, the spatial distribution changes of the 550-nm AOD from 22 

MODIS retrievals (Fig. 8a) and assimilation experiment (Fig. 8b) among the three years are also shown. As 23 

too much missing data in northern and western China (Fig. 6), the trends from MODIS retrievals are only 24 

available for eastern China. Yet, the MODIS 550-nm AOD changes are still overall consistent with the surface 25 
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observations, showing decreasing trend from 2015 to 2016 and increasing trend from 2016 to 2017 for the 1 

southeastern China region. The assimilation experiment generally reproduced the trends but with some 2 

shifting in the spatial distributions of decrease/increase regions compared with MODIS retrievals (especially 3 

for the differences between 2017 and 2016). As the MODIS retrieval is monthly average and data filtering 4 

were conducted day-to-day while model results were averaged for the whole month. That may lead to the 5 

mismatch of the data period being compared.     6 

 7 

4.2 The roles of meteorology and emission 8 

Surface PM2.5 concentrations from both observations and assimilation experiments show decreasing trend 9 

from 2015 to 2016 but increasing trend from 2016 to 2017 for most of the regions in eastern China (Fig. 7), 10 

which are also confirmed by the column AOD (Fig. 8). Actually, Chinese government has implemented strict 11 

emission control strategy since 2013, especially in the northern China, and the emission reductions from year 12 

to year are expected since 2013. Thus only justified from the emission aspect, the ambient response from 13 

2015-2017 are just contradictory. There might be two possible assumptions: the first is the emission reduction 14 

target was not achieved from 2016 to 2017, and the second is other factors are playing more important roles 15 

in addition to emissions. 16 

The NO_DA differences between different years are shown in Fig. 7c, which reflect the effect due to 17 

meteorological condition changes (section 2.5). The effect due to emission (major factor other than 18 

meteorology) is given by subtracting the NO_DA differences from the CONC_DA differences (Fig. 7d). We 19 

can clearly see that the meteorology played in two different directions from 2016 to 2017. It caused decrease 20 

in ambient concentrations for the northern China (NCP, NEC) from 2015 to 2016 but large increase for the 21 

northern and central China (CC) from 2016 to 2017. That indicates the meteorological conditions might be 22 

totally different from 2016 to 2017. After considering the impact from meteorology, the emission reduction is 23 

still confirmed for the two regions from 2016 to 2017. The contributions from meteorology and emission in 24 

the 8 regions (Fig. 3) were calculated and listed in Table 4. It shows around 13-18 µg m-3 PM2.5 reduction for 25 
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the month of January from 2015 to 2016 in northern China (NCP, NEC), but meteorology played the 1 

dominating role (contributed about 12-21 µg m-3 PM2.5 reduction). The change from 2016 to 2017 in NCP and 2 

NEC is totally different, meteorology caused about 12-23 µg m-3 PM2.5 increase and emission control measures 3 

caused 3-13 µg m-3 PM2.5 decrease, that the combing effects still showed PM2.5 increase for that region. It’s 4 

reasonable to say that the emission reductions for the northern regions from 2016 to 2017 are indeed obtained. 5 

However, the meteorology played important role which offset the emission reduction and lead to the increase 6 

of surface concentrations in 2017. The same approach is applied on the column AOD as shown in Fig. 8. 7 

Consistent with surface concentrations, meteorology caused decrease/increase for northern China for the 8 

period 2015-2016/2016-2017 respectively. The different roles of meteorology and emissions for different 9 

regions are confirmed. 10 

 Table 4. Modeled PM2.5 ambient concentration changes for 2016-2015, 2017-2016 and 2017-2015 in 8 11 

regions, and the contributions of meteorology (MET) and emission (EMIS) calculated according to Table 2. 12 

Unit: µg m-3. 13 

 2016-2015 2017-2016 2017-2015 
 Total MET EMIS Total MET EMIS Total MET EMIS 

NCP -13.38 -12.52 -0.86 +9.86 +23.16 -13.31 -3.53 +10.65 -14.17 

NEC -18.06 -21.23 +3.17 +9.60 +12.61 -3.02 -8.46 -8.62 +0.16 

ETR -1.90 -3.97 +2.07 +7.20 +12.94 -5.74 +5.30 +8.97 -3.67 

XJ -3.29 +0.07 -3.35 +5.82 +0.28 +5.55 +2.54 +0.34 +2.19 

SB -22.77 +8.72 -31.49 +9.85 +4.02 +5.83 -12.92 +12.74 -25.66 

CC -15.22 +14.12 -29.34 +5.13 +20.49 -15.35 -10.09 +34.61 -44.69 

YRD -9.03 -3.03 -5.99 -11.65 -2.93 -8.73 -20.68 -5.96 -14.72 

PRD -24.07 +13.02 -37.09 +13.20 -6.12 +19.32 -10.87 +6.90 -17.78 

 14 

It is worth noting that there are uncertainties in the simulation/assimilation processes. Firstly, emission 15 

inventories are obviously not accurate in the NO_DA simulations which may bring uncertainty in the analysis. 16 

For example, the emission in SB, CC and PRD are generally overestimated (Fig. 3), which means the ambient 17 

concentration changes might be artificially amplified in considering the meteorology impacts (Fig. 7c and Fig. 18 

8c). Secondly, the meteorological IC/BC conditions in NO_DA simulations, which were from GFS analysis 19 

data every 6-hr, have also uncertainties. The biases in meteorological conditions might lead to uncertainties in 20 
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the PM2.5 analysis. Thirdly, the accuracy of the CONC_DA assimilation experiment also affects the analysis. 1 

For example, the assimilation did reproduce some of the “hot spots” in XJ (Fig. 3c) but can’t reproduce the 2 

increasing trends from 2015 to 2016 (Fig. 7b) as some of the highest concentrations in 2016 were not well 3 

simulated (Fig. 3c). Finally, the contribution of aerosol-meteorology feedback was not considered in our 4 

calculation. As pointed out by Gao et al. (2017), reduced aerosol feedbacks due to emission reductions account 5 

for about 10.9% of the total decreases in PM2.5 concentrations in urban Beijing in their APEC study. In our 6 

current approach, this effect is combined in the emission aspects in the subtracting process. 7 

4.3 Meteorology changes in 2016 and 2017 8 

It’s interesting to see that meteorology played different roles in the three years. Here we compared some 9 

meteorology parameters to explain the meteorology impacts. Differences of monthly mean boundary layer 10 

height (PBLH), surface pressure (PSFC), 2-meter temperature (T2), 2-meter relative humidity (RH2) and 10-11 

meter wind speed in different years are given in Fig. 9. It shows that the changes of PSFC and T2 for the 12 

period 2015-2016 and 2016-2017 are totally different for the whole region. Compared to 2015, the pressure 13 

system is stronger, temperature is lower, and wind speed is larger in most regions in 2016 which are favorable 14 

for pollution dispersion. While there are some unfavorable conditions including lower PBLH and higher RH 15 

(thus more reactions) in the northern and southern China which may offset the impacts of high pressure system 16 

and low temperature. So the combining impacts of those meteorological parameters caused ambient 17 

concentration decrease in northern China and increase in southern China from 2015 to 2016 as shown in Fig. 18 

7 and Fig. 8. For the changes from 2016 to 2017, meteorological changes are totally different with weaker 19 

pressure system, higher temperature, smaller wind speed, and lower PBLH in most regions, which caused the 20 

pollution accumulation. As suggested by recent studies, climate change has important impacts on extreme 21 

haze events in northern China based on historical statistical approach or by using climate models. Those 22 

studies (e.g. Li et al., 2015, Zuo et al., 2015) revealed that wintertime fog-haze days across central and eastern 23 

China have close relation with East Asian Winter Monsoon; significant weakening (strengthening) Siberia 24 

high and East Asia trough are the two main key factors for the extreme cold events and extreme warm events 25 
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over china in winter; while warm boosts air pollution. Consistent with our study, Zhao et al. (2018) pointed 1 

out that stronger Siberian High period in January 2016 produced a significant decrease in PM2.5 concentrations 2 

than that during the weaker ones in other years. Those studies emphasized climate change factors, the impacts 3 

of emission changes are still difficult to evaluate. Our study used the DA technique combining regional models 4 

and surface observations, aiming to separate the factors of emission and meteorology, thus to further 5 

investigate the year-to-year changes for the regional scale. 6 

5. Conclusions  7 

To analyze the complex PM2.5 pollution in China, the GSI-WRF/Chem aerosol data assimilation system 8 

was updated from the GOCART aerosol scheme to MOSAIC-4BIN scheme, which is more appropriate to 9 

characterize the anthropogenic emission relevant aerosol species. Three-year (2015-2017) winter-time 10 

(January) surface PM2.5 observations from 1600+ sites were assimilated hourly using the updated 3DVAR 11 

system in the assimilation experiment CONC_DA. Parallel control experiment that did not employ DA 12 

(NO_DA) was also performed.  13 

Both the control and the assimilation experiments were verified against the surface PM2.5 observations, 14 

MODIS and AERONET 550-nm AOD. In the NO_DA experiment that 2010_MEIC emission inventory was 15 

used, modeled PM2.5 were severely overestimated in Sichuan Basin (SB), Central China (CC), YRD (Yangzi 16 

River Delta), and PRD (Pearl River Delta) which indicated the emissions for 2010 are not appropriate for 17 

2015-2017, as strict emission control strategies were implemented in recent years. Meanwhile, 18 

underestimations in Northeastern China (NEC) and Xin Jiang (XJ) were also observed. 19 

The assimilation experiment significantly reduced the high biases of surface PM2.5 in SB, CC, YRD, and 20 

PRD, and also low biases in NEC. However, the improvement of the low biases in XJ is relatively small as 21 

some of the observations were filtered out in the DA system due to the large innovations which are treated as 22 

“unrealistic”; those large innovations also indicate that the emissions in the model are seriously underestimated 23 

in this region. Assimilating surface PM2.5 also significantly changes the column AOD; comparisons with 24 
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MODIS 550-nm AOD showed that the control experiment without DA are too high in eastern China and that 1 

of assimilation experiment are more close to MODIS data.   2 

Both observation and assimilation experiment showed decreasing ambient concentration from 2015 to 3 

2016 but increasing from 2016 to 2017 for most of the regions. To distinct the important roles driving the 4 

changes, the reanalysis data from assimilation experiment and modeling result from control experiment were 5 

analyzed. It shows around 13-18 µg m-3 PM2.5 reduction for the month of January from 2015 to 2016 in northern 6 

China (NCP, NEC), but meteorology played the dominating role (contributed about 12-21 µg m-3 PM2.5 7 

reduction). The change from 2016 to 2017 in NCP and NEC is totally different, meteorology caused about 12-8 

23 µg m-3 PM2.5 increase and emission control measures caused 3-13 µg m-3 PM2.5 decrease, that the combing 9 

effects still showed PM2.5 increase for that region. The analysis approved that meteorology played different 10 

roles in 2016 and 2017: the higher pressure system, lower temperature and higher PBLH in 2016 are favorable 11 

for pollution dispersion (compared with 2015); the situation is almost the opposite in 2017 (compared with 12 

2016) that leads to the increasing PM2.5 from 2016 to 2017, although emission control strategy were 13 

implemented in both years. After considering the impacts from meteorology, the analysis showed that the 14 

emission reductions were indeed obtained from 2015 to 2016 and 2017, especially in NCP for the year 2017 15 

(although surface concentrations were increasing that year). 16 

While there are still large uncertainties in this approach, as the inaccurate emission input, uncertainties 17 

in the meteorological IC/BC and assimilation process, and also the imperfection of aerosol-meteorology 18 

feedbacks in the model simulation bring large biases in the analysis. The most straightforward way is to 19 

directly estimate the emissions by data assimilation, which will be the topic in a separate study.                   20 
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Tables and Figures 1 

Table 1. WRF/Chem model configurations. 2 

Table 2. The approach to distinguish different roles of meteorology and emission by calculation from different 3 

scenarios (take 2015 and 2016 as example). 4 

Table 3. AERONET sites observed and model simulated 550-nm AOD. 5 

Table 4. Modeled PM2.5 ambient concentration changes for 2016-2015, 2017-2016 and 2017-2015 in 8 regions 6 

and the contributions of meteorology (MET) and emission (EMIS) calculated according to Table 2. Unit: µg 7 

m-3. 8 

Figure 1. Domain-averaged standard deviations of background errors (µg kg-1) as a function of height for 9 

each aerosol variables in three bins: (a) Bin-01 0.039-0.1 µm, (b) Bin-02 0.1-1.0 µm, (c) Bin-03 1.0-2.5 µm. 10 

Figure 2. Spatial distribution of PM2.5 emissions (unit: µg m-2 s-1) used in this study. Black dots with numbers 11 

indicate 9 AErosol RObotic NETwork (AERONET) sites used for aerosol optical depth verification: 1-Beijing 12 

(39.98ºN, 116.38ºE), 2-Beijing-CAMS (39.93ºN, 116.32ºE), 3-XiangHe (39.75ºN, 116.96ºE), 4-Taihu 13 

(31.42ºN, 120.22ºE), 5-Hong_Kong_PolyU (22.30ºN, 114.18ºE), 6-Hong_kong_Sheung (22.48ºN, 14 

114.117ºE), 7-EPA-NCU (24.97ºN, 121.19ºE), 8-Taipei_CWB (25.03ºN, 121.50ºE), 9-Chiayi (23.50ºN, 15 

120.50ºE). 16 

Figure 3. Observed and modeled monthly average of PM2.5 concentrations (unit: µg m-3) for January in 2015 17 

(Left), 2016 (middle) and 2017 (right). Regions defined in red rectangles are: a-NCP (North China Plain), b-18 

NEC (Northeastern China), c- EGT (Energy Golden Triangle), d-XJ (Xinjiang), e-SB (Sichuan Basin), f-CC 19 

(Central China), g-YRD (Yangzi River Delta), h-PRD (Pearl River Delta).  20 

Figure 4. The time series of statistics between model simulations and observations. Red lines- CONC_DA 21 

minus observation, blue lines –NO_DA minus observation. Statistics include number of data pairs, MEAN-22 

mean bias, STDV- standard deviation, RMS-root mean square error. Left-2015, middle-2016, right-2017. 23 

(Unit are µg m-3 for MEAN, STDV and RMS). 24 

Figure 5. The spatial distribution of statistics between model simulations and observations for January, (a) 25 

2015, (b) 2016, (c) 2017. Top: NO_DA v.s. observation, bottom: CONC_DA v.s. observation. BIAS-model 26 

minus observation, RMSE-root mean square error, CORR-correlation coefficient. (Unit is µg m-3 for BIAS 27 

and RMSE). 28 

Figure 6. Observed and modeled monthly average of 550-nm AOD for January in 2015 (Left), 2016 (middle) 29 

and 2017 (right). Observation (a) is from MODIS Terra monthly L3 dataset (daily path time at 10:30 Local 30 

Standard Time). Model simulations from (b) NO_DA and (c) CONC_DA are monthly averages at 03 UTC 31 

(11:00 Local Standard Time). (d) The difference of CONC_DA minus NO_DA. 32 

Figure 7. Observed and modeled PM2.5 ambient concentration changes for 2016-2015 (left), 2017-2016 33 

(middle) and 2017-2015 (right). (a) Observations, (b) Assimilated total changes, (c) Modeled changed due to 34 

meteorology conditions, (d) Calculated changes due to emission. (Unit: µg m-3) 35 

Figure 8. Similar to Figure 7 but for observed and modeled 550-nm AOD changes. 36 

Figure 9. Modeled meteorological changes for 2016-2015 (left), 2017-2016 (middle) and 2017-2015 (right). 37 

(a) PBLH, (b) PSFC, (c) T2, (d) RH2 and (e) 10-m wind speed. 38 
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Figure 1. Domain-averaged standard deviations of background errors (µg kg-1) as a function of height for 

each aerosol variables in three bins: (a) Bin-01 0.039-0.1 µm, (b) Bin-02 0.1-1.0 µm, (c) Bin-03 1.0-2.5 µm. 
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Figure 2. Spatial distribution of PM2.5 emissions (unit: µg m-2 s-1) used in this study. Black dots with numbers 

indicate 9 AErosol RObotic NETwork (AERONET) sites used for aerosol optical depth verification: 1-Beijing 

(39.98ºN, 116.38ºE), 2-Beijing-CAMS (39.93ºN, 116.32ºE), 3-XiangHe (39.75ºN, 116.96ºE), 4-Taihu 

(31.42ºN, 120.22ºE), 5-Hong_Kong_PolyU (22.30ºN, 114.18ºE), 6-Hong_kong_Sheung (22.48ºN, 114.117

ºE), 7-EPA-NCU (24.97ºN, 121.19ºE), 8-Taipei_CWB (25.03ºN, 121.50ºE), 9-Chiayi (23.50ºN, 120.50º

E). 
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2015 2016 2017 

 (a) Observation 

 
(b) NO_DA 

 
(c) CONC_DA 

 
(d) CONC_DA - NO_DA 

 
Figure 3. Observed and modeled monthly average of PM2.5 concentrations (unit: µg m-3) for January in 2015 

(Left), 2016 (middle) and 2017 (right). Regions defined in red rectangles are: a-NCP (North China Plain), b-

NEC (Northeastern China), c- EGT (Energy Golden Triangle), d-XJ (Xinjiang), e-SB (Sichuan Basin), f-CC 

(Central China), g-YRD (Yangzi River Delta), h-PRD (Pearl River Delta). 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-890
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 October 2018
c© Author(s) 2018. CC BY 4.0 License.



3
0

 
 

 

 
 F

ig
u

re 4
. T

h
e tim

e series o
f statistics b

etw
een

 m
o

d
el sim

u
latio

n
s an

d
 o

b
serv

atio
n

s. R
ed

 lin
es- C

O
N

C
_

D
A

 m
in

u
s o

b
serv

atio
n

, b
lu

e lin
es –

N
O

_
D

A
 m

in
u

s 

o
b

serv
atio

n
. S

tatistics in
clu

d
e n

u
m

b
er o

f d
ata p

airs, M
E

A
N

-m
ean

 b
ias, S

T
D

V
- stan

d
ard

 d
ev

iatio
n

, R
M

S
E

-ro
o

t m
ean

 sq
u

are erro
r. L

eft-2
0

1
5

, m
id

d
le

-2
0

1
6

, rig
h

t-

2
0

1
7

. (U
n

it are µ
g
 m

-3 fo
r M

E
A

N
, S

T
D

V
 an

d
 R

M
S

). 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-890
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 October 2018
c© Author(s) 2018. CC BY 4.0 License.



31 
 

 

(a). 2015 - NO_DA (top) and CONC_DA (bottom)  

 
 

 
Figure 5a. The spatial distribution of statistics between model simulations and observations for January 2015. 

Top: NO_DA v.s. observation, bottom: CONC_DA v.s. observation. BIAS-model minus observation, RMSE-

root mean square error, CORR-correlation coefficient. (Unit is µg m-3 for BIAS and RMSE). 
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(b). 2016 - NO_DA (top) and CONC_DA (bottom) 

 
 

 
Figure 5b. Continue. Same as Figure 5a but for 2016. 
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(c). 2017 - NO_DA (top) and CONC_DA (bottom) 

 
 

 
Figure 5c. Continue. Same as Figure 5a but for 2017. 
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2015 2016 2017 

(a) MODIS TERRA Observation 

   

(b) NO_DA 

 
(c) CONC_DA 

 
(d) CONC_DA - NO_DA 

 
Figure 6. Observed and modeled monthly average of 550-nm AOD for January in 2015 (Left), 2016 (middle) 

and 2017 (right). Observation (a) is from MODIS Terra monthly L3 dataset (daily path time at 10:30 Local 

Standard Time). Model simulations from (b) NO_DA and (c) CONC_DA are monthly averages at 03 UTC 

(11:00 Local Standard Time). (d) The difference of CONC_DA minus NO_DA. 
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2016-2015 2017-2016 2017-2015 

(a) Observations 

 
(b) Assimilated total changes 

 
(c) Modeled changes due to meteorological conditions 

 
(d) Calculated changes due to emission  

 
Figure 7. Observed and modeled PM2.5 ambient concentration changes for 2016-2015 (left), 2017-2016 

(middle) and 2017-2015 (right). (Unit: µg m-3). 
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2016-2015 2017-2016 2017-2015 

(a) MODIS 550-nm AOD 

   
(b) Assimilated total changes 

 
(c) Modeled changes due to meteorological conditions 

 

(d) Calculated changes due to emission (factor other than meteorology) 

 
Figure 8. Similar to Figure 7 but for observed and modeled 550-nm AOD changes. 
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Figure 9. Modeled meteorological changes for 2016-2015 (left), 2017-2016 (middle) and 2017-2015 (right) 

for (a) PBLH, (b) PSFC, (c) T2, (d) RH2 and (e) 10-m wind speed. 
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