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Reviewer 1 

This manuscript presents an interesting study that utilizes the GSI-WRF/Chem 3D-variational data 

assimilation system to better simulate the surface PM2.5 concentrations in China for the January months 2015-

2017. It shows that WRF-Chem PM2.5 simulations with assimilation of surface measurements significantly 

reduced the model biases and better captured the inter-annual variability of surface PM2.5 levels in January 

2015-2017. The model improvements are independently evaluated with MODIS and AERONET aerosol 

optical depth (AOD) measurements. Comparisons of model PM2.5 simulations with and without data 

assimilation indicate the effectiveness of the emission control measures, as well as the unfavorable 

meteorological conditions in January 2017 that led to PM2.5 increases relative to January 2016. 

Overall, I think this is a nice study that illustrates the strength of data assimilation method to constrain PM2.5 

changes, and further diagnoses contributions from both emissions and meteorological conditions. The method 

of this study is solid, and the language is generally appropriate. I recommend publish after the following 

comments being addressed. 

 

Response:  

We really appreciate the reviewer’s thoughtful comments. It helps to improve our manuscript by 

addressing these issues. We have made serval changes accordingly. 

1. Rerun the assimilation experiment with looser filter criteria, in which the interannual changes were 

better captured. 

2. Added quantitative results in tables, including the statistics of control and assimilation experiments, 

and also the statistics of interannual differences of meteorology conditions. 

Please see our itemized responses below. Revised manuscript is after the response letter. 

 

Specific Comments: 
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(1) Page 7, Line 11: 

“The spatial distributions of primary PM2.5 emission are shown in Fig. 1”. Here Fig 1 should be Fig 2. Does 

primary PM2.5 correspond to BC, OC, and OIN in the WRF-Chem model? Since PM2.5 is also produced 

secondary in the air, it should be useful to show its precursor emissions, such as NOx or SO2. 

Response:  

Thanks for pointing out the typo! The figure number in the text has been corrected.  

Yes, the primary PM2.5 corresponds to the total of BC, OC, sulfate, nitrate and other PM emissions. The 

emission spatial distribution of SO2, NOx and NH3 have been added in Figure 2. 

 

(2) Page 10, Line 5-8 about the data quality filter: 

The study states that PM2.5 observational values larger than 500 μg m-3 were deemed unrealistic and 

observations leading to deviations exceeding 120 μg m-3 were also omitted. It is not clear to me how these 

thresholds would impact the results and the conclusions of this study. What are the fractions of data that were 

omitted by the filters? In winter, some cases can meet the thresholds and can be realistic. So what would 

happen if a looser filter was applied. Please add some discussions. 

Response:  

Thanks for the suggestion! The criteria for filter process are from two aspects, including the stability of 

DA optimization step and the computing efficiency. The original criteria were mostly set for operational runs. 

For research purpose, we have made tests of different filter process and found that looser filter can really 

improve the assimilation results. Here in the revised manuscript, only PM2.5 observations larger than 1000 μg 

m-3 (the maximum display limit of the monitoring system) were deemed unrealistic in the filter process and 

observations leading to deviations exceeding 500 μg m-3 were omitted. Besides, in the original assimilation 

experiment observational sites located in grids with elevation greater than 500 meter (Above Sea-Level) were 

not used; to better utilize those data, we chose to interpolate them to the lowest model level for assimilation. 

The data used in the two assimilation experiments increased from 3580876 (62.4%) to 5309200 (92.6%) by 

setting looser filters. It should be corrected that the number of data (top panel) in Figure 4 are actually the data 

available for comparisons, not the data used in the assimilation cycle.    

Below show the observed, original and updated assimilations of monthly average of PM2.5 concentrations 

(unit: µg m-3) for January in 2015 (Left), 2016 (middle) and 2017 (right). The most prominent improvements 

are shown for the hotspots in Xinjiang (region d) and Fenwei Plain (added as region e).  

 

 

 

 



3 
 

 

2015 2016 2017 

(a) Observation 

 

(b) Original CONC_DA 

 

(c) New CONC_DA with looser filter 

 

Figure S1. Observed and modeled monthly average of PM2.5 concentrations (Unit: µg m-3) for January in 

2015 (Left), 2016 (middle) and 2017 (right). (a) Observation, (b) Original CONC_DA, (c) New CONC_DA 

with looser filter. Regions defined in red rectangles are: a-NCP (North China Plain), b-NEC (Northeastern 

China), c- EGT (Energy Golden Triangle), d-XJ (Xinjiang), e-Fenwei Plain (FWP), f-SB (Sichuan Basin), g-

CC (Central China), h-YRD (Yangtze River Delta), i-PRD (Pearl River Delta).   

In the updated assimilation experiment, the interannual changes were also captured as shown below. 

Those improvements make our analysis more solid, especially for the Xinjiang region and Fenwei Plain. The 

updated figures and discussions are highlighted in blue in the revised manuscript. 
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2016-2015 2017-2016 2017-2015 

(a) Observation 

 

(b) Original CON_DA 

 

(c) New CON_DA with looser filter 

 

 

Figure S2. Observed and modeled PM2.5 ambient concentration changes for 2016-2015 (left), 2017-2016 

(middle) and 2017-2015 (right). (a) Observation, (b) Original CONC_DA, (c) New CONC_DA with looser 

filter. (Unit: µg m-3) 

 

(3) Page 14, Section 3.1: 

It shall be valuable to add a table in this section, similar to current Table 4, but summarizing the mean observed 

vs. simulated PM2.5 concentrations over the 8 regions defined in Figure 3. The readers can then have a more 

quantitative picture on how effective the data assimilation system is. 

 



5 
 

 

Response:  

Thanks for the suggestion. Yes, we have added the statistics in Table 3.  

Table 3. Statistics of the observed and model-simulated surface PM2.5 for January 2015, 2016 and 2017 in 9 

regions (units are μg m-3 for BIAS and RMSE). 

Statistics Sites 
Pairs of 

data 

BIAS RMSE CORR 

NO_DA CONC_DA NO_DA CONC_DA NO_DA CONC_DA 

2015 

NCP 67 46699 19.38 2.08 68.09 24.26 0.72 0.96 

NEC 30 20910 -11.94 -1.04 49.47 21.11 0.59 0.93 

EGT 28 19516 -40.43 5.28 60.62 19.45 0.37 0.90 

XJ 19 13243 -53.76 4.16 71.69 19.74 0.40 0.94 

FWP 27 18819 4.05 1.75 56.71 23.05 0.63 0.93 

SB 48 33456 98.02 0.61 125.76 20.76 0.55 0.94 

CC 49 34153 46.94 -0.38 81.31 21.18 0.46 0.93 

YRD 34 23698 32.22 -0.43 59.90 15.14 0.73 0.96 

PRD 20 13940 19.36 -0.03 47.81 9.10 0.24 0.95 

2016 

NCP 67 46699 20.90 1.41 57.77 20.74 0.78 0.96 

NEC 30 20910 -11.05 0.04 40.91 16.08 0.57 0.94 

EGT 28 19516 -22.55 0.69 39.63 13.75 0.42 0.90 

XJ 19 13243 -72.92 0.25 98.19 27.16 0.51 0.96 

FWP 27 18819 -3.51 1.51 62.04 26.01 0.76 0.94 

SB 48 33456 134.63 2.77 165.38 15.49 0.51 0.92 

CC 49 34153 86.28 1.89 109.09 18.76 0.46 0.92 

YRD 34 23698 46.13 1.03 62.11 13.40 0.73 0.95 

PRD 20 13940 59.79 2.05 74.76 6.51 0.04 0.91 

2017 

NCP 67 46699 25.75 2.35 82.31 28.91 0.74 0.95 

NEC 30 20910 -11.38 0.01 53.38 21.35 0.64 0.94 

EGT 28 19516 -26.88 1.40 48.83 16.96 0.41 0.90 

XJ 19 13243 -95.92 3.82 125.09 35.65 0.51 0.96 

FWP 27 18819 -6.78 -1.02 89.26 31.69 0.65 0.94 

SB 48 33456 122.82 2.33 149.08 20.08 0.56 0.93 

CC 49 34153 101.22 3.49 132.97 19.50 0.23 0.92 

YRD 34 23698 59.31 2.40 78.02 12.32 0.63 0.93 

PRD 20 13940 35.01 0.04 61.84 9.55 -0.16 0.94 

 

 

(4) Page 15, Section 3.2: 

The use of MODIS AOD data was only for support of the AOD decreases over the Sichuan Basin and Central 

China after data assimilation. This seems to be insufficient. 

How about the inter-annual variability of MODIS AOD over January 2015-2017? Are they consistent with 

surface PM2.5 measurements? Please clarify. 
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Response:  

Actually it’s difficult to make judge of the assimilation experiment improvements by using 

MODIS/AERONET AOD data, as the vertical profiles and the assumptions of optical properties in the model 

can’t be evaluated at this stage. According to the other reviewer’s suggestion, we decided to remove the entire 

session relevant with MODIS/AERONET AOD. 

 

(5) Page 18, Line 23: 

In the statement “meteorological conditions might be totally different from 2016 to 

2017”, “totally” is a very strong word, however, it is not clear how different 2017 meteorological conditions 

are different from normal wintertime conditions with Siberian Highs. I have the same comment for Page 20, 

Line 13, Line 19, the word “totally” is not helpful. I suggest use more quantitative statements, for example, 

higher temperature by how much? 

Response:  

Thanks for the suggestion! Yes, those statements are too strong and not quantitative. We have added the 

statistic of the meteorology differences by regions in Table 5 and also changed the statements in the texts 

accordingly.  

Table 5. Statistics of the meteorological differences by region for January 2015, 2016 and 2017. 

 PBLH (meter) PSFC (Pa) T2 (degree) RH2 (%) WS10 (m/s) 

 
2016

-

2015 

2017

-

2016 

2017

-

2015 

2016 

- 

2015 

2017

-

2016 

2017 

- 

2015 

2016 

- 

2015 

2017 

- 

2016 

2017 

- 

2015 

2016 

- 

2015 

2017 

- 

2016 

2017 

- 

2015 

2016 

- 

2015 

2017 

- 

2016 

2017 

- 

2015 

NCP 27.9 -26.7 1.2 138.5 -30.2 108.4 -4.9  3.3  -1.6  3.0  5.1  8.1  1.15 -0.78 0.37 

NEC 22.7 35.3 58.0 117.0 -58.7 58.3 -4.9  4.4  -0.5  -5.7  3.1  -2.6  0.96 -0.38 0.57 

EGT 13.6 1.1 14.7 28.0 -8.4 19.7 -4.0  4.0  0.0  10.0  -14.9  -4.9  0.14 -0.50 -0.36 

XJ -0.9 -13.8 -14.7 151.3 -43.1 108.1 -1.3  -0.8  -2.1  5.5  -2.1  3.4  0.36 -0.14 0.22 

FWP 67.7 -51.6 16.1 64.6 -12.2 52.4 -3.8  3.4  -0.4  2.8  -0.8  2.0  1.05 -1.00 0.06 

SB 9.8 -13.2 -3.4 -15.9 15.9 0.1 -2.4  2.5  0.2  3.9  -1.8  2.0  0.43 -0.02 0.41 

CC 34.8 -56.6 -21.9 82.8 -53.2 29.6 -2.5  2.1  -0.3  10.8  0.7  11.5  0.60 -0.07 0.53 

YRD 64.7 -22.0 42.7 77.1 -27.8 49.2 -1.7  1.9  0.2  7.8  2.5  10.3  0.89 -0.40 0.49 

PRD -36.1 8.2 -27.9 -16.2 -60.1 -76.3 -0.5  2.4  1.9  11.9  -8.7  3.2  0.94 -0.48 0.46 
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(6) Page 20, Line 15: 

What does “higher RH (thus more reactions)” mean? How higher RH lead to more chemical 

reactions? Please clarify. 

Response:  

Yes, in our updated chemistry scheme with newly added heterogeneous reactions (SO2, NO2 

and NO3 relevant), higher RH may cause higher uptake coefficients thus more reactions. In the 

new scheme, the lower and upper limits were used to present a range of uptake coefficient values 

in the laboratory measurements which were applied when RH is lower than 50% and higher than 

90%, respectively. The values in the 50-90% RH range are linearly interpolated based on the two 

limits. It means when RH exceeds 50%, the uptake coefficients would increase quickly. The 

details are in Chen (et al. 2016). 

In relatively humid regions, such as Central China, Yangtze River Delta and Pearl River 

Delta, the inter-annual changes of RH2 reached ~10%, which are expecting to affect the 

heterogeneous reactions. 

 

(7) Captions of Figure 7 and Figure 9: Please indicate here that the comparisons are for the January 

month. 

Response:  

Clarified in the caption. 

 

(8) Some technical corrections: 

Page 2, Line 8 - “modeled PM2.5 are” should be “modeled PM2.5 concentrations are” 

Page13, Line 7 - “reflect combining effects” should be “reflect combined effects“ 

Page 14, Line 11 - “the 2010 EI” should be “the 2010 emissions“ 

Page 19, Line 17 - “the emission in : : :” should be “the emissions in : : :” 

Response: 

Corrected accordingly. 
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Abstract 1 

To better characterize anthropogenic emission-relevant aerosol species, the GSI-WRF/Chem data 2 

assimilation system was updated from the GOCART aerosol scheme to the MOSAIC-4BIN scheme. Three 3 

years (2015-2017) of wintertime (January) surface PM2.5 observations from 1600+ sites were assimilated 4 

hourly using the updated 3DVAR system. In the control experiment (without assimilation) using 2010_MEIC 5 

emissions, the modeled January averaged PM2.5 concentrations were severely overestimated in the Sichuan 6 

Basin, Central China, Yangtze River Delta, and Pearl River Delta by 98-134, 46-101, 32-59, and 19-60 μg m-7 

3, respectively, indicating that the emissions for 2010 are not appropriate for 2015-2017, as strict emission 8 

control strategies were implemented in recent years. Meanwhile, underestimations of 11-12, 53-96, and 22-40 9 

μg m-3 were observed in northeastern China, Xinjiang and the Energy Golden Triangle, respectively. The 10 

assimilation experiment significantly reduced both high and low biases to within ±5 μg m-3. 11 

The observations and the reanalysis data from the assimilation experiment were used to investigate the 12 

year-to-year changes and the driving factors. The role of emissions was obtained by subtracting the 13 

meteorological impacts (by control experiments) from the total combined differences (by assimilation 14 

experiments). The results show a reduction in PM2.5 of approximately 15 µg m-3 for the month of January from 15 

2015 to 2016 in the North China Plain (NCP), but meteorology played the dominant role (contributing a 16 

reduction of approximately 12 µg m-3). The change (for January) from 2016 to 2017 in NCP was different; 17 

meteorology caused an increase in PM2.5 of approximately 23 µg m-3, while emission control measures caused 18 

a decrease of 8 µg m-3, and the combined effects still showed a PM2.5 increase for that region. The analysis 19 

confirmed that emission control strategies were indeed implemented and emissions were reduced in both years. 20 

Using a data assimilation approach, this study helps identify the reasons why emission control strategies may 21 

or may not have an immediately visible impact. There are still large uncertainties in this approach, especially 22 

the inaccurate emission inputs, and neglecting aerosol-meteorology feedbacks in the model can generate large 23 

uncertainties in the analysis as well. 24 

1. Introduction 25 

Anthropogenic PM2.5 (fine particulate matter with an aerodynamic diameter smaller than 2.5 µm) is 26 

known as a robust indicator of mortality and other negative health effects associated with ambient air pollution. 27 
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PM2.5 components are originate not only from primary emissions but also from secondary formations through 1 

various precursors (e.g., SO2, NOx, and VOCs). Regional haze with extremely high PM2.5 concentrations 2 

(exceeding the WHO standard tenfold) has become the primary air quality concern in China, especially over 3 

northern China (e.g., Wang et al. 2014a, 2014b; Han et al. 2015; Sun et al. 2015). To control PM2.5 pollution 4 

and improve the overall air quality, a series of strict pollution control strategies have been implemented by the 5 

government since 2010, including the Guiding Options on Promoting the Joint Prevention and Control of Air 6 

Pollution to Improve Regional Air Quality (The Central Government of the People’s Republic of China, 2010) 7 

and the Atmospheric Pollution Prevention and Control Action Plan (The Central Government of the People’s 8 

Republic of China, 2013), in which the government stated that environmental-related equipment (for flue-gas 9 

desulfurization, selective catalyst reduction, exhaust dust removal, etc.) are mandatory for both industries and 10 

vehicles. In addition to long-term pollution control strategies, different emergency measures under different 11 

pollution alerts were also implemented occasionally. For example, the production of large industrial sources 12 

(coal burning and cement) was limited to reduce emissions, construction sites were restricted to prevent 13 

fugitive dust pollution, and traffic restrictions were implemented on even- and odd-numbered license plates. 14 

These emission control strategies were stricter and implemented more often in northern China than anywhere 15 

else in winter, when haze events occur more frequently. These control strategies were expected to reduce both 16 

the concentrations of significant precursors (e.g., SO2, NOx) and the emissions of PM2.5. 17 

Despite these strict emission control strategies, the ambient PM2.5 concentrations in major cities still 18 

fluctuated during the wintertime from year to year. For example, the overall January PM2.5 concentrations in 19 

74 cities generally decreased from 2015 to 2016, but the concentrations in January 2017 were still higher than 20 

those in 2016 (Ambient Air Quality Monthly Report 2015-01/2016-01/2017-01, 21 

http://www.cnemc.cn/kqzlzkbgyb2092938.jhtml). While annual emission reduction trends were expected 22 

from 2015 to 2017, the overall increase in the surface concentrations observed in January 2017 contradicted 23 

these expectations, thereby indicating that other factors (especially meteorological conditions) in addition to 24 

emissions may play important roles. Some studies have attempted to investigate the variability of air pollution 25 
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and the effects of climate change on wintertime air pollution by using statistical data. Li et al. (2016) indicated 1 

that wintertime fog-haze days across central and eastern China have a close relationship with the East Asian 2 

winter monsoon. Zuo et al. (2015) concluded that the significant weakening and strengthening of the Siberian 3 

high and East Asian trough, respectively, are the two main factors for the occurrence of extreme cold and 4 

extreme warm events over China in winter, when warm air boosts air pollution. In addition to utilizing 5 

statistical methodology, it is necessary to distinguish the roles of emissions and meteorology to further 6 

investigate the driving factors of interannual air pollution changes. 7 

Regional air quality models are important tools for scientifically understanding the formation of haze 8 

events, technically constructing forecasts, and evaluating the effects of control strategies. For regional 9 

modeling studies, emission inventories are important for reflecting the emission inputs into the atmosphere. 10 

Generally, an emission inventory is based on a “bottom-up” methodology, thereby relying on the statistics of 11 

energy activity and emission factors, etc. However, uncertainties in energy statistics can cause variations in 12 

the emission estimates (Zhao et al., 2017; Hong et al., 2017; Zhi et al., 2017). For regional modeling 13 

applications, the total emissions based on statistics are spatially and temporally distributed according to 14 

relevant factors (He, 2012). Nevertheless, the occasional emission control strategies implemented in winter 15 

can cause large uncertainties in not only total emission estimations but also spatial and temporal allocations, 16 

which would lead to large biases in the model simulations. 17 

In addition to the uncertainties in emission inventories, deficiencies in the model chemistry can also cause 18 

model uncertainties. Increasing numbers of observations have revealed that anthropogenic emission-relevant 19 

aerosol species, such as sulfate, nitrate and ammonium (denoted as SNA), are the predominant inorganic 20 

species in the wintertime PM2.5 in China (Wang et al., 2014c; Yang et al., 2015). Various reaction paths during 21 

haze events have also been proposed (e.g. Zheng et al., 2015; Cheng et al., 2016; Wang et al., 2016; Li et al., 22 

2017; Moch et al., 2018; Wang et al., 2018; Shao et al., 2019). For example, Moch et al. (2018) used a 1-D 23 

model and revealed the importance of aqueous-phase chemistry of HCHO and S(IV) in cloud droplets by 24 

forming a S(IV)-HCHO adduct, hydroxymethane sulfonate. Shao et al. (2019) implemented four 25 
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heterogeneous sulfate formation mechanisms (via H2O2, O3, NO2, and transition metal ions on aerosols) into 1 

GEOS-Chem model which partially reduced the modeled low bias in sulfate concentrations. However, a 2 

scientific consensus regarding the importance of the reaction paths has not yet been reached partially due to 3 

the uncertainties of aerosol liquid water content, pH, and ionic strength etc. The original WRF/Chem model 4 

with either the Goddard Chemistry Aerosol Radiation and Transport (GOGART, Chin et al., 2000, 2002) or 5 

the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)-4BIN aerosol scheme failed to 6 

reproduce the highest PM2.5 concentrations; it is assumed that this failure is due to missing 7 

heterogeneous/aqueous reactions. In Chen et al. (2016, hereafter Chen16), we added three heterogeneous 8 

reactions (SO2-to-H2SO4 and NO2/NO3-to-HNO3) to the WRF/Chem model based on the MOSAIC-4BIN 9 

aerosol scheme. Although the reaction paths may still not be comprehensively understood, the new MOSAIC-10 

4BIN aerosol scheme significantly improved the simulation of sulfate, nitrate, and ammonium on polluted 11 

days in terms of the concentrations of those species and their partitioning. 12 

Data assimilation (DA), that is, the combination of observations with numerical model output, has proven 13 

to be skillful at improving aerosol forecasts (e.g., Collins et al., 2001; Pagowski et al., 2010; Liu et al., 2011; 14 

Liu et al., 2016; Zhang et al., 2016). Liu et al. (2011, hereafter Liu11) implemented DA on AOD estimates 15 

within the National Centers for Environmental Prediction (NCEP) gridpoint statistical interpolation (GSI) 16 

three-dimensional variational (3DVAR) DA system coupled with the GOCART aerosol scheme within the 17 

Weather Research and Forecasting/Chemistry (WRF/Chem) model (Grell et al., 2005). Schwartz et al. (2012, 18 

hereafter S12) and Jiang et al. (2013, hereafter Jiang13) extended the above system to assimilate surface PM2.5 19 

and PM10. The evaluation results demonstrated improved aerosol forecasts from the DA system in studies over 20 

East Asia and the United States. 21 

Following Liu11, S12 and Chen16, we updated the GSI-WRF/Chem system by changing from the 22 

GOCART aerosol scheme to the MOSAIC-4BIN aerosol scheme to better characterize the complex PM2.5 23 

pollution in China. We applied the updated system to assimilate PM2.5 concentrations of January 2015, 2016 24 

and 2017 for two purposes: 1) to reproduce the PM2.5 output by the DA system and 2) to investigate the 25 
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different impacts of meteorological conditions and emissions on the PM2.5 pollution in different years. In this 1 

paper, section 2 provides descriptions of the model, observations and methodology and addresses the updated 2 

GSI-WRF/Chem-coupled DA system with the MOSAIC-4BIN aerosol scheme. In section 3, the assimilation 3 

results for the PM2.5 concentrations from January 2015, 2016 and 2017 are presented and compared with 4 

surface observations (PM2.5 total mass) to evaluate the DA system. In contrast to previous applications 5 

emphasizing the forecast skill improvement achieved by the DA system, we fully utilized reanalysis data to 6 

investigate the driving factors of pollution and to differentiate the roles played by meteorological conditions 7 

and emissions in different years by analyzing the reanalysis data and model simulations. The results are given 8 

in section 4, and the conclusions are given in section 5. 9 

2. Model description, observations and methodology 10 

The WRF/Chem settings are very similar to those of Chen16, although Chen16 focused on the SNA 11 

aerosols in the North China Plain during October 2014; in addition, several heterogeneous reactions were 12 

newly added to the original chemistry modules to improve the SNA simulation performance. The DA system 13 

used herein was based upon the NCEP GSI system extended by Liu11 and S12. We assimilated surface PM2.5 14 

observations, and the only difference is that the MOSAIC-4Bin aerosol scheme (32 PM species) was chosen 15 

for the WRF/Chem model instead of the GOCART aerosol scheme. Thus, the 3-D mass mixing ratios of those 16 

MOSAIC species at each grid point composed the analysis (or control) variables in the GSI 3DVAR 17 

minimization process. 18 

Here, only a brief summary of the WRF/Chem configuration is provided below prior to a description of 19 

the updated GSI DA system and the settings used in this work. The most important differences are noted, e.g., 20 

the forward operator for observations in the GSI system. 21 

2.1 WRF/Chem model and emissions 22 

As in Chen16, version 3.6.1 of the WRF/Chem model was used in this study (Grell et al., 2005; Fast et 23 

al., 2006). The physical parameterizations employed in the WRF/Chem model were identical to those of 24 
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Chen16, and they are listed in Table 1. The Carbon-Bond Mechanism version Z (CBMZ) and the Model for 1 

Simulating Aerosol Interactions and Chemistry (MOSAIC) were used as the gas phase and aerosol chemical 2 

mechanisms, respectively, in this study. The aerosol species in MOSAIC are defined as black carbon (BC), 3 

organic compounds (OC), sulfate (SO4), nitrate (NO3), ammonium (NH4), sodium (NA), chloride (CL) and 4 

other inorganic compounds (OIN). We used 4 size bins with aerosol diameters ranging from 0.039-0.1, 0.1-5 

1.0, 1.0-2.5, and 2.5-10 µm. The 24 variables in the first three bins (8 species times 3 bins) consist of the PM2.5 6 

total. The newly added relative humidity (RH)-dependent SO2-to-H2SO4 and NO2/NO3-to-HNO3 7 

heterogeneous reactions (details are provided in Chen16) were also applied in the simulations. 8 

The model domain with a 40-km horizontal grid spacing covers most of China and the surrounding 9 

regions (Fig. 2), and there are 57 vertical levels extending from the surface to 10 hPa. The simulation started 10 

from Dec. 20 of the previous year; the first eleven days were treated as a spin-up period and were not used in 11 

our analyses. 12 

Table 1. WRF/Chem model configuration. 13 

Aerosol scheme  MOSAIC (4 bins) (Zaveri et al., 2008) 

Photolysis scheme Fast-J (Wild et al., 2000) 

Gas phase chemistry CBM-Z (Zavier et al., 1999) 

Cumulus parameterization Grell 3D scheme  

Short-wave radiation Goddard Space Flight Center Shortwave radiation scheme (Chou 

and Suarez, 1994) 

Long-wave radiation RRTM (Mlawer et al., 1997) 

Microphysics Single-Moment 6-class scheme (Grell and Devenyi, 2002) 

Land-surface model  NOAH LSM  (Chen and Dudhia, 2001) 

Boundary layer scheme  YSU  (Hong et al., 2006) 

Meteorology initial and boundary 

conditions  

GFS analysis and forecast every 6 hour 

Initial condition for chemical species  11-day spin-up  

Boundary conditions for chemical 

species  

averages of mid-latitude aircraft profiles (McKeen et al., 2002) 

Dust and sea salt Emissions GOCART 

As in Chen16, the Multi-resolution Emission Inventory for China (MEIC) (Zhang et al., 2009; Lei et al., 14 

2011; He 2012; Li et al., 2014) for January 2010 was used as the emission input, as it is the only emission 15 



8 
 

 

inventory that was publicly available when the study was conducted. The original grid spacing of the MEIC 1 

is 0.25° × 0.25°, and this inventory has been processed to match the model grid spacing (40 km). The spatial 2 

distributions of primary PM2.5, SO2, NOx and NH3 emissions are shown in Fig. 2. The MEIC-2010 emission 3 

inventory has already been applied in other studies (e.g., Wang et al., 2014a; Zheng et al., 2015) for 4 

simulations over China in the past few years; these recent studies found that the MEIC provides reasonable 5 

estimates of total emissions but is subject to uncertainties in the spatial allocations of these emissions over 6 

small spatial scales. For our simulations, uncertainties may also arise from two other sources: the difference 7 

between the emission base year (2010) and our simulation period (2015 through 2017) and the monthly 8 

allocations. As the Chinese government has implemented strict control strategies to ensure an improved air 9 

quality during the winter season since 2013, significant reductions in emissions, including primary PM and 10 

precursor compounds (SO2 and NOx), in regions with the strict implementation of these policies relative to the 11 

year 2010 are expected for our simulation period. A reduction in SO2 pollution of approximately 50% was 12 

observed from 2012-2015 for the North China Plain from OMI satellite data (Krotkov et al., 2016). National 13 

anthropogenic emission reductions of approximately 67%, 17%, and 35% from 2012-2017 for SO2, NOx, and 14 

PM2.5, respectively, were assumed by the bottom-up EI methodology (Zheng et al., 2018). However, the 15 

expansion and relocation of the energy industry caused emission increases in northwestern China (Ling et al., 16 

2017). In addition, the uncertainties of allocated emissions in the winter season will be much larger than those 17 

in other seasons. For example, Zhi et al. (2017) conducted a village energy survey and revealed an enormous 18 

discrepancy in the amount of rural raw coal used for winter heating in northern China, implying an extreme 19 

underestimation of rural household coal consumption by the China Energy Statistical Yearbooks. These 20 

changes and uncertainties of emissions in the model would introduce errors into the NO_DA simulation. 21 

However, the inhomogeneous spatial changes and large uncertainties of seasonal allocations made it difficult 22 

to simply scale the original emission inventory for our study period. 23 

2.2 Updated GSI 3DVAR DA system 24 

The NCEP’s GSI 3DVAR DA system was used to assimilate surface PM2.5 observations. The GSI 3DVAR 25 
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DA system calculates a best-fit analysis considering the observations (hourly surface PM2.5 concentrations in 1 

our case) and background fields (a 1-hr short-term WRF/Chem forecast in our case) weighted by their error 2 

characteristics. The GSI 3DVAR DA system produces an analysis in a model grid space through the 3 

minimization of a scalar objective function J(x) given by  4 

                𝐽(x) =
1

2
(x − xb)TB−1(x − xb)+

1

2
[𝐻(x) − y]TR−1[𝐻(x) − y],                   (1) 5 

where 𝐱𝐛 denotes the background vector (with dimension m), y is a vector of observations (with dimension 6 

p), and B and R represent the background and observation error covariance matrices of dimensions m × m 7 

and p × p, respectively. The covariance matrices determine the relative contributions of the background and 8 

observation terms to the final analysis. H is the potentially nonlinear “observation operator” that interpolates 9 

the model grid point values into observation spaces and converts model-predicted variables into observed 10 

quantities. 11 

2.2.1 PM2.5 observation operator 12 

In our updated DA system, GSI was used to assimilate surface PM2.5 total mass observations, whereas 13 

the WRF/Chem model predicts the PM2.5 total mass as different prognostic variables depending on the chosen 14 

aerosol scheme. As we chose the MOSAIC-4Bin aerosol scheme, the analysis variables here were the 3D mass 15 

mixing ratios of the 24 MOSAIC aerosol variables at each grid point. The model-simulated PM2.5 observations 16 

𝑀𝑃𝑀2.5
 were computed by summing the 24 species as 17 

𝑀𝑃𝑀2.5
= ∑ [𝐵𝐶_𝑖 + 𝑂𝐶_𝑖 + 𝑆𝑂4_𝑖 + 𝑁𝑂3_𝑖 + 𝑁𝐻4_𝑖 + 𝐶𝐿_𝑖 + 𝑁𝐴_𝑖 + 𝑂𝐼𝑁_𝑖]3

𝑖=1 ,           (2) 18 

where i denotes the bin number in the MOSAIC aerosol scheme, where the first three bins consist of the PM2.5 19 

total, and BC, OC, SO4, NO3, NH4, NA, CL, and OIN denote black carbon, organic compounds, sulfate, nitrate, 20 

ammonium, sodium, chloride and other inorganic compounds, respectively. This formula is identical to that 21 

used in the WRF/Chem MOSAIC scheme to diagnose PM2.5. The WRF-Chem-simulated aerosol mixing ratios 22 

of the species listed inside the brackets of Eq. 2 are in units of μg kg−1, and thus, the dry air density 𝜌𝑑 is 23 

multiplied to convert the units into μg m−3 for consistency with the observations.  24 
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Since only surface PM2.5 total mass observations were assimilated to analyze the 3D mass mixing ratios 1 

of 24 aerosol variables, the 3DVAR problem was underconstrained. Due to the lack of species and vertical 2 

information provided by the observations, the only mathematical solution is to utilize prior information from 3 

the model background. In the GSI system, the distribution of the analysis increments (the difference between 4 

the analysis and background) onto the different species was mostly model driven with the observation and 5 

background error covariance matrices acting as the main constraints. This speciated approach to aerosol DA 6 

within a variational system was introduced by Liu11 and further applied by S12 and Jiang13. By using 7 

individual aerosol species as the control variables, no assumptions were made regarding the contribution of 8 

each species’ mass to the total aerosol mass or to the shapes of the vertical profiles. 9 

2.2.2 PM2.5 observations and errors 10 

Hourly surface PM2.5 observations for January 2015-2017 were obtained from the China National 11 

Environmental Monitoring Center (CNEMC). There are 1600+ sites in our modeling domain. As the 1600+ 12 

monitoring sites fall into 531 model grids, all observations within the same grid are averaged (as well as the 13 

latitude and longitude) for the purpose of performing statistical calculations and evaluation. The observation 14 

sites (Fig. 3) span mostly northern, central and eastern China, while the sites are relatively sparse in western 15 

China. 16 

The observation error covariance matrix R in Eq. (1) contains both measurement and representativeness 17 

errors. Pagowski et al. (2010) used a measurement error (ε0) of 2 μg m−3. To associate higher PM2.5 values 18 

with larger measurement errors, S12 defined the measurement error as ε0= 1.5 + 0.0075× 𝑀𝑃𝑀2.5
, where 19 

𝑀𝑃𝑀2.5
 denotes an AIRNow PM2.5 observation and the units of each term are μg m−3. According to the PM2.5 20 

Auto-Monitoring Instrument Technical Standard and Requirement (China National Environmental Monitoring 21 

Center, 2013), three continuous online monitoring methods, namely, a beta-ray plus dynamic heating system, 22 

a beta-ray plus dynamic heating system plus light scattering system, and a tapered element oscillating 23 

microbalance plus filter dynamic measurement system, are used at the national monitoring sites to satisfy the 24 
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requirements that the display resolution should be less than 1 μg m−3 and the error should be less than 1 

5 μg m−3(within 24 hours). To reflect the confidence in the hourly observations, the measurement error ε0 in 2 

this study is defined as ε0 = 1.0 + 0.0075 × 𝑀𝑃𝑀2.5
, where 𝑀𝑃𝑀2.5

denotes a PM2.5 observational value 3 

(unit: μg m−3). 4 

Representativeness errors reflect the inaccuracies in the forward operator and in the interpolation from 5 

the model grid to the observation location. Elbern et al. (2007), Pagowski et al. (2010), S12 and Jiang13 6 

defined the representativeness error (ε𝑟) as 7 

ε𝑟 = 𝛾ε0√
∆𝑥

𝐿
,                                           (3) 8 

where 𝛾 is an adjustable parameter scaling ε0 (𝛾 = 0.5 was used here), ∆𝑥 is the grid spacing (40 km in 9 

our case) and L is the radius of influence of an observation (set to 2 km for urban sites). These parameter 10 

settings were based on the performance of sensitivity tests. The total PM2.5 error (ε𝑃𝑀2.5) is defined as 11 

ε𝑃𝑀2.5 = √𝜀0
2 + 𝜀𝑟

2,                                        (4) 12 

which constituted the diagonal elements in the R matrix. The PM2.5 data were provided in near-real time 13 

without any data quality control. To ensure the data quality before DA, PM2.5 observational values larger than 14 

1000 μg m−3 (the maximum display limit of the monitoring system) were deemed unrealistic in the filter 15 

process and thus were not assimilated. In addition, observations leading to innovations/deviations 16 

(observations minus the model-simulated values determined from the first-guess fields) exceeding 17 

500 μg m−3 were also omitted for the stability of the DA optimization step. 18 

2.2.3 Background error covariance 19 

Similar to Jiang13, the background error covariance (BEC) statistics for each analysis variable required 20 

by the 3DVAR algorithm were computed by utilizing the NMC method (Parrish and Derber, 1992) based upon 21 

the one-month WRF/Chem forecast for January 2015. No cross-correlation between different species was 22 

considered. The standard deviations and horizontal/vertical correlation length scales of the background errors 23 

(separated for each aerosol species) were calculated using the method described by Wu et al. (2002). These 24 
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data were used as constraints for the distributions of the PM components. It is important to have phenomena-1 

specific background error statistics to allow for an appropriate adjustment of individual species. The domain-2 

averaged standard deviations of the background errors for 6 aerosol species (BC, OC, SO4, NO3, NH4, and 3 

OIN) in the first three size bins are shown in Fig. 1 as a function of the vertical model level; CL and NA are 4 

not shown here because they are excessively small relative to the other PM species. By using the MOSAIC 5 

aerosol scheme, the characteristics of different aerosol species in different size bins are more appropriate for 6 

the China region in the model. As shown in Fig. 1, the standard deviations of different aerosol species errors 7 

are different in the three size bins; the errors of NO3, OIN and SO4 are relatively larger than those of the other 8 

species in the three size bins; OC is also important, especially in the second (0.1-1.0 μm) and third (1.0-9 

2.5 μm) size bins. The larger background errors of those species allowed the field to be better adjusted, which 10 

was crucial for the aerosol analyses in this study. 11 

2.3 Experimental design 12 

We conducted two sets of experiments (NO_DA and CONC_DA) for January 2015, 2016 and 2017. In 13 

both cases, the MEIC_2010 emission inventory was used. The NO_DA experiment initialized a new 14 

WRF/Chem forecast every 6 hr starting at 00 UTC on 20 December of the previous year to spin up the aerosol 15 

fields and was run through 23 UTC on 31 January. Only the simulations in January were used for the analysis. 16 

In the NO_DA experiment, the chemical/aerosol fields were simply carried over from cycle to cycle (similar 17 

to a continuous aerosol forecast), while the meteorological IC/BC were updated from GFS analysis data every 18 

6 hr to prevent the meteorological simulation from drifting. For CONC_DA, the GSI 3DVAR system updated 19 

the MOSAIC aerosol variables every hour starting from 00 UTC on 1 January. The background of the first 20 

cycle at 00 UTC on 1 January was obtained from the NO_DA experiment, and all subsequent cycle were 21 

derived from the previous cycle’s 1-hr forecast. In CONC_DA, the GFS analysis data were interpolated from 22 

a 6-hr frequency to a 1-hr frequency and were then used to update the meteorological IC/BC in each 1-hr cycle. 23 

The newly added heterogeneous reactions were activated in both sets of experiments. 24 
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2.4 Distinguishing the impacts of meteorological conditions and emissions 1 

As introduced in section 1, interannual air quality changes are strongly influenced by both emissions and 2 

meteorological conditions. It is challenging to distinguish and quantify the impacts of these two aspects solely 3 

based on observations or modeling. In our case, the impacts of meteorological conditions are diagnosed by 4 

analyzing the differences between two sets of modeling simulations (with the same emission inventory but 5 

different meteorology conditions). For NO_DA, the emission inputs for January of the three years (2015-2017) 6 

were all from the MEIC_2010 emission inventory, and the only differences among the simulations of these 7 

three months were the meteorological conditions, which were acquired from the GFS 6-hr analysis data. 8 

Therefore, we can assume that the differences in the simulated NO_DA PM2.5 concentrations among the three 9 

months were driven purely by differences in the meteorological conditions (similar to Xu et al. 2017). 10 

However, it is difficult to distinguish the impacts of emissions by using the same approach. As temporary 11 

emission control measures were applied according to the pollution severity (alarm level), the emission 12 

reduction ratios actually continued to change during the winter season, and thus, no exact emission reduction 13 

ratios were provided for those days. Nevertheless, the simulation approach with different emission scenarios 14 

is simply impossible when lacking exact emission reduction ratios. Instead, we subtracted the meteorological 15 

effects from the total effects by utilizing the reanalysis data and pure model simulations. The CONC_DA 16 

result, in which the hourly surface PM2.5 observations from 531 groups of sites were utilized, can be treated 17 

as a reanalysis dataset that reflects the actual conditions (very close to the observations). Therefore, the 18 

differences in the assimilated CONC_DA PM2.5 concentrations among the three months reflect the combined 19 

effects of both meteorological conditions and emissions. As the two experiments were generated on gridded 20 

aerosol fields, we can separate the effects of emissions from the collective effect by subtracting the NO_DA 21 

differences from the CONC_DA differences. Hence, we can better comprehend how meteorological 22 

conditions and emissions play different roles in driving the changes among the three years. Table 2 illustrates 23 

this approach by taking 2015 and 2016 as an example. However, some uncertainties might be associated with 24 

this approach, as will be discussed in detail in section 4.2. 25 
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Table 2. The approach used to distinguish the different impacts of meteorological conditions and emissions 1 

by calculating them from different scenarios (taking 2015 and 2016 as an example). 2 

A. Assimilated total 

changes 

CONC_DA_2016-

CONC_DA_2015 

Reflecting the combined effect of all driving factors, 

e.g., emissions and meteorological conditions, from 

2015 to 2016 

B. Simulated changes due 

to meteorological 

differences 

NO_DA_2016-

NO_DA_2015 

As NO_DA_2015 and NO_DA_2016 were 

conducted with same emissions but different 

meteorological conditions, the differences reflect 

the effects due to meteorological differences from 

2015 to 2016 

C. Calculated changes 

due to emission 

differences = (A-B)  

(CONC_DA_2016-

CONC_DA_2015) - 

(NO_DA_2016-

NO_DA_2015) 

Mostly reflecting the effects from emission 

differences between 2015 and 2016 

3. Evaluation of the assimilated PM2.5 3 

This section presents the results from the NO_DA and assimilation experiments outlined above. In slight 4 

contrast to S12 and Jiang13, our purpose was to reproduce the spatial-temporal variations in the surface PM2.5 5 

within the reanalysis dataset rather than to provide the IC of aerosol fields for improving forecasts. 6 

Figure 3 shows the observed and modeled monthly averages of the surface PM2.5 for January 2015, 2016 7 

and 2017. Nine regions are illustrated as rectangles in the figure: North China Plain (NEC), northeastern China 8 

(NEC), Energy Golden Triangle (EGT), Xinjiang (XJ), Fenwei Plain (FWP), Sichuan Basin (SB), Central 9 

China (CC), Yangtze River Delta (YRD), and Pearl River Delta (YRD). Both the observations and the model 10 

show that high values are mostly observed in NCP, FWP, SB and CC. In the NO_DA case, the model results 11 

are overpredicted in SB, NCP and CC for all three months, while the overestimations are more severe in SB. 12 

The NO_DA case generally overestimates (underestimates) the surface PM2.5 in NCP, SB and CC (XJ and 13 

FWP) in the three years, potentially indicating that the 2010 emissions are not appropriate for the 2015-2017 14 

simulations with overestimations (underestimations). As discussed in section 2.1, the large area of 15 

overestimation is consistent with the national reductions in SO2, NOx and PM2.5 anthropogenic emissions 16 

(Zheng et al., 2018); however, the underestimations in XJ and FWP also indicate the introduction of new 17 

emission sources to these two regions. 18 
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Compared to the NO_DA case, the CONC_DA assimilation experiment effectively reproduces the spatial 1 

distribution of surface PM2.5 for the three months in terms of the relatively higher values observed in NCP, SB 2 

and CC and in some “hot spots” (NEC, FWP, and XJ), which are closer to the observations. 3 

Basic statistical measures, including the bias (BIAS), standard deviation (STDV), root-mean-square error 4 

(RMSE) and correlation coefficient (CORR), were applied to evaluate the experiments. Figure 4 shows the 5 

time series of the BIAS, STDV and RMSE for all the data used in the entire domain. The statistics were 6 

calculated for each 1-hr DA cycle. After quality control, the number of PM2.5 observations used in the DA 7 

process differed; the number of observations was normally approximately 500-520 but reached a minimum of 8 

320-450 occasionally due to the data availability. From the time series, we can see that the BIAS, STDV and 9 

RMSE are greatly improved in the CONC_DA case. The maximum BIAS values are approximately 50 μg m-10 

3 for January 2015 and approximately 80 μg m-3 for 2016 and 2017 in NO_DA, while they are reduced to 11 

approximately ±5 μg m-3 in CONC_DA. The STDV and RMSE are also reduced by at least 50% most of 12 

the time. 13 

Figure 5 shows the spatial distributions of the error statistics (BIAS, RMSE and CORR) at each 14 

observational site (with more than 2/3 valid data in the month) in January 2015, 2016 and 2017. We start with 15 

2015 and then address the differences with comparisons in 2016 and 2017. In 2015 in the NO_DA case, the 16 

surface PM2.5 concentrations are generally overestimated by 20-60 μg m-3 in eastern China (NCP, SB, CC, 17 

PRD and YRD) but are underestimated in NEC, FWP, EGT and especially XJ. The high/low BIAS values in 18 

eastern/western China are greatly corrected in CONC_DA. Consistent with the BIAS changes in CONC_DA, 19 

the RMSE and CORR distributions in eastern China and NEC are also greatly improved; the RMSE is reduced 20 

by at least 50%, and the CORR increases to almost above 0.8-0.9. The inhomogeneous distributions of the 21 

BIAS in NO_DA in 2016 and 2017 are very similar to that in 2015 (overestimated in eastern China but 22 

underestimated in NEC, EGT and XJ). However, the high biases in CC and PRD and the low biases in XJ are 23 

even larger in 2016 and 2017. Similar to the comparisons between NO_DA and CONC_DA for the year 2015, 24 

improvements are generally achieved for almost all the regions in both 2016 and 2017. The statistics for the 9 25 
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regions are listed in Table 3. 1 

Table 3. Statistics of the observed and model-simulated surface PM2.5 for January 2015, 2016 and 2017 in 9 2 

regions (units are μg m-3 for BIAS and RMSE). 3 

Statistics Sites 
Pairs of 

data 

BIAS RMSE CORR 

NO_DA CONC_DA NO_DA CONC_DA NO_DA CONC_DA 

2015 

NCP 67 46699 19.38 2.08 68.09 24.26 0.72 0.96 

NEC 30 20910 -11.94 -1.04 49.47 21.11 0.59 0.93 

EGT 28 19516 -40.43 5.28 60.62 19.45 0.37 0.90 

XJ 19 13243 -53.76 4.16 71.69 19.74 0.40 0.94 

FWP 27 18819 4.05 1.75 56.71 23.05 0.63 0.93 

SB 48 33456 98.02 0.61 125.76 20.76 0.55 0.94 

CC 49 34153 46.94 -0.38 81.31 21.18 0.46 0.93 

YRD 34 23698 32.22 -0.43 59.90 15.14 0.73 0.96 

PRD 20 13940 19.36 -0.03 47.81 9.10 0.24 0.95 

2016 

NCP 67 46699 20.90 1.41 57.77 20.74 0.78 0.96 

NEC 30 20910 -11.05 0.04 40.91 16.08 0.57 0.94 

EGT 28 19516 -22.55 0.69 39.63 13.75 0.42 0.90 

XJ 19 13243 -72.92 0.25 98.19 27.16 0.51 0.96 

FWP 27 18819 -3.51 1.51 62.04 26.01 0.76 0.94 

SB 48 33456 134.63 2.77 165.38 15.49 0.51 0.92 

CC 49 34153 86.28 1.89 109.09 18.76 0.46 0.92 

YRD 34 23698 46.13 1.03 62.11 13.40 0.73 0.95 

PRD 20 13940 59.79 2.05 74.76 6.51 0.04 0.91 

2017 

NCP 67 46699 25.75 2.35 82.31 28.91 0.74 0.95 

NEC 30 20910 -11.38 0.01 53.38 21.35 0.64 0.94 

EGT 28 19516 -26.88 1.40 48.83 16.96 0.41 0.90 

XJ 19 13243 -95.92 3.82 125.09 35.65 0.51 0.96 

FWP 27 18819 -6.78 -1.02 89.26 31.69 0.65 0.94 

SB 48 33456 122.82 2.33 149.08 20.08 0.56 0.93 

CC 49 34153 101.22 3.49 132.97 19.50 0.23 0.92 

YRD 34 23698 59.31 2.40 78.02 12.32 0.63 0.93 

PRD 20 13940 35.01 0.04 61.84 9.55 -0.16 0.94 

 4 

 5 

4. Interannual changes during 2015 through 2017 6 

Given reliable PM2.5 reanalysis fields produced by assimilating surface PM2.5 (CONC_DA), the change 7 

trends among the three years can be analyzed for not only scattered observational sites but also different 8 
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regions. To distinguish the roles of meteorological conditions and emissions in driving these changes, an 1 

analysis based on the NO_DA and CONC_DA simulations is performed. As assumed in section 2.4, 2 

meteorology-driven changes can be analyzed in the NO_DA simulations with different meteorological 3 

conditions but the same emission inventory for different years; however, the changes in the reanalysis data 4 

among different years are actually the combination of all the driving forces, including meteorological 5 

conditions and emissions. By analyzing both sets of simulations, we can attempt to distinguish the roles of 6 

meteorology and emissions in determining these changes. 7 

4.1 Spatial distribution 8 

The monthly mean PM2.5 differences for January in the three years (2015-2017) are shown in Fig. 6 in 9 

terms of the surface concentrations measured at observational sites (Fig. 6a) and those from assimilation 10 

experiments (Fig. 6b). The surface observations are mostly reduced from 2015 to 2016 except for a few sites 11 

in the southern parts of NCP and FWP and in XJ. For the changes from 2016 to 2017, the surface observations 12 

increase at almost all the sites, especially the sites in the southern part of NCP; the only exceptions are the 13 

sites along the coastline in YRD. The assimilated (CONC_DA) differences are consistent with the surface 14 

observations insomuch that the decreasing trend from 2015 to 2016 and the increasing trend from 2016 to 15 

2017 for most of the regions are reproduced. However, for the changes in Tibet, EGT and XJ, where 16 

observational sites are sparse, some “cold spots” were artificially generated by CONC_DA due to the scarcity 17 

of data and the horizontal length scale set in the assimilation. As already shown in Fig. 3 and indicated here 18 

again, January 2016 is the cleanest month among the three years. 19 

 20 

4.2 The roles of meteorological conditions and emissions 21 

The surface PM2.5 concentrations from both the observations and the assimilation experiments show a 22 

decreasing trend from 2015 to 2016 but an increasing trend from 2016 to 2017 for most of the regions in 23 

eastern China (Fig. 6). The Chinese government has implemented a strict emission control strategy since 2013, 24 

especially in northern China, and thus, emission reductions are expected for each year following 2013. The 25 



18 
 

 

ambient response from 2015-2017 is contradictory if considering only the reductions in emissions and 1 

omitting the changes in meteorological conditions. There are two possible assumptions: the first is that the 2 

emission reduction target was not achieved from 2016 to 2017, and the second is that other factors in addition 3 

to emissions played more important roles. 4 

The NO_DA differences among the different years are shown in Fig. 6c, which reflects the effect of 5 

meteorological condition changes (section 2.4). The effect due to emissions (the other major factor in addition 6 

to meteorological conditions) is given by subtracting the NO_DA differences from the CONC_DA differences 7 

(Fig. 6d). We can clearly see that the meteorology played two different roles from 2016 to 2017. It caused a 8 

decrease in the ambient concentrations for northern China (NCP and NEC) from 2015 to 2016 but induced a 9 

large increase for northern and central China (CC) from 2016 to 2017. This indicates that the meteorological 10 

conditions might have differed from 2016 to 2017. After considering the impacts of meteorological conditions, 11 

those of emission reductions are still confirmed for these two regions from 2016 to 2017. The contributions 12 

from both meteorological conditions and emissions in the 9 regions (defined in Fig. 3) were calculated, and 13 

the results are listed in Table 4. The calculations show a reduction of approximately 15-20 µg m-3 in PM2.5 for 14 

the month of January from 2015 to 2016 in northern China (NCP and NEC), but the meteorology played a 15 

dominant role (contributing a reduction of approximately 12-21 µg m-3 in PM2.5). The changes from 2016 to 16 

2017 in NCP and NEC are completely different; meteorological conditions caused an increase in PM2.5 of 17 

approximately 12-23 µg m-3, and emission control measures caused a decrease of 1-8 µg m-3 in PM2.5, while the 18 

combined effects still showed a PM2.5 increase for that region. It is reasonable to say that emissions were 19 

indeed reduced for the northern regions from 2016 to 2017. However, the meteorology played an important 20 

role in offsetting those emission reductions and leading to an increase in surface concentrations in 2017. 21 

 22 

Table 4. Modeled ambient PM2.5 concentration changes for 2016-2015, 2017-2016 and 2017-2015 in 9 23 

regions and the contributions of the meteorology (MET) and emissions (EMIS) calculated according to 24 

Table 2. Units: µg m-3. 25 

 2016-2015 2017-2016 2017-2015 
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 Total MET EMIS Total MET EMIS Total MET EMIS 

NCP -15.23 -12.52 -2.71 +14.91 +23.16 -8.25 -0.31 +10.65 -10.96 

NEC -20.09 -21.23 +1.14 +11.44 +12.61 -1.18 -8.66 -8.62 -0.04 

EGT -21.69 1.68 -23.37 +4.86 +3.81 +1.05 -16.83 +5.48 -22.31 

XJ +3.69 +0.07 +3.63 +1.85 +0.28 +1.57 +5.54 +0.34 +5.20 

FWP -7.05 -10.19 +3.13 +22.95 +25.62 -2.66 +15.90 +15.43 +0.47 

SB -18.75 +8.72 -27.48 +10.31 +4.02 +6.29 -8.45 +12.74 -21.19 

CC -21.80 +14.73 -36.54 +9.35 +19.36 -10.01 -12.45 +34.09 -46.54 

YRD -10.43 -3.03 -7.40 -11.45 -2.93 -8.52 -21.88 -5.96 -15.92 

PRD -23.48 13.02 -36.50 +12.71 -6.12 +18.83 -10.77 +6.90 -17.67 

It is worth noting that there are uncertainties in the simulation/assimilation processes. There are three 1 

sources of uncertainties in the NO_DA simulation. First, the emission inventories in the NO_DA simulations 2 

are obviously not accurate, which may introduce uncertainties into the analysis. Although the basic assumption 3 

required only that the emissions stay the same throughout the three years, emission inventory uncertainty-4 

induced errors would be offset in the subtraction process when calculating the year-to-year differences. 5 

However it did generate uncertainties. For example, the emissions in SB, CC and PRD were generally 6 

overestimated (Fig. 3), which means that the variations in the ambient concentration might have been 7 

artificially amplified considering the meteorology impacts (Fig. 6c). In contrast, the emissions in XJ and FWP 8 

were underestimated (Fig. 3), and thus, the changes in the ambient concentrations due to meteorological 9 

conditions in these two regions might have diminished. From this point of view, if the fixed emissions are 10 

more accurate in those years, the results would be more reliable. In the case where “real” emissions are not 11 

available and the purpose is to evaluate the contribution of those emissions, uncertainties will be unavoidable 12 

and should be emphasized carefully. Second, the meteorological IC/BC conditions in the NO_DA simulations, 13 

which were obtained from GFS 6-hr analysis data, also have uncertainties. The biases in meteorological 14 

conditions might lead to uncertainties in the PM2.5 analysis. Third, the deficiencies associated with the 15 

chemistry in the model also generate uncertainties, including missing reactions and the inaccurate 16 

parameterization of reactions. These three aspects all originate from the imperfections of current forward 17 

models. From another perspective, the accuracy of the CONC_DA assimilation experiment also affects the 18 

analysis. For example, the assimilation artificially made some “code spots” in Tibet, EGT and XJ, where 19 

observational sites are sparse; this could also induce biases. Finally, the contribution of aerosol-meteorology 20 
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feedback was not considered in our calculations. As noted by Gao et al. (2017), reduced aerosol feedbacks 1 

due to emission reductions accounted for approximately 10.9% of the total decrease in PM2.5 concentrations 2 

in urban Beijing in their APEC study. In our current approach, this effect is integrated into the emissions in 3 

the subtracting process. 4 

4.3 Meteorological changes in 2016 and 2017 5 

It is interesting to see that meteorology played different roles in each of the three years. Here, we 6 

compared some meteorological parameters to explain the impacts of the meteorology. Differences in the 7 

monthly mean planetary boundary layer height (PBLH), surface pressure (PSFC), 2-meter temperature (T2), 8 

2-meter relative humidity (RH2) and 10-meter wind speed in different years are given in Fig. 7. The statistics 9 

of the differences in these parameters in the 9 regions are listed in Table 5, which shows that the changes in 10 

the PSFC and T2 for the periods 2015-2016 and 2016-2017 are different over the whole region. Comparing 11 

the parameters between 2015 and 2016, the pressure system is stronger, the temperature is lower, and the wind 12 

speed is larger in most regions in the latter; these conditions are favorable for the dispersion of pollution. 13 

However, there are some unfavorable conditions, including a lower PBLH and a higher RH (and thus, more 14 

heterogeneous reactions with the high RH) in northern and southern China, which may offset the impacts of 15 

high pressure systems and low temperatures. Therefore, the combined impacts of these meteorological 16 

parameters caused a decrease in the ambient concentration in northern China and an increase in southern China 17 

from 2015 to 2016, as shown in Fig. 6. The meteorological changes are different from 2016 to 2017 with a 18 

weaker pressure system, higher temperature, smaller wind speed, and lower PBLH in most regions, which 19 

caused the pollution to accumulate. As suggested by recent studies, climate change has had important impacts 20 

on extreme haze events in northern China based on historical statistical approaches or climate models. Those 21 

studies (e.g., Li et al., 2015, Zuo et al., 2015) revealed that wintertime fog-haze days across central and eastern 22 

China have a close relationship with the East Asian winter monsoon; in addition, significant weakening 23 

(strengthening) of the Siberian high and East Asian trough are the two main factors for extreme cold events 24 

and extreme warm events throughout China in winter, while warmth boosts air pollution. Consistent with our 25 
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study, Zhao et al. (2018) noted that a stronger Siberian high period in January 2016 produced a significant 1 

decrease in PM2.5 concentrations relative to those during weaker periods in other years. The abovementioned 2 

studies emphasized that climate change factors and the impacts of emission changes are still difficult to 3 

evaluate. Our study used the DA technique in combination with regional models and surface observations to 4 

distinguish the impacts of emissions and meteorological conditions to further investigate the year-to-year 5 

changes at the regional scale. 6 

Table 5. Statistics of the meteorological differences by region for January 2015, 2016 and 2017. 7 

 PBLH (meter) PSFC (Pa) T2 (degree) RH2 (%) WS10 (m/s) 

 
2016

-

2015 

2017

-

2016 

2017

-

2015 

2016 

- 

2015 

2017

-

2016 

2017 

- 

2015 

2016 

- 

2015 

2017 

- 

2016 

2017 

- 

2015 

2016 

- 

2015 

2017 

- 

2016 

2017 

- 

2015 

2016 

- 

2015 

2017 

- 

2016 

2017 

- 

2015 

NCP 27.9 -26.7 1.2 138.5 -30.2 108.4 -4.9  3.3  -1.6  3.0  5.1  8.1  1.15 -0.78 0.37 

NEC 22.7 35.3 58.0 117.0 -58.7 58.3 -4.9  4.4  -0.5  -5.7  3.1  -2.6  0.96 -0.38 0.57 

EGT 13.6 1.1 14.7 28.0 -8.4 19.7 -4.0  4.0  0.0  10.0  -14.9  -4.9  0.14 -0.50 -0.36 

XJ -0.9 -13.8 -14.7 151.3 -43.1 108.1 -1.3  -0.8  -2.1  5.5  -2.1  3.4  0.36 -0.14 0.22 

FWP 67.7 -51.6 16.1 64.6 -12.2 52.4 -3.8  3.4  -0.4  2.8  -0.8  2.0  1.05 -1.00 0.06 

SB 9.8 -13.2 -3.4 -15.9 15.9 0.1 -2.4  2.5  0.2  3.9  -1.8  2.0  0.43 -0.02 0.41 

CC 34.8 -56.6 -21.9 82.8 -53.2 29.6 -2.5  2.1  -0.3  10.8  0.7  11.5  0.60 -0.07 0.53 

YRD 64.7 -22.0 42.7 77.1 -27.8 49.2 -1.7  1.9  0.2  7.8  2.5  10.3  0.89 -0.40 0.49 

PRD -36.1 8.2 -27.9 -16.2 -60.1 -76.3 -0.5  2.4  1.9  11.9  -8.7  3.2  0.94 -0.48 0.46 

5. Conclusions 8 

To analyze the complex PM2.5 pollution in China, the GSI-WRF/Chem aerosol data assimilation system 9 

was updated from the GOCART aerosol scheme to the MOSAIC-4BIN scheme, which is more appropriate 10 

for characterizing anthropogenic emission-relevant aerosol species. Three years (2015-2017) of wintertime 11 

(January) surface PM2.5 observations from 1600+ sites were assimilated hourly using the updated 3DVAR 12 

system in the CONC_DA assimilation experiment. A parallel control experiment that did not employ DA 13 

(NO_DA) was also performed. 14 

Both the control and the assimilation experiments were evaluated against the surface PM2.5 observations. 15 

In the NO_DA experiment, in which the 2010_MEIC emission inventory was used, the modeled PM2.5 were 16 

severely overestimated in the Sichuan Basin (SB), Central China (CC), Yangtze River Delta (YRD), and Pearl 17 
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River Delta (PRD) by 98-134, 46-101, 32-59, and 19-60 μg m-3, respectively, which indicated that the emission 1 

estimates for 2010 are not appropriate for 2015-2017, as strict emission control strategies were implemented 2 

in recent years. Meanwhile, underestimations of 11-12, 53-96, and 22-40 μg m-3 were observed in northeastern 3 

China (NEC), Xinjiang (XJ) and the Energy Golden Triangle (EGT), respectively. The assimilation 4 

experiment significantly reduced the high biases of surface PM2.5 in SB, CC, YRD, and PRD and the low 5 

biases in NEC and XJ with biases within ±5 μg m-3. 6 

Both the observation and the assimilation experiments showed decreasing ambient concentrations from 7 

2015 to 2016 but increasing concentrations from 2016 to 2017 for most of the regions. To distinguish the 8 

important factors driving these changes, the reanalysis data from the assimilation experiment and the modeling 9 

results from the control experiment were analyzed. The results showed a reduction in PM2.5 of approximately 10 

15-20 µg m-3 for the month of January from 2015 to 2016 in northern China (NCP and NEC), but meteorology 11 

played the dominant role (contributing approximately 12-21 µg m-3 of the PM2.5 reduction). The changes from 12 

2016 to 2017 in NCP and NEC were different; meteorological conditions caused an increase in PM2.5 of 13 

approximately 12-23 µg m-3, while emission control measures caused a decrease of 1-8 µg m-3, and the 14 

combined effects still showed a PM2.5 increase for that region. The analysis confirmed that meteorology played 15 

different roles in 2016 and 2017: the higher pressure system, lower temperatures and higher PBLH in 2016 16 

(compared with 2015) were favorable for pollution dispersion, whereas the situation was almost the opposite 17 

in 2017 (compared with 2016) and led to an increased PM2.5 from 2016 to 2017, although emission control 18 

strategies were implemented in both years. After considering the impacts of the meteorology, the analysis 19 

showed that emissions were indeed reduced from 2015 to 2016 and 2017, especially in NCP for the year 2017 20 

(although the surface concentrations increased that year). The analysis also showed that emissions increased 21 

in XJ and FWP. 22 

There are still large uncertainties in this approach, such as the deficiencies of forward models (including 23 

inaccurate emission inputs, uncertainties in the meteorological IC/BC, and the chemistry mechanism) and the 24 

assimilation process, and the imperfection of the aerosol-meteorology feedbacks in the model simulation 25 
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generated large biases in the analysis. The most straightforward approach is thus to directly estimate the 1 

emissions by data assimilation, which will be the topic of a separate study.  2 
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 1 

Tables and Figures 2 

Table 1. WRF/Chem model configuration. 3 

Table 2. The approach used to distinguish the different impacts of meteorological conditions and emissions 4 

by calculating them from different scenarios (taking 2015 and 2016 as an example). 5 

Table 3. Statistics of the observed and model-simulated surface PM2.5 for January 2015, 2016 and 2017 in 9 6 

regions (units are μg m-3 for BIAS and RMSE). 7 

Table 4. Modeled ambient PM2.5 concentration changes for 2016-2015, 2017-2016 and 2017-2015 in 9 regions 8 

and the contributions of the meteorology (MET) and emissions (EMIS) calculated according to Table 2. Units: 9 

µg m-3. 10 

Table 5. Statistics of the meteorological differences by region for January 2015, 2016 and 2017. 11 

Figure 1. Domain-averaged standard deviations of the background errors (µg kg-1) as a function of the height 12 

for each aerosol variable in three bins: (a) Bin-01: 0.039-0.1 µm; (b) Bin-02: 0.1-1.0 µm; (c) Bin-03: 1.0-2.5 13 

µm. 14 

Figure 2. Spatial distribution of primary PM2.5 (the sum of BC, OC, sulfate, nitrate and other unspecified 15 

PM2.5 emissions), SO2, NOx and NH3 emissions (units are µg m-2 S-1 for PM2.5 and mol km-2 hr-1 for the other 16 

three) used in this study. 17 

Figure 3. Observed and modeled monthly average PM2.5 concentrations (unit: µg m-3) for January 2015 (left), 18 

2016 (middle) and 2017 (right). Regions defined in red rectangles are as follows: a-NCP (North China Plain), 19 

b-NEC (northeastern China), c-EGT (Energy Golden Triangle), d-XJ (Xinjiang), e-SB (Sichuan Basin), f-CC 20 

(Central China), g-YRD (Yangtze River Delta), and h-PRD (Pearl River Delta). 21 

Figure 4. Time series of the statistics between the model simulations and observations. Red lines- 22 

CONC_DA minus observations, blue lines –NO_DA minus observations. Statistics include the number of 23 

data pairs for comparison, the MEAN-mean bias, the STDV- standard deviation, and the RMS-root mean 24 

square error. Left-2015, middle-2016, right-2017. (units are µg m-3 for MEAN, STDV and RMS). 25 

Figure 5. Spatial distributions of the statistics between the model simulations and observations for January 26 

2015. Top: NO_DA vs. observations, bottom: CONC_DA vs. observations. BIAS-model minus observation, 27 

RMSE-root mean square error, CORR-correlation coefficient. (units are µg m-3 for BIAS and RMSE). 28 

Figure 6. Observed and modeled ambient PM2.5 concentration changes for January 2016-2015 (left), 2017-29 

2016 (middle) and 2017-2015 (right). (a) Observations, (b) assimilated total changes, (c) modeled changes 30 

due to meteorological conditions, (d) calculated changes due to emissions. (Units: µg m-3) 31 

Figure 7. Modeled meteorological changes for 2016-2015 (left), 2017-2016 (middle) and 2017-2015 (right). 32 

(a) PBLH, (b) PSFC, (c) T2, (d) RH2 and (e) 10-m wind speed. 33 
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Figure 1. Domain-averaged standard deviations of the background errors (µg kg-1) as a function of the height 
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Figure 2. Spatial distribution of primary PM2.5 (the sum of BC, OC, sulfate, nitrate and other unspecified 

PM2.5 emissions), SO2, NOx and NH3 emissions (units are µg m-2 S-1 for PM2.5 and mol km-2 hr-1 for the other 

three) used in this study. 
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January 2015 January 2016 January 2017 

 (a) Observation 

 
(b) NO_DA 

 
(c) CONC_DA 

 
(d) CONC_DA - NO_DA 

 
Figure 3. Observed and modeled monthly average PM2.5 concentrations (unit: µg m-3) for January 2015 (left), 

2016 (middle) and 2017 (right). Regions defined in red rectangles are as follows: a-NCP (North China Plain), 

b-NEC (northeastern China), c-EGT (Energy Golden Triangle), d-XJ (Xinjiang), e-SB (Sichuan Basin), f-CC 

(Central China), g-YRD (Yangtze River Delta), and h-PRD (Pearl River Delta). 



30 
 

 
 
 

 

 
 

Figure 4. Time series of the statistics between the model simulations and observations. Red lines- CONC_DA minus observations, blue lines –NO_DA minus 

observations. Statistics include the number of data pairs for comparison, the MEAN-mean bias, the STDV- standard deviation, and the RMS-root mean square 

error. Left-2015, middle-2016, right-2017. (units are µg m-3 for MEAN, STDV and RMS). 
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(a). January 2015 - NO_DA (top) and CONC_DA (bottom)  

 
 

 
 

Figure 5. Spatial distributions of the statistics between the model simulations and observations for January 

2015. Top: NO_DA vs. observations, bottom: CONC_DA vs. observations. BIAS-model minus observation, 

RMSE-root mean square error, CORR-correlation coefficient. (units are µg m-3 for BIAS and RMSE). 
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Figure 6. Observed and modeled ambient PM2.5 concentration changes for 2016-2015 (left), 2017-2016 

(middle) and 2017-2015 (right). (a) Observations, (b) assimilated total changes, (c) modeled changes due to 

meteorological conditions, (d) calculated changes due to emissions. (Units: µg m-3) 
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Figure 7. Modeled meteorological changes for 2016-2015 (left), 2017-2016 (middle) and 2017-2015 (right). 

(a) PBLH, (b) PSFC, (c) T2, (d) RH2 and (e) 10-m wind speed. 



35 
 

 

 

 January 2016 - NO_DA (top) and CONC_DA (bottom) 

 
 
 

 
Supplemental Figure 1. Same as Figure 5 but for January 2016. 
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January 2017 - NO_DA (top) and CONC_DA (bottom) 

 
 
 

 
Supplemental Figure 2. Same as Figure 5 but for January 2017. 

 


	response to reviewer #1
	GSI-PM2.5 assimilation for 2015-2017-20190218-complete text
	GSI-PM2.5 assimilation for 2015-2017-figures-20190218

