Supplemental Information for "Effects of Urbanization on Regional Meteorology and Air Quality in Southern California"

Yun Li¹, Jiachen Zhang¹, David J. Sailor², George A. Ban-Weiss¹

⁵ ¹Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, 90007, USA

²School of Geographical Science and Urban Planning, Arizona State University, Tempe, 85281, USA

Correspondence to: George Ban-Weiss (banweiss@usc.edu)

10 Contents of this file

This file contents 8 figures and 1 table.

S1. Evaluation of Simulated PM_{2.5} Concentrations

- In this section, the evaluation of simulated PM_{2.5} concentrations using observations from both daily and hourly measurements is discussed. Hourly simulated and observed PM_{2.5} concentrations are both averaged to daily mean PM_{2.5} concentrations for this evaluation. Figure S1 shows the comparison between simulated and observed PM_{2.5} concentrations using both daily and hourly measurements. Modelled values fit well with observations from daily measurement (red dots), and lie
- 20 between 1:2 and 2:1 ratio lines. However, observations derived from hourly measurements are largely underestimated by the model (blue dots) for nearly half of the points. One possible reason is that hourly measurements tend to report higher PM_{2.5} concentrations than daily measurement, as indicated by Figure S2.

25 Figure S1. Comparison between modelled and observed PM2.5 concentrations. Observational values from daily gravimetric measurements are shown as blue dots, while red dots show hourly observations using BAMs averaged to daily means. Two dashed grey lines indicate 1:2 and 2:1 ratios between modelled and observed values, respectively.

Figure S2. Comparison between collocated daily averaged PM_{2.5} concentrations from daily gravimetric measurements versus hourly BAM measurements.

S2. "Present-day No-irrigation" Scenario

45

In this section, we explain the effects of land surface changes from urbanization 35 but excluding adding irrigation on air temperature. As shown in Figure S3, land surface property changes have led to urban temperature reduction from 8 PST to 15 PST, and increases during other times of day. The largest spatially averaged temperature reduction occurs at 10 PST ($\Delta T = -0.63$ K), whereas the largest temperature increase occurs at 20 PST (+1.3 K). Spatially averaged urban temperature changes during 40 morning, afternoon and at night are -0.37 K, +0.05 K and +0.72 K, respectively.

During the morning, temperature reductions are simulated in most urban regions. However, the magnitude of the reductions is smaller than the difference between the Present-day and Nonurban scenarios (Figure S4a). During the afternoon, most parts of the west LA region and Riverside show increases in air temperature, while air temperature reductions occur in San Fernando Valley (Figure S4b). The pattern shown for inland regions differs from that shown by difference between the Present-day and Nonurban scenarios. During nighttime, temperature increases are larger in the inland regions of the basin than the coastal regions (Figure S5c), which is similar to the pattern shown by Present-day – Nonurban difference.

50 The aforementioned results indicate that land cover property changes from adopting impervious surfaces (e.g., shading effects within urban canopies, and increases in thermal inertia from the use of manmade materials) can cause air temperature reductions during the day, especially during the morning. However, the magnitude of air temperature reductions is much smaller without including the effects of adding 55 irrigation through urbanization, indicating the important role of irrigation on reducing air temperature.

Figure S3. Diurnal cycles for present-day no-irrigation (red), nonurban (blue), and present-day noirrigation – nonurban (black) for air temperature in the lowest atmospheric layer (K). The solid and dashed curves give the median values, while the shaded bands show 25^{th} and 75^{th} percentiles. Dots indicate mean values for differences between Present-day and nonurban. The horizontal dotted line in light grey shows $\Delta = 0$ as an indicator of positive or negative change by land surface changes via urbanization without involving irrigation.

Figure S4. Spatial patterns of differences (Present-day No-irrigation – Nonurban) in temporally averaged values during morning, afternoon and nighttime for air temperature. Note that values are shown only for urban grid cells. Morning is defined as 7 PST to 12 PST, afternoon as 12 PST to 19 PST, and nighttime as 19 PST to 7 PST. Note that values are shown only for urban grid cells.

70

S3. Other Supplemental Tables and Figures

Table S1. Conversion table from SAPRAC emission to RADM2 emissions. Species abbreviationsin SAPRAC, RADM2, weight factor to apply, and species names are shown

Species in SAPRAC	Species in RADM2	Weight Faction	Species Name
SO2	E_SO2	1	Sulfur dioxide
NO	E_NO	1	Nitric Oxide
NO2	E_NO2	1	Nitrogen Dioxide
СО	E_CO	1	Carbon monoxide
ALK1	E_ETH	1	Ethane kOH<500 /ppm/min
ALK2	E_HC3	1	Alkane 500 <koh<2500 (exclude="" acids)<="" c2h2,="" c3h8,="" organic="" td=""></koh<2500>
ALK3	E_HC3	1.11	Alkane 2500 <koh<5000 (exclude="" butanes)<="" td=""></koh<5000>
МЕОН	E_HC3	0.4	Methanol
ACYE	E_HC3	0.4	Acetylene
ЕТОН	E_HC3	1.2	Ethanol
ALK4	E_HC5	0.97	Alkane 5000 <koh<10000 (exclude="" pentanes)<="" td=""></koh<10000>
ALK5	E_HC8	1	Alkane kOH>10000
OXYL	E_XYL	1	o-Xylene
PXYL	E_XYL	1	p-Xylene
MXYL	E_XYL	1	m-Xylene
ARO2	E_XYL	1	Aromatic kOH>20000 /ppm/min (exclude xylenes)
B124	E_XYL	1	1,2,4-Trimethyl Benzene
ETHE	E_OL2	1	Ethylene
PRPE	E_OLT	1	Propene
OLE1	E_OLT	1	Alkenes kOH<20000 /ppm/min
MACR	E_OLT	0.5	Methacrolein

(Continue Table.S1)

MVK	E OLT	0.5	Methyl Vinyl Ketone
ACRO	E OLT	0.5	Acrolein
	_		
IPRD	E_OLT	0.5	Lumped isoprene product species
OLE2	E_OLI	1	Alkenes kOH>20000 /ppm/min
13BDE	E_OLI	1	1,3-Butadienne
BENZ	E_TOL	1	Benzene
ARO1	E_TOL	1	Aromatic kOH<20000 /ppm/min (exclude benzene and toluene)
TOLU	E_TOL	1	Toluene
CRES	E_CSL	1	Cresols
НСНО	E_HCHO	1	Formaldehyde
ССНО	E_ALD	1	Acetaldehyde
RCHO	E_ALD	1	Lumped C3+ aldehydes
BALD	E_ALD	1	Aromatic aldehydes
MACR	E_ALD	0.5	Methacrolein
GLY	E_ALD	1	Glyoxal
MGLY	E_ALD	1	Methyl Glyoxal
BACL	E_ALD	0.5	Biacetyl
ACRO	E_ALD	0.5	Acrolein
IPRD	E_ALD	0.5	Lumped isoprene product species
ACET	E_KET	0.33	Acetone
PRD2	E_KET	1.61	Ketones kOH>7300 /ppm/min
MVK	E_KET	0.5	Methyl Vinyl Ketone
МЕК	E_KET	1.61	Ketones kOH<7300 /ppm/min
PACD	E_ORA2	1	Peroxyacetic and higher peroxycarboxylic acids
AACD	E_ORA2	1	Acetic and higher carboxylic acids

(Continue Table.S1)

NH3	E_NH3	1	Ammonia
CH4	E_CH4	1	Methane
PAL	E_PM25I/E_PM25J	0.2/0.8	Primary metal PM _{2.5} – nuclei model and accumulation mode
РСА	E_PM25I/E_PM25J	0.2/0.8	
PFE	E_PM25I/E_PM25J	0.2/0.8	
РК	E_PM25I/E_PM25J	0.2/0.8	
PMG	E_PM25I/E_PM25J	0.2/0.8	
PMN	E_PM25I/E_PM25J	0.2/0.8	
PMOTHR	E_PM25I/E_PM25J	0.2/0.8	
PSI	E_PM25I/E_PM25J	0.2/0.8	
PTI	E_PM25I/E_PM25J	0.2/0.8	
РМС	E_PM_10	1	Unspeciated Primary PM ₁₀ – nuclei model and accumulation mode
PEC	E_ECI/E_ECJ	0.2/0.8	Elemental Carbon PM _{2.5} – nuclei model and accumulation mode
РОС	E_ORGI/E_ORGJ	0.2/0.8	Organic PM _{2.5} – nuclei model and accumulation mode
PSO4	E_SO4I/E_SO4J	0.2/0.8	Sulfate PM _{2.5} – nuclei model and accumulation mode
SULF	E_SO4I/E_SO4j	19.2/76.8	Sulfate PM _{2.5} from sulfates – nuclei model and accumulation mode
PNO3	E_NO3I/E_NO3J	0.2/0.8	Nitrate PM _{2.5} – nuclei model and accumulation mode

75

Figure S5. Locations of monitoring stations for (a) near-surface air temperature, (b) O_3 and (c) $PM_{2.5}$ concentration observations. Green, red and blue points in panel c show the locations for stations where only daily observations, only hourly observations, or both daily and hourly observations available, respectively. White solid lines in each panel give the boundary of the innermost (d03) model domain.

80

Figure S6. Land surface properties in the Present-day scenario and the Nonurban scenario.

Figure S7. Spatial patterns of differences (Present-day – nonurban) in temporally averaged values during morning, afternoon and nighttime for (a,b,c) PBL heights, and (d,e,f) averaged wind speed under within PBL. Note that values are shown only for urban grid cells. Morning is defined as 7 PST to 12 PST, afternoon as 12 PST to 19 PST, and nighttime as 19 PST to 7 PST. Note that values are shown only for urban grid cells.

Figure S8. Spatial patterns of differences (Present-day – nonurban) in temporally averaged values during morning, afternoon and nighttime for latent heat fluxes. Note that values are shown only for urban grid cells. Morning is defined as 7 PST to 12 PST, afternoon as 12 PST to 19 PST, and nighttime as 19 PST to 7 PST. Note that values are shown only for urban grid cells.

Reference

Please see the main paper.