

1 **Dynamic changes of optical and chemical properties of tar ball**
2 **aerosols by atmospheric photochemical aging**

3 Chunlin Li,[†] Quanfu He,[†] Julian Schade,[†] Johannes Passig,^{†,‡} Ralf Zimmermann,^{†,‡} Daphne
4 Meidan,[†] Alexander Laskin,[§] and Yinon Rudich^{†,*}

5 [†]Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel

6 [‡]Joint Mass Spectrometry Centre, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany

7 [†]Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’ (CMA), Helmholtz

8 Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

9 [§]Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States

10

11 *Correspondence to:* Yinon Rudich (yinon.rudich@weizmann.ac.il)

12 **Abstract.** Following wood pyrolysis, tar ball aerosols were laboratory generated from wood tar separated into
13 polar and nonpolar phases. Chemical information of fresh tar balls was obtained from a high-resolution time-of-
14 flight aerosol mass spectrometer (HR-ToF-AMS) and single-particle laser desorption/resonance enhanced
15 multiphoton ionization mass spectrometry (SP-LD-REMPI-MS). Their continuous refractive index (RI) between
16 365 and 425 nm was retrieved using a broadband cavity enhanced spectroscopy (BBCES). Dynamic changes of
17 the optical and chemical properties for the nonpolar tar ball aerosols in NO_x-dependent photochemical process
18 were investigated in an oxidation flow reactor (OFR). Distinct differences in the chemical composition of the
19 fresh polar and nonpolar tar aerosols were identified. Nonpolar tar aerosols contain predominantly high-molecular
20 weight unsubstituted and alkyl-substituted polycyclic aromatic hydrocarbons (PAHs), while polar tar aerosols
21 consist of a high number of oxidized aromatic substances (e.g., methoxy-phenols, benzenediol) with higher O:C
22 ratio and carbon oxidation state. Fresh tar balls have light absorption characteristics similar to atmospheric brown
23 carbon (BrC) aerosol with higher absorption efficiency towards the UV wavelengths. The average retrieved RI is
24 1.661+0.020i and 1.635+0.003i for the nonpolar and polar tar aerosols, respectively, with absorption Ångström
25 exponent (AAE) between 5.7 and 7.8 in the detected wavelength range. The RI fits a volume mixing rule for
26 internally mixed nonpolar/polar tar balls. The RI of the tar ball aerosols decreased with increasing wavelength
27 under photochemical oxidation. Photolysis by UV light (254 nm), without strong oxidants in the system, slightly
28 decreased the RI and increased the oxidation state of the tar balls. Oxidation under varying OH exposure levels
29 and in the absence of NO_x diminished the absorption (bleaching), and increased the O:C ratio of the tar balls. The
30 photobleaching via OH radical initiated oxidation is mainly attributed to decomposition of chromophoric
31 aromatics, nitrogen-containing organics, and high-molecular weight components in the aged particles. Photolysis
32 of nitrous oxide (N₂O) was used to simulate NO_x-dependent photochemical aging of tar balls in the OFR. Under
33 high NO_x condition with similar OH exposure, photochemical aging lead to the formation of organic-nitrates,
34 increased both oxidation degree and light absorption for the aged tar ball aerosols. These observations suggest
35 that secondary organic nitrate formation counteracts the bleaching by OH radical photooxidation to eventually
36 regain some absorption of the aged tar balls aerosols. The atmospheric implication and climate effects from tar
37 balls upon various oxidation processes are briefly discussed.

38 **1 Introduction**

39 Organic aerosol (OA), which represent a ubiquitous and dominant burden of the tropospheric particulate pollutants,
40 play important roles in atmospheric chemistry and balance of regional and global radiation (Jimenez et al., 2009;
41 Kanakidou et al., 2005; Seinfeld and Pandis, 2016; Shrivastava et al., 2017). An indirect climate influence of OA
42 relies on their interaction with water thus acting as cloud condensation nuclei (CCN) that may alter the
43 hydrological cycle (cloud formation and perception) and modify Earth's albedo (Forster and Taylor, 2006; IPCC,
44 2013; Seinfeld and Pandis, 2016). The direct climate effect of OA is through extinction of incoming solar radiation
45 and outgoing longwave radiation. Of particular importance is the warming effect due to light-absorbing
46 carbonaceous aerosol commonly termed as brown carbon (BrC) (Andreae and Gelencsér, 2006). BrC is an
47 important yet poorly understood OA component due to its complex physical properties, undefined chemical
48 composition, and also its dynamic evolution under atmospheric processes (Adler et al., 2010; Moise et al., 2015;
49 Laskin et al. 2015). It has been estimated that BrC accounts for 10-40% of the total light absorption in the
50 atmosphere and when deposited on snow pack (Bahadur et al., 2012; Park et al., 2010), and contributes to global
51 forcing of 0.10-0.25 W m⁻², with even higher values on regional scales (Feng et al., 2013).

52 The origin of BrC can be either primary (i.e., directly emitted) or secondary (i.e., generated by reactions of
53 aromatic or carbonyl compounds in clouds or particles) (Laskin et al., 2015). On a global scale, biomass burning
54 releases over two-thirds of primary BrC and also contributes substantially to overall secondary OA formation
55 (Jacobson, 2014; Jo et al., 2016). Better understanding of the optical properties of biomass burning BrC aerosols
56 is crucial for constraining its atmospheric and climatic implications and Earth's energy balance. Unlike black
57 carbon that absorbs light strongly throughout the entire UV-visible range, different chromophores that may also
58 be coupled via charge transfer complexes enable BrC absorption in a much more pronounced and complicated
59 wavelength-dependence manner (Phillips and Smith, 2004; Reid et al., 2005; Lin et al., 2016, 2017).

60 Tar balls are a specific type of particles produced from wood combustion (especially from biomass
61 smoldering burning) which are abundant in the troposphere (Pósfai et al., 2004; Hand et al., 2005; Chen et al.,
62 2017). Tar ball particles have been collected and identified in many biomass burning plumes (Pósfai et al., 2004;
63 Fu et al., 2012; Li et al., 2017). Microanalysis has found that tar balls are homogeneous spherical carbonaceous
64 particles with sizes ranging from tens to hundreds of nanometers. These particles contribute a considerable fraction
65 of the biomass burning BrC (Pósfai et al., 2004; Hand et al., 2005; Li et al., 2017). The estimated burden of tar
66 balls on regional and global climatic forcing has been emphasized (Chung et al., 2012; Jacobson, 2012, 2014).

67 Tar balls from different burning conditions and bio-fuels coexist with many other types of particles (e.g., inorganic
68 salts, soot, and other carbonaceous aerosols in form of internal or external mixing), and these smoke particles
69 undergo rapid atmospheric processing once they are released from the fire (Pósfai et al., 2004; Hand et al., 2005;
70 Li et al., 2015, 2017). However, *in situ* determination of the optical properties of these particles during their
71 lifetimes in the air has seldom been reported due to inherent difficulty in selective tar balls sampling out of
72 complex particle ensembles typical of field burning emissions.

73 The complex refractive index ($RI=n+ki$, n and k are real and imaginary parts, corresponding to scattering
74 and absorption, respectively) is an intrinsic optical property of aerosols. Quantifying the RI of OA is highly needed
75 for evaluating the related radiative forcing influence (Moise et al., 2015). Recently, several studies have
76 investigated the optical properties of tar ball particles (Chakrabarty et al., 2010; Hoffer et al., 2016;
77 Sedlacek et al., 2018). The optical measurements reported for tar balls or other biomass burning BrC, were
78 discrete over several wavelengths that were constrained by instruments measuring particle light coefficients, or
79 indirectly inferred from calculations based on their electron energy-loss spectra or from UV-Vis absorption of
80 solutions containing dissolved tar balls (Alexander et al., 2008). Hand et al. (2005) measured light scattering
81 coefficients of tar balls-dominated fire plumes using a nephelometer, and reconstructed the scattering coefficients
82 with simplified organic carbon (OC) and elemental carbon (EC) data to get an average RI of $1.56+0.02i$ for tar
83 balls at $\lambda = 632$ nm. Chakrabarty et al. (2010) measured the RI of tar ball particles from smoldering biomass
84 combustion at 405, 532, and 780 nm, they observed a clear wavelength-, biofuel-, and even burning condition-
85 dependent RI. The light absorption by tar balls was similar to humic-like substance (HULIS) with an imaginary
86 part (0.002~0.015) that increased exponentially towards the near UV wavelengths. Recently, Hoffer et al. (2016)
87 generated tar ball particles from flameless wood pyrolysis in the laboratory. They reported a higher RI value of
88 $1.84+0.20i$ at 550 nm, which fell closer to RI of soot than to that of HULIS. Large discrepancies reside in these
89 results and discrete RI values make it difficult to decipher the complicated wavelength-dependence character of
90 tar balls optical properties, which finally constrains the assessment of its radiative forcing effect.

91 Freshly emitted smoke BrC contain chromophores with diverse chemical structures, polarity, and volatility
92 (Lin et al., 2016, 2017). After emission into the atmosphere, smoke particles undergo dynamic changes as a result
93 of dilution, precipitation, and chemical processing on scales of seconds to days, which eventually affect the
94 physiochemical properties of BrC particles during their lifetimes in the atmosphere (Reid et al., 2005; Li et al.,
95 2015; Laskin et al., 2015). Sumlin et al. (2017) simulated atmospheric photooxidation of biomass burning BrC,
96 and reported that photooxidation diminishes their light absorption. Zhong and Jang (2014) investigated the

97 influence of humidity and NO_x presence in photochemical aging of biomass burning BrC. They found that
98 sunlight faded the color of BrC, and humidity facilitated the decay of light absorption by BrC, while presence of
99 NO_x delayed the fading. Overall, they concluded that light absorption by BrC is governed by chromophores
100 formation and bleaching by sunlight in the atmosphere. Therefore, evaluating the climatic impacts of tar ball
101 particles requires more extensive investigation of its optical properties, and understanding of the dynamic
102 transformations of the optical properties during atmospheric aging.

103 In this study, we generated proxies for tar ball particles by flameless wood pyrolysis (Tóth et al., 2014; Hoffer
104 et al., 2016). This method allows consistent and continuous generation of tar ball proxy aerosols for studying their
105 properties and processes. The RI of the tar aerosols as a function of wavelength in the ultraviolet-short visible
106 region (365~425nm, 0.5 nm resolution) was determined using a broadband cavity enhanced spectrometer
107 (BBCES). A high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) and a single-particle mass
108 spectrometer applying laser desorption/resonantly enhanced multiphoton ionization (SP-LD-REMPI-MS) were
109 used for probing the chemical profile of tar ball aerosols under NO_x-dependent multiple-day photochemical
110 oxidation. Specifically, the dynamic changes of their optical properties in correlation with their chemical
111 composition were investigated. The atmospheric implications and climate forcing due to atmospheric aging of tar
112 aerosols and evolution of their optical properties were also explored.

113 **2 Experiment**

114 **2.1 Tar ball particle generation**

115 Following the formation mechanism in biomass burning process, polydisperse tar ball particles were generated
116 from droplets of wood tar in the laboratory (Tóth et al., 2014; Hoffer et al., 2016). In this study, a similar procedure
117 was applied for producing tar ball aerosols. In brief, commercial wood pellets (Hallingdal Trepellets, water content
118 of 6.55 wt.%, size of 2~3 cm in length, 0.2-0.3 cm in diameter) were smashed, heated and dry-distillated in absence
119 of air (25°C min⁻¹ increase to 530 °C from room temperature, and held for 20 min at 530 °C) to produce liquid tar-
120 water emulsions (~25 mL per hundred grams of used wood pellets). The emulsions were filtrated using 0.45 µm
121 pore size filters (PTFE membrane, diameter 47 mm, Pall Corp.) to remove particulate matter or solid precipitation.
122 After overnight static stabilization, the wood tar solution was phase-separated into water soluble and non-soluble
123 oily phases at an initial 3:1 volume ratio. Herein, we will term these two fractions as ‘polar’ and ‘nonpolar’ phases,
124 respectively. The phase-separated solution was further concentrated using a heating plate at 300 °C with N₂ purge
125 flow to prevent oxidation. A final 1:1 volume ratio of polar to nonpolar phase was obtained; then the concentrated

126 solutions were sealed and stored in the dark under 2 °C for following experiments. With respect to their potential
127 reactivity and instability, the distillation products were used within a few days.

128 For particle optical measurement, tar balls were produced from aerosolization of above predefined wood tar
129 diluted in methanol (Gradient grade for HPLC, purity≥99.9 wt.%, Merck) using a constant output atomizer (Model
130 3076, TSI) with high-purity N₂ as a carrier gas. As the actual fractions of the polar and nonpolar compounds
131 contributing to the mass of ambient tar ball or biomass burning organic aerosol (BBOA) can vary with biofuel
132 sources, burning condition, atmospheric process, and also method/efficiency to classify the polar and nonpolar
133 materials from the sample (Sengupta., et al., 2018; Lin et al., 2017, 2018; Chen and Bond, et al., 2010; Rajput et
134 al., 2008), tar ball aerosols in this study were generated from polar, nonpolar, and mixtures of two phase tar
135 solutions at volume mixing ratio of 2:1, 1:1, and 1:2, respectively. Activated charcoal denuders and quartz heating
136 tube (150 °C, residence time ~0.7s for particles at a nitrogen flow of 1.0 LPM) were used after the atomizer to
137 outgas the methanol from the gaseous and particulate phases. Mesh filters (TSI) downstream were used to filter
138 out some ultrafine (less than 100 nm) particles.

139 **2.2 NO_x-dependent OH oxidation of tar ball aerosols**

140 Heterogeneous oxidation of tar ball aerosols was simulated using an oxidation flow Reactor (OFR), shown
141 schematically in Fig. 1. The OFR has been characterized (Kang et al., 2007; Peng et al., 2015, 2016) and the
142 operational procedures have been described previously (He et al. 2018). Briefly, the OFR consists of a horizontal
143 13.3 L aluminum cylindrical chamber (46 cm long × 22 cm ID) operating in continuous flow mode. The chamber
144 is equipped with two power controllable ozone-free mercury-lamps with peak emission at $\lambda= 254$ nm (82-934-08,
145 BHK Inc., CA, USA). The two UV lamps are surrounded by Pyrex sheath tubes that are continuously purged with
146 N₂ to cool the lamps and remove outgassing compounds. OH radicals in the OFR are produced through photolysis
147 of externally introduced O₃ under 254 nm illumination and the further reaction of singlet oxygen (O¹D) with water
148 vapor:

151 External O₃ was produced by irradiation of 0.2 LPM high purity O₂ using a mercury lamp ($\lambda=185\text{nm}$, 78-2046-
152 07, BHK Inc., CA). The O₃ concentration downstream of the OFR was measured by an O₃ monitor (2B
153 Technology). A Nafion membrane humidifier (Perma Pure LIC, NJ) was used to supply water vapor to the OFR.
154 Tar ball aerosols carried by 1.0 LPM N₂ flow from the atomizer were introduced into OFR. The initial aerosol

155 concentrations in the OFR were mediated by controlling the concentration of the wood tar solution to be atomized
156 until the number of 350 nm particles was above 100 cm^{-3} , as shown in Fig. S1 of tar ball aerosols size distribution
157 (SI, supporting information). Finally, a total flow of 5.5 LPM with 36~38% RH, initial 27~28 ppm O_3 , and
158 $200\text{--}250 \mu\text{g m}^{-3}$ tar ball particles (assuming material density of 1.0 g cm^{-3}) was maintained, with a corresponding
159 plug flow residence time (RT) of 144s for aerosols in the OFR.

160 The extent of simulated daytime oxidation by OH exposure was varied by changing the UV light intensity. Here,
161 OH exposures in the OFR were inferred by measuring the decay of added SO_2 (monitored by Thermo SO_2 analyzer,
162 model 43i) due to reaction with OH radicals at specific UV lamp intensity. A low concentration ($\sim 60 \text{ ppb}$) of SO_2
163 was used to minimize its influence on the OH radical reactivity. Typical total OH exposures ranged from
164 $(8.7\pm2.3)\times10^{10}$ to $(8.6\pm1.7)\times10^{11} \text{ molec cm}^{-3} \text{ s}$ or 0.5~7 equivalent daytime atmospheric oxidation days (EAD)
165 were maintained, taking typical ambient average OH concentration as $1.5\times10^6 \text{ molec cm}^{-3}$ (Kang et al., 2007;
166 Peng et al., 2015, 2016).

167 In addition to reactions with oxidants, organic aerosols may change their chemical and physical properties by
168 photolysis (Epstein et al., 2014; Lee et al., 2014; Wong et al., 2014). Therefore, the influence of light irradiation
169 during tar ball photochemical aging was assessed at the short exposure time in the OFR. Here, tar balls aging was
170 repeated at the same conditions (e.g., RT, RH, N_2/O_2 flow, tar balls concentration, UV lamp power) without O_3
171 supply in the OFR. The 254 nm photon flux at specific to maximal UV lamp power was calculated by fitting the
172 OH exposure estimated from SO_2 decay and by the Aerodyne OFR Exposure Estimator (v3.1,
173 <https://sites.google.com/site/pamwiki/hardware/estimation-equations>).

174 Under polluted conditions, nitrogen oxides (NO_x) are often involved in the atmospheric transformations of
175 organic aerosol and alter their physiochemical properties (Rollins et al., 2012; Ng et al., 2007; Lin et al., 2015).
176 Therefore, NO_x influence on tar ball aerosol aging was also investigated. Due to rapid conversion of NO_x
177 ($\text{NO}+\text{NO}_2$) into nitric acid (HNO_3) under high O_3 and OH concentrations, simple addition of NO_x into OFR cannot
178 sustain NO_x levels that compete with HO_2 radicals in the reaction with organic proxy (ROO). NO_x generated via
179 N_2O reaction with O^1D has been modeled and tested to suit the characterization of NO_x -dependent SOA formation
180 pathways using OFR (Peng et al. 2017; Lambe et al., 2017). In this study, N_2O (99.999%) addition of 0.5 vol.%
181 and 2.0 vol.% were used during tar ball aerosol photochemical oxidation in the OFR, and equivalent OH exposure
182 of about 4.0 EAD was maintained. NO_x (NO and NO_2) concentrations downstream of the OFR was measured
183 using a NO/NO_2 analyzer (Ecotech, Serinus 40 NO_x). Experimental parameters including initial O_3 and N_2O
184 concentrations, NO_x , moisture ratio, maintained OH exposures and the corresponding photon flux at 254 nm are

185 presented in Table 1.

186 **2.3 Online optical and chemical characterization**

187 Prior to the optical and chemical measurements, excess ozone and NOx were removed from the sample air stream
188 following the OFR using two diffusion denuders packed with Carulite (Carus Corporation, Peru, IL) and one
189 activated charcoal tube. The stream flow was further dehydrated with two silica gel diffusion dryers. Afterward,
190 the tar ball aerosols were characterized by a combination of on-line chemical and optical instruments.

191 Bulk chemical fragments and organic elemental ratios of tar ball aerosols were monitored in real time by the
192 HR-ToF-AMS (Aerodyne Research Inc., Billerica, MA, USA) in alternating high sensitivity V and high-resolution
193 W modes. The working principles of the AMS have been described in details elsewhere (DeCarlo et al., 2006). In
194 short, aerosol particles are separated from the gas phase through an aerodynamic lens system and then transferred
195 into the vacuum system, where they are impacted onto a vaporizer at about 600 °C, thus vaporizing the particles.
196 The analyte vapors are ionized with 70 eV electron impact ionization (EI). A time-of-flight mass spectrometer is
197 used for high-resolution analysis of the ions. SQUIRREL v1.16 and PIKA v1.57 codes
198 (<http://cires.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/>) were used to process the collected
199 AMS data. Four ion groups were classified as $C_xH_y^+$, $C_xH_yO^+$, $C_xH_yO_z^+$ ($z \geq 1$), and $C_xH_yO_iN_p^+$ ($i \geq 0$, $p \geq 1$) based
200 on fragment features. The ions O^+ , OH^+ , and H_2O^+ were included in the $C_xH_yO_z^+$ group, as concentrations of these
201 species were calculated from the organic CO_2^+ ion abundance using the method in Aiken et al (2008). The ambient
202 improved (AI) atomic ratios of oxygen to carbon (O:C), hydrogen to carbon (H:C), nitrogen to carbon (N:C), and
203 organic mass to organic carbon (OM/OC) were generated from the measured ion fragments.

204 Particle-bound organic molecules were measured using a custom single-particle time-of-flight mass
205 spectrometer. This instrument features laser desorption and resonantly enhanced multiphoton ionization (SP-LD-
206 REMPI-ToF-MS), allowing for the detection of aromatic substances on individual particles. Detailed description
207 and application of the instrument in LD-REMPI ionization mode is given by Bente et al. (2008) and Passig et al.
208 (2017). Briefly, aerodynamically accelerated particles are individually sized using laser velocimetry, and heated
209 by a pulsed CO_2 infrared laser (10.6 μm) to desorb organic molecules. Aromatic substances in the gas plume are
210 selectively ionized via REMPI by a KrF-excimer laser pulse (248 nm) and detected in the positive MS flight tube.
211 The REMPI-MS technique is very sensitive and selective for aromatic substances (Boesl et al., 1978; Grottemeyer
212 et al., 1986; Rettner and Brophy, 1981) and suitable for studies on pyrolysis and (wood) combustion processes
213 (Heger et al., 1999; Czech et al., 2017). For the tar ball aerosols it provides complementary information to the

214 HR-ToF-AMS spectra. A custom software on LabView basis records and calculates the aerodynamic size and
215 individual mass spectra of the particles.

216 For optical measurements, tar ball aerosols were size-selected using an Aerosol Aerodynamic Classifier (AAC,
217 Cambustion, UK). AAC has significant advantages over the commonly used Differential Mobility Analyzer
218 (DMA) classifier. The AAC classifies particles based on the aerodynamic size without charging and hence it
219 avoids the contribution of multiply charged particles, thus generating real monodisperse size-selected particles
220 distribution, reducing the errors associated with multiply charged large particles. In addition, the AAC has higher
221 particle transmission efficiency at the relevant size range (Tavakoli and Olfert, 2013, 2014). Aerodynamic size-
222 classified particles after the AAC were further scanned by a scanning mobility particle sizer (SMPS, classifier
223 Model 3080, DMA Model 3081, CPC model 3775, TSI) to derive their mobility size distribution. The effective
224 density of tar balls can be estimated from Equation 1 with assumptions of homogeneous composition and particle
225 shape factor of 1.0, which was verified later in this study:

$$226 \quad \rho_{eff} = \frac{D_{aero}}{D_m} \rho_o \quad [1]$$

227 Where ρ_{eff} is an effective density, D_{aero} and D_m are aerodynamic and mobility diameters, respectively. ρ_o is unit
228 density of 1.0 g cm^{-3} .

229 Based on the derived effective density, size-specific tar ball aerosols covering mobility diameters between 175
230 to 350 nm with an interval of 25 nm were size-selected via AAC, and monodisperse tar balls were introduced into
231 a dual-channel broad-band cavity enhanced spectrometer (BBCES) for light extinction (α_{ext}) measurements in the
232 wavelength of 360~395 nm and 385~435 nm (at resolution 0.5 nm). A detailed description of the instrument can
233 be found elsewhere (Washenfelder et al., 2013; Flores et al., 2014a, b). With the combination of a condensation
234 particle counter (CPC, Model 3575, TSI) to measure particle concentration (N) in series, size-specific particle
235 extinction cross section (σ_{ext}) can be calculated by Equation (2):

$$236 \quad \sigma_{ext}(\lambda, D_p, RI) = \frac{\alpha_{ext}(\lambda, D_p, RI)}{N(D_p)} \quad [2]$$

237 Where λ is the wavelength of incidence light, D_p is the particle mobility diameter.

238 Using the Mie-Lorenz scattering theory, the wavelength-dependent complex refractive index of spherical
239 homogeneous particles was derived (Pettersson et al. 2004; Abo Riziq et al. 2007). The retrieval algorithm was
240 limited to search for $n \geq 1$ and $k \geq 0$ as their physical boundaries. Thereafter, spectral dependent extinction,
241 scattering, and absorption cross sections (σ_{ext} , σ_{sca} , and σ_{abs}) were calculated from the complex RI at specific
242 particle size. Using these parameters, the single scattering albedo, indicating the scattering fraction of light

243 extinction (SSA = $\sigma_{\text{sca}}/\sigma_{\text{ext}}$), was calculated.

244 The absorption and extinction Ångström exponents (Å_{abs} and Å_{ext}) describe the spectral dependence of aerosol
245 light properties, and are widely used in climate modeling (Russell et al., 2010). It is customary to extrapolate the
246 optical spectral absorption and extinction fitting to the range of wavelengths using a power law $\propto \lambda^{-\text{Å}_{\text{abs}}}$ and $\propto \lambda^{-\text{Å}_{\text{ext}}}$,
247 respectively. In this work, we determined Å_{ext} and Å_{abs} with a linear regression of $\ln(\sigma_{\text{ext}})$ and $\ln(\sigma_{\text{abs}})$ against
248 $\ln(\lambda)$ over the range of 365 to 425 nm:

$$249 \text{Å}_{\text{ext}} = -\frac{\ln(\sigma_{\text{ext}})}{\ln(\lambda)} \quad \text{Å}_{\text{abs}} = -\frac{\ln(\sigma_{\text{abs}})}{\ln(\lambda)} \quad [3]$$

250 Here Å_{ext} , Å_{abs} , and SSA were calculated for tar ball aerosols with a median diameter of 150 nm.

251 2.4 Offline optical characterization

252 In addition to the *in-situ* measurements, tar ball particles were also collected quantitatively onto Teflon filters (47
253 mm diameter, 0.45 μm porosity, Pall Corp.) at sampling flow rate of 2 LPM and then extracted using methanol
254 (HPLC grade, purity $\geq 99.9\%$, Merck) for offline UV-Vis absorption measurement (Cary 60 UV-VIS spectroscopy,
255 Agilent). Methanol extraction of organic compounds has been commonly performed in various studies (Hoffer et
256 al., 2006; Laskin et al., 2009; Yee et al., 2013; Finewax et al., 2018; Xie et al., 2017). Here we verified the
257 completeness of the extraction by extracting each filter twice with methanol. Moreover, vortex shaking (Vortex
258 Genie-2, Scientific Industries) rather than sonication was applied to avoid chemical degradation of the extracts
259 upon ultrasonic irradiation (Miljevic et al., 2014; Mutzel et al., 2013). The methanol extractable BrC mass
260 absorption cross section (MAC, $\text{m}^2 \text{ g}^{-1}$) and refractive imaginary k of the tar balls were estimated based on
261 following relations (Chen and Bond, 2010; Laskin et al., 2015):

$$262 \text{MAC}_{(\lambda)} = \frac{\text{Abs}_{(\lambda)} \times \ln(10)}{C \times b} \quad [4]$$

$$263 k_{(\lambda)} = \frac{\lambda \times \rho \times \text{MAC}_{(\lambda)}}{4\pi} \quad [5]$$

264 $\text{Abs}_{(\lambda)}$ is the base-10 absorbance result from UV-VIS spectroscopy (unitless), b is the optical length of the solution
265 (1 cm), C is the extracted organic carbon mass concentration in solvent (g m^{-3}), which can be determined directly
266 by normalizing the extract concentration and OC mass fraction for tar balls as OC/OM obtained from AMS data,
267 as no other refractory elemental carbon (EC) content was detected in our samples (details see in SI). λ is the
268 incident light wavelength, and ρ is material density (g cm^{-3}). Here, the derived effective density ρ_{eff} was used. The
269 absorption Ångström exponent based on MAC was also derived as $\text{Å}_{\text{abs-UV-Vis}}$ over the 365-425 nm spectral range.

270 In addition, particles were impacted at a flow of 2.5 L min^{-1} onto cyclopore track-etched polycarbonate

271 membrane (47 mm, 0.1 μ m porosity, Whatman Inc.) to investigate the morphology of tar balls using Scanning
272 Electronic Microscopy (SEM, JEOL JSM-7000F).

273 **2.5 Radiative impacts of tar ball aerosols**

274 To assess the climatic influence of tar ball aerosols, a wavelength-dependent direct shortwave aerosol simple
275 radiative forcing efficiency (SRF, W g⁻¹) was estimated using the clear sky air mass global horizontal solar
276 spectrum (AM1GH), assuming that tar ball aerosols form a uniform, optically thin aerosol layer at the lower
277 troposphere or on ground (Bond and Bergstrom, 2006; Levinson et al., 2010):

278
$$\frac{dSRF}{d\lambda} = -\frac{1}{4} \frac{dS_{(\lambda)}}{d\lambda} \tau_{atm(\lambda)}^2 (1 - F_c) [2(1 - R_{sfc})^2 \beta_{(\lambda)} MSC_{(\lambda)} - 4R_{sfc} \cdot MAC_{(\lambda)}] \quad [6]$$

279 Where $dS(\lambda)/d\lambda$ is the solar irradiance (photons s⁻¹ cm⁻²), τ_{atm} is the atmospheric transmission (taking 0.79 for
280 simple calculation), F_c is the cloud fraction (approximately 0.6), R_{sfc} is the surface albedo (approximate 0.19 for
281 urban area ground and 0.8 for snow) (Chen and Bond, 2010), β is the average up-scatter fraction (the fraction of
282 scattered sunlight that is scattered into the upward hemisphere), and $MSC(\lambda)$ is wavelength-dependent mass
283 scattering cross section, respectively. We simply calculated radiative forcing of particles with atmospheric relevant
284 size of 50 to 500 nm, and SRF was estimated and integrated over the measured range of 365~425nm. The actinic
285 flux over 365~425 nm was obtained from the “Quick TUV Calculator”, available at
286 http://cprm.acm.ucar.edu/Models/TUV/Interactive_TUV/ using the following parameters: SZA (solar zenith
287 angle) of 0 degree, noon time, June 30, 2000, 300 Dobson overhead ozone column, surface albedo of 0.19 for
288 urban area and 0.8 for snow, and 0 km altitude.

289 **3 Results and discussion**

290 **3.1 Chemical composition and optical properties of fresh tar ball aerosols**

291 Negligible fractions of inorganics (e.g., sulfate, nitrate, chloride, and ammonium) in tar balls are obtained from
292 AMS measurement as shown in Fig. S2 (SI), and these results confirm again that tar ball aerosols contain
293 dominated carbonaceous compounds with minor amounts of N, S, and Cl (Pósfai et al., 2004; Hand et al., 2005;
294 Adachi and Buseck, 2011). Thereafter, only organics in tar balls are considered, and the high-resolution bulk
295 organic mass spectra for polar and nonpolar tar ball particles are given in Fig. 2. The mass spectra features and
296 particle effective densities are summarized and compared in Table S1 (SI). Distinct differences in the chemical
297 composition were observed between polar and nonpolar tar ball aerosols. The alkyl fragments ($C_xH_y^+$, e.g., $C_nH_{2n-1}^+$, $C_nH_{2n+1}^+$) dominate the signals for nonpolar particles (accounting for ~56% of total fragments), implying that

299 the nonpolar tar balls have compositional similarity with common hydrocarbon organic aerosol (HOA). The
300 $\text{C}_x\text{H}_y\text{O}^+$ fragments are the primary ions for the polar tar balls, contributing ~42% of their mass spectrum,
301 suggesting that most of the organic constituents in the polar tar balls are substantially oxygenated. Both spectra
302 exhibit significant intensity at m/z 28 (CO^+), m/z 29 (CHO^+), and m/z 43 ($\text{C}_2\text{H}_3\text{O}^+$), indicating the presence of
303 carbonyl ions. The strong signal at m/z 31 (CH_3O^+) results from methoxy species that preferably partition into the
304 polar tar fraction. In addition, the significant signals at m/z 50-52 (C_4H_2^+ , C_4H_3^+ , C_4H_4^+), m/z 65 (C_5H_5^+), m/z 77-
305 78 (C_6H_5^+ , C_6H_6^+), m/z 81 (C_6H_9^+), and m/z 91 (C_7H_7^+), which are characteristic of aromatic compounds, indicate
306 that tar balls, especially from the nonpolar phase, contain a considerable amount of aromatic organics or present
307 high aromaticity. Ion peaks at m/z 77-78, 81, and 91 are typical for monocyclic aromatics such as alkyl-substituted
308 benzene (for m/z 77-78, 91) and heterocyclic aromatics (for m/z 81) (Li et al., 2012). While the relative higher
309 signal at m/z 128 ($\text{C}_{10}\text{H}_8^+$) in the nonpolar tar ball mass spectra can be assigned to molecular ion of naphthalene
310 (Herring et al., 2015). Moreover, signals at m/z 55 and 57 ($\text{C}_3\text{H}_3\text{O}^+$, $\text{C}_3\text{H}_5\text{O}^+$) are signature fragments of aliphatic
311 and non-acid oxygenated organics that are used to trace cooking emissions (He et al., 2010), and these two
312 fragments were also observed in the tar ball aerosols. Similar to ambient biomass burning emissions, $\text{C}_2\text{H}_4\text{O}_2^+$
313 (m/z 60) and $\text{C}_3\text{H}_5\text{O}_2^+$ (m/z 73), two characteristic fragments from levoglucosan and similar cellulose pyrolyzed
314 species (e.g., mannosan, galactosan) were detected in all the tar ball aerosols, and these fragments were more
315 prominent in the polar aerosols due to the solubility of levoglucosan and analogs in water. Weimer et al. (2008)
316 reported the percentage of m/z 60 and 73 for the burning of various woods to be 0.6-4.1% and 0.1-2.0%,
317 respectively. The percentage of these two fragments in our tar ball aerosols (0.7-1.6% for m/z 60 and 0.5-0.9% for
318 m/z 73) are comparable to the literature data, although the fuel and the pyrolysis procedure are different. The m/z
319 137 peak is dominated by fragments of $\text{C}_8\text{H}_9\text{O}_2^+$ and $\text{C}_7\text{H}_5\text{O}_3^+$, and these fragments have been determined in
320 biomass burning emissions and were assigned to lignin-related ions with methoxy-phenolic structures (Li et al.,
321 2012; Li et al., 2014). Phenols and methoxy phenols are prominent compounds, accounting for 41% of the
322 identified organic species, in primary BBOA (Schauer et al., 2001). The signal at m/z 137 is much higher in the
323 nonpolar phase tar ball aerosols (1.0% and 0.5% for nonpolar and polar tar balls, respectively), and the fraction
324 of fragment m/z 137 is consistent with reference values of 0.3-2.0% (Li et al., 2012). m/z 44 (CO_2^+), a marker
325 fragment of carboxylic acids has been parameterized as f_{44} (fraction of mass spectrum signal at m/z 44) to present
326 the oxidation degree of organic aerosols (Aiken et al., 2008; Ng et al., 2010). Higher f_{44} values indicate more
327 oxidized OA (OOA), while less oxidized OA is characterized by lower f_{44} (Schauer et al., 2001). Peroxides can
328 also produce CO_2^+ signal via extensive fragmentation in the AMS (Aiken et al., 2008). f_{44} has also been shown

329 to be linearly correlated with the elemental O:C ratio of OA (Aiken et al., 2008). In this study, f_{44} for the nonpolar
330 and polar tar ball aerosols are 1.9% and 2.4%, and the corresponding O:C ratios are 0.25 and 0.44. The higher
331 O:C and H:C ratios explain the polarity of the polar tar ball aerosols. The simplified average carbon oxidation
332 state ($\overline{OS_c} \approx 2O:C-H:C$) describe the oxidation level of particulate complex organic mixtures (Kroll et al., 2011).
333 The calculated $\overline{OS_c}$ for the tar ball aerosols are -1.05~0.76, which agrees well with reference values of -1.0~0.7
334 for primary BBOA (Kroll et al., 2011). These values are in the broad range of -1.7~1.6 for HOA and -0.5~0 for
335 semivolatile OOA (Aiken et al., 2008). In addition, a small fraction of nitrogen-containing organic compounds
336 (NOC) was detected, with the $C_xH_yO_iN_p^+$ group contributing 1.6~3.6% of the tar ball mass spectra with estimated
337 N:C ratio below 0.01, which agrees with previously reported N:C values of 0.008~0.018 for biomass burning
338 emissions (He et al., 2010). Biomass burning is an important source of NOC in the atmosphere, alkaloid and nitro-
339 aromatic constituents were detected to be abundant constituents of the NOC (Laskin et al., 2009; Lin et al., 2017).
340 Nitroaromatic compounds were also identified in urban fire emissions (Bluvshtein et al., 2017; Lin et al., 2017).
341 Although these compounds constitute a small fraction of the BBOA mass, these chromophoric NOC species
342 accounted for 50~80% of the total visible light absorption by the extractable BrC (Lin et al., 2017).

343 Fragments larger than 100 amu ($f_{m/z>100}$) contribute a large fraction of the total organic signals for tar ball
344 aerosols, consistent with biomass burning emissions that contain a large fraction of high-molecular weight
345 compounds (Ge et al., 2012; Zhou et al., 2017). $f_{m/z>100}$ is 32% for the nonpolar tar ball aerosols, which is higher
346 than that of the polar particles (15%), demonstrating that the nonpolar tar balls consists of more high-molecular
347 weight organics. The measured effective densities for polar and nonpolar tar balls are 1.33 and 1.24 g cm⁻³.
348 Chemical characteristics from AMS and densities for internal mixture tar balls follow the volume-linear mixing
349 of polar and nonpolar tar solutions.

350 A considerable aromatic fraction in the tar ball aerosols was confirmed by the LD-REMPI-MS measurement.
351 Fig. 3 presents the mass spectra of aromatic substances obtained for each one exemplary polar and one nonpolar
352 particle, respectively. Aerodynamic size distributions for the detected tar ball aerosols are given in Fig. S3, and
353 substances identified in the mass spectra are listed in Table S2 (SI). The features in the mass spectra are consistent
354 with the polarity of examined tar ball aerosols and ambient BBOA (Lin et al., 2018). The complex REMPI-
355 spectrum shows rows of intense unsubstituted and partially alkylated PAH peaks in the nonpolar tar balls,
356 including naphthalene, acenaphthylene, phenanthrene, pyrene, and in particular, the softwood combustion marker
357 retene at m/z 234 and some possible derivatives (oxidized-retene at m/z 250 with one oxygen addition, methyl-
358 retene at m/z 248 with one methyl addition) (McDonald et al., 2000; Shen et al., 2012). Retene and some of the

359 aforementioned PAHs are also observed in the polar tar ball aerosols' mass spectra with lower intensities. In
360 contrast, the polar tar ball REMPI mass spectra shows strong peaks from oxidized aromatics, more specifically,
361 benzenediol and methoxy-phenols (e.g., catechol, guaiacol, acetovanillone, syringaldehyde, conifery aldehyde,
362 etc.). These results are also verified in ambient BBOA, of which the nonpolar BrC consists of primary
363 unsubstituted PAHs, while the polar fraction includes major aromatic acids and phenols (Lin et al., 2018). The
364 REMPI mass spectra corresponds to the large fractions of CHO^+ and CH_3O^+ fragments and high O:C ratios
365 observed for the polar tar aerosols via HR-ToF-AMS, and keep in consistence with the strong signals of typical
366 aromatic fragments observed in the nonpolar tar aerosols in Fig. 2. The dominance of aromatic compounds in tar
367 ball chemical composition agrees well with previous work on BBOA (Schauer et al., 2001; Wei et al., 2015; Bente
368 et al. 2008, 2009; Czech et al. 2017). Biomass burning is a major source of environmental PAHs (alkylated PAHs,
369 oxygenated-PAHs, phenols, nitrogen-substituted PAHs, etc.) in both particulate and gaseous phases, and extensive
370 emissions of PAHs from incomplete combustion pose a great threat to ecosystem and human health due to their
371 carcinogenic toxicity (Li et al., 2017; Shen et al., 2013; Sigsgaard et al., 2015; Shrivastava et al., 2017). Moreover,
372 the primary PAHs can act as precursors that substantially contribute to ambient SOA or BrC aerosol when involved
373 in atmospheric photochemical aging, leading to profound climatic influence (Yee et al., 2013; Yu et al., 2014; Lu
374 et al., 2011; Zhang et al., 2012).

375 The complex refractive index (RI) of tar ball aerosols was retrieved under the assumption that the particles have
376 similar chemical composition and a spherical shape. The SEM images shown in Fig. S4 (SI) confirm the spherical
377 morphology and homogeneous composition of the tar ball particles generated in this study. Electron energy-loss
378 spectroscopy (EELS) spectra indicates that the tar ball particles contain major C and minor O, which fits the AMS
379 result and previous work (Pósfai et al., 2004; Chakrabarty et al., 2010). Continuous spectral-dependent RI and
380 SSA for tar balls were derived and are presented in Fig. 4, RI results for tar ball aerosol at mixing ratio of 2:1 and
381 1:2 are presented in Fig. S5 (SI). Although scattering dominates the light extinction, absorption in the UV and in
382 the visible ranges was unambiguously identified for the tar ball aerosols, with characteristic absorption similar to
383 atmospheric BrC and HULIS (Hoffer et al., 2006; Bluvshtein et al., 2017; Lin et al., 2017). The imaginary part, k ,
384 increases towards the UV range, presenting 0.02~0.03 difference over the measured spectra range. The real part,
385 n , for the nonpolar tar balls decreased from 1.673 at 365nm to 1.647 at 425nm, which is almost parallel to the
386 descending n for the polar tar balls ranging from 1.651 at 365nm to 1.625 at 425nm. k is 0.029~0.013 for the
387 nonpolar tar ball over light wavelength of 365~425nm, while the imaginary part for nonpolar aerosols is 0.007 at
388 365nm and zero at wavelength longer than 410 nm, indicating that there is no detectable absorption or k is lower

389 than our detection limit. The overwhelming imaginary part for the nonpolar tar aerosol agrees with many reports
390 that nonpolar or less polar organics have higher absorption compared with the polar BrC in BBOA (Lin et al.,
391 2018; Sengupta et al., 2018). The stronger absorption and relative higher scattering abilities, resulting in a lower
392 SSA compared with the polar tar ball aerosols. The SSA increases towards the visible wavelength from 0.86 at
393 365nm to 0.90 at 425nm for nonpolar tar ball, and the corresponding values are 0.95 to 1.0 for the polar tar balls.

394 The optical properties of aerosols relate to their chemical composition. Evidently, most of the PAHs identified
395 in the tar ball aerosols with high intensity have strong absorption between 350 and 450nm (Samburova et al., 2016;
396 Lin et al., 2018), as shown in Fig. S6 (SI), which coincide the range of tar ball absorption measured here, implying
397 that PAHs could be a dominate contributor to the absorption of fresh tar balls. Higher imaginary k can be explained
398 partly by the larger proportion of PAHs as well as more high-molecular-weight organics present in the nonpolar
399 tar ball particles, as conjugated aromatic rings and phenols contribute to the major chromophores in the wood
400 smoke (Laskin et al., 2015; Lin et al., 2017, 2018). High-molecular weight organics may resemble HULIS that
401 can form charge transfer complexes (Phillips and Smith, 2004), that can absorb light at a longer wavelength range.
402 The result is consistent with the finding that higher molecular weight and aromaticity result in stronger absorption
403 for atmospheric BrC (Dinar et al., 2008). Moreover, the higher NOC content may also contribute to the
404 chromophores in the nonpolar tar aerosols (Lin et al., 2017, 2018).

405 The average RIs at 375 and 405 nm are $1.671+0.025i$ and $1.659+0.017i$ for nonpolar tar ball aerosols. The
406 corresponding RIs are $1.647+0.005i$ and $1.635+0.04i$ for the polar tar ball aerosols. The imaginary part k retrieved
407 from the BBCES data, though low, agrees well with k values calculated from UV-Vis absorption of the bulk
408 solution. The MAC for the methanol extracted BrC in tar ball aerosol is shown in Fig. S7 (SI). The absorption
409 may be different for complex materials in the particulate and in the aqueous phases since parameters such as shape
410 factor, mixing state, together with artifacts from the optical instruments detection and data retrieval methods can
411 all affect the final optical results, while solvent-dependent extraction/dissolving efficiency of chromophores or
412 solvent effect (e.g., pH in water solution) may impact the solution absorption coefficient (Huang et al., 2018; Lin
413 et al., 2017). The light absorption coefficient of particulate BrC has been reported to be 0.7~2.0 times that of bulk
414 BrC extracts by Liu et al. (2013).

415 The absorption Ångström exponent (\AA_{abs}) is often used to describe the wavelength-dependence of aerosol light
416 absorption with a value of nearly 1 for BC particles and values substantially larger than 1 indicating the
417 contribution from BrC (Reid et al., 2005; Chen and Bond, 2010). In this work, \AA_{abs} for the nonpolar and polar tar
418 ball particles ranges from 5.9 to 6.8 between 365 and 425 nm, which is consistent with values of 5.7~7.8 calculated

419 from the bulk absorption in solution. The nonpolar tar balls have a lower Å_{abs} . The difference in Å_{abs} reflects the
420 different chemical composition of chromophores in the particles, as inferred also from the AMS data. Bluvshtein
421 et al. (2017) reported relative low values of Å_{ext} (2~3) and Å_{abs} (4~6) over 300~650 nm for ambient fire plume,
422 which are likely affected by BC in the smoke aerosol and also due to lower wavelength dependence of aerosol
423 absorption and scattering over the longwave visible range. Overall, the broadband optical results for fresh tar ball
424 aerosols are consistent with limited discrete measurements of atmospheric BBOA as summarized in Table 2. It
425 has also been found that the biomass fuel type, combustion conditions, and atmospheric processing eventually
426 affect the optical properties of BBOA. Lack et al. (2012) modeled core-shell absorption for primary organic matter
427 (POM) and BC from biomass burning. They found that the imaginary part of the RI and BrC MAC of POM at
428 404 nm were 0.007 ± 0.005 and $0.82 \pm 0.43 \text{ m}^2 \text{ g}^{-1}$, respectively. Charkey et al. (2010) compared the optical
429 properties of tar balls from smoldering combustion of different biomass. Fuel-dependent imaginary RI for tar ball
430 at 405 nm was $0.008 \sim 0.015$ and Å_{abs} over 405~532 nm was 4.2~6.4, which is in line with the Å_{abs} value of 6~7
431 reported for BBOA derived HULIS (Hoffer et al., 2006). Sedlacek et al. (2018) observed a weak absorption for
432 wildfire produced tar balls with RI of $1.56 + 0.02i$. Sumlin et al. (2018) simulated BrC formation under different
433 pyrolysis temperatures. The BrC produced from over 300 °C combustion has imaginary part k of 0.05~0.09 and
434 real part n of 1.59~1.68 at 375 nm, and RI at 405 nm is $1.57 + 0.03i$, corresponded Å_{abs} over 375~405 nm is 6.4~7.4.

435 Optical mixing rules can be used to estimate or explain the refractive indices of internally mixed substances,
436 and three mixing rules are commonly applied in climate models: molar refraction of absorption (Jacobson, 2002),
437 volume-weighted linear average of the refractive indices (d'Almeida et al., 1991), and the Maxwell-Garnett rule
438 (Chýlek et al., 2000). The “linear mixing rule” and molar refraction mixing rules were tested in this work for
439 mixtures of tar ball particles against the retrieved optical data. Relevant data analysis details are provided in the
440 supporting materials (Table S3-S4, Fig. S8-S12). It was found that both mixing rules can predict the index of
441 refraction for the polar/nonpolar tar balls, and values calculated based on “linear mixing rule” fit better with the
442 experimental data. As mentioned above, the real fractions for polar and nonpolar BrC contributing to the
443 mass/absorption of BBOA are undefined, some investigations report the dynamic polar BrC dominate in mass
444 loading (50~85%), but contribute less to the absorption in BBOA (less than 40%) (Asa-Awuku et al., 2008;
445 Bluvshtein et al., 2017; Lin et al., 2017, 2018; Rajput et al., 2014; Sengupta et al., 2018). The “linear mixing rule”
446 confirmed in this study should be helpful in the mathematical modeling to assess climatic impacts of biomass
447 burning related BrC aerosol, when their chemical composition is classified.

448 **3.2 Photooxidation of tar ball particles**

449 Aerosols have a wide range of atmospheric lifetimes from hours to days, during which they are involved in various
450 atmospheric processes, resulting in changes of properties (Reid et al., 2005; Rudich et al., 2007; Jimenez et al.,
451 2009). Therefore, we studied the effects of photochemical oxidation of the nonpolar wood-pyrolyzed tar ball
452 aerosols to investigate the physiochemical changes that can occur during tar balls' atmospheric lifetime. Fig. 5
453 presents the evolution of the wavelength-dependent RI and SSA as a function of the aerosols' O:C ratio following
454 NO_x-free photochemical aging in the OFR. The oxidation covers 0.7-6.7 EAD. Substantial decrease of the RI and
455 an increase of the SSA are correlated with an increase of the O:C ratio, these specific parameters are summarized
456 in Table S5 (SI). Light scattering as well as the absorption by the tar balls aerosol decrease with increasing OH
457 oxidation. The tar aerosols lose their scattering and absorption significantly up to 3.9 EAD aging. The average RI
458 decreased from initial $1.661+0.020i$ to $1.632+0.007i$, and the corresponding average SSA increased from
459 0.89 ± 0.01 to 0.96 ± 0.02 . Then, the RI by tar balls persisted with enhanced oxidation, so that the MAC values
460 remained stable after 3.9 days oxidation (Fig. S13, SI), suggesting that all the photochemical-labile chromophores
461 were largely eliminated, while the remaining fraction still presented some light absorption. Forrister et al. (2015)
462 also observed a stable fraction of biomass burning BrC that had persistent absorption even after long
463 photochemical evolution time in the ambient environment. They suggested that the remaining persistent fraction
464 determines the background BrC levels. In our study, the O:C ratio for tar ball aerosols increased continuously with
465 photochemical oxidation, implying production of oxygenated constituents (carboxylic, carbonyl compounds, etc.),
466 and the interaction between these increasingly oxidized species coupled with the relative stable intrinsic
467 chromophoric structures (e.g., fused aromatic rings in Fig. 3) in some supermolecular structure that may explain
468 the persistent absorption for aged tar ball aerosols (Dewar and Lepley, 1961; Desyaterik et al., 2013; Samburova
469 et al., 2016). In addition, a balance between photobleaching of intrinsic chromophores and photochemical
470 formation of BrC via gas-particle transfer, as well as dynamic gas-particle partitioning of chromophores and
471 products of their photo-degradation should also be considered in the overall absorption behavior for BBOA during
472 photochemical processes.

473 The observed photooxidation bleaching is consistent with previous studies on atmospheric processes of BrC.
474 Sumlin et al. (2017) conducted multiple-day photochemical oxidation on primary biomass burning BrC aerosols
475 and observed that BrC losses its light absorption and scattering in the near-UV wavelengths by aging. Their
476 derived RI at 375 nm decreased from $1.59+0.03i$ for fresh emission to $1.50+0.02i$ after 4.5 EAD oxidation with a

477 corresponding O:C ratio increase from 0.34 to 0.40. Decrease in the overall BBOA absorption and scattering was
478 also detected *in-situ* following a one day evolution by Adler et al. (2011). They monitored an average RI of
479 1.53+0.07i and 1.54+0.04i for aerosols dominated by open fire and smoldering emissions, respectively, while the
480 RI decreased to 1.49+0.02i of the aged aerosols during the following day. Zhong and Jang (2014) reported that
481 light absorption of wood smoke BrC was modified by the photochemical process, owing to the production of BrC
482 from SOA formation and loss of BrC from photochemical bleaching of the chromophores. The total MAC for the
483 BrC eventually decreased by 19~68% within one day of aging. They proposed that bleaching occurred by
484 excitation of electrons through the absorption of sunlight via $\pi-\pi^*$ (UV and near UV illumination) or $n-\pi^*$ (visible
485 wavelengths irradiation) transitions. Then, the excited electrons disrupted the conjugated structure of
486 chromophores, leading to the fading of wood smoke color.

487 When tar ball aerosols were illuminated merely by 254 nm UV light at residence time of 144s, photolysis
488 occurred and weakly diminished their light absorption in line with the extent of photon flux exposure. UV
489 irradiation similar to the O_3.9 condition slightly decreased the average RI to 1.649+0.018i, indicating that
490 photolysis played a minor role in tar ball aerosols bleaching and contributed to less than 15% of imaginary k
491 changes in NOx-free photochemical aging process. Even at full power of UV lamps in the OFR, the average RI
492 decreased by 0.012 and 0.005i for maximum photolyzed tar balls (Table S6-S7, Fig. S14-S17, SI). As we also did
493 not observe detectable optical changes in blank tests upon exposure to O₃ under dark (SI, Fig. S18-S19), the
494 bleaching of the tar balls in the OFR is mainly attributed to OH-initiated chromophores decomposition via
495 heterogeneous reactions, rather than to O₃ oxidation or photolysis.

496 These results indicate a fundamental relationship between photochemical processes and impairment of light
497 absorbing and scattering abilities in tar ball aerosols. The optical behaviors of tar balls are a consequence of their
498 chemical composition changes, which are very sensitive to photochemical process, and even one daytime
499 atmospheric aging resulted in significant oxidation and bleaching of tar balls. In Fig. 6a, the H:C, OM/OC, $\overline{OS_c}$,
500 and particle effective density versus O:C ratio are shown. Fig. 6b presents the contributions of C_xH_y⁺, C_xH_yO⁺,
501 C_xH_yO_z⁺, and C_xH_yO_iN_p⁺ groups to the tar balls composition under a range of OH exposure conditions. Mass
502 spectra features and densities of the tar ball aerosols under various oxidation processes are summarized in Table
503 S8 (SI). Increasing the OH exposure leads to continuous increase of O:C and H:C ratios, leading to higher $\overline{OS_c}$
504 for the tar ball aerosols. This result is consistent with Sumlin et al. (2017), who reported that the O:C and H:C for
505 BBOA increased by ~0.08 and ~0.03 after 4.5 EAD photochemical oxidation, respectively. In this work, the
506 measured O:C ratio increased from 0.25 to 0.38 after maximum aging, while the H:C ratio increased by 0.07 from

507 initial value of 1.55.

508 Other previous studies also depicted dynamic change of elemental ratios for SOA upon aging (Aiken et al.,
509 2008). The H:C ratio may either increase or decrease, depending on the precursor type and oxidation conditions.
510 Overall, O:C and H:C ratios changes relate to specific chemical processes or/and to gas-particle mass transfer
511 during aging of aerosols (Heald et al., 2010; Kim et al., 2014). The tar ball aerosols consist of mostly reduced
512 species ($\overline{OS_c} < 0$), which can be oxidized primarily via oxidative formation of polar functional groups to the carbon
513 skeletons. In OH-initiated oxidation, functionalization includes OH/OOH function group addition and
514 COOH:Carbonyl groups formation that increase the net oxygen content in SOA (Kroll et al., 2011). Hydration or
515 polar functional groups addition to unsaturated C-C bonds may also increase the H:C ratio. Moreover,
516 fragmentation or evaporation also mediate the O:C and H:C ratios of SOA in further aging (Zhang and Seinfeld,
517 2013; Kim et al., 2014). We attribute the increase in H:C ratio to such oxidation mechanisms that involve bulk
518 species in the particles. As shown in Table S8 (SI), $f_{m/z>100}$ decreased monotonically with aging. After 6.7 EAD
519 photooxidation, $f_{m/z>100}$ contributed only 21% of the total organic signals. The decrease of $f_{m/z>100}$ indicates that
520 fragmentation reactions are involved in the photochemical evolution, and decomposition of high-molecular weight
521 compounds, thereby, reduced the size of the conjugated molecular system. The persistent high value of $f_{m/z>100}$
522 after 6.7 EAD photooxidation imply that some high molecular weight compounds remained in the tar ball aerosols,
523 and continue to contribute to light absorption either as individual chromophores or as charge transfer complexes.
524 From Fig. 6b, $C_xH_y^+$ fragments deplete with OH exposure, while $C_xH_yO^+$ and $C_xH_yOz^+$ fragments increase,
525 implying the formation of oxygenated moieties in the tar ball aerosols. In addition, a decrease in the $C_xH_yOzN_p^+$
526 fraction was measured from initial 3.6% to 1.9% after the maximum oxidation. Ng et al. (2010) suggested to use
527 $f_{44}(CO_2^+)$ vs. $f_{43}(C_2H_3O^+)$ triangle space as indication of OA sources and for estimation of their degree of
528 oxidation and volatility. The $C_2H_3O^+$ (less oxidized fragments) is a indicative fragment from aldehydes or ketones.
529 High f_{44}/f_{43} ratio indicates low volatility and high oxidation level of SOA. Moreover, high f_{44}/f_{43} and O:C ratio
530 are associated with increased hygroscopicity and possible CCN activity of OA (Hennigan et al., 2011; Lambe et
531 al., 2011). The f_{44} vs. f_{43} in this study varied with photochemical aging and fell within the expected range for
532 ambient OOA, as shown in Fig. 7. Increase of f_{44}/f_{43} ratio with OH oxidation in Fig. 6b depicted the increase of
533 carboxylic and/or peroxide compounds compared to carbonyl species in the tar balls, which is consistent with the
534 atmospheric evolution of ambient biomass burning plumes (Hennigan et al., 2011; Canonaco et al., 2015).

535 To infer the possible chemical processes, detailed mass spectras were compared between fresh and 6.7 EAD
536 photochemical oxidized tar balls (Fig. S20, SI). We found that decrease of alkyl/alkenyl chains (e.g., $C_nH_{2n-1}^+$,

537 $C_{n}H_{2n+1}^{+}$) and aromatic ring structure fragments (e.g., $C_6H_5^{+}$, $C_6H_9^{+}$) contributed the prominent changes in the
538 $C_xH_y^{+}$ group, and relative higher CO_2^{+} increment relative to $C_2H_3O^{+}$ explained the increase in the $f44/f43$ ratio.
539 The decrease in the abundance of $C_2H_4O_2^{+}$ (m/z 60) and $C_3H_5O_2^{+}$ (m/z 73) is consistent with recent studies that
540 levoglucosan or similar species can decay in the atmosphere due to photochemical oxidation (Hennigan et al.,
541 2010). The pronounced decrease of intensity at m/z 137 ($C_8H_9O_2^{+}$ and $C_7H_5O_3^{+}$) suggests that the methoxy-phenol
542 components were dissipated substantially in the aged tar balls .

543 In summary, photochemical oxidation by OH radicals destructed the aromatic rings and methoxy phenolic
544 structures, which are expected to be the primary chromophores in the tar balls. The NOC content and high-
545 molecular weight species were also depleted via OH oxidation. These chemical changes upon OH oxidation may
546 explain the observed diminishing in light scattering and absorption upon photochemical aging.

547 **3.3 NO_x-dependent tar ball particles oxidation**

548 N_2O was recently introduced for simulating NO_x-dependent SOA formation pathways in OFR under high O₃
549 concentration, as O(¹D)+ N_2O reactions can be applied to systematically vary the branching ratio of the RO₂+NO
550 reactions relative to the RO₂+HO₂ and/or RO₂+RO₂ reactions over a range of conditions relevant to atmospheric
551 SOA formation (Lambe et al., 2017). Here we introduced 0.5 and 2.0 vol.% N_2O to investigate NO_x-involved
552 daytime aging of tar ball aerosols in the OFR. The OH exposures were maintained for all these tests at about 4
553 EAD. The corresponded NO₂ concentrations downstream of the OFR was measured to be 96.1 ± 1.3 and 528.3 ± 6.2
554 ppbv. The concentration of static NO can be neglected under these severe oxidation conditions. Fig. 8 shows the
555 mass spectra features for fresh and aged tar balls reacted in the absence/presence of NO_x. Parameters including
556 organic elemental ratios and densities are summarized in Table S8 (SI). In general, tar balls oxidized under N_2O
557 addition exhibit higher O:C and relative lower H:C ratios. NO_y^{+} (NO^{+} and NO_2^{+}) signals appear in the mass spectra
558 and the intensities of NO_y^{+} display a positive trend with N_2O concentration, together with an increase of
559 oxygenated fragments ($C_xH_yO^{+}$ and $C_xH_yO_2^{+}$) and decrease of hydrocarbon fragments ($C_xH_y^{+}$). The signal ratio of
560 NO^{+} (m/z 30) to NO_2^{+} (m/z 46) is used to distinguish organic nitrate from inorganic nitrate. The signal from
561 standard inorganic nitrate (e.g., NH_4NO_3) has a typical NO_2^{+}/NO^{+} ratio of 0.485 obtained from our AMS data
562 (detailed mass spectra is shown in Fig. S21, SI). The ratio and standard mass spectra are similar to previous studies
563 (Zhou et al., 2017). The fraction of NO_y^{+} (NO^{+} and NO_2^{+}) signals in the aged tar balls increased from 0% to 0.7%
564 and 1.5% at 0.5 vol.% and 2.0 vol.% N_2O additions, respectively. The corresponding values of NO_2^{+}/NO^{+} ratio
565 are 0.162 and 0.174, which are much lower than that for inorganic nitrates. Furthermore, the contribution of

566 $C_xH_yO_zN_p^+$ fragments increased from 1.9% to 4.4% and 4.5% over the course of aging. Therefore, we can conclude
567 that NOC rather than inorganic nitrate formed in the NO_x -dependent photooxidation process, resulting in an
568 overall increase of N:C ratio from 0.010 to 0.012 and 0.015. Additionally, the density of tar balls slightly increased
569 from 1.24 for the fresh tar balls to 1.26 for the one aged in presence of 2 vol.% N_2O .

570 Detailed changes in the mass spectra over the course of the experiment are shown in Fig. S22 (SI). Indicative
571 ions of cyclolakyl fragments (e.g., $C_2H_3^+$, $C_3H_5^+$, $C_4H_7^+$) decreased, while NO_x addition increased the CO^+ and
572 CO_2^+ intensities relative to $C_2H_3O^+$, leading to higher f_{44}/f_{43} ratio. Ng et al. (2007) observed a similar change for
573 photooxidation of terpenes in presence of NO_x . Changes in AMS spectra with NO_x addition may mark differences
574 between the dominating reaction pathways in tar ball photooxidation as RO_2+NO verses RO_2+HO_2 and/or
575 RO_2+RO_2 reactions.

576 Photochemical oxidation with NO_x addition enhances the oxidation level and increases both the absorption and
577 scattering of tar ball aerosols. Dynamic changes of the complex RI are shown in Fig. 9 and summarized in Table
578 S5 (SI). The RI of tar ball aerosols increased from an average of $1.632+0.007i$ for pure OH-initiated
579 photooxidation to $1.635+0.015i$ with the addition of 0.5 vol.% N_2O , and a greater increase up to $1.648+0.019i$
580 with 2.0 vol.% N_2O . The increase of RI is therefore primarily attributed to NOC formation. Zhong and Jang (2014)
581 observed that higher NO_x level slowed photo-bleaching of wood smoke BrC, and they suggested that NO_x -
582 modified reaction pathways produce secondary NOC chromophores (i.e., nitro-phenols). Liu et al. (2016)
583 simulated daytime chemistry of various VOCs in the presence of NO_x and found that light absorption of produced
584 SOA, especially aromatic ones, increased with NO_x concentration. These findings were also corroborated by
585 experimental study of Lin et al. (2015), where the chemical composition and the light absorption properties of
586 laboratory generated toluene SOA were reported to have strong positive dependence on the presence of nitro-
587 phenols formed at high NO_x oxidation conditions. The color of the BrC diminished with photolysis, correlated
588 with a decline of the NOC fraction. Nitration of aromatic species via $NO_x/N_2O_5/NO_3$ has been proposed as one
589 of the main mechanisms to produce secondary BrC in the atmosphere (Lu et al., 2011; Lin et al., 2015, 2017;
590 Bluvshtein et al., 2017).

591 The imaginary part at 2.0 vol. % N_2O addition was almost comparable with that of the fresh tar ball aerosols
592 (average value: $RI=1.661+0.020i$), although the real part was lower, suggesting that photooxidation in the
593 presence of NO_x promote the formation of N-containing chromophores via secondary processes. In our
594 experiments, formation of the N-containing chromophores outweighed the bleaching from OH photooxidation
595 to eventually regain the absorption of the aged tar balls. The average SSA calculated for 150 nm particles

596 decreased from 0.96 to 0.91 and 0.89 with N₂O addition. Absorption enhancement with N₂O addition for tar balls
597 upon photooxidation can also be seen in the MAC changes shown in Fig. S23 (SI), where MAC at 375 nm for
598 fresh tar ball was 0.854 m² g⁻¹, it decreased to 0.416 m² g⁻¹ via OH photo-bleaching, then MAC increased to 0.459
599 m² g⁻¹ at 0.5 vol.% N₂O addition, and up to 0.598 m² g⁻¹ at 2.0 vol.% N₂O addition due to chromophores formation.

600 **3.4 Atmospheric and Climate implication**

601 Atmospheric aging alters the RI of SOA, and the dynamic changes of RI depend on complicated reaction pathways
602 (Liu et al., 2016). OH-initiated photochemical oxidation and photolysis decrease the RI of laboratory proxies of
603 tar balls under NOx-free condition, while photooxidation under high NOx has an opposite effect on the RI of tar
604 balls. We investigated the relationship between the dynamic RI values of tar ball particles and their possible
605 climatic implications, including the change of light extinction/absorption efficiency and the clear-sky direct
606 radiative forcing. For clarity, light extinction/absorption efficiencies were calculated and compared at wavelength
607 of 375 and 405 nm, while radiative forcing was estimated over all the measured wavelengths from 365 to 425 nm.
608 Atmospheric and climatic implications were assessed for fresh and oxidized tar ball upon NOx-dependent ~3.9
609 EAD photooxidation (O_3.9, N_0.5, and N_2.0), in which fresh tar balls were taken as reference.

610 As shown in Fig. 10, photochemical oxidation under NOx-free condition (O_3.9) diminished light extinction
611 and absorption efficiency of tar ball aerosols in the atmospheric relevant size of 50-300 nm, causing about 5~40%
612 decrease in extinction at 375 and 405 nm wavelength. For aerosols larger than 400 nm, the extinction efficiency
613 of tar ball aerosols increased instead after photochemical aging. The light extinction efficiency presented higher
614 size-dependence than absorption, and extinction changes were more sensitive to particle size, especially in the
615 smaller sizes. The decreased absorption was more pronounced with ~60% decrease at 375 nm and over 75% at
616 405 nm. Previous studies have confirmed the relationship between biomass burning emissions and acute regional
617 visibility deterioration (Huang et al., 2012; Chen et al., 2017). Our results demonstrate that OH radical initiated
618 daytime aging may play an important role in improving visibility degradation caused by primary biomass BrC.
619 However, photochemical evolution under high NOx conditions may compensate effects of the photooxidation
620 bleaching of tar ball aerosols via the formation of NOC chromophores. At N_0.5 conditions, the light extinction
621 decreased by 4 to 20% at 375 nm and 5 to 24% at 405 nm, respectively. The corresponding absorption decrease
622 was 20~27% at both wavelengths. With more N₂O addition, formation of secondary N-containing chromophores
623 almost completely offsets light extinction/absorption decrease caused by photooxidation. Under the N_2.0
624 conditions, enhancement of light absorption efficiency for tar ball was about 0~9% at 405 nm in the entire size

625 range of 50-500 nm.

626 Radiative forcing from aerosols over both ground and snow is vital to climate models (Barnett et al., 2005;
627 Kanakidou et al., 2005). Integrated radiative forcing for tar ball aerosols as a function of particle size under various
628 oxidation conditions is shown in Fig. 11. Size-/wavelength-resolved SRF are also shown in Fig. S24 and S25 (SI).
629 Integrated SRF over ground has negative values for tar balls over almost all the atmospheric relevant sizes,
630 indicating a radiative cooling effect by tar ball aerosols except at 195~210 nm, where fresh tar ball particles present
631 warming effect with SRF up to $\sim 0.48 \text{ W g}^{-1}$. In practical fire emissions, the size of tar balls depends on the burning
632 and environment conditions and biomass fuel types with typical values between tens to hundreds of nanometers
633 (Reid et al., 2005; Pósfai et al., 2004). The complicated size-dependence character of SRF makes it difficult to
634 assess the real climatic effect of tar ball particles without extensive calculations. Fig. 11a suggests fresh tar balls
635 have SRF values of -7.46 W g^{-1} at 150 nm and 0.45 W g^{-1} at 200 nm, respectively. The SRF decreased for all size
636 ranges due to photochemical oxidation to -7.93 W g^{-1} at 150 nm and -1.37 W g^{-1} at 200 nm for tar ball aerosols
637 under O_3.9 condition. At N_0.5 conditions, SRF was -7.37 W g^{-1} at 150 nm and 0.16 W g^{-1} at 200 nm, and the
638 corresponding values at N_2.0 conditions increased to -7.20 W g^{-1} at 150 nm and 0.31 W g^{-1} at 200 nm.

639 In contrast, tar ball particles contributed to positive forcing (warming effect) over the bright terrain throughout
640 the atmospheric aging, as shown in Fig. 11b. Radiative forcing over the snow showed a simple increasing trend
641 with particle size, indicating that larger BrC aerosol with identical mass loading in the air have a higher warming
642 effect. The changes of snow-based radiative forcing upon photochemical aging followed the same trends as in the
643 ground-based cases. Fresh tar ball at size of 200 nm has SRF of 20.12 W g^{-1} over the incident solar wavelength of
644 365~425 nm on the snow terrain. With photochemical oxidation under NO_x-free condition, radiative forcing
645 decreased significantly. After 3.9 EAD atmospheric aging, snow-based radiative forcing for tar ball decreased by
646 65~73% over the size range of 50~500 nm, the value of 200 nm tar ball became 6.99 W g^{-1} . When NO_x was
647 involved in the photochemical oxidation of tar balls, the decrement of radiative forcing was weakened. At N_0.5,
648 SRF for 200 nm tar ball was 14.01 W g^{-1} , while at N_2.0 condition, size-dependent SRF from the aged tar ball
649 was almost comparable with that from fresh tar ball, and SRF for 200 nm tar ball was 18.56 W g^{-1} .

650 Although less than 10% of the solar spectrum's energy is distributed between 365 and 425 nm, the radiative
651 forcing over this range represents a significant warming or cooling potential over the arctic terrain. In conclusion,
652 photochemical oxidation under NO_x-free conditions can decrease radiative forcing of tar ball aerosols, resulting
653 in enhancement in the cooling effect over ground and decreased in warming effect over the snow. However, NO_x
654 involvement in photooxidation inhibits the decrease in radiative forcing of tar ball aerosols. Overall, the complex

655 changes in optical properties of tar balls at long aging times impose great uncertainties in traditional model-based
656 estimation of BBOA. Our study emphasizes the importance of taking this atmospheric process into consideration
657 to refine the understanding of the climatic and atmospheric influences from these aerosols.

658 **4 Conclusions**

659 In this study, proxies for tar ball aerosols were generated in the laboratory following a flameless wood pyrolysis
660 process. The optical and chemical properties of the generated tar balls were constrained using BBCES and HR-
661 Tof-AMS/SP-LD-REMPI-MS and were shown to have many similarities to ambient biomass burning aerosols.
662 Laboratory generated fresh tar ball aerosols have light absorption characteristics similar to atmospheric BrC with
663 higher absorption efficiency towards the UV. The average complex refractive indices between 365 and 425 nm
664 are $1.661+0.020i$ and $1.635+0.003i$ for nonpolar and polar tar ball aerosols, respectively.

665 Atmospheric evolution for tar ball aerosols was experimentally simulated using an oxidation flow reactor. The
666 study focused on dynamic changes in the optical and chemical properties due to NOx-dependent photochemical
667 oxidation. Furthermore, the relationship between oxidation level and the resulting RI of the tar ball aerosols was
668 explored. We found a substantial decrease in the scattering and absorption properties of tar balls, with a
669 corresponding increase in SSA with OH oxidation in the absence of NOx. A correlation between the RI decrease
670 and increase in the O:C and H:C ratios was observed. The decrease in light scattering and absorption is attributed
671 to the destruction of aromatic/phenolic/NOC and high-molecular weight species chromophores via OH-initiated
672 photooxidation of tar balls. Over longer aging times, the average RI of the tar ball aerosols decreased from
673 $1.661+0.020i$ to $1.632+0.007i$ upon atmospheric equivalent to 3.9 days aging, and the corresponding O:C and H:C
674 ratio increased from initial 0.25 and 1.55 to 0.35 and 1.59, respectively.

675 Our results suggest that OH oxidation rather than photolysis or ozone reactions plays the dominate role that
676 determine the optical and chemical properties in tar balls aging. The observed decrease in absorption results from
677 depletion of chromophores such as aromatic rings, phenolic compounds and high molecular weights species.

678 Simulations under high NO_x environment enhanced the aerosol oxidation state and increased the scattering and
679 absorption of tar ball aerosols relative to OH photooxidation in the absence of NOx. At ~3.9 EAD, addition of 0.5
680 and 2.0 vol.% N₂O increased the organic elemental ratios (O:C, H:C, and N:C ratios) and doubled the organic
681 nitrates fraction in the particles from 1.9 % to ~4.4 %. The formation of NOC chromophores overweigh the
682 intrinsic depletion of chromophores, leading to higher RI of $1.635+0.015i$ and $1.648+0.019i$.

683 The atmospheric and climatic implications from tar ball aerosols under various oxidation conditions were

684 assessed using a simple radiative forcing model in terms of extinction/absorption efficiency changes and ground-
685 /snow-based radiative forcing. These results demonstrate that the optical and chemical properties of tar ball
686 particles are dynamically related to atmospheric aging, and optical changes are governed by both photobleaching
687 and secondary chromophores formation. Therefore, the atmospheric process should be emphasized in model
688 predictions for evaluating biomass burning BrC aerosol radiative forcing as well as climate change.

689

690 **Acknowledgments**

691 This research was partially supported by research grants from the US-Israel Binational Science Foundation (BSF)
692 grant no. 2016093 and Israel Ministry of Science, Maimonide program. Dr. Li acknowledges support from the
693 Planning & Budgeting Committee, Israel (2018/19). J. Schade, J. Passig and R. Zimmermann gratefully
694 acknowledge financial support from the German Research Foundation, project number ZI 764/6-1, and Photonion
695 GmbH, Schwerin, Germany.

696 **Reference**

697 Abo Riziq, A., Erlick, C., Dinar, E., and Rudich, Y.: Optical properties of absorbing and non-absorbing aerosols
698 retrieved by cavity ring down (CRD) spectroscopy, *Atmos. Chem. Phys.*, 7, 1523-1536, doi:10.5194/acp-7-1523-
699 2007, 2007.

700 Adachi, K., and Buseck, P. R.: Atmospheric tar balls from biomass burning in Mexico, *J. Geophys. Res. Atmos.*,
701 116, D05204, doi:10.1029/2010JD015102, 2011.

702 Adler, G., Riziq, A. A., Erlick, C., and Rudich, Y.: Effect of intrinsic organic carbon on the optical properties of
703 fresh diesel soot, *Proc. Natl. Acad. Sci. USA*, 107, 6699-6704, doi:10.1073/pnas.0903311106, 2010.

704 Adler, G., Flores, J. M., Abo Riziq, A., Borrmann, S., and Rudich, Y.: Chemical, physical, and optical evolution
705 of biomass burning aerosols: a case study, *Atmos. Chem. Phys.*, 11, 1491-1503, doi:10.5194/acp-11-1491-2011,
706 2011.

707 Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr,
708 C., Kimmel, J. R., and Sueper, D.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols
709 with high-resolution time-of-flight aerosol mass spectrometry, *Environ. Sci. Technol.*, 42, 4478-4485,
710 doi: 10.1021/es703009q, 2008.

711 Alexander, D. T., Crozier, P. A., and Anderson, J. R.: Brown carbon spheres in East Asian outflow and their optical
712 properties, *Science*, 321, 833-836, doi: 10.1126/science.1155296, 2008.

713 Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous
714 aerosols, *Atmos. Chem. Phys.*, 6, 3131-3148, doi:10.5194/acp-6-3131-2006, 2006.

715 Asa-Awuku, A., Sullivan, A., Hennigan, C., Weber, R., and Nenes, A.: Investigation of molar volume and
716 surfactant characteristics of water-soluble organic compounds in biomass burning aerosol, *Atmos. Chem.*
717 *Phys.*, 8, 799-812, doi:10.5194/acp-8-799-2008, 2008.

718 Bahadur, R., Praveen, P. S., Xu, Y., and Ramanathan, V.: Solar absorption by elemental and brown carbon
719 determined from spectral observations, *Proc. Natl. Acad. Sci. USA*, 201205910, doi:10.1073/pnas.1205910109,
720 2012.

721 Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability
722 in snow-dominated regions, *Nature*, 438, 303-309, doi:10.1038/nature04141, 2005.

723 Bente, M., Sklorz, M., Streibel, T., and Zimmermann, R.: Online laser desorption-multiphoton postionization mass
724 spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different
725 traffic-related and wood combustion sources, *Anal. Chem.*, 80, 8991-9004, doi:10.1021/ac801295f, 2008.

726 Bente, M., Sklorz, M., Streibel, T., and Zimmermann, R.: Thermal desorption-multiphoton ionization time-of-
727 flight mass spectrometry of individual aerosol particles: A simplified approach for online single-particle analysis
728 of Polycyclic Aromatic Hydrocarbons and their derivatives, *Anal. Chem.*, 81, 2525-2536, doi:10.1021/ac802296f,
729 2009.

730 Bluvshtein, N., Lin, P., Flores, J. M., Segev, L., Mazar, Y., Tas, E., Snider, G., Weagle, C., Brown, S. S., and
731 Laskin, A.: Broadband optical properties of biomass-burning aerosol and identification of brown carbon
732 chromophores, *J. Geophys. Res. Atmos.* 122, 5441-5456, doi:10.1002/2016JD026230, 2017.

733 Boesl, U., Neusser, H., and Schlag, E.: Two-photon ionization of polyatomic molecules in a mass spectrometer,
734 *Zeitschrift für Naturforschung A*, 33, 1546-1548, doi:10.1515/zna-1978-1218, 1978.

735 Bond, T. C., and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, *Aerosol
736 Sci. Tech.*, 40, 27-67, doi:10.1080/02786820500421521, 2006.

737 Canonaco, F., Slowik, J., Baltensperger, U., and Prévôt, A.: Seasonal differences in oxygenated organic aerosol
738 composition: implications for emissions sources and factor analysis, *Atmos. Chem. Phys.*, 15, 6993-7002,
739 doi:10.5194/acp-15-6993-2015, 2015.

740 Chakrabarty, R., Moosmüller, H., Chen, L. W., Lewis, K., Arnott, W., Mazzoleni, C., Dubey, M., Wold, C., Hao,
741 W., and Kreidenweis, S.: Brown carbon in tar balls from smoldering biomass combustion, *Atmos. Chem. Phys.*,
742 10, 6363-6370, doi:10.5194/acp-10-6363-2010, 2010.

743 Chen, Y., and Bond, T.: Light absorption by organic carbon from wood combustion, *Atmos. Chem. Phys.*, 10,
744 1773-1787, doi:10.5194/acp-10-1773-2010, 2010.

745 Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., and He, C.: A review
746 of biomass burning: Emissions and impacts on air quality, health and climate in China, *Sci. Total Environ.*, 579,
747 1000-1034, doi:10.1016/j.scitotenv.2016.11.025, 2017.

748 Chung, C. E., V. Ramanathan, and D. Decremer: Observationally constrained estimates of carbonaceous aerosol
749 radiative forcing, *P. Natl. Acad. Sci. USA*, 109(29), 11624-11629, doi:10.1073/pnas.1203707109, 2012.

750 Chýlek, P., Videen, G., Geldart, D., Dobbie, J. S., and Tso, H.: Effective medium approximations for
751 heterogeneous particles, *Light scattering by nonspherical particles: theory, measurements, and applications*, 273–
752 308, edited by: Mishchenko, M. I., Hovenier, J. W., and Travis, L. D., Academic Press, 2000.

753 Czech, H., Pieber, S. M., Tiitta, P., Sippula, O., Kortelainen, M., Lamberg, H., Grigonyte, J., Streibel, T., Prévôt,
754 A. S., and Jokiniemi, J.: Time-resolved analysis of primary volatile emissions and secondary aerosol formation
755 potential from a small-scale pellet boiler, *Atmos. Environ.*, 158, 236-245, doi:10.1016/j.atmosenv.2017.03.040,
756 2017.

757 d'Almeida, G. A., Koepke, P., and Shettle, E. P.: *Atmospheric aerosols: global climatology and radiative
758 characteristics*, A. Deepak Publishing, Hampton, Va, 1991.

759 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K.,
760 Horvath, T., and Docherty, K. S.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer,
761 *Anal. Chem.*, 78, 8281-8289, doi:10.1021/ac061249n, 2006.

762 Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett, J. L.: Speciation of “brown” carbon in
763 cloud water impacted by agricultural biomass burning in eastern China, *J. Geophys. Res. Atmos.*, 118, 7389-7399,
764 doi:10.1002/jgrd.50561, 2013.

765 Dewar, M. J., and Lepley, A. R.: π -Complexes. I. Charge Transfer Spectra of π -Complexes Formed by
766 Trinitrobenzene with Polycyclic Aromatic Compounds, *J. Am. Chem. Soc.*, 83, 4560-4563, 1961.

767 Dinar, E., Riziq, A. A., Spindler, C., Erlick, C., Kiss, G., and Rudich, Y.: The complex refractive index of
768 atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer
769 (CRD-AS), *Faraday Discuss.*, 137, 279-295, doi:10.1039/B703111D, 2008.

770 Epstein, S. A., Blair, S. L., and Nizkorodov, S. A.: Direct photolysis of α -pinene ozonolysis secondary organic
771 aerosol: effect on particle mass and peroxide content, *Environ. Sci. Technol.*, 48, 11251-11258,
772 doi:10.1021/es502350u, 2014.

773 Feng, Y., Ramanathan, V., and Kotamarthi, V.: Brown carbon: a significant atmospheric absorber of solar
774 radiation?, *Atmos. Chem. Phys.*, 13, 8607-8621, doi:10.5194/acp-13-8607-2013, 2013.

775 Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and quantification of 4-Nitrocatechol formed from
776 OH and NO_3 radical-initiated reactions of catechol in air in the presence of NOx: Implications for secondary
777 organic aerosol formation from biomass burning, *Environ. Sci. Technol.*, 52, 1981-1989,
778 doi:10.1021/acs.est.7b05864, 2018.

779 Flores, J., Zhao, D., Segev, L., Schlag, P., Kiendler-Scharr, A., Fuchs, H., Watne, Å., Bluvshtein, N., Mentel, T.
780 F., and Hallquist, M.: Evolution of the complex refractive index in the UV spectral region in ageing secondary
781 organic aerosol, *Atmos. Chem. Phys.*, 14, 5793-5806, doi:10.5194/acp-14-5793-2014, 2014a.

782 Flores, J. M., Washenfelder, R., Adler, G., Lee, H., Segev, L., Laskin, J., Laskin, A., Nizkorodov, S., Brown, S.,
783 and Rudich, Y.: Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic
784 aerosol aged with ammonia, *Phys. Chem. Chem. Phys.*, 16, 10629-10642, doi:10.1039/C4CP01009D, 2014b.

785 Flowers, B., Dubey, M., Mazzoleni, C., Stone, E., Schauer, J., Kim, S. W., and Yoon, S.: Optical-chemical-
786 microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser
787 photoacoustic spectrometer, particle sizing, and filter analysis, *Atmos. Chem. Phys.*, 10, 10387-10398,
788 doi:10.5194/acp-10-10387-2010, 2010.

789 Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziembka, L., Thornhill, K. L., Anderson, B., Diskin, G., Perring, A. E.,
790 and Schwarz, J. P.: Evolution of brown carbon in wildfire plumes, *Geophys. Res. Lett.*, 42, 4623-4630,
791 doi:10.1002/2015GL063897, 2015.

792 Forster, P. M. F., and Taylor, K. E.: Climate forcings and climate sensitivities diagnosed from coupled climate
793 model integrations, *J. Clim.*, 19, 6181-6194, doi:10.1175/JCLI3974.1, 2006.

794 Fu, H., Zhang, M., Li, W., Chen, J., Wang, L., Quan, X., and Wang, W.: Morphology, composition and mixing
795 state of individual carbonaceous aerosol in urban Shanghai, *Atmos. Chem. Phys.*, 12, 693-707, doi:10.5194/acp-
796 12-693-2012, 2012.

797 Ge, X., Setyan, A., Sun, Y., and Zhang, Q.: Primary and secondary organic aerosols in Fresno, California during
798 wintertime: Results from high resolution aerosol mass spectrometry, *J. Geophys. Res. Atmos.*, 117, D19301,
799 doi:10.1029/2012JD018026, 2012.

800 Grottemeyer, J., Boesl, U., Walter, K., and Schlag, E. W.: A general soft ionization method for mass spectrometry:
801 Resonance-enhanced multi-photon ionization of biomolecules, *Org. Mass. Spectrom.*, 21, 645-653,
802 doi:10.1002/oms.1210211008, 1986.

803 Hand, J. L., Malm, W., Laskin, A., Day, D., Lee, T. B., Wang, C., Carrico, C., Carrillo, J., Cowin, J. P., and Collett,
804 J.: Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization
805 Study, *J. Geophys. Res. Atmos.*, 110, D21210, doi:10.1029/2004JD005728, 2005.

806 He, L. Y., Lin, Y., Huang, X. F., Guo, S., Xue, L., Su, Q., Hu, M., Luan, S. J., and Zhang, Y. H.: Characterization
807 of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass
808 burning, *Atmos. Chem. Phys.*, 10, 11535-11543, doi:10.5194/acp-10-11535-2010, 2010.

809 Heald, C., Kroll, J., Jimenez, J., Docherty, K., DeCarlo, P., Aiken, A., Chen, Q., Martin, S., Farmer, D., and Artaxo,
810 P.: A simplified description of the evolution of organic aerosol composition in the atmosphere, *Geophys. Res.
811 Lett.*, 37, L08803, doi:10.1029/2010GL042737, 2010.

812 Hennigan, C., Miracolo, M., Engelhart, G., May, A., Presto, A., Lee, T., Sullivan, A., McMeeking, G., Coe, H.,
813 and Wold, C.: Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass
814 burning emissions in an environmental chamber, *Atmos. Chem. Phys.*, 11, 7669-7686, doi:10.5194/acp-11-7669-
815 2011, 2011.

816 Hennigan, C. J., Sullivan, A. P., Collett Jr, J. L., and Robinson, A. L.: Levoglucosan stability in biomass burning
817 particles exposed to hydroxyl radicals, *Geophys. Res. Lett.*, 37, L09806, doi:10.1029/2010GL043088, 2010.

818 He, Q., Bluvshtein, N., Segev, L., Meidan, D., Flores, J. M., Brown, S. S., Brune, W., and Rudich, Y.: Evolution
819 of the complex refractive index of secondary organic aerosols during atmospheric aging, *Environ. Sci. Technol.*,
820 52, 3456-3465, doi:10.1021/acs.est.7b05742, 2018.

821 Heger, H. J., Zimmermann, R., Dorfner, R., Beckmann, M., Griebel, H., Kettrup, A., and Boesl, U.: On-line
822 emission analysis of polycyclic aromatic hydrocarbons down to pptv concentration levels in the flue gas of an
823 incineration pilot plant with a mobile resonance-enhanced multiphoton ionization time-of-flight mass
824 spectrometer, *Anal. Chem.*, 71, 46-57, doi:10.1021/ac980611y, 1999.

825 Herring, C. L., Faiola, C. L., Massoli, P., Sueper, D., Erickson, M. H., McDonald, J. D., Simpson, C. D., Yost, M.
826 G., Jobson, B. T., and VanReken, T. M.: New methodology for quantifying polycyclic aromatic hydrocarbons
827 (PAHs) using high-resolution aerosol mass spectrometry, *Aerosol Sci. Tech.*, 49, 1131-1148,
828 doi:10.1080/02786826.2015.1101050, 2015.

829 Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G., Artaxo, P., and Andreae, M.: Optical
830 properties of humic-like substances (HULIS) in biomass-burning aerosols, *Atmos. Chem. Phys.*, 6, 3563-3570,
831 doi: 10.5194/acp-6-3563-2006, 2006.

832 Hoffer, A., Tóth, A., Nyirő-Kósa, I., Pósfai, M., and Gelencsér, A.: Light absorption properties of laboratory-
833 generated tar ball particles, *Atmos. Chem. Phys.*, 16, 239-246, doi:10.5194/acp-16-239-2016, 2016.

834 Huang, K., Zhuang, G., Fu, J. S., Wang, Q., Liu, T., Zhang, R., Jiang, Y., Deng, C., Fu, Q., and Hsu, N.: Typical
835 types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai, *Atmos. Chem. Phys.*, 12, 105-
836 124, doi:10.5194/acp-12-105-2012, 2012.

837 Huang, R. J., Yang, L., Cao, J. J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu, C., Dai, W., and Wang, K.: Brown
838 carbon aerosol in Urban Xi'an, Northwest China: the composition and light absorption properties, *Environ. Sci.*
839 *Technol.*, 52, 6825-6833, doi:10.1021/acs.est.8b02386, 2018.

840 IPCC. Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment
841 report of the intergovernmental panel on climate change. Cambridge, and New York, NY: Cambridge University
842 Press, 2013.

843 Jacobson, M. Z.: Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation,
844 condensation, dissolution, and reversible chemistry among multiple size distributions, *J. Geophys. Res. Atmos.*,
845 107, D19, 4366, doi:10.1029/2001JD002044, 2002.

846 Jacobson, M. Z.: Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls,
847 and soil dust in clouds and aerosols, *J. Geophys. Res. Atmos.*, 117(D6), doi:10.1029/2011JD017218, 2012.

848 Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown
849 carbon, and cloud absorption effects, *J. Geophys. Res. Atmos.*, 119, 8980-9002,
850 doi.org/10.1002/2014JD021861, 2014.

851 Jimenez, J., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe,
852 H., and Ng, N.: Evolution of organic aerosols in the atmosphere, *Science*, 326, 1525-1529, doi:
853 10.1126/science.1180353, 2009.

854 Jo, D. S., Park, R. J., Lee, S., Kim, S. W., and Zhang, X.: A global simulation of brown carbon: implications for
855 photochemistry and direct radiative effect, *Atmos. Chem. Phys.*, 16, 3413-3432, doi:10.5194/acp-16-3413-2016,
856 2016.

857 Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., Dingenen, R. V., Ervens, B., Nenes,
858 A., and Nielsen, C.: Organic aerosol and global climate modelling: a review, *Atmos. Chem. Phys.*, 5, 1053-1123,
859 doi: 1680-7324/acp/2005-5-1053, 2005.

860 Kang, E., Root, M., Toohey, D., and Brune, W.: Introducing the concept of potential aerosol mass (PAM), *Atmos.*
861 *Chem. Phys.*, 7, 5727-5744, doi: 10.5194/acp-7-5727-2007, 2007.

862 Kim, H., Liu, S., Russell, L. M., and Paulson, S. E.: Dependence of real refractive indices on O:C, H:C and mass
863 fragments of secondary organic aerosol generated from ozonolysis and photooxidation of limonene and α -pinene,
864 *Aerosol Sci. Tech.*, 48, 498-507, doi: 10.1080/02786826.2014.893278, 2014.

865 Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E.,
866 Mazzoleni, L. R., Wozniak, A. S., and Bluhm, H.: Carbon oxidation state as a metric for describing the chemistry
867 of atmospheric organic aerosol, *Nat. Chem.*, 3, 133, doi: 10.1038/NCHEM.948, 2011.

868 Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A. M., and Schwarz, J. P.: Brown carbon
869 and internal mixing in biomass burning particles, *Proc. Natl. Acad. Sci. USA*, 109, 14802-14807,
870 doi:10.1073/pnas.1206575109, 2012.

871 Lambe, A., Onasch, T., Massoli, P., Croasdale, D., Wright, J., Ahern, A., Williams, L., Worsnop, D., Brune, W.,
872 and Davidovits, P.: Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity
873 of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA), *Atmos. Chem. Phys.*, 11,
874 8913-8928, doi:10.5194/acp-11-8913-2011, 2011.

875 Lambe, A., Massoli, P., Zhang, X., Canagaratna, M., Nowak, J., Daube, C., Chao, Y., Nie, W., Onasch, T., and
876 Jayne, J.: Controlled nitric oxide production via O (¹D)+ N₂O reactions for use in oxidation flow reactor studies,
877 *Atmos. Meas. Tech.*, 10, 2283, doi: 10.5194/amt-10-2283-2017, 2017.

878 Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, *Chem. Rev.*, 115, 4335-
879 4382, doi:10.1021/cr5006167, 2015.

880 Laskin, A., Smith, J. S., and Laskin, J.: Molecular characterization of nitrogen-containing organic compounds in
881 biomass burning aerosols using high-resolution mass spectrometry, *Environ. Sci. Technol.*, 43, 3764-3771,
882 doi:10.1021/es803456n, 2009.

883 Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Effect of solar radiation on the optical
884 properties and molecular composition of laboratory proxies of atmospheric brown carbon, *Environ. Sci. Technol.*,
885 48, 10217-10226, doi:10.1021/es502515r, 2014.

886 Levinson, R., Akbari, H., and Berdahl, P.: Measuring solar reflectance-Part I: Defining a metric that accurately
887 predicts solar heat gain, *Sol. Energy*, 84, 1717-1744, doi:10.1016/j.solener.2010.04.018, 2010.

888 Li, C., Ma, Z., Chen, J., Wang, X., Ye, X., Wang, L., Yang, X., Kan, H., Donaldson, D., and Mellouki, A.:
889 Evolution of biomass burning smoke particles in the dark, *Atmos. Environ.*, 120, 244-252,
890 doi:10.1016/j.atmosenv.2015.09.003, 2015.

891 Li, C., Hu, Y., Zhang, F., Chen, J., Ma, Z., Ye, X., Yang, X., Wang, L., Tang, X., and Zhang, R.: Multi-pollutant
892 emissions from the burning of major agricultural residues in China and the related health-economic effects, *Atmos.*
893 *Chem. Phys.*, 17, 4957-4988, doi:10.5194/acp-17-4957-2017, 2017.

894 Li, Y., Huang, D., Cheung, H. Y., Lee, A., and Chan, C. K.: Aqueous-phase photochemical oxidation and direct
895 photolysis of vanillin-a model compound of methoxy phenols from biomass burning, *Atmos. Chem. Phys.*, 14,
896 2871-2885, doi:10.5194/acp-14-2871-2014, 2014.

897 Li, Y. J., Yeung, J. W., Leung, T. P., Lau, A. P., and Chan, C. K.: Characterization of organic particles from incense
898 burning using an aerodyne high-resolution time-of-flight aerosol mass spectrometer, *Aerosol Sci. Tech.*, 46, 654-
899 665, doi:10.1080/02786826.2011.653017, 2012.

900 Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown
901 carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, *Phys. Chem.
902 Chem. Phys.*, 17, 23312-23325, doi:10.1039/C5CP02563J, 2015.

903 Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Molecular characterization
904 of brown carbon in biomass burning aerosol particles, *Environ. Sci. Technol.*, 50, 11815-11824,
905 doi:10.1021/acs.est.6b03024, 2016.

906 Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of
907 Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, *Environ. Sci. Technol.*, 51,
908 11561-11570, doi:10.1021/acs.est.7b02276, 2017.

909 Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Comprehensive Molecular Characterization
910 of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric
911 Pressure Photoionization, *Anal. chem.*, 90, 12493-12502, doi:10.1021/acs.analchem.8b02177, 2018.

912 Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R.: Size-resolved measurements of
913 brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light
914 absorption, *Atmos. Chem. Phys.*, 13, 12389-12404, doi:10.5194/acp-13-12389-2013, 2013.

915 Liu, J., Lin, P., Laskin, A., Laskin, J., Kathmann, S. M., Wise, M., Caylor, R., Imholt, F., Selimovic, V., and
916 Shilling, J. E.: Optical properties and aging of light-absorbing secondary organic aerosol, *Atmos. Chem. Phys.*,
917 16, 12815-12827, doi:10.5194/acp-16-12815-2016, 2016.

918 Lu, J. W., Flores, J. M., Lavi, A., Abo-Riziq, A., and Rudich, Y.: Changes in the optical properties of benzo[a]
919 pyrene-coated aerosols upon heterogeneous reactions with NO₂ and NO₃, *Phys. Chem. Chem. Phys.*, 13, 6484-
920 6492, doi:10.1039/C0CP02114H, 2011.

921 McDonald, J. D., Zielinska, B., Fujita, E. M., Sagebiel, J. C., Chow, J. C., and Watson, J. G.: Fine particle and
922 gaseous emission rates from residential wood combustion, *Environ. Sci. Technol.*, 34, 2080-2091,
923 doi:10.1021/es9909632, 2000.

924 Moise, T., Flores, J. M., and Rudich, Y.: Optical properties of secondary organic aerosols and their changes by
925 chemical processes, *Chem. Rev.*, 115, 4400-4439, doi:10.1021/cr5005259, 2015.

926 Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K. E., Bottle, S., and Ristovski, Z.: To sonicate or not to
927 sonicate PM filters: reactive oxygen species generation upon ultrasonic irradiation, *Aerosol Sci. Tech.*, 48, 1276-
928 1284, doi:10.1080/02786826.2014.981330, 2014.

929 Mutzel, A., Rodigast, M., Iinuma, Y., Böge, O., and Herrmann, H.: An improved method for the quantification of
930 SOA bound peroxides, *Atmos. Environ.*, 67, 365-369, doi:10.1016/j.atmosenv.2012.11.012, 2013.

931 Ng, N., Chhabra, P., Chan, A., Surratt, J. D., Kroll, J., Kwan, A., McCabe, D., Wennberg, P., Sorooshian, A., and
932 Murphy, S.: Effect of NO_x level on secondary organic aerosol (SOA) formation from the photooxidation of
933 terpenes, *Atmos. Chem. Phys.*, 7, 5159-5174, doi:10.5194/acp-7-5159-2007, 2007.

934 Ng, N., Canagaratna, M., Zhang, Q., Jimenez, J., Tian, J., Ulbrich, I., Kroll, J., Docherty, K., Chhabra, P., and
935 Bahreini, R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass
936 Spectrometry, *Atmos. Chem. Phys.*, 10, 4625-4641, doi:10.5194/acp-10-4625-2010, 2010.

937 Ng, N., Canagaratna, M., Jimenez, J., Chhabra, P., Seinfeld, J., and Worsnop, D.: Changes in organic aerosol
938 composition with aging inferred from aerosol mass spectra, *Atmos. Chem. Phys.*, 11, 6465-6474, doi:10.5194/acp-
939 11-6465-2011, 2011.

940 Park, R. J., Kim, M. J., Jeong, J. I., Youn, D., and Kim, S.: A contribution of brown carbon aerosol to the aerosol
941 light absorption and its radiative forcing in East Asia, *Atmos. Environ.*, 44, 1414-1421,
942 doi:10.1016/j.atmosenv.2010.01.042, 2010.

943 Passig, J., Schade, J., Oster, M., Fuchs, M., Ehlert, S., Jäger, C., Sklorz, M., and Zimmermann, R.: Aerosol mass
944 spectrometer for simultaneous detection of polycyclic aromatic hydrocarbons and inorganic components from individual
945 particles, *Anal. Chem.*, 89, 6341-6345, doi:10.1021/acs.analchem.7b01207, 2017.

946 Peng, Z., Day, D., Stark, H., Li, R., Lee-Taylor, J., Palm, B., Brune, W., and Jimenez, J. L.: HO_x radical chemistry
947 in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling, *Atmos. Meas.*
948 *Tech.*, 8, 4863-4890, doi:10.5194/amt-8-4863-2015, 2015.

949 Peng, Z., Day, D. A., Ortega, A. M., Palm, B. B., Hu, W., Stark, H., Li, R., Tsagaridis, K., Brune, W. H., and
950 Jimenez, J. L.: Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically
951 examined by modeling, *Atmos. Chem. Phys.*, 16, 4283-4305, doi:10.5194/acp-16-4283-2016, 2016.

952 Peng, Z., and Jimenez, J. L.: Modeling of the chemistry in oxidation flow reactors with high initial NO, *Atmos.*
953 *Chem. Phys.*, 17, 11991-12010, doi:10.5194/acp-17-11991-2017, 2017.

954 Pettersson, A., Lovejoy, E. R., Brock, C. A., Brown, S. S., and Ravishankara, A.: Measurement of aerosol optical
955 extinction at 532 nm with pulsed cavity ring down spectroscopy, *J. Aerosol Sci.*, 35, 995-1011,
956 doi:10.1016/j.jaerosci.2004.02.008, 2004.

957 Phillips, S. M., and Smith, G. D.: Light absorption by charge transfer complexes in brown carbon aerosols,
958 *Environ. Sci. Technol. Lett.*, 1, 382-386, doi:10.1021/ez500263j, 2014.

959 Pósfai, M., Gelencsér, A., Simonics, R., Arató, K., Li, J., Hobbs, P. V., and Buseck, P. R.: Atmospheric tar balls:
960 Particles from biomass and biofuel burning, *J. Geophys. Res. Atmos.*, 109, D06213, doi:10.1029/2003JD004169,
961 2004.

962 Rajput, P., and Sarin, M.: Polar and non-polar organic aerosols from large-scale agricultural-waste burning
963 emissions in Northern India: implications to organic mass-to-organic carbon ratio, *Chemosphere*, 103, 74-
964 79, doi:10.1016/j.chemosphere.2013.11.028, 2014.

965 Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D., Holben, B. N., Reid, E. A.,
966 and Zhang, J.: A review of biomass burning emissions part III: intensive optical properties of biomass burning
967 particles, *Atmos. Chem. Phys.*, 5, 827-849, doi:10.5194/acp-5-827-2005, 2005.

968 Rettner, C. T., and Brophy, J. H.: Resonance enhanced laser ionisation mass spectrometry of four aromatic
969 molecules, *Chem. Phys.*, 56, 53-61, doi:10.1016/0301-0104(81)85099-9, 1981.

970 Rollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R., Goldstein, A. H., Liu,
971 S., Day, D. A., and Russell, L. M.: Evidence for NO_x control over nighttime SOA formation, *Science*, 337, 1210-
972 1212, doi:10.1126/science.1221520, 2012.

973 Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of organic aerosol: Bridging the gap between laboratory
974 and field studies, *Annu. Rev. Phys. Chem.*, 58, 321-352, doi:10.1146/annurev.physchem.58.032806.104432, 2007.

975 Russell, P., Bergstrom, R., Shinozuka, Y., Clarke, A., DeCarlo, P., Jimenez, J., Livingston, J., Redemann, J.,
976 Dubovik, O., and Strawa, A.: Absorption Ångström Exponent in AERONET and related data as an indicator of
977 aerosol composition, *Atmos. Chem. Phys.*, 10, 1155-1169, doi:10.5194/acp-10-1155-2010, 2010.

978 Samburova, V., Connolly, J., Gyawali, M., Yatavelli, R. L., Watts, A. C., Chakrabarty, R. K., Zielinska, B.,
979 Moosmüller, H., and Khlystov, A.: Polycyclic aromatic hydrocarbons in biomass-burning emissions and their
980 contribution to light absorption and aerosol toxicity, *Sci. Total Environ.*, 568, 391-401,
981 doi:10.1016/j.scitotenv.2016.06.026, 2016.

982 Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R.: Measurement of emissions from air pollution
983 sources. 3. C1-C29 organic compounds from fireplace combustion of wood, *Environ. Sci. Technol.*, 35, 1716-
984 1728, doi:10.1021/es001331e, 2001.

985 Sedlacek III, A. J., Buseck, P. R., Adachi, K., Onasch, T. B., Springston, S. R., and Kleinman, L.: Formation and
986 evolution of Tar Balls from Northwestern US wildfires, *Atmos. Chem. Phys.*, 18, 11289-11301, doi:10.5194/acp-
987 18-11289-2018, 2018.

988 Seinfeld, J. H., and Pandis, S. N.: *Atmospheric chemistry and physics: from air pollution to climate change*, 3rd
989 edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2016.

990 Sengupta, D., Samburova, V., Bhattarai, C., Kirillova, E., Mazzoleni, L., Iaukea-Lum, M., Watts, A.,
991 Moosmüller, H., and Khlystov, A.: Light absorption by polar and non-polar aerosol compounds from
992 laboratory biomass combustion, *Atmos. Chem. Phys.*, 18, 10849-10867, doi:10.5194/acp-18-10849-2018,
993 2018.

994 Shamjad, P. M., Satish, R. V., Thamban, N. M., Rastogi, N., and Tripathi, S.: Absorbing refractive index and direct
995 radiative forcing of atmospheric Brown Carbon over Gangetic Plain, *ACS Earth Space Chem.*, 2, 31-37,
996 doi:10.1021/acsearthspacechem.7b00074, 2018.

997 Shen, G., Tao, S., Wei, S., Zhang, Y., Wang, R., Wang, B., Li, W., Shen, H., Huang, Y., and Yang, Y.: Retene
998 emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood
999 combustion, *Environ. Sci. Technol.*, 46, 4666-4672, doi:10.1021/es300144m, 2012.

1000 Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., Wang, B., Zhang, Y., Chen, Y., and Lu, Y.: Global
1001 atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions, *Environ.*
1002 *Sci. Technol.*, 47, 6415-6424, doi:10.1021/es400857z, 2013.

1003 Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang, C., Laskin, A.,
1004 Martin, S. T., and Ng, N. L.: Recent advances in understanding secondary organic aerosol: Implications for global
1005 climate forcing, *Rev. Geophys.*, 55, 509-559, doi:10.1002/2016RG000540, 2017.

1006 Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling, A., Boman, C., Bønløkke, J., Brauer, M.,
1007 Bruce, N., and Héroux, M. E.: Health impacts of anthropogenic biomass burning in the developed world, *Eur.*
1008 *Respir. J.*, 46, 1577-1588, doi:10.1183/13993003.01865-2014, 2015.

1009 Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B. J., and Chakrabarty, R. K.: Atmospheric
1010 Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol from Biomass Burning, *Environ.*
1011 *Sci. Technol. Lett.*, 4, 540-545, doi:10.1021/acs.estlett.7b00393, 2017.

1012 Sumlin, B. J., Oxford, C. R., Seo, B., Pattison, R. R., Williams, B. J., and Chakrabarty, R. K.: Density and
1013 homogeneous internal composition of primary brown carbon aerosol, *Environ. Sci. Technol.*, 52, 3982-3989, doi:
1014 10.1021/acs.est.8b00093, 2018.

1015 Tavakoli, F., and Olfert, J.: An instrument for the classification of aerosols by particle relaxation time: theoretical
1016 models of the aerodynamic aerosol classifier, *Aerosol Sci. Tech.*, 47, 916-926,
1017 doi:10.1080/02786826.2013.802761, 2013.

1018 Tavakoli, F., and Olfert, J. S.: Determination of particle mass, effective density, mass-mobility exponent, and
1019 dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem, *J.*
1020 *Aerosol Sci.*, 75, 35-42, doi:10.1016/j.jaerosci.2014.04.010, 2014.

1021 Tóth, A., Hoffer, A., Nyirő-Kósa, I., Pósfai, M., and Gelencsér, A.: Atmospheric tar balls: aged primary droplets
1022 from biomass burning?, *Atmos. Chem. Phys.*, 14, 6669-6675, doi:10.5194/acp-14-6669-2014, 2014.

1023 Washenfelder, R., Attwood, A., Brock, C., Guo, H., Xu, L., Weber, R., Ng, N., Allen, H., Ayres, B., and Baumann,
1024 K.: Biomass burning dominates brown carbon absorption in the rural southeastern United States, *Geophys. Res.*
1025 *Lett.*, 42, 653-664, doi:10.1002/2014GL062444, 2015.

1026 Washenfelder, R., Flores, J., Brock, C., Brown, S., and Rudich, Y.: Broadband measurements of aerosol extinction
1027 in the ultraviolet spectral region, *Atmos. Meas. Tech.*, 6, 861-877, doi:10.5194/amt-6-861-2013, 2013.

1028 Wei, C., Bandowe, B. A. M., Han, Y., Cao, J., Zhan, C., and Wilcke, W.: Polycyclic aromatic hydrocarbons (PAHs)
1029 and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from
1030 Xi'an, Central China, *Chemosphere*, 134, 512-520, doi:10.1016/j.chemosphere.2014.11.052, 2015.

1031 Weimer, S., Alfarra, M., Schreiber, D., Mohr, M., Prévôt, A., and Baltensperger, U.: Organic aerosol mass spectral
1032 signatures from wood-burning emissions: Influence of burning conditions and wood type, *J. Geophys. Res.*
1033 *Atmos.*, 113, doi:10.1029/2007JD009309, 2008.

1034 Wong, J. P., Zhou, S., and Abbatt, J. P.: Changes in secondary organic aerosol composition and mass due to
1035 photolysis: relative humidity dependence, *J. Phys. Chem. A*, 119, 4309-4316, doi:10.1021/jp506898c, 2014.

1036 Xie, M., Hays, M. D., and Holder, A. L.: Light-absorbing organic carbon from prescribed and laboratory biomass
1037 burning and gasoline vehicle emissions, *Scientific Reports*, 7, 7318, doi:10.1038/s41598-017-06981-8, 2017.

1038 Yee, L., Kautzman, K., Loza, C., Schilling, K., Coggon, M., Chhabra, P., Chan, M., Chan, A., Hersey, S., and
1039 Crounse, J.: Secondary organic aerosol formation from biomass burning intermediates: phenol and
1040 methoxyphenols, *Atmos. Chem. Phys.*, 13, 8019-8043, doi:10.5194/acp-13-8019-2013, 2013.

1041 Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.: Chemical characterization of SOA formed
1042 from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical, *Atmos.*
1043 *Chem. Phys.*, 14, 13801-13816, doi:10.5194/acp-14-13801-2014, 2014.

1044 Zhang, H., and Ying, Q.: Secondary organic aerosol from polycyclic aromatic hydrocarbons in Southeast Texas,
1045 *Atmos. Environ.*, 55, 279-287, doi:10.1016/j.atmosenv.2012.03.043, 2012.

1046 Zhang, X., and Seinfeld, J.: A functional group oxidation model (FGOM) for SOA formation and aging, *Atmos.*
1047 *Chem. Phys.*, 13, 5907-5926, doi:10.5194/acp-14-13801-2014, 2013.

1048 Zhong, M., and Jang, M.: Dynamic light absorption of biomass-burning organic carbon photochemically aged
1049 under natural sunlight, *Atmos. Chem. Phys.*, 14, 1517-1525, doi:10.5194/acp-14-1517-2014, 2014.

1050 Zhou, S., Collier, S., Jaffe, D. A., Briggs, N. L., Hee, J., Sedlacek III, A. J., Kleinman, L., Onasch, T. B., and
1051 Zhang, Q.: Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric
1052 aging of biomass burning organic aerosol, *Atmos. Chem. Phys.*, 17, 2477-2493, doi:10.5194/acp-17-2477-2017,
1053 2017.

1054

1055 **Caption of Table and Figure**

1056 **Table 1.** Experimental conditions for tar balls photochemical oxidation

1057 **Table 2.** Comparison of tar ball particle optical parameters with reference values of BBOA (mean \pm standard
1058 deviation)

1059 **Figure 1.** Experimental setup for laboratory generation and aging of tar ball aerosol: including generation setup,
1060 OFR photochemical aging, gaseous-particulate chemical monitoring, particle size distribution and optical
1061 properties measurements.

1062 **Figure 2.** High-resolution AMS mass spectra of fresh polar and nonpolar tar ball particles. Four ion groups are
1063 grouped for clarity as: $C_xH_y^+$ (green), $C_xH_yO^+$ (purple), $C_xH_yO_z^+ (z>1)$ (violet), $C_xH_yO_iN_p^+ (i\geq 0, p\geq 1)$ (light blue).
1064 The mass fractions of the four fragment groups are presented by pie-charts.

1065 **Figure 3.** LD-REMPI mass spectra of exemplary single tar ball particles, some feature peaks were identified and
1066 labeled. a) Nonpolar tar ball spectra shows predominantly alkyl-substituted and unsubstituted PAHs. b) Polar tar
1067 ball spectra reveals many oxidized aromatics, e.g., methoxy-phenol, benzenediol. Note the softwood combustion
1068 marker retene at $m/z=234$, its characteristic fragments ($m/z=203, 204, 205, 219$) and possible retene derivatives
1069 ($m/z=248, 250$).

1070 **Figure 4.** Wavelength-dependent RI and SSA for tar ball particles generated from polar, nonpolar and mixture of
1071 the two phases tarry solutions (only retrieval for mixture of 1:1 in vol. is shown for clarity, optical results for the
1072 rest two mixtures can be found in supporting materials). The shaded areas indicate the upper and lower limits of
1073 the imaginary part calculated from UV-Vis spectra of methanol extracts from the corresponding tar ball particles
1074 samples: a) real part, b) imaginary part, and c) SSA calculated for 150 nm particles. Overplayed in green symbol
1075 are previous measurements of biomass burning from the literature.

1076 **Figure 5.** Evolution of the retrieved wavelength-dependent complex RI and SSA as a function of O:C ratio for tar
1077 ball particles upon OH photochemical oxidation: a) real part, b) imaginary part, and c) SSA calculated for 150 nm
1078 particles. The color scale shows the span in the RI for the wavelengths measured from 365 to 425 nm. For clarity,
1079 error bars for O:C ratio (± 0.01), RI (± 0.007 for real part, and ± 0.003 for imaginary part on average), and SSA
1080 (± 0.006) are not shown. Two dashed lines trace the RI and SSA at 375 nm (purple) and 405 nm (green).
1081 O_0.7~O_6.7 represent equivalent atmospheric photochemical oxidation for 0.7 and up to 6.7 days.

1082 **Figure 6.** Dynamic changes for the chemical characteristics of tar ball particle under NOx-free OH photochemical
1083 oxidation: a) OM/OC, H:C ratio, particle density, and average carbon oxidation state (\overline{OSe}) changes as a function

1084 of O:C ratio; b) mass spectra evolution with oxidation times in term of $C_xH_y^+$, $C_xH_yO^+$, $C_xH_yO_z^+$, and $C_xH_yO_zN_p^+$
1085 fragment groups.

1086 **Figure 7.** Comparison of f_{44} and f_{43} values from ambient data sets (Ng. et al., 2010) and values from ambient
1087 biomass burning organic aerosol.

1088 **Figure 8.** Dynamic changes for chemical characteristics of tar ball aerosols under NO_x-dependent OH
1089 photochemical oxidation: a) OM/OC, O:C, H:C, and particle density changes; b) mass spectra changes with
1090 different oxidation conditions in term of $C_xH_y^+$, $C_xH_yO^+$, $C_xH_yO_z^+$, and $C_xH_yO_zN_p^+$ fragment groups. $C_xH_yO_zN_p^+$
1091 include all nitrogen-containing fragments, (e.g., $C_xH_yON^+$, $C_xH_yO_zNi^+$, $C_xH_yN^+$, etc.), NO_y⁺ include NO⁺ and NO₂⁺.
1092 O_3.9 represents 3.9 days equivalent atmospheric photochemical aging in absence of NO_x, N_0.5 and N_2.0
1093 indicate photochemical oxidation with 0.5 and 2.0 vol.% N₂O addition at ~4.0 days atmospheric oxidation.

1094 **Figure 9.** Changes of retrieved spectra-dependent RI as a function of O:C ratio for tar ball particles upon NO_x-
1095 dependent photochemical oxidation: a) real part, b) imaginary part, and c) SSA calculated from 150 nm particles.
1096 For clarity, error bars for O:C ratio (± 0.01), RI (± 0.006 for real part, and ± 0.003 for imaginary part on average),
1097 and SSA (± 0.007) are not shown. O_3.9 represents 3.9 days equivalent atmospheric photochemical aging in
1098 absence of NO_x, N_0.5 and N_2.0 indicate photochemical oxidation with 0.5 and 2.0 vol.% N₂O addition at ~4.0
1099 days atmospheric oxidation.

1100 **Figure 10.** Size-resolved light extinction and absorption efficiency ratio of NO_x-dependent photooxidized tar balls
1101 compared to the fresh tar ball particles: a) and c) extinction ratios at 375 and 405 nm, b) and d) absorption ratios
1102 at 375 and 405 nm. O_3.9 represents 3.9 days equivalent atmospheric photochemical aging in absence of NO_x,
1103 N_0.5 and N_2.0 indicate photochemical oxidation with 0.5 and 2.0 vol.% N₂O addition at ~4.0 days atmospheric
1104 oxidation.

1105 **Figure 11.** Calculated size-resolved simple radiative forcing (SRF, W g⁻¹) by tar ball aerosols, integrated over
1106 365~425 nm incident solar irradiation for fresh and NO_x-dependent photooxidized tar balls: a) ground-based
1107 radiative forcing, b) snow-based radiative forcing.

1108 **Table 1.** Experimental conditions for tar ball particles photochemical oxidation

Experiment	O ₃ (ppm)	N ₂ O mixing ratio	Endpoint NO _x (ppb)	RH (%)	water mixing ratio	Exposure	
						OH radical (molecules cm ⁻³ s)	photon flux (photons cm ⁻²)
P1	—	—	—	38.90	0.0126	—	7.47E+15
P2	—	—	—	39.70	0.0128	—	4.83E+16
P3	—	—	—	40.50	0.0130	—	1.00E+17
O_0.7	24.46	—	—	37.29	0.0120	8.68E+10	1.56E+15
O_1.7	24.76	—	—	37.66	0.0122	2.23E+11	7.47E+15
O_3.9	24.63	—	—	35.58	0.0115	5.11E+11	4.83E+16
O_6.7	25.31	—	—	35.67	0.0116	8.65E+11	5.17E+16
N_0.5	24.18	0.005	96.1	36.60	0.0118	5.37E+11	5.92E+16
N_2.0	28.21	0.020	528.3	35.90	0.0116	4.85E+11	1.00E+17

1109 Note: P1~P3 mean photolysis test, O_0.7~O_6.7 correspond to photochemical oxidation experiment from equivalent 0.7 day to 6.7 days

1110 ageing, and N_0.5 and N_2.0 indicate photochemical oxidation with N₂O addition at 0.5 vol.% and 2 vol.% mixing ratios (standard deviation

1111 for the parameters were not given in above table)

1112

Table 2. Compare of tar ball particle optical properties with reference values of BBOA (mean \pm standard deviation)

BrC	Complex Refractive index			\AA_{abs}	$\text{\AA}_{\text{abs_UVVIS}}$	\AA_{ext}	Reference
	Average	375nm	405nm				
Nonpolar	$(1.661 \pm 0.008) + (0.020 \pm 0.004)i$	$(1.671 \pm 0.003) + (0.025 \pm 0.003)i$	$(1.659 \pm 0.011) + (0.017 \pm 0.002)i$	5.87 ± 0.37	5.74	3.81 ± 0.18	This work
Mixture (2:1 in vol.)	$(1.670 \pm 0.010) + (0.017 \pm 0.004)i$	$(1.682 \pm 0.008) + (0.021 \pm 0.002)i$	$(1.668 \pm 0.007) + (0.013 \pm 0.001)i$	6.79 ± 0.91	7.08	4.01 ± 0.09	
Mixture (1:1 in vol.)	$(1.694 \pm 0.011) + (0.013 \pm 0.003)i$	$(1.703 \pm 0.015) + (0.017 \pm 0.001)i$	$(1.689 \pm 0.011) + (0.009 \pm 0.002)i$	6.16 ± 0.54	7.38	3.73 ± 0.23	
Mixture (1:2 in vol.)	$(1.672 \pm 0.010) + (0.011 \pm 0.004)i$	$(1.683 \pm 0.005) + (0.018 \pm 0.002)i$	$(1.667 \pm 0.003) + (0.006 \pm 0.003)i$	6.66 ± 0.63	7.24	4.06 ± 0.11	
Polar	$(1.635 \pm 0.009) + (0.003 \pm 0.003)i$	$(1.647 \pm 0.003) + (0.005 \pm 0.001)i$	$(1.635 \pm 0.004) + (0.004 \pm 0.003)i$	6.72 ± 2.28^a	7.83	3.93 ± 0.06	
BBOA	$1.590 + 0.029i$ @ 375nm, $1.570 + 0.010i$ @ 405nm (IPN)			$6.4 \sim 7.4$			Sumlin et al., 2017; 2018
BBOA	$1.590 + 0.017i$ @ 405nm (IPN)						Flowers et al., 2010
BBOA	$k: 0.009$ @ 404nm (CRDS-PAS)						Lack et al., 2012
Tar ball	$1.78 + 0.015i, 1.83 + 0.0086i$ @ 405nm (IPN)			$4.2 \sim 6.4$			Chakrabarty et al., 2010
Tar ball	$1.56 + 0.02i$ @ 405nm (CRDS-UVVIS)						Hand et al., 2005
BBOA	$1.53 + 0.07i$ (WELAS, open fire), $1.54 + 0.04i$ (WELAS, smoldering)						Adler et al., 2011
BBOA	$1.64 + 0.03i$ @ 405nm (BBCES-Neph)			$4 \sim 6^b$		$2 \sim 3^b$	Bluvshtein et al., 2017
BBOA_HULIS	$1.653 + 0.002i, 1.685 + 0.002i$ @ 532nm (Nep-PAS)				$6 \sim 7$		Hoffer et al., 2006
BBOA_HULIS	$1.616 + 0.023i$ @ 390nm (CRDS)						Dinar et al., 2008
BBOA	$1.550 + 0.033i$ @ 365nm (BBCES)						Washenfelder et al., 2015
BBOA					$6.9 \sim 11.4^c$		Chen and Bond, 2010
BBOA					$5.3 \sim 8.1^c$		Xie et al., 2017
Ambient SOA					$6.0 \sim 6.3^c$		Huang et al., 2018
Ambient SOA	$k: 0.046$ @ 365nm, 0.039 @ 405nm, 0.036 @ 420nm (LWCC)						Shamjad et al., 2018

1113

Note: \AA_{abs} and \AA_{ext} were calculated from tar ball particle with median diameter of 150 nm in this study

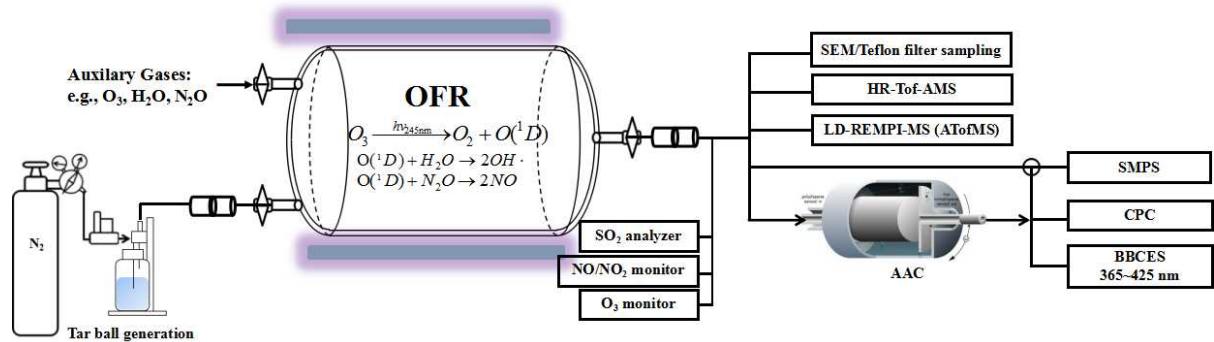
1114

^a regressed over wavelength range of 365~400 nm, no absorption detected over 410 nm using BBCES system

1115

^b regressed over wavelength range of 300~650 nm for bulk fire plume emissions

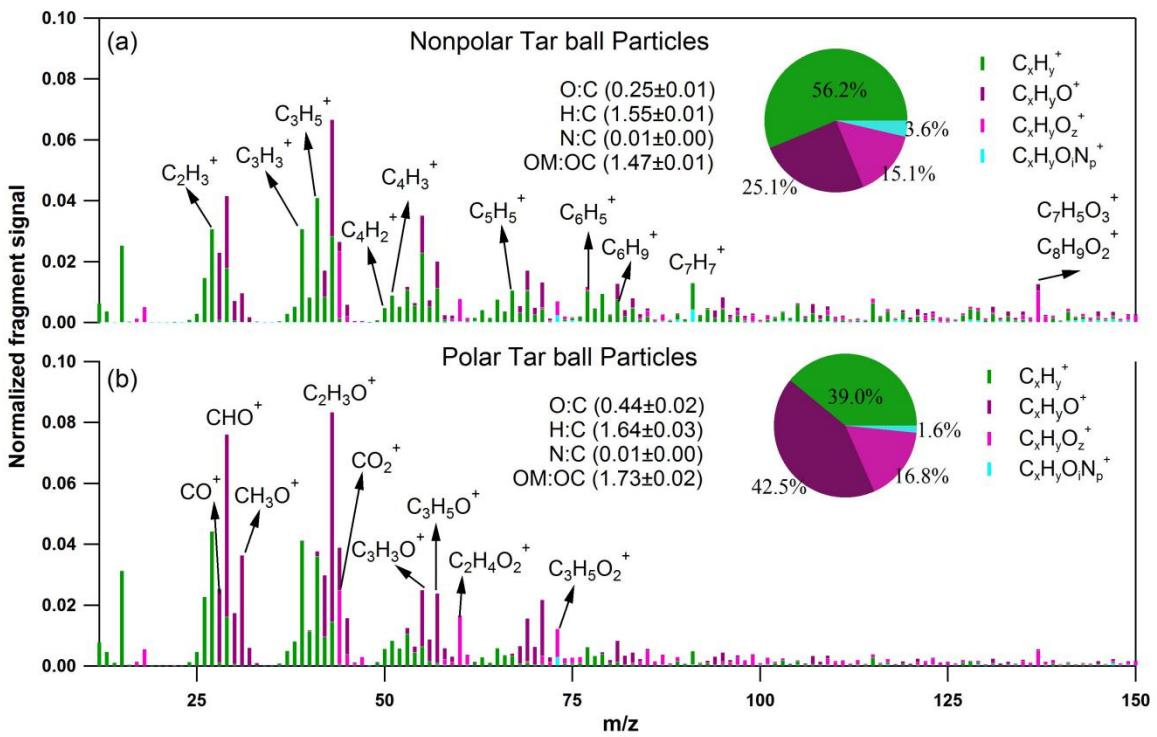
1116


^c $\text{\AA}_{\text{abs_UVVIS}}$ of methanol extracts over whole range from 300/360~600 nm

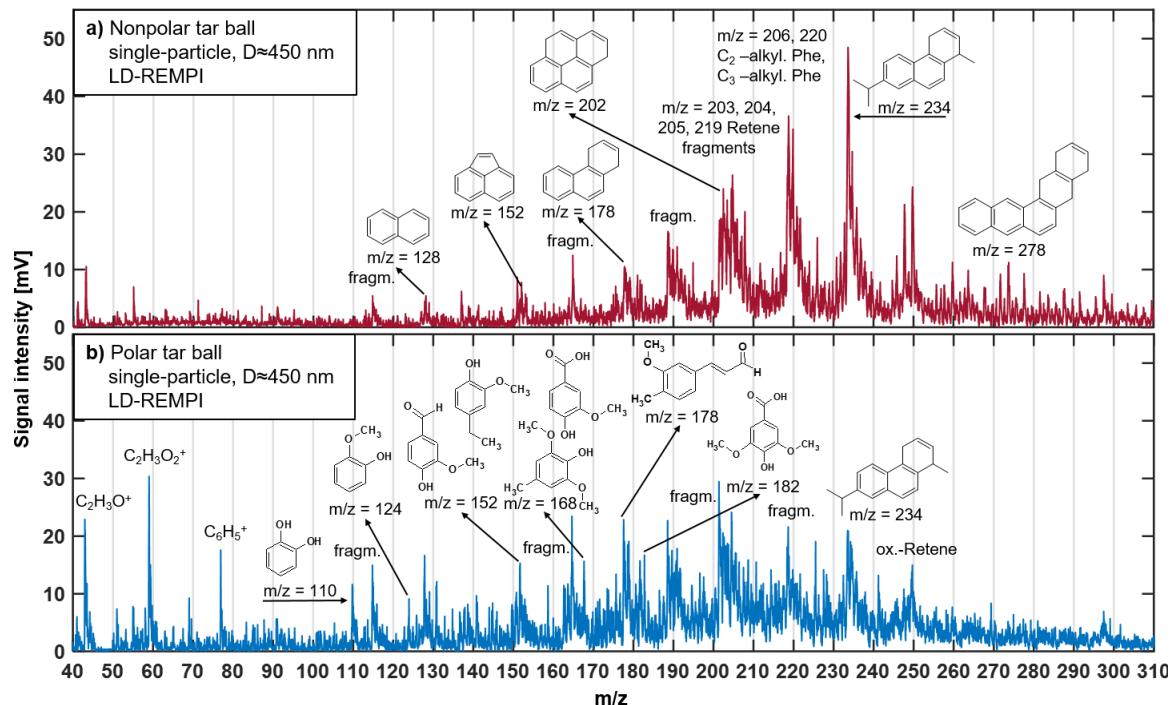
1117

Instrument: IPN(integrated photoacoustic nephelometer), CRDS (cavity ring-down spectrometer), PAS (photoacoustic absorption spectrometer), WELAS (white light optical particle counter), LWCC (a liquid waveguide

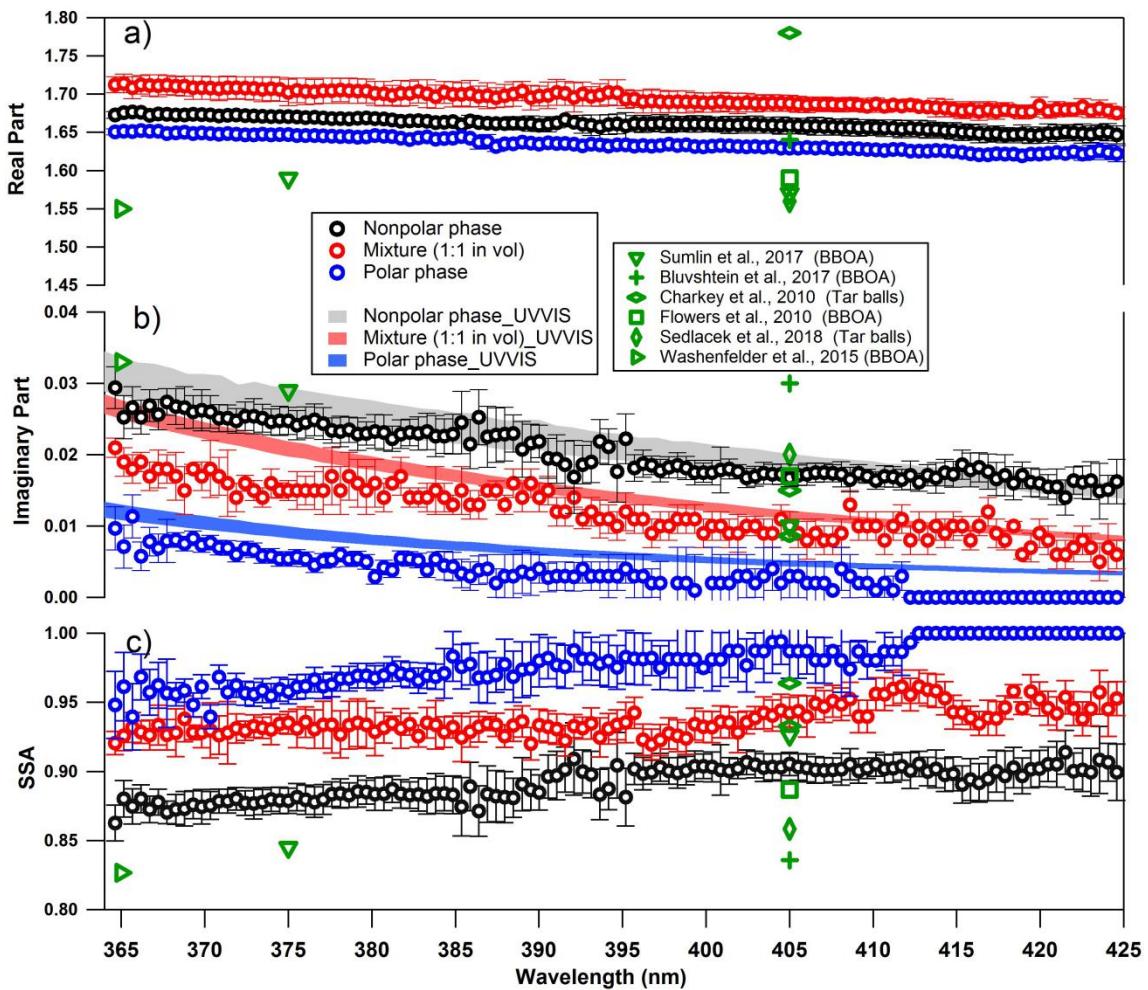
1118


capillary cell)

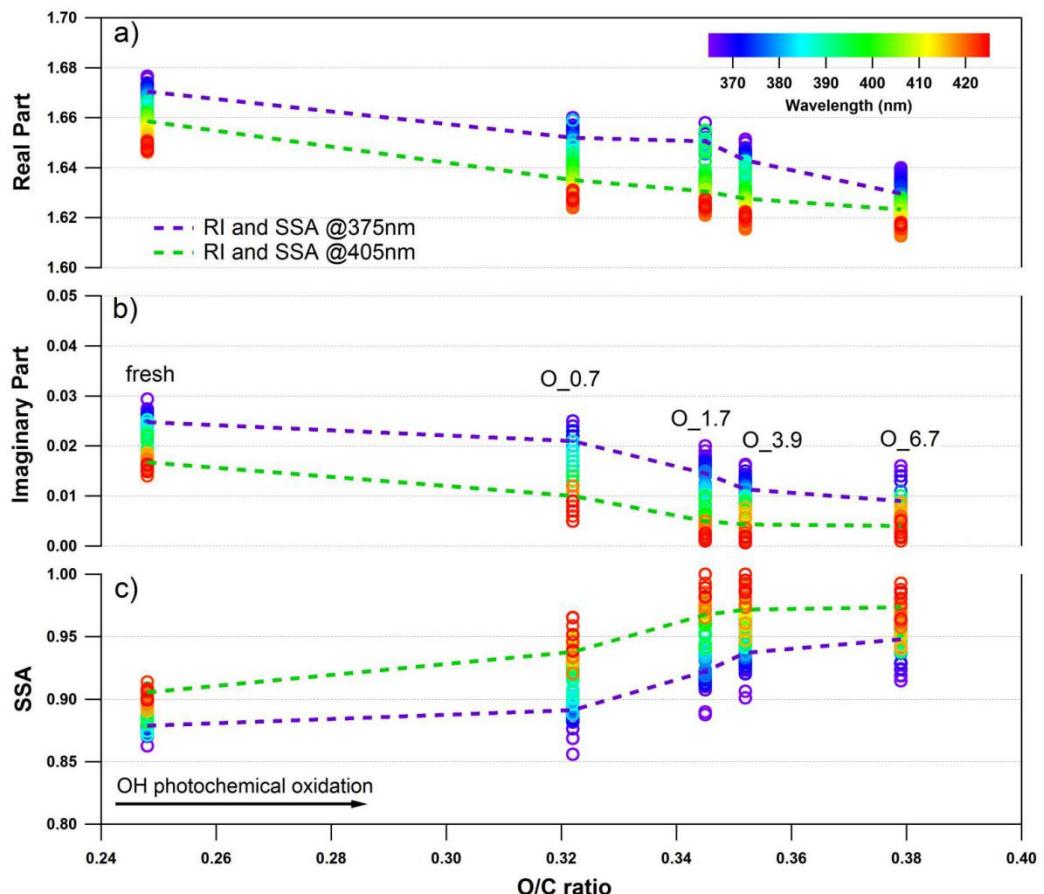
1119


1120 **Figure 1.** Experimental setup for laboratory generation and aging of tar ball aerosol: including generation setup, OFR

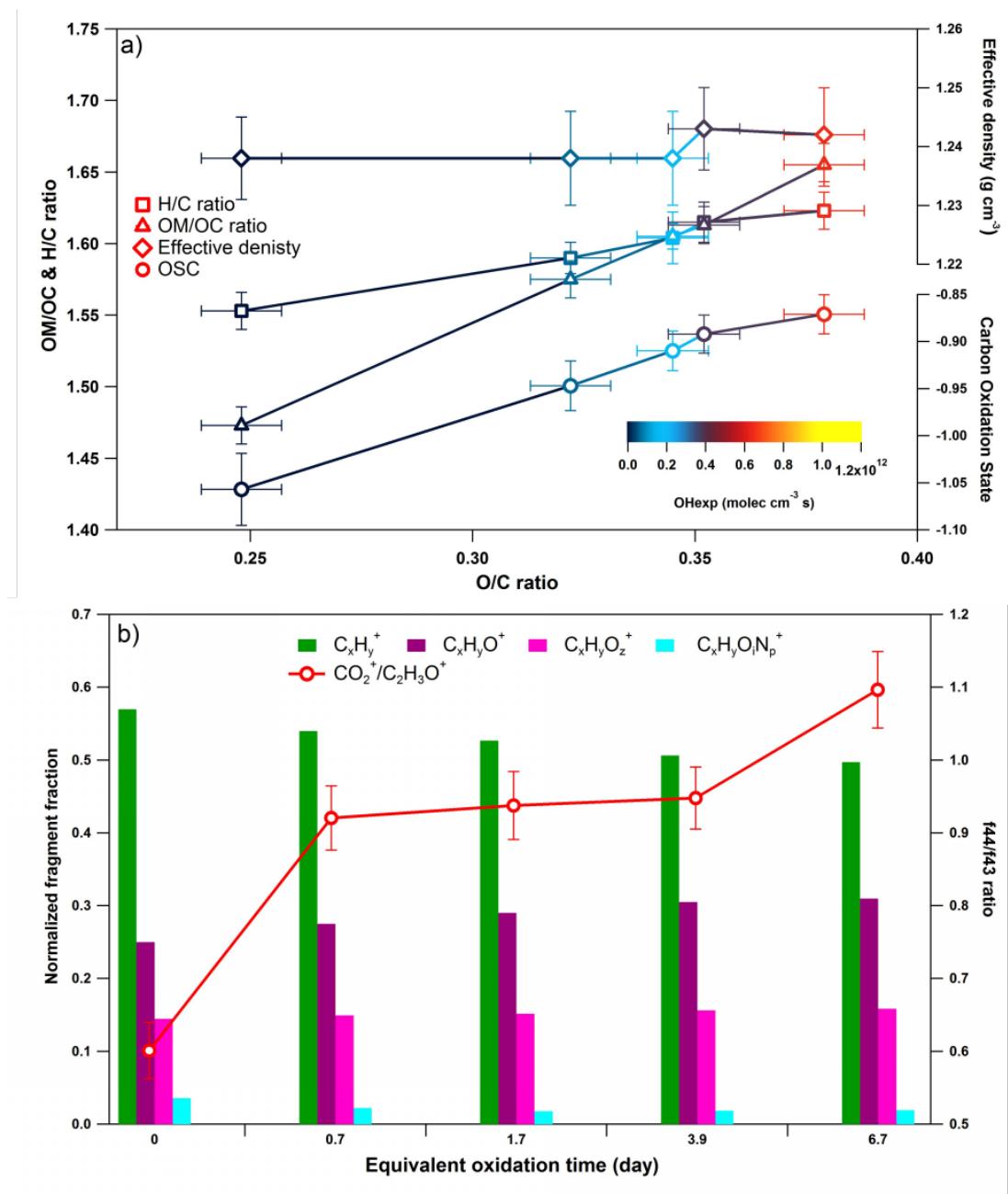
1121 photochemical aging, gaseous-particulate chemical monitoring, particle size distribution and optical properties measurements.


1122

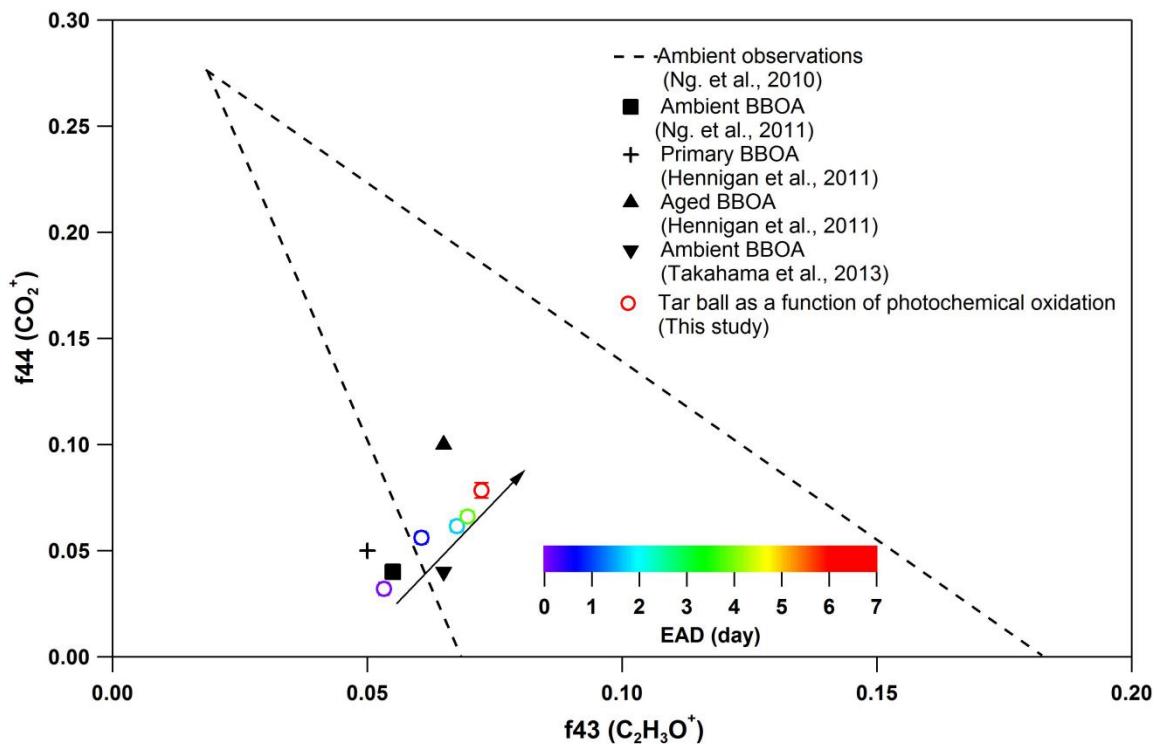
1123 **Figure 2.** High-resolution AMS mass spectra of fresh polar and nonpolar tar ball particles. Four ion groups are grouped for
 1124 clarity as: $C_xH_y^+$ (green), $C_xH_yO^+$ (purple), $C_xH_yO_z^+$ ($z > 1$) (violet), $C_xH_yO_iN_p^+$ ($i \geq 0, p \geq 1$) (light blue). The mass fractions of
 1125 the four fragment groups are presented by pie-charts.


1126

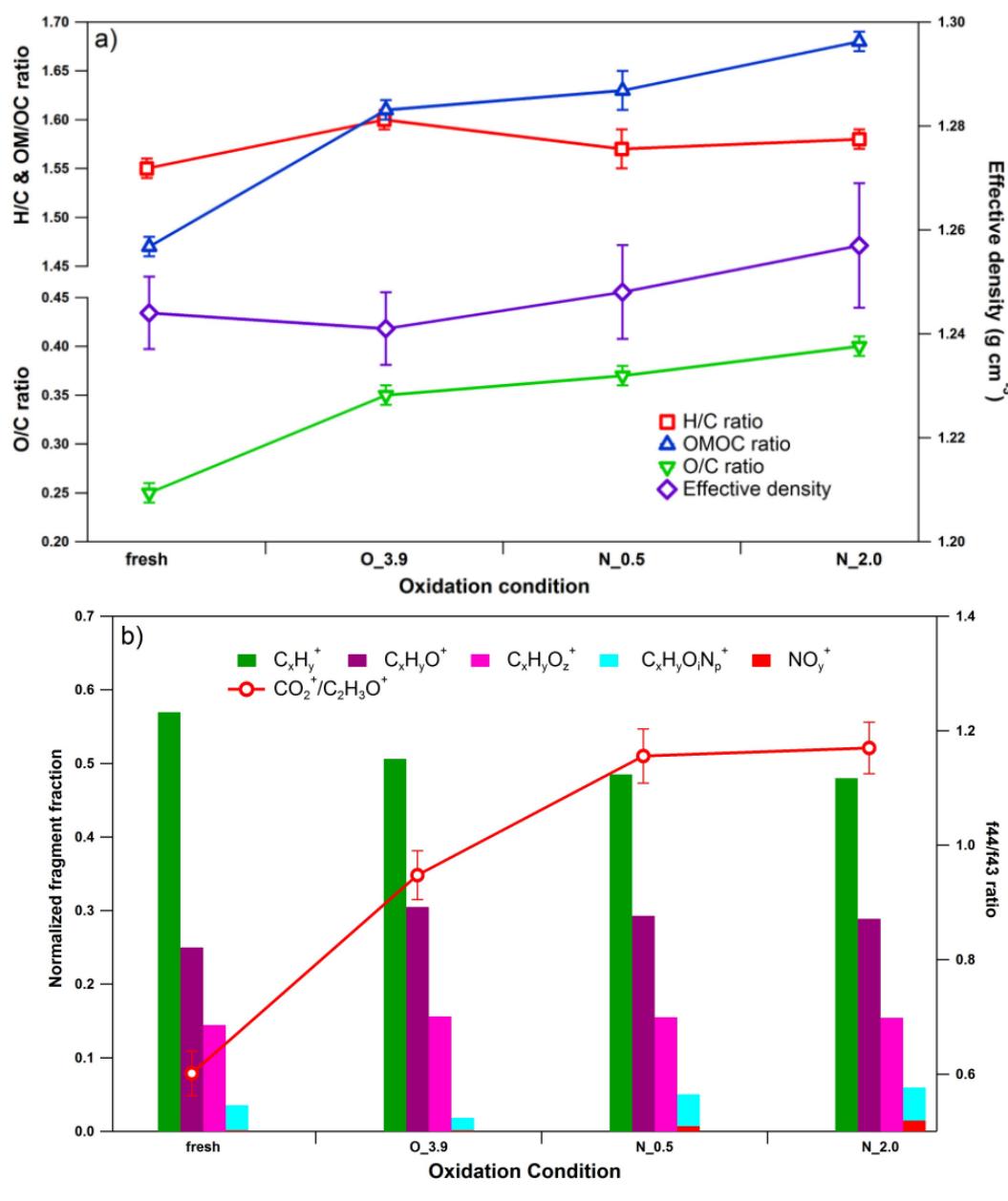
1127 **Figure 3.** LD-REMPI mass spectra of exemplary single tar ball particles, some feature peaks were identified and labeled. a)
1128 Nonpolar tar ball spectra shows predominantly alkyl-substituted and unsubstituted PAHs. b) Polar tar ball spectra reveals many
1129 oxidized aromatics, e.g., methoxy-phenol, benzenediol. Note the softwood combustion marker retene at $m/z=234$, its
1130 characteristic fragments ($m/z=203, 204, 205, 219$) and possible retene derivatives ($m/z=248, 250$).



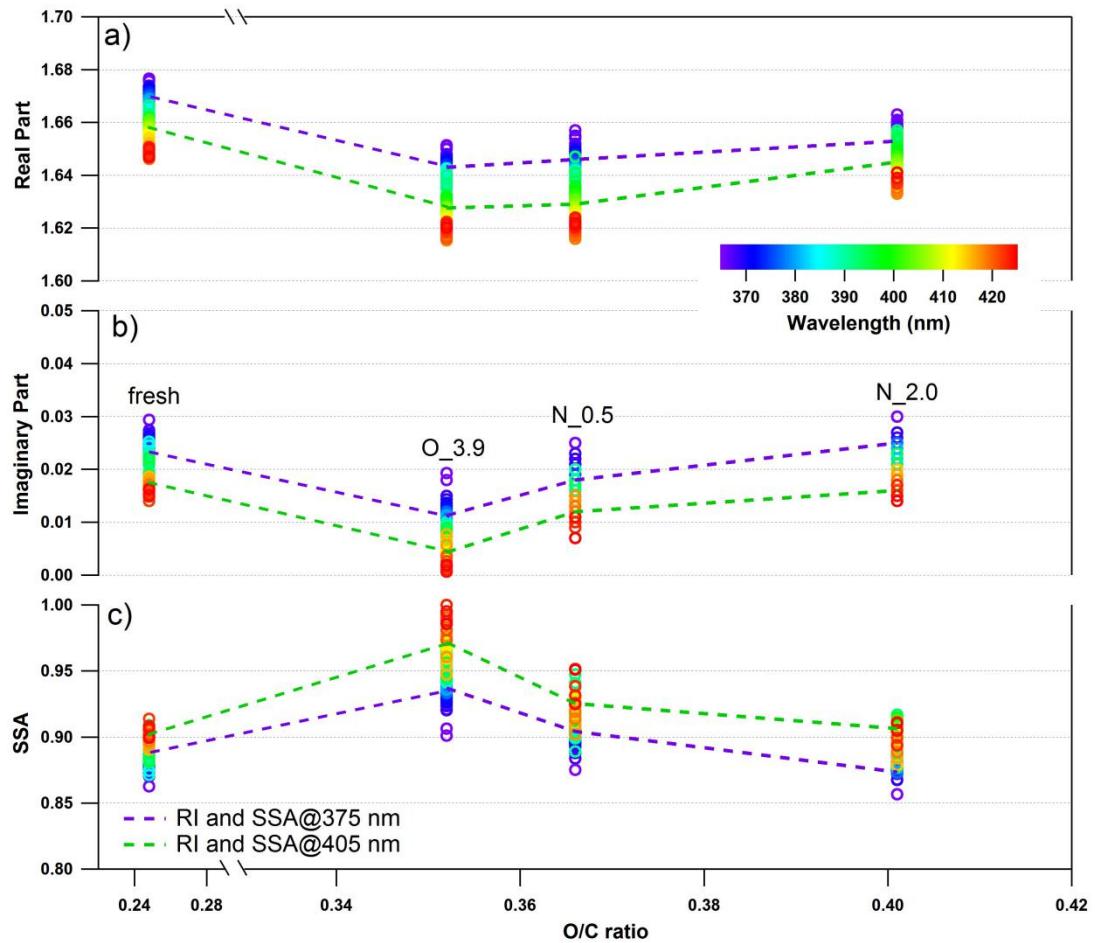
1131


1132 **Figure 4.** Wavelength-dependent RI and SSA for tar ball particles generated from polar, nonpolar and mixture of the two
 1133 phases tarry solutions (only retrieval for mixture of 1:1 in vol. is shown for clarity, optical results for the rest two mixtures can
 1134 be found in supporting materials). The shaded areas indicate the upper and lower limits of the imaginary part calculated from
 1135 UV-VIS spectra of methanol extracts from the corresponding tar ball particles samples: a) real part, b) imaginary part, and c)
 1136 SSA calculated for 150 nm particles. Overlaid in green symbol are previous measurements of biomass burning from the
 1137 literature.

1138 **Figure 5.** Evolution of the retrieved wavelength-dependent complex RI and SSA as a function of O:C ratio for tar ball particles
 1139 upon OH photochemical oxidation: a) real part, b) imaginary part, and c) SSA calculated for 150 nm particles. The color scale
 1140 shows the span in the RI for the wavelengths measured from 365 to 425 nm. For clarity, error bars for O:C ratio (± 0.01), RI
 1141 (± 0.007 for real part, and ± 0.003 for imaginary part on average), and SSA (± 0.006) are not shown. Two dashed lines trace the
 1142 RI and SSA at 375 nm (purple) and 405 nm (green). O_0.7~O_6.7 represent equivalent atmospheric photochemical oxidation
 1143 for 0.7 and up to 6.7 days.

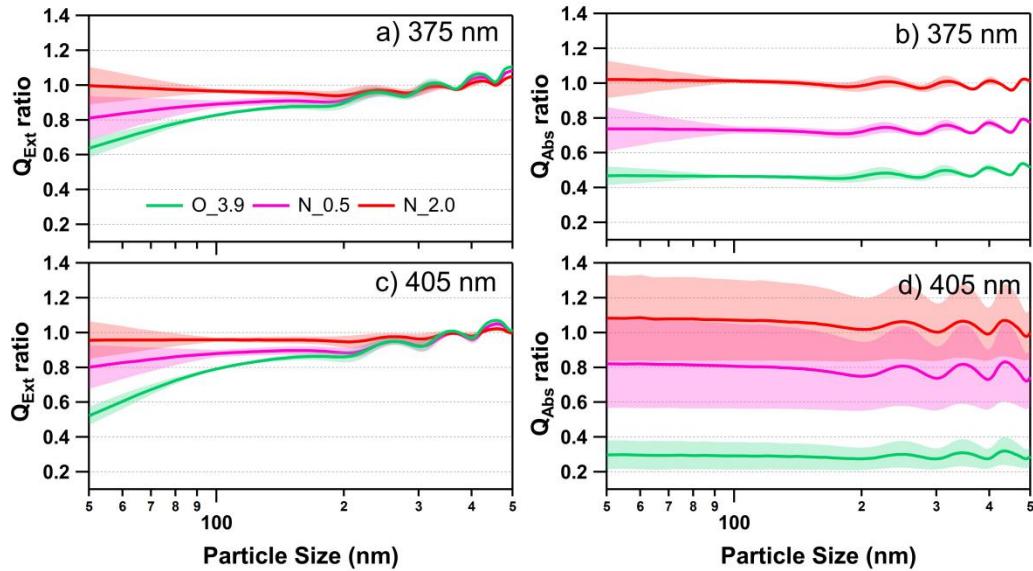


1144 **Figure 6.** Dynamic changes for the chemical characteristics of tar ball particle under NOx-free OH photochemical oxidation:
 1145 a) OM/OC, H:C ratio, particle density, and average carbon oxidation state (\overline{OSC}) changes as a function of O:C ratio; b) mass
 1146 spectra evolution with oxidation times in term of $C_xH_y^+$, $C_xH_yO^+$, $C_xH_yO_z^+$, and $C_xH_yO_lN_p^+$ fragment groups.

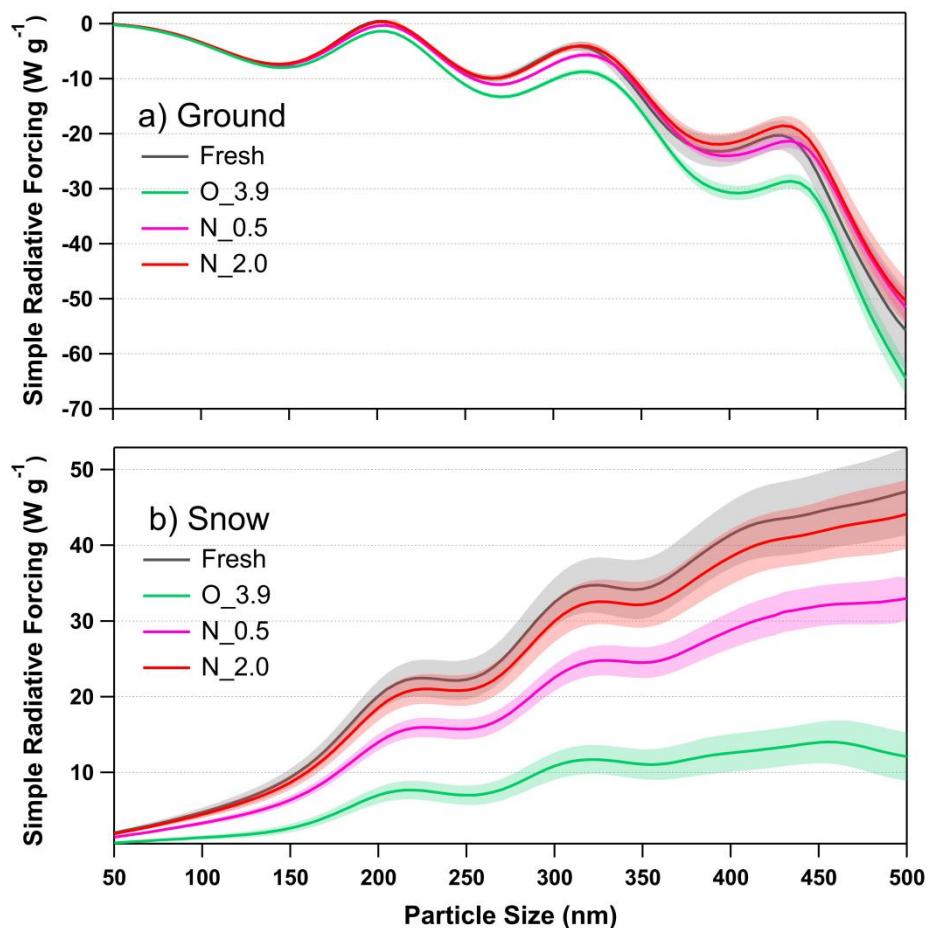


1147

1148 **Figure 7.** Comparison of f44 and f43 values from ambient data sets (Ng. et al., 2010) and values from ambient biomass burning
 1149 organic aerosol. The hollow circles present tar ball result in this work, and color legend indicate equivalent atmospheric
 1150 oxidation days, black arrow more clearly shows the extent of NOx-free photochemical oxidation in this study.



1151 **Figure 8.** Dynamic changes for chemical characteristics of tar ball aerosols under NO_x-dependent OH photochemical oxidation:
1152 a) OM/OC, O:C, H:C, and particle density changes; b) mass spectra changes with different oxidation conditions in term of
1153 C_xH_y^+ , $\text{C}_x\text{H}_y\text{O}^+$, $\text{C}_x\text{H}_y\text{O}_z^+$, and $\text{C}_x\text{H}_y\text{O}_z\text{N}_p^+$ fragment groups. $\text{C}_x\text{H}_y\text{O}_z\text{N}_p^+$ include all nitrogen-containing fragments, (e.g.,
1154 $\text{C}_x\text{H}_y\text{ON}^+$, $\text{C}_x\text{H}_y\text{O}_z\text{N}_i^+$, $\text{C}_x\text{H}_y\text{N}^+$, etc.), NO_y^+ include NO^+ and NO_2^+ . O_3.9 represents 3.9 days equivalent atmospheric
1155 photochemical aging in absence of NO_x, N_0.5 and N_2.0 indicate photochemical oxidation with 0.5 and 2.0 vol.% N₂O
1156 addition at ~4.0 days atmospheric oxidation.


1157

1158 **Figure 9.** Changes of retrieved spectra-dependent RI as a function of O:C ratio for tar ball particles upon NOx-dependent
 1159 photochemical oxidation: a) real part, b) imaginary part, and c) SSA calculated from 150 nm particles. For clarity, error bars
 1160 for O:C ratio (± 0.01), RI (± 0.006 for real part, and ± 0.003 for imaginary part on average), and SSA (± 0.007) are not
 1161 shown. O_3.9 represents 3.9 days equivalent atmospheric photochemical aging in absence of NOx, N_0.5 and N_2.0 indicate
 1162 photochemical oxidation with 0.5 and 2.0 vol. % N2O addition at ~ 4.0 days atmospheric oxidation.

1163

1164 **Figure 10.** Size-resolved light extinction and absorption efficiency ratio of NO_x-dependent photooxidized tar balls compared
 1165 to the fresh tar ball particles: a) and c) extinction ratios at 375 and 405 nm, b) and d) absorption ratios at 375 and 405 nm.
 1166 O_3.9 represents 3.9 days equivalent atmospheric photochemical aging in absence of NO_x, N_0.5 and N_2.0 indicate
 1167 photochemical oxidation with 0.5 and 2.0 vol.% N₂O addition at ~4.0 days atmospheric oxidation.

1168

1169 **Figure 11.** Calculated size-resolved simple radiative forcing (SRF, W g⁻¹) by tar ball aerosols, integrated over
 1170 365~425 nm incident solar irradiation for fresh and NOx-dependent photooxidized tar balls: a) ground-based
 1171 radiative forcing, b) snow-based radiative forcing.