1 Support Information for

2

3 Efficient N₂O₅ Uptake and NO₃ Oxidation in the Outflow of Urban Beijing

Haichao Wang¹, Keding Lu^{1*}, Song Guo¹, Zhijun Wu¹, Dongjie Shang¹, Zhaofeng Tan¹, Yujue Wang¹,
Michael Le Breton², Mingjin Tang³, Yusheng Wu¹, Jing Zheng¹, Limin Zeng¹, Mattias Hallquist², Min
Hu¹ and Yuanhang Zhang^{1,4}

7

¹State Key Joint Laboratory or Environmental Simulation and Pollution Control, College of
Environmental Sciences and Engineering, Peking University, Beijing, China.

²Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden

¹¹ ³State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental

12 Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of

- 13 Sciences, Guangzhou 510640, China
- ⁴CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences,
 Xiamen, China
- 16
- 17 **Corresponding to*: Keding Lu (<u>k.lu@pku.edu.cn</u>)
- 18

19 List of the supplement information:

- 20 Test S1. Correction of nighttime NO₂ concentration
- 21 **Figure S1.** Correction factor of nighttime NO₂ in Changping site.
- Figure S2. The steady state lifetime estimation of NO_3 and N_2O_5 based on the box model.
- **Figure S3.** The time series of N₂O₅ lifetime calculated by steady state method
- Figure S4. Dependence of N₂O₅ lifetime on relative humidity.
- **Table S1.** The statistical results of the relevant parameters during the nighttime .
- **Table S2.** List of the total yield of ClNO₂ ($\gamma \times f$) in this campaign.
- 27 **Table S3.** List of the observed $ClNO_2/N_2O_5$

28 Text S1: Correction of NO₂ concentration.

During the 2014 Wangdu campaign (Tan et al., 2017), we used two Thermo Electron model 42i NO-29 NO₂-NOx analyzers to measure NO₂, one is PKU-PL equipped with a home-built photolytic converter, 30 the other is equipped with a catalytic converter (PKU-Mo), the later one was used in this campaign. 31 As the Figure S1(a) shows that the ratio of NO₂ measured by PKU-PL to that measured by PKU-Mo 32 had clear diurnal profiles (in fact, the NO2 ratio is a correction factor, here specifically defined as WD 33 PL/Mo), which is about 0.75 and has small variation at nighttime, and drops to ~0.4 at noon. 34 35 Additionally, based on the photo-stationary state method we calculated NO₂ (here defined as WD Cal) values by measured NO and $i(NO_2)$ according to Eq. (S1): 36

37
$$[NO_2] = \frac{k_1[NO][O_3]}{j(NO_2)}$$
 Eq. (S1)

Here the k_1 is the reaction rate constant of NO with O₃. The WD Cal/Mo ratio keep reasonably consistent with the WD PL/Mo during the daytime.

Wangdu site is a semi-rural site in North China Plain and similar with the Changping site. Figure 40 S1(b) shows the profiles of the variation and mixing ratios of O_3 in the two sites keep highly consistent. 41 42 The ratio of the calculated NO₂ by the photo-stationary state method to PKU-Mo in Changping site also is the same tendency with that in Wangdu. For correcting the nighttime NO₂, we assumed that the 43 NO₂ ratio of Changping is the same variation with that in Wangdu, and the calculated NO₂ by the 44 photo-stationary state method is reliable. Then scaled the diurnal profile of WD PL/Mo with an offset 45 to make the daytime ratio has the best fit with the daytime CP Cal/Mo (shown in the red line), here 46 defined as CP PL/Mo (scaled by WD). After scaling, the nocturnal CP PL/Mo is an extended correction 47 factor for the measured NO₂ by PKU-Mo. The nighttime correction factor is about 0.6 and was stable 48 during the whole night. 49

Figure S1. (a) The diurnal profiles of NO₂ ratio of PKU-PL, Cal (calculated by photo-stationary state
method) to PKU-Mo measured in Wangdu and Changping. (b) The diurnal profile of O₃ during the
Wangdu campaign and Changping campaign.

Figure S2. The estimated steady state time of NO₃ and N₂O₅ based on the box model simulation. The 57 kx and ky denotes the loss rate constants of NO₃ and N₂O₅, respectively. A box model was used to 58 calculate the steady state lifetime of NO₃ and N₂O₅ after sunset during this campaign. The box model 59 used the chemical mechanism Regional Atmospheric Chemical Mechanism version 2 included the 60 N₂O₅ heterogeneous hydrolysis processes. The initial concentrations of NO₃ and N₂O₅ were set to zero. 61 The initial concentrations of NO₂ and O₃ were set to the typical values of 15 ppbv and 90 ppbv, 62 respectively. The model was constrained to typical VOCs reactivity toward NO₃ (0.015 s⁻¹) and 63 heterogeneous uptake rate (0.0008 s^{-1}) in this site. 64

Figure S3. The time series of N_2O_5 lifetime calculated by steady state method.

68

65

66 67

Figure S4. Dependence of N_2O_5 lifetime on relative humidity, data was selected from 20:00 to 04:00. Data are shown as medians, 25-75th percentile ranges, and 10-90th percentile ranges, as shown in the legend.

Parameters	Minimum	Maximum	Mean	SD
RH (5min)	12%	76%	44%	12%
Temp (5min, °C)	9.8	30.5	20.5	4.0
NO ₂ (5min, ppbv)	0.7	69.2	14.4	10.1
O ₃ (5min, ppbv)	0.5	156.1	40.8	31.2
PM _{2.5} (5min, μg m ⁻³)	<lod<sup>a</lod<sup>	92	26	21
S_a (5min, $\mu m^2 m^{-3}$)	33	1457	562	338
N ₂ O ₅ (1min, pptv)	<lod<sup>a</lod<sup>	937	73	90
ClNO ₂ (1min, pptv)	<lod<sup>a</lod<sup>	2480	382	337
NO ₃ (1min, pptv) ^b	0	133	8	12

Table S1. The statistical results of the relevant parameters in this study (19:30-05:00).

74 Note: ^a Limit of the detection; ^b calculated by the measured N₂O₅, NO₂ and ambient temperature.

75

	Nighttime (average)			Nighttime (maximum)		
Date	ClNO ₂	N_2O_5	ClNO ₂ :N ₂ O ₅	ClNO ₂	N_2O_5	ClNO ₂ :N ₂ O ₅
05/23-24	31	14	2.3	129	132	0.9
05/24-25	98	60	1.6	401	255	1.5
05/25-26	118	89	1.3	405	513	0.7
05/26-27	58	83	0.7	173	272	0.6
05/27-28	425	56	7.7	1002	197	4.7
05/28-29	327	50	6.5	1428	466	2.8
05/29-30	306	134	2.3	923	436	2.0
05/30-31	504	13	42.0	1243	132	8.8
05/31-06/01	300	48	6.3	848	230	3.4
06/01-02	770	106	7.3	1602	300	5.0
06/02-03	852	148	5.8	1425	937	1.4
06/04-05	1172	129	9.0	2450	356	6.4
Average	414	73	6.0	-	-	-

Table S2. Lists of the observed $CINO_2/N_2O_5$ (1 min average, from 19:30 to 05:00)

Table S3. Lists of the daily yield of ClNO₂ times N₂O₅ uptake coefficients ($\gamma \times f$)

Start time	End time	$\gamma imes f$
05/23 19:00	05/24 00:00	0.035 ± 0.005
05/24 23:50	05/25 04:00	0.027 ± 0.002
05/25 19:00	05/25 23:00	0.010±0.003
05/26 18:00	05/26 21:00	0.008 ± 0.004
05/27 19:00	05/27 22:00	0.020±0.003
05/28 19:00	05/28 23:00	0.017±0.003
05/29 19:00	05/29 23:00	0.009±0.001
05/30 21:00	05/31 03:00	0.030±0.005
05/31 21:00	06/01 01:00	0.031±0.005
06/01 18:00	06/02 03:00	0.014±0.003
06/02 18:00	06/02 20:30	0.013±0.002
06/04 19:20	06/05 00:00	0.016±0.002
average ±star	0.019±0.009	