

Response to Referees

We thank the reviewers for their careful reading and their constructive comments on our manuscript. As detailed below, the reviewer's comments are shown as italicized font, our response to the comments are normal font. New or modified text is in **blue**.

Referee #1

This paper presents NO_3 and N_2O_5 observational data from a suburban site in Beijing during the summer of 2016. The authors use these data to investigate the oxidation of volatile organic compounds (VOC) by NO_3 and the effect of N_2O_5 heterogeneous uptake on reactive nitrogen loss and $ClNO_2$ production in the Beijing urban outflow. Nocturnal biogenic VOC oxidation was shown to be dominated by NO_3 , and the heterogeneous uptake of N_2O_5 was found to be a significant loss mechanism for reactive nitrogen. The uptake of N_2O_5 was found to produce approximately a factor of four more inorganic nitrate than organic nitrate from the $NO_3 + VOC$ pathway and result in significant $ClNO_2$ production. These results are compared, and broadly agree, with previously reported observations and represent a valuable contribution to the growing body of work on the importance of nocturnal chemistry on local atmospheric composition. I recommend publication of the manuscript once the following minor comments /technical corrections have been addressed.

Thanks for the referee's positive and helpful comments.

Minor comments / technical corrections.

1. *Lines 60-61: Please could the author state if these are mass or molar yields.*

These are the mass yields, and we added the explanation in the text.

Changed in line 60-61: “The reaction of NO_3 with isoprene has a **SOA mass yield** of 23.8% (Ng et al., 2008). For the reaction with monoterpenes, such as limonene, the **SOA mass yield** can reach 174% at ambient temperatures (Boyd et al., 2017).”

2. *Line 148-150 – It would be easier for the reader if the authors could be consistent with the order of N_2O_5 and $ClNO_2$ in this sentence.*

Thanks for the suggestion, we now changed units of both N_2O_5 and $ClNO_2$ to “pptv”.

3. Figure 3: The scale on the NO plot makes it difficult to see NO mixing ratios. Please consider either a log scale or a discontinuity to make this more visible.

We changed to log scale accordingly, and we labelled 0.06 ppbv NO in the black line in Figure 2 in the revised manuscript.

4. Lines 276-278: This sentence is confusing, please restructure.

We rewrote as: “The N_2O_5 concentration was highly correlated with NO_2 ($R^2 = 0.81$) and the NO_3 production rate ($R^2 = 0.60$), suggests the N_2O_5 concentration was solely response to the NO_2 concentration in the background air mass when enough O_3 is presented.”

5. Line 289: Please re-reference the recent studies in the NCP.

We re-cited the recent studies in the NCP in Line 289 as suggested: “Tham et al., 2016; X. F. Wang et al., 2017; Z. Wang et al., 2017”.

6. Figure 8 and lines 389 – 392: There is an inconsistency between the text and Fig. 8. In the text the authors state that on the three days with the largest discrepancies between the steady state calculated N_2O_5 lifetime and that calculated using the overall $k(\text{N}_2\text{O}_5)$ the steady state calculation is much higher than the overall $k(\text{N}_2\text{O}_5)$. In Fig. 8 however, the discrepancy on 30th May is in the opposite direction, with the steady state lifetime approaching a factor of 2 lower than the overall $k(\text{N}_2\text{O}_5)$. The authors should correct this statement and provide an explanation for this discrepancy. The authors should also explain why there is no steady state calculated N_2O_5 lifetime for 31st May in Fig. 8.

For the night of 29th-30th May (Referee quoted as 30th May), the calculated steady state loss rate constant of N_2O_5 is much smaller than that of the overall $k(\text{N}_2\text{O}_5)$. We agree with the reviewer that this discrepancy needs more explanations. Considering that the large uncertainties propagated from the observed parameters (e.g., NO_2 , N_2O_5 , S_a), the discrepancies between the calculated steady state loss rate constant of N_2O_5 and the overall $k(\text{N}_2\text{O}_5)$ is mostly within the estimated uncertainty levels. The steady state loss rate constant on the night of 30th May (mentioned 31th May in the comment) was calculated in fact, but the values are much higher than 0.02, the reason of high steady state loss rate constant on the night of 30th - 31th May was not well

understand. In the revised manuscript, we enlarged the y-axis and changed to log scale, as well as added the error bar of the estimated uncertainties in the Figure 7.

Change in the revised manuscript:

“Figure 7 shows the time series of the overall N_2O_5 loss rate constant as well as the N_2O_5 steady state loss rate constant. The overall N_2O_5 loss rate constant was calculated from the individual terms (Eq.3). The uncertainties of the N_2O_5 steady state loss rate constant and the overall $k(\text{N}_2\text{O}_5)$ are estimated to be 67% and 95%, respectively (Eq. 7 and Eq. 8). The largest error sources were from the corrected NO_2 measurements so that it is really important to have accurate NO_2 measurement instrument involved in the future campaigns.

$$\frac{\Delta L_{ss}(\text{N}_2\text{O}_5)}{L_{ss}(\text{N}_2\text{O}_5)} = \sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta K_{eq}}{K_{eq}}\right)^2} \quad (\text{Eq. 7})$$

$$\frac{\Delta k(\text{N}_2\text{O}_5)}{k(\text{N}_2\text{O}_5)} = \sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[\text{S}_a]}{[\text{S}_a]}\right)^2 + \left(\frac{\Delta[\gamma]}{[\gamma]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta[\text{VOC}_s]}{[\text{VOC}_s]}\right)^2 + \left(\frac{\Delta K_{eq}}{K_{eq}}\right)^2} \quad (\text{Eq. 8})$$

On the night of 29 May, the steady state loss rate constant was much lower than the overall $k(\text{N}_2\text{O}_5)$; on the nights of 28, May and 3 June, the $L_{ss}(\text{N}_2\text{O}_5)$ calculated by the steady state method were much higher than the overall $k(\text{N}_2\text{O}_5)$, but these discrepancies were in the range of the uncertainties. Except the case happened on the night of 30 May, when the steady state loss rate constant was about ten times higher than the overall loss rate constant, and the reason was not well understood according to the available parameters that we have detected. In general, the overall N_2O_5 loss rate constant and the steady state N_2O_5 loss rate constant were comparable taking into considerations of the uncertainties.”

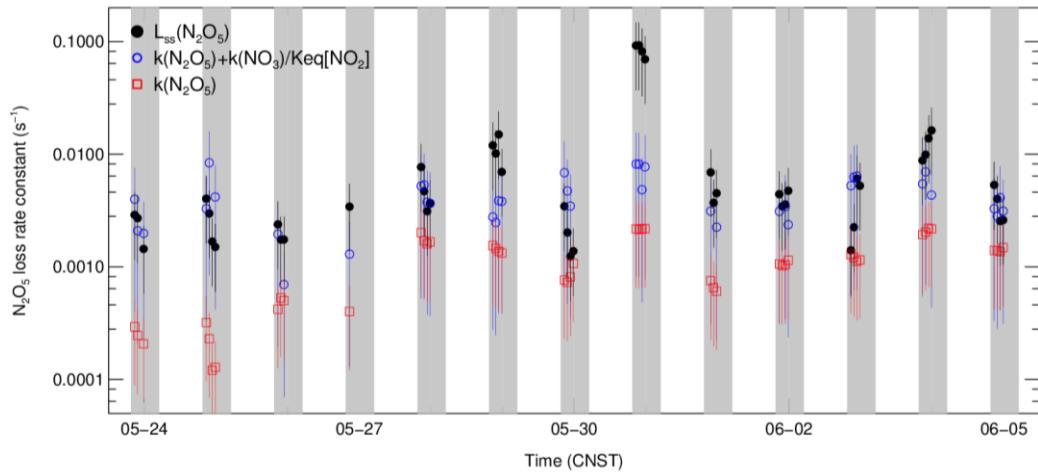


Figure 7. Time series of the individual N_2O_5 loss terms and the loss rate constant of N_2O_5 in steady state ($L_{ss}(\text{N}_2\text{O}_5)$).

7. *Figure 9: Although the acronyms used in the x-axis labels are described in the text, it would help the reader if they were re-stated in the figure caption.*

Added the description in the caption of Figure. 9 as following: “*The nighttime VOCs reactivity of NO_3 and O_3 (defined as the pseudo first order loss rate of VOCs initiated by oxidants, include NO_3 and O_3); the VOCs are classified as isoprene (ISO), monoterpene (MNT), the terminal alkenes (OLT) and the internal alkenes (OLI). The data were selected from 20:00 to the next day 04:00.*”

8. *Line 301 and Table 3: Please check that X. F. Wang and Z. Wang references are correct.*

We corrected the reference accordingly. The study conducted in Mt. Tai, China was from Z. Wang et al., 2017 and the study conducted in Jinan, China was from Z. Wang et al., 2017

Referee #2

Wang et al present measurements of N_2O_5 , ClNO_2 and ancillary species in the urban outflow of Beijing and thereby analyze nocturnal rates of oxidation of VOCS, NO_x lifetimes and chlorine activation via heterogeneous reaction of N_2O_5 on chloride containing particles. N_2O_5 uptake coefficients were in the “usual” range and ClNO_2 yields were high, implying abundant sources of chlorine. The authors use established expressions to analyze their data and the manuscript contributes to the growing literature on nighttime VOC oxidation, NO_x loss and ClNO_2 formation without providing significant new insight. Detracting from this work, much of the referencing seems to be an arbitrary selection (often self-citation) of related work and the estimation (or presentation) of uncertainties in derived parameters is largely missing. The following points should be addressed (some are major) and the English language corrected (some suggestions are listed below) before re-review.

Thanks for the referee’s careful and constructive comments. We checked and cited the references carefully in the revised manuscript. The uncertainties analysis was added as suggested.

1. L61 State how the yield of SOA (23.8 % or 174 %) is defined.

These are the mass yields, and we revised accordingly in the text. Change in the revised text: “The reaction of NO_3 with isoprene has a **SOA mass yield** of 23.8% (Ng et al., 2008). For the reaction with a monoterpane, such as limonene, the **SOA mass yield** can reach 174% at ambient temperatures (Boyd et al., 2017).”

2. L70 $k\text{N}_2\text{O}_5$ is not a rate coefficient. Its best to call it a pseudo-first order loss rate constant to avoid confusing it with rate constants for gas-phase reactions.

We change accordingly.

3. L70 Eq. (1) was certainly not derived by Tang et al in 2017. Use an appropriate (earlier) reference.

We cited the reference: “[Wahner et al., 1998](#)”.

4. L175 The correction factor of 0.6 (independent of time of day, day of campaign, NO_x , or air mass-age) is clearly a poor assumption given that the NO_x to NO_y ratio is highly variable in time and space. The assumption that the correction factor in Wangdu is the same as in Changping is without real basis. Note also that the photo-stationary state between NO , NO_2 and O_3 will break down in the presence of other oxidants (e.g. RO_2) so that measurement of NO and O_3 (and j-NO_2) cannot replace NO_2 measurements. The authors must estimate the uncertainty related to this correction factor (and thus with the NO_2 measurements) is they wish to use NO_2 data in any quantitative sense. This applies to section 4.2 where they calculate N_2O_5 lifetimes in steady state via calculation of the N_2O_5 production term, which requires NO_2 mixing ratios. It also applies to the calculation of NO_3 from the N_2O_5 and NO_2 measurements and the equilibrium constant and this impacts on the results of section 4.2 where NO_3 concentrations are used to calculated oxidation rates of VOCs. In principal, the lack of accurate NO_2 measurements during this campaign reduces many conclusions of this paper to a qualitative level.

According to the reviewer’s suggestions, we now extensively evaluated the influence of the uncertainty of the used NO_2 concentrations on the deduced VOCs (+ NO_3) and N_2O_5 reactivity.

Line 177: “The correction factor (0.6) used to be the averaged scaled value of the correction factors during nighttime, the standard deviation of the daytime correction factor for all the air masses experienced at Changping site was determined to be 0.27 (1σ), which extended to nighttime and result in an uncertainty of correction to be 45%. The uncertainty of NO_2 is therefore about 50% when further included the associated measurement uncertainty from calibrations.”

According to a Gaussian error propagation approach (see the following equations), the uncertainties of the calculated steady state lifetime, the overall $k(\text{N}_2\text{O}_5)$ and the NO_3 concentration were determined to be 67%, 95% and 67%, respectively.

We revised the paper correspondingly as follows:

Firstly, changed in line 242: “the uncertainty of NO_3 calculation was estimated to be 67% according to Eq. 2 which is dominated by uncertainty of the NO_2 concentrations.

$$\frac{\Delta[\text{NO}_3]}{[\text{NO}_3]} = \sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta K_{\text{eq}}}{K_{\text{eq}}}\right)^2} \quad (\text{Eq. 2})$$

Secondly, the N_2O_5 loss rate constant was revised in Figure 7, the error bar was added to denote the uncertainties of N_2O_5 steady state loss constant and the overall N_2O_5 loss rate constant (as NO_2 concentration affected the contribution of NO_3 oxidation).

Changed in line 390: “Figure 7 shows the time series of the overall N_2O_5 loss rate constant as well as the N_2O_5 steady state loss rate constant. The overall N_2O_5 loss rate constant was calculated from the individual terms (Eq.3). The uncertainties of the N_2O_5 steady state loss rate constant and the overall $k(\text{N}_2\text{O}_5)$ are estimated to be 67% and 95%, respectively (Eq. 7 and Eq. 8). The largest error sources were from the corrected NO_2 measurements so that it is really important to have accurate NO_2 measurement instrument involved in the future campaigns.

$$\frac{\Delta L_{\text{ss}}(\text{N}_2\text{O}_5)}{L_{\text{ss}}(\text{N}_2\text{O}_5)} = \sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta K_{\text{eq}}}{K_{\text{eq}}}\right)^2} \quad (\text{Eq. 7})$$

$$\frac{\Delta k(\text{N}_2\text{O}_5)}{k(\text{N}_2\text{O}_5)} = \sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[S_a]}{[S_a]}\right)^2 + \left(\frac{\Delta[y]}{[y]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta[\text{VOC}_s]}{[\text{VOC}_s]}\right)^2 + \left(\frac{\Delta K_{\text{eq}}}{K_{\text{eq}}}\right)^2} \quad (\text{Eq. 8})$$

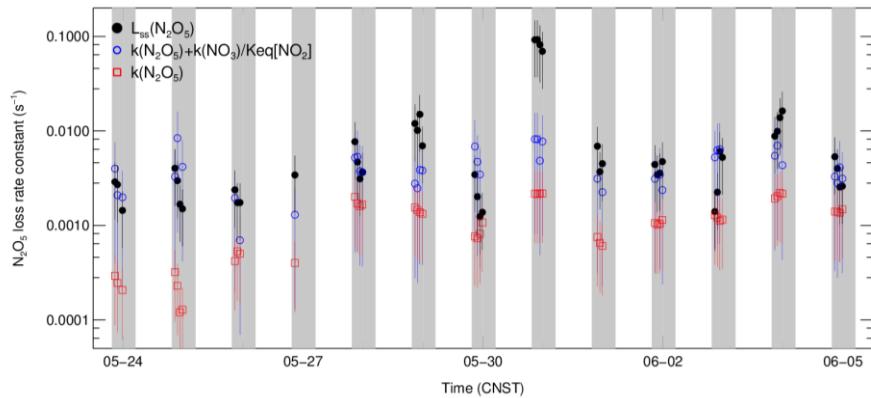


Figure 7. Time series of the individual N_2O_5 loss terms and the loss rate constant of N_2O_5 in steady state ($L_{ss}(\text{N}_2\text{O}_5)$).

Thirdly, the uncertainty of VOCs loss rate by NO_3 was added in the Figure 8. Changed in line 422: “Previous measurement indicated the main detectable monoterpenes were α -pinene and β -pinene in summer Beijing (personal communication with Ying Liu). Here we assumed α -pinene and β -pinene contributes equally to the mixing ratios of the monoterpenes. The average value of the rate coefficients of α -pinene and β -pinene with NO_3 (Atkinson and Arey, 2003) was used as the rate coefficient of monoterpene with NO_3 . The uncertainty of the monoterpene + NO_3 rate coefficient in these air masses is thus estimated to be 50%. Since the uncertainty of calculated NO_3 is estimated to be 67%, the overall uncertainty of monoterpene reactivity toward NO_3 was calculated to be 85% according to a Gaussian propagation method, the uncertainties of other VOCs reactivity toward NO_3 was calculated to be 75% by assuming the uncertainties of the corresponding bimolecular rate constants to be 30%.”

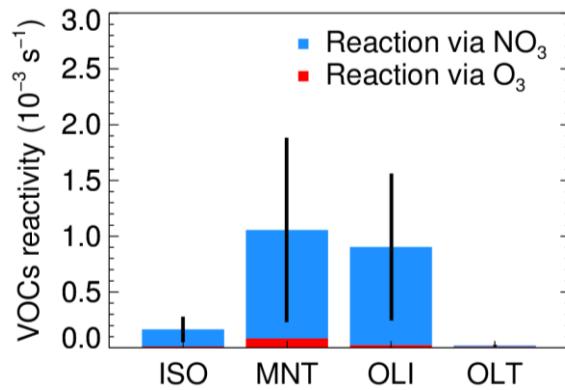


Figure 8. The nighttime VOCs reactivity of NO_3 and O_3 (defined as the pseudo first order loss rate of VOCs initiated by oxidants, include NO_3 and O_3); the VOCs classified as isoprene (ISO), monoterpene (MNT), the terminal alkenes (OLT) and the internal alkenes (OLI). The data were selected from 20:00 to the next day 04:00.

5. L191 “Figure 2 shows the calculated backward trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model”. As far as I can tell, this is the first and last mention of air-mass trajectories. I would suggest that the Figure can be relegated to the SI.

We changed accordingly.

6. L235 “The single peak (in N_2O_5) occurred near 20:00 and then gradually decreased”. Is this a reproducible feature of the campaign or a bias of the mean due to one or two events. Taking the median rather than the mean would resolve this. Also, why (line 236) does the N_2O_5 increase before sunrise (or do the authors mean “at sunrise”)?

Thanks for the suggestion, we checked the median value of N_2O_5 and NO_3 , the peak also occurred near 20:00. Therefore, we rewrote the description as following: “A peak occurred near 20:00 and decreased below the instrument detection limit at sunrise”. We corrected to “at sunrise” in Line 236 accordingly.

7. L243-246 “ $ClNO_2$ accumulated corresponding to N_2O_5 after sunset but $ClNO_2$ peaked in the middle or the second half of the night since the nocturnal sinks of $ClNO_2$ were negligible to our knowledge. “I’m not sure what the authors are trying to say here.

We rewrote the sentence as following: “The observed $ClNO_2$ concentrations showed a clear increase after sunset and reached a maximum before sunrise for BAM period while reached a maximum around midnight for the UAM period.”

There are many examples that show great variability in the N_2O_5 -to- $ClNO_2$ ratio. The interesting part of this section (lines 243 to 267) is the discussion of the sources of chloride needed to drive the $ClNO_2$ formation in this continental region. In principal, the chloride content of the aerosol can be calculated from the yield of $ClNO_2$ and the appropriate expression that defines the parameter “f”. I suggest the authors do this.

Thanks for the suggestion. We added the following discussion in the revised text: “The required nocturnal source of Cl^- to support the $ClNO_2$ production is further estimated through its loss rate. The $\gamma \times f$ was set to the campaign average value (0.019) (see Sect. 4.1), and real-time Cl^- loss rate via N_2O_5 can be calculated based on the measured N_2O_5 and Sa by Eq.3.

$$L[Cl^-] = (\gamma \times f) \cdot \int_{t_{sunset}}^{t_{sunrise}} \frac{C \cdot Sa}{4} [N_2O_5] dt \quad (Eq. 3)$$

Here the $L(Cl^-)$ denotes the integral Cl^- loss to form the $ClNO_2$ per night. The required source term of the Cl^- need to support the $ClNO_2$ formation during the campaign was range from (0.5 - 4.0 ppbv per night) with $(1.7 \pm 2.3$ ppbv per night) on average. The gas phase HCl predicted by the ISORROPIA II model showed that the HCl concentration near sunset period was high enough (much larger than 2 ppbv) to support the $ClNO_2$ formation (Figure. S3).

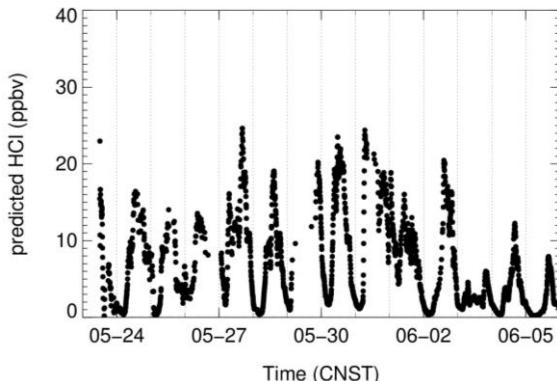


Figure S3. The predicted gas phase HCl concentrations by ISORROPIA II model.”

L249 and promoted the N_2O_5 conversion to $ClNO_2$ (e.g., Roberts et al., 2009). Why this citation? The formation of $ClNO_2$ from N_2O_5 was known (and quantified) long before 2009. Cite the appropriate literature.

Corrected the citation as following: “Finlayson-Pitts et al., 1989; Behnke et al., 1997”

8. L279 In lines 280-290. It is not clear whether we are dealing with ratios of the concentrations of $ClNO_2$ and N_2O_5 or ratios in their production rates (L282). If relative rates are calculated we need to know over which period they were derived.

The daily average or median ratio of the mixing ratio of $ClNO_2$ to N_2O_5 was calculated from 20:00 to the next day 04:00, and the ratio of their production rates was not calculated here.

Revised the description as following: “We used the concentration ratio of $ClNO_2$ to N_2O_5 , to describe the conversion capacity of N_2O_5 to $ClNO_2$. The nighttime peak values and mean values of $ClNO_2$: N_2O_5 were used to calculate the ratios are listed in Table S2, the calculation period is from 19:30 to the next day 05:00.”

9. L295 A composite term, $\gamma \times f$, was used to evaluate the overall $ClNO_2$ yield (f). . . .

The sentence was rewrote as following: “A composite term, $\gamma \times f$, was used to evaluate the production of ClNO_2 from N_2O_5 heterogeneous hydrolysis (Mielke et al., 2013)”

10. L296 How and over what period was the production rate of ClNO_2 determined? How stable were N_2O_5 and S_a in this period? L296 the term was estimated by considering. Give the expression used to derive the composite term from the observables.

In the revised paper, we added the expression and the corresponding explanation to derive the composite term, $\gamma \times f$, as the following:

“The term, $\gamma \times f$, was estimated by fitting the observed ClNO_2 in a time period when the nighttime concentrations of ClNO_2 kept increasing. The increased ClNO_2 was assumed to be solely from the N_2O_5 uptake. The fitting was optimized by changing the input of $\gamma \times f$ associated with the measured N_2O_5 and S_a , until the ClNO_2 increasing was well reproduced (Eq. 4). Here t_0 and t denote the start time and end time, respectively, $[\text{ClNO}_2](t_0)$ is the observed concentration at t_0 and set as the fitting offset. The calculation time duration was normally several hours, and the derived $\gamma \times f$ was found to be constant with small uncertainties for optimization (see Table S3) (e.g., a case showed in the following Figure A1). It is worth to be noticed that both the N_2O_5 and S_a is not necessary to be stable in this calculation due to the use of integration.

$$[\text{ClNO}_2](t) = [\text{ClNO}_2](t_0) + (\gamma \times f) \cdot \int_{t_0}^t \frac{C \cdot S_a}{4} [\text{N}_2\text{O}_5] dt \quad (\text{Eq. 4})$$

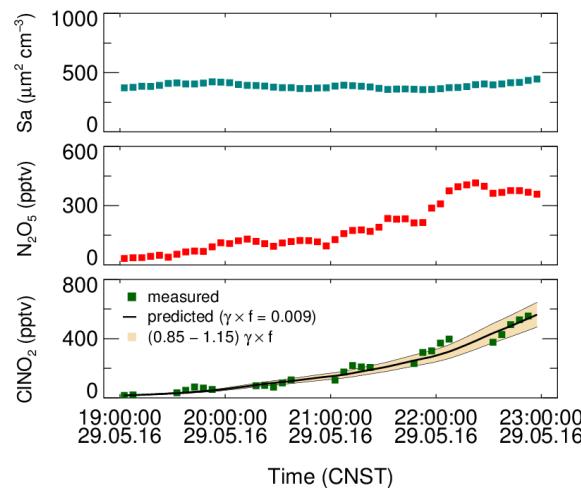


Figure A1. The reproduction of ClNO_2 by observed N_2O_5 and S_a .

11. L300 and 301 (and Table 3) the average values need to be listed with standard deviations to enable comparison. The same applies to Table 4.

The standard deviation of this study was added in both Table 3 and Table 4.

12. L313 uptake coefficients are derived from analysis of particulate nitrate and ClNO_2 concentrations. Only those nights were chosen when a clear covariance between these parameters was observed. The authors should explain how they define “clear covariance” and why, on other nights, covariance did not exist.

Here the “clear covariance” is pointing to the conditions when the square of the correlation coefficient is larger than 0.5 ($R^2 > 0.5$). Changed in line 313: “For some nights, significant correlations between pNO_3^- and ClNO_2 were presented ($R^2 > 0.5$); while on the other nights, the R^2 were always smaller than 0.2, which is not meet the theoretical hypothesis of this method. In this case, we chose the nights with high correlations.”

The reasons for the significant different correlations presented between the two groups of nights are still unclear. We did not find any observed parameters to explain the difference.

Surely the formation of ClNO_2 must always be accompanied by formation of particle nitrate? A major issue in this analysis is the assumption that the particulate nitrate is only formed from N_2O_5 uptake and not influenced by (temperature dependent) HNO_3 repartitioning. It appears that there were no measurements of gas-phase HNO_3 or ammonia to support the contentions that this was not important. The authors must assess this rigorously and state how the uptake coefficients would be influenced by HNO_3 uptake.

Unfortunately, we did not have the gas-phase HNO_3 or ammonia during this campaign. Our deduction on this point is as the follows,

Firstly, the daytime produced HNO_3 will soon be in equilibrium with the particulate nitrate within a time scale of about hundred seconds so that the daytime influence will be removed at the very beginning at night (cf. Figure A2, the observations of HNO_3 at summer Beijing in 2015).

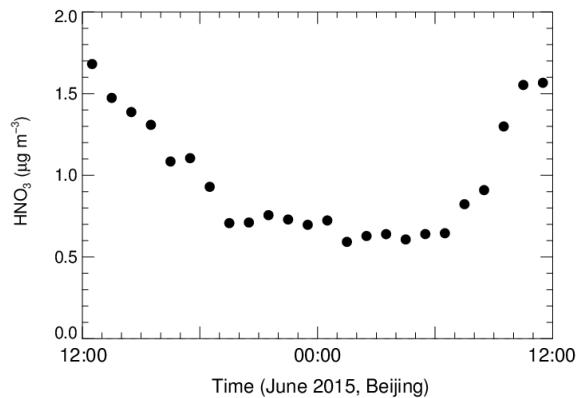


Figure A2. The mean diurnal variation of HNO_3 during a campaign conducted in June 2016 in urban Beijing.

Secondly, we think the nighttime production of HNO_3 is very small mainly due to the small nighttime OH concentrations. Since the available nighttime OH measurements were still under big discussions (e.g., Tan et al., ACP, 2017), we think the nighttime production of HNO_3 from $\text{OH}+\text{NO}_2$ can be neglected according to the modeled OH concentrations (of about $1\times 10^5 \text{ cm}^{-3}$). Nevertheless, the unknown nighttime OH chemistry and the possible nighttime produced HNO_3 sheds an uncertainty on our current analysis. The impact will be the possible overestimation of the uptake coefficient of N_2O_5 in the current analysis framework. We now extensively discussed the possible influence of the nighttime production of HNO_3 and repartitioning in the revised text as: “[The daytime produced \$\text{HNO}_3\$ will be soon in a new equilibrium with the particulate nitrate within a time scale of about hundred seconds; the nighttime source of \$\text{HNO}_3\$ are normally negligible except there are significant unknown OH sources at night. Both the gas-particle repartitioning of \$\text{HNO}_3\$ and nighttime produced \$\text{HNO}_3\$ will result in the overestimation of \$\gamma\$ and underestimation of \$f\$.](#)”

Reference: Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO_2 and RO_2 radicals, *Atmos. Chem. Phys.*, 17, 663-690, 10.5194/acp-17-663-2017, 2017.

13. L327 “*the most rigorous analysis was used in this study*”. *I do not understand what this implies. Most rigorous compared to what?*

In Phillips et al., (2016), the first and simplest method is to derive f only by using longer time periods (several hours or the whole night) where plots of ClNO_2 and NO_3^- are approximately linear. The second method is to calculate absolute production rates of NO_3^- and ClNO_2 in shorter periods (1-3 h), when NO_3^- and ClNO_2 concentrations both increase during a period of relatively constant composition and environmental variables, such as temperature and RH. In this case, values of pClNO_2 and pNO_3^- and average values of S_a and N_2O_5 are used to derive γ and f . The last and rigorous method is to avoid the use of the averaged S_a and N_2O_5 in the calculation, the measured N_2O_5 , ClNO_2 , S_a , R , T and NO_3^- were used directly in the calculation in a way of integration (the time step of the calculation were chose to be as small as possible, i.e., the time resolution of the associated measurement parameters). In this study, we used the last method to calculate the N_2O_5 uptake and ClNO_2 yield. In the revised manuscript, we changed the description and rewrote this part in line 349 as following: “[Based on the observational data of \$\text{N}_2\text{O}_5\$, \$\text{ClNO}_2\$, \$\text{pNO}_3^-\$ and \$S_a\$ with the time resolution of 5 minutes, the formations of \$\text{pNO}_3^-\$ and \$\text{ClNO}_2\$ were calculated and integrated to reproduce the increasing of \$\text{pNO}_3^-\$ and \$\text{ClNO}_2\$ with estimated values for \$\gamma\$ and \$f\$. The offset of particle nitrate and \$\text{ClNO}_2\$ is the measured particle nitrate and \$\text{ClNO}_2\$ concentration at the start time. The \$\gamma\$ and \$f\$ were optimized based on the Levenberg-Marquardt algorithm until good agreement between the observed and predicted concentrations of \$\text{pNO}_3^-\$ and \$\text{ClNO}_2\$ was obtained \(Phillips et al., 2016\).](#)”

14. L330 Figure 6 would be improved by adding the result of a calculation with lower (factor two?) and higher (factor two?) uptake coefficients to test the sensitivity of the data to the derived parameter. Also, what is the source of the offset in the particle nitrate? How does the particle nitrate look over the diel period? This is essential information when trying to understand the effects of HNO_3 re-partitioning (see comment above).

Thanks for the suggestion, we estimated that the uncertainty of the determined N_2O_5 uptake coefficient was about 55% - 100% (55% shows below as Figure 5), and the scatter of the observed data points could then be explained by the uncertainty of the uptake coefficients. The offset of particle nitrate and ClNO_2 is the measured particle nitrate and ClNO_2 concentration at the start time point. Normally, the calculation period was the particle nitrate with increasing tendency. We checked the mean diurnal variation of particle nitrate (shows in the Figure A3), which is increased throughout the whole night and continued to the midday. The change of the particulate nitrate is not always follow the re-partitioning due to the temperature

change. Nevertheless, we deduced that the impact of HNO_3 re-partitioning shall be small at night as presented in our answer to comment 12.

Changed in line 351: “The offset of particle nitrate and ClNO_2 is the measured particle nitrate and ClNO_2 concentration at the start time.”

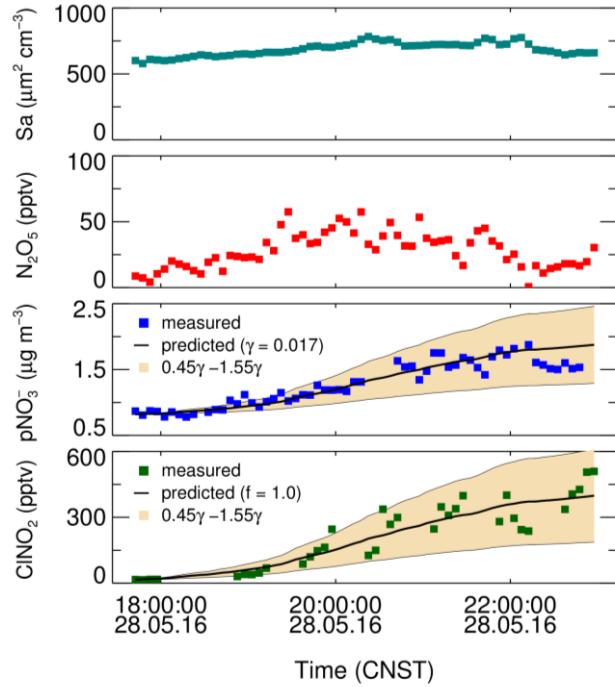


Figure 5. The best fit of γ and f to reproduce the observed ClNO_2 and pNO_3^- with an offset on May 28. The black lines are the predicted results of the integrated NO_3^- and ClNO_2 by using the observed S_a and N_2O_5 .

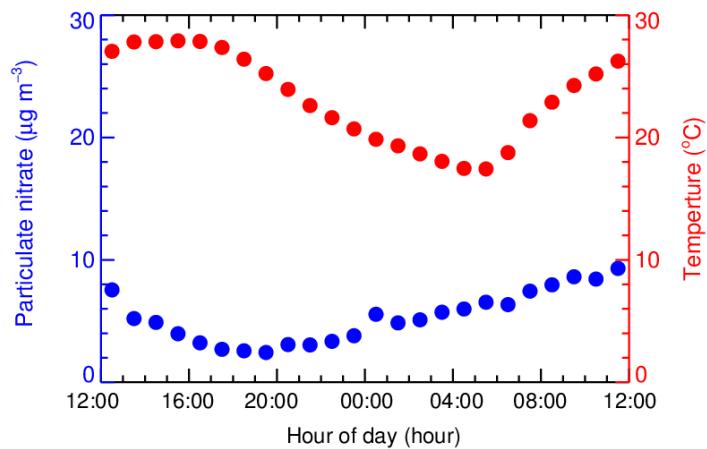


Figure A3. The mean diurnal variation of particulate nitrate during the campaign.

15. L331 “the predicted N_2O_5 uptake coefficient and $ClNO_2$ yield were 0.017 and 1.0, respectively.” What are the uncertainties?

The uncertainties added in Table 4, and we added the description: “The uncertainty on each individual fitting is varied from 55% - 100% due to the variability and measurements uncertainties of pNO_3^- and $ClNO_2$.”

16. L334 “The errors from each derivation were 30% - 50% and came from the field measurements of S_a , N_2O_5 , pNO_3^- and $ClNO_2$.” Using the uncertainties listed in Table 1 results in total uncertainty (propagated in quadrature) of > 50 %. I do not understand how the quoted 30-50 % was derived.

As suggested, the propagated uncertainty was added up to 55% according to a Gaussian error propagation approach, here we corrected to “approximately 55%”.

17. L369 “The time periods with NO concentration larger than 0.1 ppbv were excluded”. Why was this threshold chosen? The lifetime of NO_3 at 0.1 ppbv of NO is about 10-20 s.

The data selection through NO concentrations is based on the assumption that the observed NO smaller than 0.1 ppbv are very small (close to zero). This assumption is plausible as shown by the following analysis. According to a histogram analysis of the observed NO and O_3 concentrations for the conditions of NO smaller than 0.1 ppbv (see the following figure A3), the O_3 concentrations are always larger than 10 ppbv and the NO concentrations are nicely fitting to the Gaussian Distribution, suggesting most of the NO concentration below 0.1 ppbv are instrument noise and the actual value shall be very close to zero. For more rigorous analysis, we constrain the NO concentration of 0.06 ppbv (instrument LOD) in the steady state analysis of the revised text.

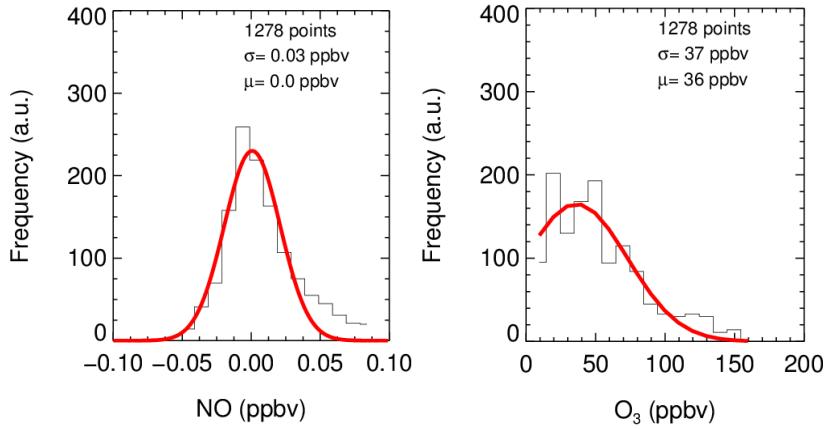


Figure A3. The histogram plot of measured NO concentration below 0.1 ppbv.

Changed line 369: “In this study, the steady state lifetime was only calculated from 20:00 to the next day 04:00. The time periods with NO concentration larger than 0.06 ppbv (instrument LOD) were excluded because the steady state is easily disturbed.”

Changed line 378: “The N_2O_5 steady state lifetime ranged from <5 s to 1260 s, with an average of 270 ± 240 s, and large variability was shown during the campaign.”

18. L389 the uncertainties in the N_2O_5 loss rate need to be calculated. As this involves NO_2 measurements, the uncertainty will be very large.

Added the following description in the revised text: “Figure 7 shows the time series of the overall N_2O_5 loss rate constant as well as the N_2O_5 steady state loss rate constant. The overall N_2O_5 loss rate constant was calculated from the individual terms (Eq.3). The uncertainties of the N_2O_5 steady state loss rate constant, the overall $k(\text{N}_2\text{O}_5)$ are estimated to be 67% and 95%, respectively (Eq. 7 and Eq. 8). The largest error sources were from the corrected NO_2 measurements so that it is really important to have accurate NO_2 measurement instrument involved in the future campaigns.

$$\frac{\Delta L_{ss}(\text{N}_2\text{O}_5)}{L_{ss}(\text{N}_2\text{O}_5)} = \sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta K_{eq}}{K_{eq}}\right)^2} \quad (\text{Eq. 7})$$

$$\frac{\Delta k(\text{N}_2\text{O}_5)}{k(\text{N}_2\text{O}_5)} = \sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[S_a]}{[S_a]}\right)^2 + \left(\frac{\Delta[\gamma]}{[\gamma]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta[\text{VOC}_s]}{[\text{VOC}_s]}\right)^2 + \left(\frac{\Delta K_{eq}}{K_{eq}}\right)^2} \quad (\text{Eq. 8}).$$

19. L403 This section deals with oxidation of VOCs and loss of NO_x to nitrates (inorganic and organic). NO_3 was not measured but calculated from N_2O_5 and NO_2 (the latter also not measured properly). The NO_3 concentrations derived are therefore

associated with great uncertainty. This needs to be assessed and used in the subsequent discussion and comparison with O₃-induced oxidation.

We carefully performed the uncertainty analysis of the calculated NO₃ concentrations as suggested. We found the uncertainty of calculated NO₃ is 67% associated with the uncertainties of NO₂ and N₂O₅. We also added the following description in the revised text. Added in line 403: “**Even the NO₃ concentration in the lower range, NO₃ still responsible for more than 70% nocturnal BVOCs oxidation. The results further confirmed that the oxidation of BVOCs is controlled by NO₃ rather than O₃ in summer Beijing.**”

20. L416 Similar to k(OH). . . . I'm not sure why OH is being mentioned here.

Deleted the “Similar to k(OH),”.

21. L422 Terpenes were measured using PTRMS, i.e. no speciation. What is the basis for assuming that alpha-pinene can be used as surrogate for NO₃ + terpene reactivity in these air masses?

The speciation measurements of monoterpene are still quite sparse in China. We have now discussed with an expert on this topic. We learnt that the major monoterpene species in Summer Beijing were α -pinene and β -pinene according to GC-MS measurements.

Changed in line 422: “**Previous measurement indicated the main detectable monoterpenes were α -pinene and β -pinene in summer Beijing (personal communication with Ying Liu). Here we assumed α -pinene and β -pinene contributes equally to the mixing ratios of the monoterpenes. The average value of the rate coefficients of α -pinene and β -pinene with NO₃ (Atkinson and Arey, 2003) was used as the rate coefficient of monoterpene with NO₃. The uncertainty of the monoterpene + NO₃ rate coefficient in these air masses is thus estimated to be 50%.**”

22. Figure 9 Needs uncertainties on the two terms being compared.

Thanks for the suggestion, we added the error bar in the Figure 9, the uncertainty of NO₃ calculation initiated by NO₂ was discussed in Question NO. 4

23. Some (certainly not exhaustive) suggestions for improvement of the English. L18 Nocturnal reactive nitrogen compounds play an important role in regional air pollution

Changed accordingly.

24. L27 The concentration of the nitrate radical (NO_3) was calculated assuming that. . .

Changed accordingly.

25. L34 which indicates that reduction of NO_x emissions cannot help reduce the nocturnal formation of ONs .

Changed accordingly.

26. L42 NO_3 can initiate the removal of many kind of anthropogenic

Changed accordingly.

27. L58 the reactions of NO_3 with several BVOCs produce considerable amounts of organic nitrates.

Changed accordingly.

28. L207. Nocturnal nitrate radical production rate, $P(NO_3)$, was large, with an average. . .

Changed accordingly.

29. L61 The reaction of NO_3 with isoprene has a SOA yield of 23.8% (Ng et al., 2008). For the reaction with a monoterpene, such as limonene, the yield can reach 174% at ambient temperatures (Boyd et al., 2017).

Changed as following; “The reaction of NO_3 with isoprene has a SOA mass yield of 23.8% (Ng et al., 2008). For the reaction with monoterpene, such as limonene, the SOA mass yield can reach 174% at ambient temperatures (Boyd et al., 2017)”.

30. L97 the reaction also contributed significantly to NO_x .

Changed accordingly.

31. L259 by acid displacement

Changed accordingly.

32. L260 “however, the photolysis with profound ClNO_2 was still maintained until noon“. I think the authors are trying to say that ClNO_2 survived until noon? In this context they should mention the J -values of ClNO_2 .

Yes, we are trying to say the ClNO_2 survived until noon. The campaign average J -values of ClNO_2 around noon is about $1.7 \times 10^{-4} \text{ s}^{-1}$. The text changed as following: “However, the ClNO_2 can still survive until noon with the averaged daily maximum of $J(\text{ClNO}_2)$ to be $1.7 \times 10^{-4} \text{ s}^{-1}$.”

33. L273-276. This part needs rewriting. I think the gist if this is that the N_2O_5 concentration depends on the NO_2 level more than on the O_3 concentration. If so, please explain why.

The sentence was rewrote as following: “The N_2O_5 concentration was highly correlated with NO_2 ($R^2 = 0.81$) and the NO_3 production rate ($R^2 = 0.60$), suggests the N_2O_5 concentration was solely response to the NO_2 concentration in the background air mass when enough O_3 is presented.”

34. L305. Which implies that the ClNO_2 formation efficiency.

Changed accordingly.

35. L403 The title of this section is misleading. NO_3 is not oxidized, but the VOCs. I suggest “ NO_3 -induced nocturnal oxidation of VOCs” or similar.

Thanks for the suggestion and changed accordingly.

36. L429 for calculating nocturnal ONs production from NO_3 oxidation of isoprene and monoterpene, as well as inorganic nitrate production via N_2O_5 heterogeneous uptake over the same period.

Changed accordingly.

1 **Efficient N₂O₅ Uptake and NO₃ Oxidation in the Outflow of Urban Beijing**

带格式的: 缩进: 首行缩进: 1 字符

2 Haichao Wang¹, Keding Lu^{1*}, Song Guo¹, Zhijun Wu¹, Dongjie Shang¹, Zhaofeng Tan¹, Yujue Wang¹,
3 Michael Le Breton², Mingjin Tang³, Yusheng Wu¹, Jing Zheng¹, Limin Zeng¹, Mattias Hallquist², Min
4 Hu¹ and Yuanhang Zhang^{1,4}

5
6 ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
7 Environmental Sciences and Engineering, Peking University, Beijing, China.

8 ²Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden

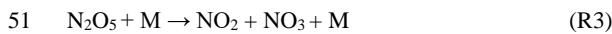
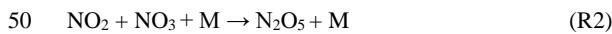
9 ³State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental
10 Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of
11 Sciences, Guangzhou, China

12 ⁴CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences,
13 Xiamen, China

14

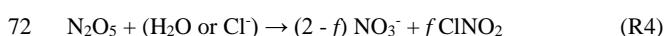
15 *Corresponding to: Keding Lu (k.lu@pku.edu.cn)

16



17 **Abstract.** Nocturnal reactive nitrogen compounds ~~areplay an~~ important ~~for understanding~~role in
18 regional air pollution. Here we present the measurements of dinitrogen pentoxide (N₂O₅) associated
19 with nitryl chloride (ClNO₂) and particulate nitrate (pNO₃⁻) in a suburban site of Beijing in the summer
20 of 2016. High levels of N₂O₅ and ClNO₂ were observed in the outflow of the urban Beijing air masses,
21 with 1-min average maxima of 937 pptv and ~~2.9 ppbv~~^{2900 pptv}, respectively. The N₂O₅ uptake
22 coefficients, γ , and ClNO₂ yield, f , were experimentally determined from the observed parameters. The
23 N₂O₅ uptake coefficient ranged from 0.012 to 0.055, with an average of 0.034 ± 0.018 , which is in the
24 upper range of previous field studies reported in North America and Europe but is a moderate value in
25 the North China Plain (NCP), which reflects efficient N₂O₅ heterogeneous processes in Beijing. The
26 ClNO₂ yield exhibited high variability, with a range of 0.50 to unity and an average of 0.73 ± 0.25 .
27 The ~~nighttime~~concentration of the nitrate radical (NO₃) was calculated assuming that the thermal
28 equilibrium between NO₃ and N₂O₅ was maintained. In NO_x-NO₃-rich air masses, the oxidation of
29 nocturnal biogenic volatile organic compounds (BVOCs) was dominated by NO₃ rather than O₃. The
30 production rate of organic nitrates (ONs) via NO₃+BVOCs was significant, with an average of ~~0.4410~~
31 ± 0.0907 ppbv h⁻¹. We highlight the importance of NO₃ oxidation of VOCs in the formation of ONs
32 and subsequent secondary organic aerosols in summer in Beijing. The capacities of BVOCs oxidation
33 and ONs formation are maximized and independent of NO_x under a high NO_x/NO₃/BVOCs ratio
34 condition (>10), which indicates that ~~the initial~~ reduction of ~~the~~ NO_x ~~emission~~emissions cannot help
35 reduce the ~~nocturnal~~ formation of ONs.

带格式的: 字体: 倾斜, 下标

37


38 **1. Introduction**

39 It has been well recognized that reactive nitrogen compounds, specifically the nitrate radical (NO_3)
 40 and dinitrogen pentoxide (N_2O_5), play a key role in nighttime chemistry (Wayne et al., 1991; Brown
 41 et al., and Stutz, 2012). NO_3 is the most important oxidant in the nighttime and can be considered the
 42 nighttime analogue of the hydroxyl radical (OH) for certain VOCs (Wayne et al., 1991; Benton et al.,
 43 2010). NO_3 can initiate the removal processing of many kindkind of anthropogenic and biogenic
 44 emissions after sunset. In the NO_x NO_3 -rich plumes, NO_3 is responsible for the vast majority of the
 45 oxidation of biogenic VOCs because of its rapid reactions with unsaturated hydrocarbons (Edwards et
 46 al., 2017). NO_3 is predominantly formed by the reaction of NO_2 with O_3 (R1) and further reacts with
 47 NO_2 to produce N_2O_5 (R2). Because N_2O_5 is rapidly decomposed back into NO_2 and NO_3 (R3), NO_3
 48 and N_2O_5 are in dynamic equilibrium in the troposphere.

52 Photolysis of NO_3 and its reaction with NO are rapid, which leads to a daytime NO_3 lifetime being
 53 shorter than 5 s with extremely low concentrations, whereas in low-NO air masses, the fate of NO_3 is
 54 mainly controlled by the mixing ratios of various VOCs and N_2O_5 heterogeneous hydrolysis because
 55 the two terms are the dominating loss pathways of NO_3 and N_2O_5 . The VOCs reaction is significant
 56 downwind of an urban area or a strongly urban-influenced forested area in summer. The NO_3
 57 oxidation of VOCs was responsible for more than 70% nocturnal NO_3 loss in Houston (Stutz et al.,
 58 2010) and contributed approximately 50% in the forest region in Germany (Geyer et al., 2001). The
 59 reactions of NO_3 with several BVOCs produce considerable amounts of organic nitrates (ONs) with
 60 efficient yields, which act as important precursors of secondary organic aerosols (SOA). The reaction
 61 of NO_3 with isoprene has a considerable SOA mass yield of 23.8% (Ng et al., 2008), and. For the
 62 reaction with monoterpene, such as limonene, the SOA mass yield can reach 174% at ambient
 63 temperatures (Boyd et al., 2017). The reactions of NO_3 +BVOCs are critical to the studies of aerosols
 64 on regional and global scales (Fry et al., 2009; Rollins et al., 2009; Pye et al., 2010; Ng et al., 2017).
 65 For example, ONs had extensive percentages of fine particulate nitrate (pNO_3^-) (34% - 44%) in Europe
 66 (Kiendler-Scharr et al., 2016).

67 The heterogeneous hydrolysis of N_2O_5 produces soluble nitrate (HNO_3 or NO_3^-) and nitryl chloride
 68 (ClNO_2) on chloride-containing aerosols (R4) (Finlayson-Pitts et al., 1989). This reaction is known to
 69 be an important intermediate in the NO_x NO_3 removal processes (Brown et al., 2006). The pseudo-first
 70 order loss rate coefficient of the constant N_2O_5 via heterogeneous N_2O_5 reaction uptake is given in Eq.
 71 1 (Tang Wahner et al., 2017 1998).

73 $k_{\text{N}_2\text{O}_5} = 0.25 \cdot c \cdot \gamma(\text{N}_2\text{O}_5) \cdot S_a$ (Eq. 1)

74 ~~where~~Where c is the mean molecule speed of N_2O_5 , S_a is the aerosol surface concentration and $\gamma(\text{N}_2\text{O}_5)$
75 is the N_2O_5 uptake coefficient. N_2O_5 heterogeneous hydrolysis is one of the major uncertainties of the
76 NO_3 budget since the N_2O_5 uptake coefficient can be highly variable and difficult to quantify (Brown
77 and Stutz, 2012; Chang et al., 2011; H. C. Wang et al., 2016). Laboratory and field measurement studies
78 have reported that the N_2O_5 uptake coefficient has large variability and ranges from <0.001 to 0.1; the
79 N_2O_5 uptake coefficient is subject to relative humidity (RH), particle morphology, compositions (water
80 content, nitrate, sulfate, organic or mineral particles) and other factors (e.g., Wahner et al., 1998;
81 Mentel et al., 1999; Hallquist et al., 2003; Thornton et al., 2003; Thornton et al., 2005; Brown et al.,
82 2006; Bertram and Thornton, 2009; Tang et al., 2012, 2014; Gaston et al., 2014; Grznic et al., 2015).
83 The coupled chemical mechanisms in ambient conditions are still not well understood. CINO_2 forms
84 and accumulates with a negligible sink during the night and further ~~photolyses~~photolysis and liberates
85 the chlorine radical (Cl) and NO_2 after sunrise. Hundreds of pptv to ppbv of CINO_2 can lead to several
86 ppbv of O_3 enhancement and significant primary RO_x production (Osthoff et al., 2008; Thornton et al.,
87 2010; McLaren et al., 2010; Riedel et al., 2014; Sarwar et al., 2014; Tham et al., 2016).

带格式的: 字体: 非倾斜

88 Large amounts of ~~NO_x~~ NO_x have been emitted for the past several decades in China, but
89 comprehensive field studies of the nighttime chemical processes of reactive nitrogen oxides remain
90 sparse. Previous studies have found high mixing ratios of NO_3 associated with high NO_3 reactivity in
91 the megacities in China, including Shanghai, the Pearl River Delta (PRD) and Beijing (Li et al., 2012;
92 Wang et al., 2013; Wang et al., 2015). N_2O_5 concentration was elevated in Beijing (H. C. Wang et al.,
93 2017a; H. C. Wang et al., 2017c) but was moderate in other places of North China Plain (NCP), such
94 as Wangdu, Jinan and Mount Tai (Tham et al., 2016; X. F. Wang et al., 2017; Z. Wang et al., 2017).
95 Recently, the N_2O_5 uptake coefficients were determined to be very high, even up to 0.1 in NCP, but
96 the reason is still not well studied (H. C. Wang et al., 2017c; X. F. Wang et al., 2017; Z. Wang et al.,
97 2017). Reactive N_2O_5 chemistry was also reported in Hong Kong, ~~which had and showed~~ the highest
98 field-observed N_2O_5 concentration to date (T. Wang et al., 2016; Brown et al., 2016). Observations and
99 model simulations revealed that fast heterogeneous uptake of N_2O_5 is an important pathway of pNO_3^-
100 formation in China (H. C. Wang et al., 2017b; H. C. Wang et al., 2017c; Z. Wang et al., 2017; Su et al.,
101 2017); the reaction also ~~considerably~~ contributed significantly to ~~NO_x~~ NO_x -removal (Z. Wang et al., 2017;
102 Brown et al., 2016). Moreover, chlorine activation from N_2O_5 uptake had a significant effect on
103 daytime photolysis chemistry in China (Xue et al., 2015; Li et al., 2016; Tham et al., 2016; T. Wang et
104 al., 2016).

105 In this study, to quantify the contribution of NO_3 and N_2O_5 chemistry to the atmospheric oxidation
106 capacity and the ~~NO_x~~ NO_x removal process in the outflow of urban Beijing, we reported the
107 measurement of N_2O_5 , CINO_2 , and related species in the surface layer of a suburban site in Beijing and
108 determined the N_2O_5 heterogeneous uptake coefficients and CINO_2 yields. The nighttime NO_3
109 oxidation of biogenic VOCs and its impact on the ONs formation in the ~~NO_x~~ NO_x -rich region were
110 diagnosed. Finally, the nighttime ~~NO_x~~ NO_x removal via the NO_3 and N_2O_5 chemistry was estimated
111 and discussed.

带格式的: 字体: 倾斜, 下标

113 2. Method

114 2.1 The site

115 Within the framework of a Sino-Sweden joint research project, “Photochemical Smog in China”, a
116 summer field campaign was conducted in Beijing to enhance our understanding of the secondary
117 chemistry via photochemical smog and the heterogeneous reactions (Hallquist et al., 2016). The data
118 presented here were collected at a regional site, PKU-CP (Peking University Changping campus), from
119 23 May to 5 June 2016. The measurement site is located in the northern rural area of Beijing,
120 approximately 45 km from the city center; the closest road is approximately 1 km to the south, and
121 there are no major industry surroundings (Figure. 1). The site is surrounded to the north, east and west
122 by mountains. The general feature of this site is that it captures air masses with strong influences from
123 both urban and biogenic emissions. Instruments were set up on the fifth floor of the main building of
124 the campus with inlets approximately 12 m above the ground. Time is given in this paper as CNST
125 (Chinese National Standard Time = UTC+8 h). During the campaign, sunrise was at 05:00 CNST and
126 sunset was at 19:30 CNST.

127 **2.2 Instrument setup**

128 A comprehensive suite of trace gas compounds and aerosol properties was measured in the field study,
129 and the details are listed in Table 1. N_2O_5 was measured by a newly developed cavity enhanced
130 absorption spectrometer (CEAS; H. C. Wang et al., 2017a). In the CEAS, ambient N_2O_5 was thermally
131 decomposed to NO_3 in a perfluoroalkoxy alkanes (PFA) tube (length: 35 cm, I.D.: 4.35 mm) heated to
132 120 °C and was then detected within a PFA resonator cavity; the cavity was heated to 80 °C to prevent
133 NO_3 reacting back to N_2O_5 . Ambient gas was sampled with a 1.5-m sampling line (I.D.: 4.35 mm) with
134 a flow rate of 2.0 L min⁻¹. NO was injected for 20 seconds to destroy NO_3 from N_2O_5 thermal
135 decomposition in a 5-minute cycle, and the corresponding measurements were then used as reference
136 spectra. A Teflon polytetrafluoroethylene (PTFE) filter was used in the front of the sampling
137 module to remove ambient aerosol particles. The filter was replaced with a fresh one every hour to
138 avoid the decrease of N_2O_5 transmission efficiency due to aerosol accumulation on the filter. The limit
139 of detection (LOD) was 2.7 pptv (1 σ), and the measurement uncertainty was 19%.

140 ClNO_2 and N_2O_5 were also detected using a Time of Flight Chemical Ionization Mass Spectrometer
141 (ToF-CIMS) with the Filter Inlet for Gas and AEROSols (FIGAERO; Lopez-Hilfiker et al., 2014;
142 Bannan et al., 2015). Briefly, the gas phase species were measured via a 2-m-long, 6-mm-outer-
143 diameter PFA inlet while the particles were simultaneously collected on a Teflon filter via a separate
144 2-m-long, 10-mm-outer-diameter copper tubing inlet; both had flow rates of 2 L min⁻¹. The gas phase
145 was measured for 25 minutes at 1 Hz, and the FIGAERO instrument was then switched to place the
146 filter in front of the ion molecule region; it was then heated incrementally to 200 °C to desorb all the
147 mass from the filter to be measured in the gas phase, which resulted in high-resolution thermo grams.
148 Formic acid calibrations were performed daily using a permeation source maintained at 40 °C. Post-
149 campaign laboratory calibrations of N_2O_5 were first normalized to the campaign formic acid
150 calibrations to account for any change in sensitivity (Le Breton et al., 2014). Then, ClNO_2
151 measurements were quantified by passing the N_2O_5 over a wetted NaCl bed to produce ClNO_2 . The
152 decrease in N_2O_5 from the reaction with NaCl was assumed to be equal to the concentration of ClNO_2
153 produced (i.e., 100% yield). The sensitivities of the CIMS to N_2O_5 and ClNO_2 were found to be 9.5
154 and 1.2 ion counts per pptv Hz⁻¹, respectively, with errors of 23% and 25% for ClNO_2 and N_2O_5 ,
155 respectively. The ~~limit of detection~~ (LOD) for ClNO_2 and N_2O_5 were 16 and 8 pptv, respectively. An

156 intercomparison of N_2O_5 measurements between the CEAS and FIGAERO-ToF-CIMS showed good
157 agreement; a companion paper on chlorine photochemical activation during this campaign gives
158 detailed intercomparison results of N_2O_5 measured by the two different techniques (Le Breton et al.,
159 2018).

160 Sub-micron aerosol composition ($\text{PM}_{1.0}$), including nitrate, sulfate, chloride, ammonium and
161 organic compounds, were measured by a High Resolution Time of Flight Aerosol Mass Spectrometer
162 (HR-ToF-AMS) (DeCarlo et al., 2006; Zheng et al., 2017). Particle number and size
163 distribution (PNSD) was measured by a scanning mobility particle sizer (SMPS, TSI 3936) and an
164 aerosol particle sizer (APS, TSI 3321) (Yue et al., 2009). SMPS measured the particles in the range
165 between 3.5 nm and 523.3 nm in diameter, and APS measured the particles with a diameter range from
166 597.6 nm to 10.0 μm . S_a was calculated based on the dry-state particle number and geometric diameter
167 in each size bin (3.5 nm - 2.5 μm). Dry-state S_a was corrected to wet particle-state S_a for particle
168 hygroscopicity by a growth factor. The growth factor, $f(\text{RH}) = 1 + 8.77 \times (\text{RH}/100)^{9.74}$, was derived
169 from the measurement of aerosol extinction as a function of RH in autumn in Beijing and is valid for
170 $30\% < \text{RH} < 90\%$ (Liu et al., 2013). The uncertainty of the wet aerosol surface areas was estimated to
171 be $\sim 30\%$, associated from the error from dry PNSD measurement ($\sim 20\%$) and the growth factor
172 ($\sim 20\%$). During this measurement, fine particles below 500 nm contributed to more than 90% of the
173 total particle aerosol surface area S_a .

174 VOCs were measured by Proton Transfer Reaction Mass Spectrometry (PTR-MS) with a time
175 resolution of 5 minutes (de Gouw and Warneke et al., 2007; Wang et al., 2014). A commercial
176 instrument (Thermo Electron model 42i) equipped with a molybdenum-catalytic converter was used
177 to monitor NO_x and NO_2 . The LODs were 60 pptv (1 min) for NO and 300 pptv (1 min) for NO_2 , with both
178 at a 20% precision (Tan et al., 2017). The molybdenum-catalytic technique not only converts NO_2 to
179 NO but also converts ambient NO_y such as peroxyacetyl nitrate (PAN) and HNO_3 . Therefore, the
180 measured NO_2 concentration corresponded to $\text{NO}_2 + \text{NO}_y$ and was normally higher than the real
181 concentration, especially in an aged air mass with high NO_y conditions. In this study, we used a factor
182 of 0.6 to correct the nighttime NO_2 concentration (a detailed explanation is in the Support Information
183 Text S1 and Figure S1). The correction factor (0.6) used to be the averaged scaled value of the
184 correction factors during nighttime, the standard deviation of the daytime correction factor for all the
185 air masses experienced at Changping site was determined to be 0.27 (1 σ), which extended to nighttime
186 and result in an uncertainty of correction to be 45%. The uncertainty of NO_2 is therefore about 50%
187 when further included the associated measurement uncertainty from calibrations. O_3 was measured by
188 a commercial instrument using ultraviolet (UV) absorption (Thermo Electron model 49i); the LOD
189 was 0.5 ppbv, with an uncertainty of 5%. The mass concentration of $\text{PM}_{2.5}$ was measured using a
190 standard Tapered Element Oscillating Microbalance (TEOM, 1400A analyzer). Meteorological
191 parameters included relative humidity, temperature, pressure, wind speed, and wind direction and were
192 available during the campaign. Photolysis frequencies were calculated from the spectral actinic photon
193 flux density measured by a spectroradiometer (Bohn et al., 2008).

194

195 3. Results

带格式的: 字体: 倾斜

带格式的: 字体: 倾斜

196 **3.1 Overview**

197 During the campaign, the meteorological conditions of the site ~~were characterized by~~ was high
198 temperature and low relative humidity (RH); the temperature ranged from 10 - 34 °C and was $23 \pm$
199 5 °C on average, and RH ranged from 10% - 80%, with an average of $37\% \pm 15\%$. Because of the
200 special terrain of the observation site, the local wind was measured by the in situ meteorological
201 stations; the site has a typical mountain-valley breeze that cannot reflect the general air mass movement
202 patterns at slightly higher altitudes. Figure 2S2 shows the calculated backward trajectories using the
203 Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Rolph, 2003);
204 these images show the 24-h backward particle dispersion trajectories for 12:00 local time (CNST) as
205 the starting time during May 23 - July 5, 2016. According to the results of HYSPLIT, the arrivals of
206 air masses were mainly from the northwest and the south. Therefore, we meteorologically separated
207 the measurement period into two parts. The first three days show that the air masses came from the
208 north or northwest; the air masses represent the background region (defined as Background Air Mass,
209 BAM). The air masses after May 26 originated from the polluted NCP and passed over urban Beijing;
210 they were characterized by large ~~NO_x~~ NO_x emissions and severe photochemical pollution (defined as
211 Urban Air Mass, UAM).

212 The time series of N₂O₅, ClNO₂ and other relevant species are shown in Figure 32, and nighttime
213 statistical results are listed in Table S1. The daily 8-h maximum of O₃ concentration exceeded 93 ppbv
214 (Chinese national air quality standard) for 8 of 12 days, and all the O₃-polluted air masses came from
215 the urban region. When the air masses were from the background region, the daily maximum of O₃
216 was only approximately 60 ppbv, much lower than that from the urban region. The NO₂ concentration
217 was elevated, with a nocturnal average value over 10 ppbv during the urban air mass period. The
218 nocturnal nitrate radical production rate, P(NO₃), was ~~significant~~ large, with an average of 1.2 ± 0.9
219 ppbv h⁻¹, which is comparable with rates previously reported in the NCP and Hong Kong (Tham et al.,
220 2016; Brown et al., 2016; Z. Wang et al., 2017; X. F. Wang et al., 2017). The daily peaks of N₂O₅ were
221 100-500 pptv most nights; the maximum of 937 pptv in a 1-min average was observed near 20:00 on
222 the early night of June 2, when the P(NO₃) was up to 4 ppbv h⁻¹. The average mixing ratio of N₂O₅
223 was 73 ± 90 pptv, which is much higher than recent measurements reported in North China (Tham et
224 al., 2016; X. F. Wang et al., 2017; Z. Wang et al., 2017) but much lower than that observed in the
225 residual layer of the outflow from the PRD region, where the N₂O₅ was up to 7.7 ppbv (T. Wang et al.,
226 2016). With an elevated O₃ mixing ratio in the first half of the night, the NO lifetime was only several
227 minutes, and the mixing ratio of NO concentration was observed below the detection limit. During the
228 second half of the night when the O₃ concentration was consumed to low concentration, high levels of
229 NO could occasionally be observed, and N₂O₅ dropped to zero because of the fast titration by NO,
230 such as the events that occurred on the second half of the nights of May 24, 28, 30. The PM_{2.5} mass
231 concentration was moderate during the measurement period, with an average of $26 \pm 21 \mu\text{g m}^{-3}$, and
232 the average aerosol surface area was $560 \pm 340 \mu\text{m}^2 \text{cm}^{-3}$. Elevated ClNO₂ was observed to have a
233 daily maximum 1-min average of over 800 pptv during the urban air masses period; the campaign
234 maximum of up to ~~2.9 ppbv~~ 2900 pptv was observed on the morning (05:30) of May 31, which implied
235 that fast N₂O₅ heterogeneous hydrolysis and effective ClNO₂ yields are common in Beijing. The level
236 of ClNO₂ was comparable with the results in NCP (Tham et al., 2016; X. Wang et al., 2017; Z. Wang

带格式的: fontstyle01

237 et al., 2017) but slightly higher than that measured in coastal (e.g., Osthoff et al., 2008) and inland sites
238 (e.g., Thornton et al., 2010) in other regions of the world.

239 3. 2 Mean diurnal profiles

240 The mean diurnal profiles of the measured NO_2 , O_3 , N_2O_5 , CINO_2 and the particle chloride content are
241 shown in Figure 43, as well as the calculated NO_3 based on the thermal equilibrium of NO_2 , NO_3 and
242 N_2O_5 . The left panels show the average results of the BAM period, and the right panels show
243 those of the UAM period. The NO_2 and O_3 from the UAM were much higher than were those from the
244 BAM, as were the mixing ratios of N_2O_5 , NO_3 and CINO_2 . The daily variation tendencies of those
245 species in the two kinds of air masses were similar. N_2O_5 began to accumulate in the late afternoon
246 and increased sharply after sunset. The singleA peak occurred near 20:00 and then gradually decreased
247 to below the LOD before instrument detection limit at sunrise; the N_2O_5 maxima occurred at a similar
248 time to our previous observation in urban Beijing (H.-C. Wang et al., 2017c); however, the N_2O_5
249 decrease rate after the peak time was much slower than that in urban Beijing, where the N_2O_5 dropped
250 to almost zero in 2-4 hours, which suggests a relatively slow N_2O_5 loss rate in suburban Beijing. The
251 daily average peaks of N_2O_5 during the BAM period and the UAM period were approximately 75 pptv
252 and 150 pptv, respectively. The calculated NO_3 diurnal profile was quite similar to that of N_2O_5 , and
253 the daily average peaks of NO_3 during the BAM and UAM periods were approximately 11 pptv and
254 27 pptv, respectively. The uncertainty of NO_3 calculation was estimated to be 67% according to Eq. 2
255 which is dominated by uncertainty of the NO_2 concentrations

256 CINO_2 accumulated corresponding to N_2O_5 after sunset but CINO_2 peaked in the middle or the second
257 half of the night since the nocturnal sinks of CINO_2 were negligible to our knowledge. $\frac{\Delta[\text{NO}_3]}{[\text{NO}_3]} =$
258 $\sqrt{\left(\frac{\Delta[\text{N}_2\text{O}_5]}{[\text{N}_2\text{O}_5]}\right)^2 + \left(\frac{\Delta[\text{NO}_2]}{[\text{NO}_2]}\right)^2 + \left(\frac{\Delta[\text{O}_3]}{[\text{O}_3]}\right)^2 + \left(\frac{\Delta K_{\text{eq}}}{K_{\text{eq}}}\right)^2}$ (Eq. 2)

259 The observed CINO_2 concentrations showed a clear increase after sunset and reached a maximum
260 before sunrise for BAM period while reached a maximum around midnight for the UAM period. The
261 diurnal peak of CINO_2 in the BAM period was approximately 125 pptv, whereas the diurnal peak of
262 CINO_2 was over 780 pptv in the UAM period and approximately 6 times as high as that in the UAM
263 period. Particle chloride (Cl^-) is regarded as a key factor that affected the CINO_2 yield on aerosol
264 surface. Higher particle chloride led to higher CINO_2 yield and promoted the N_2O_5 conversion to
265 CINO_2 (e.g., RobertsFinlayson-Pitts et al., 2009¹⁹⁸⁹; Behnke et al., 1997), whereas the particle
266 chloride content during the measurement was below 60 pptv and was much lower than the mixing ratio
267 of CINO_2 . The HYSPLIT model results showed that the air masses had almost always continental
268 conditions; as was mentioned above, fine particles dominated the S_a , which meant that large amounts
269 of the particle chloride were not replenished by NaCl from marine sources but possibly by gas-phase
270 HCl (Ye et al., 2016). Cl^- was found to be correlated strongly with CO and SO_2 , likely to originate
271 from an anthropogenic source, such as power plants or combustion sources (Le Breton et al., 2018).
272 UpThe required nocturnal source of Cl^- to support the CINO_2 production is further estimated through

带格式的: 默认段落字体, 字体颜色: 文字 1

its loss rate. The $\gamma \times f$ was set to the campaign average value (0.019) (see Sect. 4.1), and real-time Cl loss rate via N_2O_5 can be calculated based on the measured N_2O_5 and S_a by Eq.3.

$$L[Cl^-] = (\gamma \times f) \cdot \int_{tsunset}^{tsunrise} \frac{Cs_a}{4} [N_2O_5] dt \quad \text{_____ (Eq. 3)}$$

Here the $L(Cl^-)$ denotes the integral Cl^- loss to form the $CINO_2$ per night. The required source term of the Cl^- need to support the $CINO_2$ formation during the campaign was range from (0.5 - 4.0 ppbv per night) with (1.7 ± 2.3 ppbv per night) on average. The gas phase HCl predicted by the ISORROPIA II model showed that the HCl concentration near sunset period was high enough (much larger than 2 ppbv) to support the $CINO_2$ formation (Figure. S3). Note that up to 10 ppbv of HCl was observed by a Gas and Aerosol Collector combined with Ion Chromatography (GAC-IC; Dong et al., 2012) in the urban Beijing in September, 2016, which implies we believe that the potential particle Cl^- source was sufficient and gas-phase HCl was possibly the main particle chloride source by the acid replacement displacement reaction. After sunrise, $CINO_2$ was photolyzed and decreased with the increasing photolysis intensity; however, the photolysis with profound $CINO_2$ was still maintained until noon, with the averaged daily maximum of $J(CINO_2)$ to be $1.7 \times 10^{-4} s^{-1}$. Similar to the studies reported in London, Texas and Wangdu (Bannan et al., 2015; Faxon et al., 2015; Tham et al., 2016), we observed sustained elevated $CINO_2$ events after sunrise in 5 of 12 days. For example, on the morning of May 30, $CINO_2$ increased after sunrise and peaked at approximately 8:00 am, with a concentration over 500 pptv, which was impossible from the local chemical formation since N_2O_5 dropped to almost zero and the needed N_2O_5 uptake coefficients were unrealistically high. Previous work has suggested that abundant $CINO_2$ produced in the residual layer at night and downward transportation in the morning may help to explain this phenomenon (Tham et al., 2016).

3.3 Variation of N₂O₅ in the background air masses

During the BAM period, the O_3 concentration was well in excess of NO_2 . In the NO_3 and N_2O_5 formation processes, the limited NO_2 in high O_3 region indicates that the variation of NO_2 is more essential to the variation of the N_2O_5 concentration. As shown in Figure 54, during the night of May 24 (20:00 - 04:00), the local emission of NO was negligible. O_3 concentration was larger than 25 ppbv, much higher than NO_2 and free of the local NO emission. The variation of N_2O_5 concentration was highly correlated with the mixing ratio of NO_2 ($R^2 = 0.81$). The result suggests that when the air mass with high O_3 was sampled from the background air mass, the N_2O_5 concentration was especially dependent on the NO_2 concentration rather than O_3 . Furthermore, The variation of N_2O_5 concentration was strongly correlated with the NO_3 production rate ($R^2 = 0.60$), suggesting the mixing ratio of N_2O_5 concentration was subject solely response to the formation processes. NO_2 concentration in clean air masses, the background air mass when enough O_3 is presented.

3.4 Elevated ClNO_2 to N_2O_5 ratio

带格式的：缩进：首行缩进：0 字符，定义网格后自动调整右缩进，段落间距段前：0 磅，段后：0.5 行，到齐到网格，图案：清除（白色）

带格式的：	默认段落字体，字体颜色：文字 1
带格式的：	默认段落字体，字体颜色：文字 1
带格式的：	默认段落字体，字体颜色：文字 1，非上标/下标
带格式的：	默认段落字体，字体颜色：文字 1
带格式的：	默认段落字体，字体颜色：文字 1
带格式的：	默认段落字体，字体颜色：文字 1

307 Large day-to-day variabilities of N_2O_5 and ClNO_2 were observed during the measurement period.
308 Following the work of Osthoff et al. (2008), Mielke et al. (2013), Phillips et al. (2012) and Bannan et
309 al. (2015), we used the relative production rates, concentration ratio of ClNO_2 to N_2O_5 , to describe the
310 conversion capacity of N_2O_5 to ClNO_2 . The nighttime peak values and mean values of ClNO_2 : N_2O_5
311 were used to calculate the ratios, and two kinds of daily ratios are listed in Table S2, the calculation
312 period is from 19:30 to the next day 05:00. The average nighttime ratio ranged from 0.7 to 42.0, with
313 a mean of 7.7 and a median of 6.0. The ClNO_2 formation was effective, with ClNO_2 : N_2O_5 ratios larger
314 than 1:1 throughout the campaign, except for the night of May 26, when the ratio was 0.7:1. Previous
315 observations of the ClNO_2 : N_2O_5 ratios are summarized in Table 2. Compared with the results
316 conducted in similar continental regions in Europe and America (0.2 - 3.0), the ratios in this work were
317 significantly higher and consistent with the recent studies in the NCP, (Tham et al., 2016; X. F. Wang
318 et al., 2017; Z. Wang et al., 2017), which suggests that high ClNO_2 : N_2O_5 ratios were ubiquitous in the
319 NCP and implies that the ClNO_2 yield via N_2O_5 uptake is efficient.

320
321 **4. Discussion**

322 **4.1 Determination of N_2O_5 uptake coefficients**

323 A composite term, $\gamma \times f$, was used to evaluate the overall ClNO_2 yield from N_2O_5 heterogeneous
324 hydrolysis (Mielke et al., 2013); the term was estimated by considering the production rate of ClNO_2
325 and using the measured N_2O_5 and S_a . The values calculated based on the field observations are listed
326 in Table S3 and production of ClNO_2 from N_2O_5 heterogeneous hydrolysis (Mielke et al., 2013). $\gamma \times$
327 f was estimated by fitting the observed ClNO_2 in a time period when the nighttime concentrations of
328 ClNO_2 kept increasing. The increased ClNO_2 was assumed to be solely from the N_2O_5 uptake. The
329 fitting was optimized by changing the input of $\gamma \times f$ associated with the measured N_2O_5 and S_a , until
330 the ClNO_2 increasing was well reproduced (Eq. 4). Here t_0 and t denote the start time and end time,
331 respectively, $[\text{ClNO}_2](t_0)$ is the observed concentration at t_0 and set as the fitting offset. The calculation
332 time duration was normally several hours, and the derived $\gamma \times f$ was found to be constant with small
333 uncertainties for optimization (see Table S3). It is worth to be noticed that both the N_2O_5 and S_a is not
334 necessary to be stable in this calculation due to the use of integration.

335
$$[\text{ClNO}_2](t) = [\text{ClNO}_2](t_0) + (\gamma \times f) \cdot \int_{t_0}^t \frac{c \cdot S_a}{4} [\text{N}_2\text{O}_5] dt \quad (\text{Eq. 4})$$

336 The values of $\gamma \times f$ had moderate variability, a range from 0.008 - 0.035 and an average of $0.019 \pm$
337 0.009. Table 3 summarizes the $\gamma \times f$ values derived in the previous field observations. The value in
338 suburban Germany was between 0.001 and 0.09, with the average of 0.014 (Phillips et al., 2016), and
339 the average value in Mt. Tai, China, was approximately 0.016 (Z. Wang et al., 2017). Therefore, the
340 average value in this study was comparable with that of the two suburban sites, whereas in an urban
341 site of Jinan, China, (X. F. Wang et al., 2017), the value was lower than 0.008 and comparable with
342 that in the CalNex-LA campaign. The three sets of $\gamma \times f$ values from suburban regions were
343 approximately twice as large as those in urban regions, which implies that the composed ClNO_2
344 yields formation efficiency in the aged air masses in suburban regions were more efficient than in the

345 urban region. The difference of the overall yield between the two regions may have been caused by (1)
346 the particle morphology variation because of particle aging, such as the particle mixing state, O:C
347 ratio, particle viscosity and solubility (Riemer et al., 2009; Gaston et al., 2014; Grznic et al., 2015) or
348 (2) the particle compound variation such as the liquid water content and the Cl⁻ content. The liquid
349 water content and the Cl⁻ content were proposed to affect the ClNO₂ yield because those particle
350 physicochemical properties were reported to affect the N₂O₅ uptake coefficient (Bertram and Thornton,
351 2009).

352 According to reaction R4, pNO₃⁻ and ClNO₂ were formed by N₂O₅ heterogeneous uptake, with
353 yields of 2 - γ and f , respectively. Following the recent work of Phillips et al., (2016), we used the
354 observed pNO₃⁻ and ClNO₂ formation rates to derive individual γ and f . The calculations assumed that
355 the relevant properties of the air mass are conserved and that the losses of produced species are
356 negligible; additionally, the N₂O₅ uptake coefficients and the ClNO₂ yield are independent of particle
357 size. The nights characterized by the following two features were chosen for further analysis: (1) A
358 clear covariance existed for some nights, significant correlations between the pNO₃⁻ and ClNO₂, which
359 indicated that pNO₃⁻ and ClNO₂ were to some extent predominantly produced by N₂O₅ uptake,
360 and presented (R² > 0.5); while on the other nights, the HNO₃ uptake was R² were always smaller than
361 0.2, which is not important for pNO₃⁻ formation to meet the theoretical hypothesis of this method. In this
362 case, we chose the nights with high correlations. (2) An equivalent or increase in ammonium was
363 accompanied by an increase of pNO₃⁻, which suggested that the gas-phase ammonia was repartitioned
364 to form ammonium nitrate and suppress the release of HNO₃. The rich-ammonia conditions in Beijing
365 (Liu et al., 2017) demonstrated that the degassing of HNO₃ at night can be effectively buffered by the
366 high concentrations of ammonia presented in the NCP. For the nocturnal HNO₃ uptake effect, the
367 daytime produced HNO₃ will be soon in a new equilibrium with the particulate nitrate within a time
368 scale of about hundred seconds; the nighttime source of HNO₃ are normally negligible except there
369 are significant unknown OH sources at night. Both the gas-particle repartitioning of HNO₃ and
370 nighttime produced HNO₃ will result in the overestimation of γ and underestimation of f . During this
371 campaign, five nights were eligible for the following analysis. Three different types of derivation were
372 proposed by Phillips et al., (2016), basedBased on the observational data of N₂O₅, ClNO₂, pNO₃⁻,
373 and Sa, the most rigorous analysis was used in this study. The with the time resolution of 5 minutes,
374 the formations of pNO₃⁻ and ClNO₂ were calculated and integrated based on to reproduce the
375 measured Sa increasing of pNO₃⁻ and N₂O₅ from 5 min averaged datasets and an ClNO₂ with estimated
376 initial γ and f values for γ and f . The offset of particle nitrate and ClNO₂ is the measured particle nitrate
377 and ClNO₂ concentration at the start time. The γ and f were optimized based on the Levenberg-
378 Marquardt algorithm until good agreement between the observed and predicted concentrations of
379 pNO₃⁻ and ClNO₂ was obtained. (Phillips et al., 2016). Figure 65 depicts an example of the fitting
380 results on May 28, the predicted N₂O₅ uptake coefficient and ClNO₂ yield were 0.017 and 1.0,
381 respectively. The uncertainty on each individual fitting is varied from 55% - 100% due to the variability
382 and measurements uncertainties of pNO₃⁻ and ClNO₂. Five sets of values of γ and f obtained are listed
383 in Table 4. N₂O₅ uptake coefficients ranged from 0.012 - 0.055, with an average of 0.034 ± 0.018, and
384 the ClNO₂ yield ranged from 0.50 to unity, with an average of 0.73 ± 0.25. The errors from each
385 derivation were 30% - 50 about approximately 55% and came from the field measurements of Sa, N₂O₅,
386 pNO₃⁻ and ClNO₂.

387 The average γ value was consistent with the results derived by the same method in a rural site in
388 Germany (Phillips et al., 2016) but was higher than that found in previous studies in the UK and North
389 America that used different derivation methods; these methods included the steady state lifetime
390 method (Morgan et al., 2015; Brown et al., 2006, 2009), the iterated box model (Wagner et al., 2013)
391 and direct measurement based on an aerosol flow reactor (Bertram et al., 2009; Riedel et al., 2012).
392 The steady state lifetime method is very sensitive to NO_2 concentration, and since the NO_2
393 measurement suffered with ambient NO_y interference, we did not apply the steady state lifetime
394 method in this study (Brown et al., 2003). Nonetheless, the derived γ in Beijing showed good
395 agreement with the recent results derived by the steady state method in Jinan and Mt. Tai (X. F. Wang
396 et al., 2017; Z. Wang et al., 2017). The consistency eliminates the discrepancy possibly brought by
397 the differences of analysis methods. Therefore, we suggest that fast N_2O_5 uptake was a ubiquitous
398 feature that existed in the NCP. In this study, sulfate is the dominant component of $\text{PM}_{1.0}$, accounting
399 for more than 30% of its mass concentration, which may be the reason of elevated N_2O_5 uptake
400 coefficient presented in Beijing, like the result in high sulfate air mass over Ohio and western
401 Pennsylvania (Brown et al., 2006). Previous studies have shown that the N_2O_5 uptake coefficient
402 strongly depends on the liquid water content, the pNO_3^- and organic mass; liquid. Liquid water content
403 promotes N_2O_5 uptake, whereas pNO_3^- and organic mass inhibit N_2O_5 uptake (e.g., Thornton et al.,
404 2003, Wahner et al., 1998; McNeill et al., 2006; Bertram and Thornton, 2009). Because of the limited
405 data set of N_2O_5 uptake coefficients in this campaign, the trends of the determined N_2O_5 uptake
406 coefficients with the parameters mentioned above were not convincing, and more valid data is needed
407 for further studies of the N_2O_5 uptake mechanism. With respect to f , the values are comparable with
408 that observed in Germany (Phillips et al., 2016) and are similar with that estimated in the power plant
409 plume in Mt. Tai with high chloride content (Z. Wang et al., 2017).

410 411 4.2 N_2O_5 lifetime and reactivity

412 The lifetime of N_2O_5 was estimated by the steady state method, assuming that the production and loss
413 of N_2O_5 was in balance after a period following sunset. Eq. 25 for the steady state approximation has
414 been frequently applied in analyzing the fate of N_2O_5 (Platt et al., 1980; Allan et al., 1999; Brown et
415 al., 2003).

$$416 \quad \tau_{ss}(\text{N}_2\text{O}_5) = \frac{1}{L_{ss}(\text{N}_2\text{O}_5)} = \frac{[\text{N}_2\text{O}_5]}{k_{\text{NO}_2+\text{O}_3}[\text{NO}_2][\text{O}_3]} \quad (\text{Eq. 25})$$

417 In Eq. 25, $\tau_{ss}(\text{N}_2\text{O}_5)$ denotes the steady state lifetime of N_2O_5 and $L_{ss}(\text{N}_2\text{O}_5)$ denotes the loss term
418 of N_2O_5 corresponding to the steady state lifetime. A numerical model was used to check the validity
419 of the steady state approximation (Brown et al., 2003); details are given in Figure S2S4. The results
420 show that the steady state can generally be achieved within 30 minutes. In this study, the steady state
421 lifetime was only calculated from 20:00 to the next day 04:00. The time periods with NO concentration
422 larger than 0.406 ppbv (instrument LOD) were excluded because the steady state is easily disturbed.
423 The overall N_2O_5 reactivity loss rate ($k(\text{N}_2\text{O}_5)$) can be calculated by accumulating each individual loss
424 term in Eq. 36, including the N_2O_5 heterogeneous hydrolysis and the reaction of NO_3^- with VOCs.

带格式的: 字体颜色: 文字 1

带格式的: 默认段落字体, 字体颜色: 文字 1

带格式的: 字体颜色: 文字 1

带格式的: 字体颜色: 文字 1

带格式的: 字体颜色: 文字 1

$$k(N_2O_5) = \frac{\sum k_{NO_3+VOCs_i}[VOCs_i]}{k_{eq'}[NO_2]} + \frac{C \cdot S_a \cdot \gamma}{4} = \text{Eq. 6}$$

The NO_3 heterogeneous uptake and the loss of N_2O_5 via gas-phase reactions were assumed to be negligible (Brown and Stutz, 2012). $k_{\text{NO}_3+\text{VOCs}_i}$ represents the reaction rate constants of the reaction of $\text{NO}_3 + \text{VOCs}_i$. Isoprene and monoterpene were used in the calculation.

The N_2O_5 loss rate coefficient by heterogeneous hydrolysis was calculated by using an average γ of 0.034.

$$k(N_2O_5) = \frac{\frac{\sum k_t [VOCs_t]}{k_{avg} [NO_2]}}{4} + \frac{C \cdot S_a \cdot \gamma}{4} \quad (Eq. 3)$$

The time series of the steady state lifetime of N_2O_5 is shown in Figure S3S5. The N_2O_5 steady state lifetime ranged from <5 s to 1140–1260 s, with an average of 310 ± 240 s, and large variability was shown during the campaign. The N_2O_5 lifetimes during the BAM period were higher than those during the UAM period, which is predictable since the clean air mass has lower N_2O_5 reactivity because of much lower aerosol loading. Two extremely short N_2O_5 lifetime cases were captured on the nights of May 30 and June 3, with peak values below 200 s throughout those nights. Figure 76 shows that the N_2O_5 lifetime had a very clear negative dependence of the ambient aerosol surface area when larger than $300\text{ }\mu\text{m}^2\text{ cm}^{-3}$, which indicates that the N_2O_5 heterogeneous uptake plays an important role in the regulation of N_2O_5 lifetime. The study conducted in the residual layer of Hong Kong showed a similar tendency despite the overall N_2O_5 lifetime being shorter at this site (Brown et al., 2016). Additionally, a negative dependence of N_2O_5 lifetime on RH was reported in Hong Kong but was not observed in this study (Figure S4–S6).

Figure 87 shows the time series of the overall N_2O_5 loss rate constant as well as the N_2O_5 steady state N_2O_3 -loss rate constant. The overall N_2O_5 loss rate constant was calculated from the individual terms in (Eq. 3 was reasonably comparable with). The uncertainties of the N_2O_5 steady state N_2O_3 -loss rate, except for constant and the overall $k(\text{N}_2\text{O}_5)$ are estimated to be 67% and 95%, respectively (Eq. 7 and Eq. 8). The largest error sources were from the corrected NO_2 measurements so that it is really important to have accurate NO_2 measurement instrument involved in the future campaigns.

$$\frac{\Delta LSS(N_2O_5)}{LSS(N_2O_4)} = \sqrt{\left(\frac{\Delta [N_2O_5]}{[N_2O_4]}\right)^2 + \left(\frac{\Delta [NO_2]}{[NO_2]}\right)^2 + \left(\frac{\Delta [O_3]}{[O_3]}\right)^2 + \left(\frac{\Delta K_{eq}}{K_{eq}}\right)^2} \quad (Eq. 7)$$

$$\frac{\Delta k(N_2O_5)}{k(N_2O_5)} = \sqrt{\left(\frac{\Delta [N_2O_5]}{[N_2O_5]}\right)^2 + \left(\frac{\Delta [S_2]}{[S_2]}\right)^2 + \left(\frac{\Delta [Y]}{[Y]}\right)^2 + \left(\frac{\Delta [NO_2]}{[NO_2]}\right)^2 + \left(\frac{\Delta [O_3]}{[O_3]}\right)^2 + \left(\frac{\Delta [VOC_s]}{[VOC_s]}\right)^2 + \left(\frac{\Delta K_{eq}}{K_{eq}}\right)^2} \quad (Eq. 8)$$

On the night of 29 May, the steady state loss rate constant was much lower than the overall $k(\text{N}_2\text{O}_5)$; on the nights of 28, 30 May and 3 June, on which the $\text{Lss}(\text{N}_2\text{O}_5)$ calculated by the steady state method were much higher than the overall $k(\text{N}_2\text{O}_5)$, but these discrepancies were in the range of the uncertainties. Except the case happened on the night of 30 May, when the steady state loss rate constant was about ten times higher than the overall loss rate constant, and the reason was not well understood according to the available parameters that we have detected. In general, the overall N_2O_5 loss rate constant and the steady state N_2O_5 loss rate constant were comparable taking into considerations of

459 the uncertainties, The average N_2O_5 loss rate constant contributed by the N_2O_5 heterogeneous
460 hydrolysis was $8.1 \times 10^{-4} \text{ s}^{-1}$. The average NO_3 loss rate constant by the reaction of NO_3 with VOCs was
461 $0.015 \pm 0.007 \text{ s}^{-1}$, which is comparable with the previous results in suburban Beijing in 2006 (H.-C.
462 Wang et al., 2017c), in which the contribution to the N_2O_5 reactivity was $1.63 \times 10^{-3} \text{ s}^{-1}$. Compared with
463 N_2O_5 loss via direct heterogeneous hydrolysis, the indirect loss via NO_3+VOCs was dominant,
464 accounting for approximately 67%. Because only a subset of the suite of organic species at the site
465 was measured, the calculated loss rate constant via NO_3+VOCs represents a lower limit. Therefore,
466 the N_2O_5 loss via NO_3+VOCs may occupy a larger proportion. The overall loss rate constant from
467 NO_3+VOCs and N_2O_5 uptake was $2.44 \times 10^{-3} \text{ s}^{-1}$, which was reasonably lower than the steady state N_2O_5
468 loss rate constant of $3.61 \times 10^{-3} \text{ s}^{-1}$; the gap may be explained by the unmeasured reactive VOCs or the
469 unaccounted NO that was near the instrumental limit of detection.

带格式的：默认段落字体，字体颜色：文字 1

带格式的：字体：Times New Roman

470 4.3 Nocturnal NO_3 -induced nocturnal oxidation of VOCs

471 Recent studies have suggested that the fate of BVOCs after sunset is dominated by NO_xNO_x or O_3 ,
472 with variation of the ratio of NO_xNO_x to BVOCs and that the nighttime oxidation is located in the
473 transition region between NO_xNO_x -domination and O_3 -domination in the United States (Edwards et
474 al., 2017). During this campaign, the nocturnal average concentrations of isoprene and monoterpene
475 were $156 \pm 88 \text{ pptv}$ and $86 \pm 42 \text{ pptv}$, respectively. We used isoprene and monoterpene to represent a
476 lower limit mixing ratio of total BVOCs; the average ratio of NO_x/BVOC was larger than
477 10 and exhibited small variation during the BAM and UAM periods. The value was much higher than
478 the critical value ($\text{NO}_x\text{NO}_x/\text{BVOC} = 0.5$) of the transition regime proposed by Edwards et al. (2017),
479 which suggests that the oxidation of BVOCs in Beijing was NO_x -dominated and the nighttime fate of
480 BVOCs was controlled by NO_3 . Since the ONs formation via BVOC oxidation was mainly attributed
481 to the NO_3 oxidation with high yield, we suggest that the ONs production capacity was maximized in
482 the high NO_x/BVOCs region.

带格式的：默认段落字体，字体：非加粗，字体颜色：文字 1

带格式的：默认段落字体，字体：非加粗，字体颜色：文字 1，
非上标/下标

带格式的：默认段落字体，字体：非加粗，字体颜色：文字 1，
非上标/下标

带格式的：默认段落字体，字体：非加粗，字体颜色：文字 1

483 The pseudo first order loss rate of VOCs initiated by oxidants, $k(\text{VOCs}_i)$, is defined as VOCs
484 reactivity and expressed as Eq. 49. Here, we only consider the reaction of VOCs with O_3 and NO_3 .
485 $k_{\text{VOCs}_i+\text{NO}_3}$ and $k_{\text{VOCs}_i+\text{O}_3}$ are $k_{\text{NO}_3+\text{VOCs}_i}$ denotes the reaction rate constants of VOCs_i with NO_3 and
486 O_3 , respectively.

带格式的：默认段落字体，字体颜色：文字 1

带格式的：默认段落字体，字体：倾斜，字体颜色：文字 1，
下标

带格式的：默认段落字体，字体颜色：文字 1

带格式的：默认段落字体，字体：倾斜，字体颜色：文字 1，
下标

带格式的：字体：倾斜

487
$$k(\text{VOCs}_i) = k_{\text{VOCs}_i+\text{NO}_3} = k_{\text{NO}_3+\text{VOCs}_i} \cdot [\text{NO}_3] + k_{\text{VOCs}_i+\text{O}_3} + k_{\text{O}_3+\text{VOCs}_i} \cdot [\text{O}_3] \quad (\text{Eq. 49})$$

488 During this campaign, VOCs reactivity could be determined with the measured O_3 and calculated NO_3 .
489 Figure 98 depicts four kinds of VOCs reactivity distribution during nighttime, including the isoprene
490 (ISO), monoterpene (here represented by α -pinene, APIMNT), the double bond at the end or terminal
491 position of the molecule (OLT) and alkenes with the double bond elsewhere in the molecule (OLI).
492 The reaction rates were cited from the regional atmospheric chemistry mechanism version 2 (RACM2,
493 Goliff et al., (2013)). Previous measurement indicated the main detectable monoterpenes were α -
494 pinene and β -pinene in summer Beijing (personal communication with Ying Liu). Here we assumed
495 α -pinene and β -pinene occupies half and half in the monoterpene. The average value of the rate
496 coefficient of α -pinene and β -pinene with NO_3 was used as the rate coefficient of monoterpene with
497 NO_3 (Atkinson and Arey, 2003). The uncertainty of the monoterpene + NO_3 rate coefficient in these

498 air masses is thus estimated to be 50%. The uncertainty of calculated NO_3 is 67%. The uncertainty of
499 the reaction rate efficiency of NO_3 +monoterpene (50%) was calculated by the Gaussian propagation
500 method and the overall uncertainty of monoterpene reactivity was calculated to be 85%, the
501 uncertainties of other VOCs was calculated to be 75% by assuming the uncertainties of rate efficiencies
502 were 30%. The VOCs reactivity were dominated by NO_3 oxidation and contributed up to 90% in total;
503 less than 10% VOCs were oxidized by O_3 during the nighttime. The Even the NO_3 concentration in the
504 lower range, NO_3 still responsible for more than 70% nocturnal BVOCs oxidation, the results further
505 confirmed that the oxidation of BVOCs is controlled by NO_3 rather than O_3 — in summer Beijing.

带格式的: 字体: 倾斜, 字体颜色: 文字 1

506 For calculating nocturnal ONs production from NO_3 oxidation of isoprene and monoterpene, as well
507 as the same period inorganic nitrate production via N_2O_5 heterogeneous uptake over the same period,
508 the ClNO_2 yield was set to the determined average value of 0.55. The organic nitrate yield of the
509 reaction of NO_3 with isoprene was set to 0.7, from Rollins et al. (2009). The yield from the reaction of
510 NO_3 with monoterpene was represented by $\text{NO}_3 + \alpha\text{-pinene}$ and was set to 0.15, following Spittler et
511 al. (2006). Although the yield from the NO_3 oxidation of isoprene is much higher than that of
512 monoterpene, the total ONs production was dominated by the oxidation of NO_3 with monoterpene
513 because the reaction of NO_3 with monoterpene is much faster than that with isoprene. Because of the
514 lack of measurement of alkenes and other VOCs that can react with NO_3 and form ONs, the calculated
515 nighttime ONs production rate analyzed here served as lower limit estimations. Figure 409 depicts the
516 mean diurnal profiles of the nocturnal formation rates of inorganic nitrates and ONs. The average
517 production rate of ONs was up to 0.4410 ± 0.0907 ppbv h^{-1} , which was much higher than that predicted
518 in a suburban site in Beijing in 2006, with an average value of 0.06 ppbv h^{-1} (H.C. Wang et al., 2017b).
519 In the high NO_x/NO_y /BVOCs air masses, the inorganic nitrate formation was proposed to increase with
520 the increase of sunset NO_x/NO_y /BVOCs (Edwards et al., 2017). The formation rate of inorganic nitrate
521 via N_2O_5 uptake was significant, with an average of 0.43 ± 0.12 ppbv h^{-1} , and was much larger than
522 the organic nitrate formation. The NO_x was mainly removed as the inorganic nitrate format by
523 nocturnal $\text{NO}_3\text{-N}_2\text{O}_5$ chemistry in Beijing. Overall, the $\text{NO}_3\text{-N}_2\text{O}_5$ chemistry led to significant
524 NO_x/NO_y removal, with 0.54 ppbv h^{-1} accounted for by the organic and inorganic nitrates, and the
525 integral NO_x/NO_y removal was approximately 5 ppbv per night. Since ONs are important precursors
526 of the secondary organic aerosols (SOA), the NO_3 oxidation was very important from the perspective
527 of organic aerosol formation and regional particulate matter (e.g., Ng et al., 2008).

带格式的: 默认段落字体, 字体颜色: 文字 1

带格式的: 默认段落字体, 字体: 倾斜, 字体颜色: 文字 1, 下标

528 5. Conclusion

529 We reported an intensive field study of $\text{NO}_3\text{-N}_2\text{O}_5$ chemistry at a downwind suburban site in Beijing
530 during the summer of 2016. High levels of ClNO_2 and N_2O_5 were observed, with maxima of 2.9 ppbv
531 and 937 pptv (1-min), respectively. The N_2O_5 uptake coefficient was estimated to be in the range of
532 0.010-0.055, with an average value of 0.034 ± 0.018 , and the corresponding ClNO_2 yield was derived
533 to be in the range of 0.5-1.0, with an average value of 0.73 ± 0.25 . The elevated ClNO_2 levels and
534 $\text{ClNO}_2/\text{N}_2\text{O}_5$ ratios are comparable with those in chloride-rich regions in the NCP. The results highlight
535 fast N_2O_5 heterogeneous hydrolysis and efficient ClNO_2 formation in the outflow of urban Beijing.
536 Thus, its role in O_3 pollution in summer could be more important than in other regions.

537 Since the NO_3 - N_2O_5 chemical equilibrium favors NO_3 in summer with high temperature and high
538 NO_x , the elevated NO_3 dominated the nocturnal degradation of BVOCs and could lead to efficient ONs
539 formation. Because the air masses in Beijing featured high NO_x / NO_3 /BVOCs ratios (>10), our results
540 suggest that the nocturnal NO_3 oxidation of BVOCs was NO_3 -dominated. Because of the extremely
541 high NO_x emissions, the formation of ONs may not be sensitive to the reduction of NO_x but rather to
542 the change of unsaturated VOCs (e.g., BVOCs), which is similar to the daytime photochemical O_3
543 pollution (e.g., Lu et al., 2010) diagnosed for this area; this suggests that the control of the unsaturated
544 VOCs would moderate the O_3 pollution and ONs particulate matter in parallel. Moreover, the reduction
545 of NO_x would also be helpful to reduce the pNO_3^- formation via N_2O_5 heterogeneous hydrolysis under
546 such high NO_x /BVOCs ratios (Edwards et al., 2017).

547

548 **Acknowledgements.** This work was supported by the National Natural Science Foundation of China
549 (Grants No. 91544225, 41375124, 21522701, 41421064, 91744204), the National Science and
550 Technology Support Program of China (No. 2014BAC21B01), the Strategic Priority Research
551 Program of the Chinese Academy of Sciences (Grants No. XDB05010500), and the program on
552 “Photochemical smog in China” financed by the Swedish Research Council (639-2013-6917). The
553 authors gratefully acknowledge the Peking University and Gethenburg University science team for
554 their technical support and discussions during the Changping campaign.

555

556

557 **Reference**

558

559 Allan, B. J., Carslaw, N., Coe, H., Burgess, R. A., and Plane, J. M. C.: Observations of the nitrate radical in the marine
560 boundary layer, *J Atmos Chem*, 33, 129-154, Doi10.1023/A:1005917203307, 1999.

561 Bannan, T. J., Booth, A. M., Bacak, A., Muller, J. B. A., Leather, K. E., Le Breton, M., Jones, B., Young, D., Coe, H.,
562 Allan, J., Visser, S., Slowik, J. G., Furger, M., Prevot, A. S. H., Lee, J., Dunmore, R. E., Hopkins, J. R., Hamilton,
563 J. F., Lewis, A. C., Whalley, L. K., Sharp, T., Stone, D., Heard, D. E., Fleming, Z. L., Leigh, R., Shallcross, D.
564 E., and Percival, C. J.: The first UK measurements of nitryl chloride using a chemical ionization mass
565 spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation, *J*
566 *Geophys Res-Atmos*, 120, 5638-5657, 10.1002/2014jd022629, 2015.

567 Benton, A. K., Langridge, J. M., Ball, S. M., Bloss, W. J., Dall'osto, M., Nemitz, E., Harrison, R. M., and Jones, R.
568 L.: Night-time chemistry above London: measurements of NO_3 and N_2O_5 from the BT Tower, *Atmos Chem*
569 *Phys*, 10, 9781-9795, 10.5194/acp-10-9781-2010, 2010.

570 Bertram, T. H., and Thornton, J. A.: Toward a general parameterization of N_2O_5 reactivity on aqueous particles: the
571 competing effects of particle liquid water, nitrate and chloride, *Atmos Chem Phys*, 9, 8351-8363, 2009.

572 Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and
573 Coffman, D. J.: Direct observations of N_2O_5 reactivity on ambient aerosol particles, *Geophys Res Lett*, 36, Artn
574 L19803.10.1029/2009gl040248, 2009.

575 Bohn, B., Corlett, G. K., Gillmann, M., Sanghavi, S., Stange, G., Tensing, E., Vrekoussis, M., Bloss, W. J., Clapp, L.
576 J., Kortner, M., Dorn, H.-P., Monks, P. S., Platt, U., Plass-Dülmmer, C., Mihalopoulos, N., Heard, D. E.,
577 Clemithshaw, K. C., Meixner, F. X., Prevot, A. S. H., and Schmitt, R.: Photolysis frequency measurement
578 techniques: results of a comparison within the ACCENT project, *Atmos. Chem. Phys.*, 8, 5373–5391,
579 doi:10.5194/acp-8-5373-2008, 2008.

580 Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂, from the reaction of gaseous
581 N₂O₅ with NaCl solution: Bulk and aerosol experiments, J Geophys Res-Atmos, 102, 3795-3804, Doi
582 10.1029/96jd03057, 1997.

583 Boyd, C. M., Nah, T., Xu, L., Berkemeier, T., and Ng, N. L.: Secondary Organic Aerosol (SOA) from Nitrate Radical
584 Oxidation of Monoterpenes: Effects of Temperature, Dilution, and Humidity on Aerosol Formation, Mixing,
585 and Evaporation, *Environ Sci Technol*, 51, 7831-7841, 2017.

586 Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state approximation to the interpretation
587 of atmospheric observations of NO₃ and N₂O₅, *J Geophys Res-Atmos*, 108, Artn 4539. Doi
588 10.1029/2003jd003407, 2003.

589 Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P.,
590 Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal nitrogen oxide
591 processing and its role in regional air quality, *Science*, 311, 67-70, DOI 10.1126/science.1120120, 2006.

592 Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M.,
593 Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.:
594 Reactive uptake coefficients for N₂O₅ determined from aircraft measurements during the Second Texas Air
595 Quality Study: Comparison to current model parameterizations, *J Geophys Res-Atmos*, 114, Artn D00f10. Doi
596 10.1029/2008jd011679, 2009.

597 Brown, S. S., and Stutz, J.: Nighttime radical observations and chemistry, *Chem Soc Rev*, 41, 6405-6447, Doi
598 10.1039/C2cs35181a, 2012.

599 Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S., Wang, Z., Blake, D. R., Tsui, W., Parrish, D.
600 D., and Wang, T.: Nighttime chemistry at a high altitude site above Hong Kong, *J Geophys Res-Atmos*, 121,
601 2457-2475, 10.1002/2015jd024566, 2016.

602 Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous Atmospheric
603 Chemistry, Ambient Measurements, and Model Calculations of N₂O₅: A Review, *Aerosol Sci Tech*, 45, 665-695,
604 2011.

605 DeCarlo, P. F., Kimmel, J., Trimborn, A., Northway, M., Jayne, J. T., Aiken, A., Gonin, M., Fuhrer, K., Horvath, T.,
606 Docherty, K., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight Aerosol Mass
607 Spectrometer, *Anal. Chem.*, 78, 8281-8289, 2006.

608 de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earth's atmosphere using proton-
609 transferreaction mass spectrometry, *Mass Spectrom. Rev.*, 26, 223-257, 2007.

610 Dong, H. B., Zeng, L. M., Hu, M., Wu, Y. S., Zhang, Y. H., Slatina, J., Zheng, M., Wang, Z. F., and Jansen, R.:
611 **Technical Note: The application of an improved gas and aerosol collector for ambient air pollutants in China,**
612 *Atmos Chem Phys*, 12, 10519-10533, 2012.

613 Draxler, R. R., and G. D. Rolph: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Tracker) Model access
614 via NOAA ARL Ready Website [Available at <http://www.arl.noaa.gov/ready/hysplit4.html>, NOAA Air
615 Resources Laboratory, Silver Spring, MD]. 2003.

616 Edwards, P. M., Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., Graus, M. G., Hanisco, T. F.,
617 Holloway, J., Huber, G., Kaiser, J., Keutsch, F. N., Lerner, B. M., Neuman, J. A., Parrish, D. D., Peischl, J.,
618 Pollack, I. B., Ravishankara, A. R., Roberts, J. M., Ryerson, T. B., Trainer, M., Veres, P. R., Wolfe, G. M.,
619 Warneke, C., and Brown, S. S.: Transition from high- to low-NO_x control of night-time oxidation in the
620 southeastern US, *Nat Geosci*, 10, 490-+, 10.1038/Ngeo2976, 2017.

621 Faxon, C. B., Bean, J. K., and Ruiz, L. H.: Inland Concentrations of Cl₂ and ClNO₂ in Southeast Texas suggest
622 chlorine chemistry significantly contributes to atmospheric reactivity, *Atmosphere*, 6, 1487-1506, 2015.

623 **FinlaysonpittsFinlayson-Pitts**, B. J., Ezell, M. J., and Pitts, J. N.: Formation of Chemically Active Chlorine
624 Compounds by Reactions of Atmospheric NaCl Particles with Gaseous N₂O₅ and ClONO₂, *Nature*, 337, 241-
625 244, DOI 10.1038/337241a0, 1989.

626 Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Wooldridge, P. J., Brown, S. S., Fuchs, H., Dube, W., Mensah, A., dal
627 Maso, M., Tillmann, R., Dorn, H. P., Brauers, T., and Cohen, R. C.: Organic nitrate and secondary organic
628 aerosol yield from NO₃ oxidation of beta-pinene evaluated using a gas-phase kinetics/aerosol partitioning model,
629 *Atmos Chem Phys*, 9, 1431-1449, 2009.

630 Gaston, C. J., Thornton, J. A., and Ng, N. L.: Reactive uptake of N₂O₅ to internally mixed inorganic and organic
631 particles: the role of organic carbon oxidation state and inferred organic phase separations, *Atmos Chem Phys*,
632 14, 5693-5707, 10.5194/acp-14-5693-2014, 2014.

633 Geyer, A., Aliche, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.: Chemistry and oxidation capacity of the nitrate
634 radical in the continental boundary layer near Berlin, *J Geophys Res-Atmos*, 106, 8013-8025, Doi
635 10.1029/2000jd900681, 2001.

636 Goliff, W. S., Stockwell, W. R., and Lawson, C. V.: The regional atmospheric chemistry mechanism, version 2, *Atmos*
637 *Environ*, 68, 174-185, 2013.

638 Grzinic, G., Bartels-Rausch, T., Berkemeier, T., Turler, A., and Ammann, M.: Viscosity controls humidity dependence
639 of N₂O₅ uptake to citric acid aerosol, *Atmos Chem Phys*, 15, 13615-13625, 2015.

640 Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N₂O₅ on sub-micron sulfate aerosols,
641 *Phys Chem Chem Phys*, 5, 3453-3463, Doi 10.1039/B301827j, 2003.

642 Hallquist, M., Munthe, J., Hu, M., Wang, T., Chan, C. K., Gao, J., Boman, J., Guo, S., Hallquist, A. M., Mellqvist, J.,
643 Moldanova, J., Pathak, R. K., Pettersson, J. B. C., Pleijel, H., Simpson, D., and Thynell, M.: Photochemical
644 smog in China: scientific challenges and implications for air-quality policies, *Natl Sci Rev*, 3, 401-403,
645 10.1093/nsr/nww080, 2016.

646 Kiendler-Scharr, A., Mensah, A. A., Fries, E., Topping, D., Nemitz, E., Prevot, A. S. H., Aijala, M., Allan, J.,
647 Canonaco, F., Canagaratna, M., Carbone, S., Crippa, M., Dall Osto, M., Day, D. A., De Carlo, P., Di Marco, C.
648 F., Elbern, H., Eriksson, A., Freney, E., Hao, L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L.,
649 Laaksonen, A., McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S. N., Poulain, L.,
650 Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P., Vermeulen, A., Wahner, A., Worsnop, D., and Wu, H. C.:
651 Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol, *Geophys Res Lett*,
652 43, 7735-7744, 2016.

653 Le Breton, M., Bacak, A., Muller, J. B. A., Bannan, T. J., Kennedy, O., Ouyang, B., Xiao, P., Bauguitte, S. J. B.,
654 Shallcross, D. E., Jones, R. L., Daniels, M. J. S., Ball, S. M., and Percival, C. J.: The first airborne comparison
655 of N_2O_5 measurements over the UK using a CIMS and BBCEAS during the RONOCO campaign, *Anal Methods-Uk*, 6, 9731-9743, 10.1039/c4ay02273d, 2014.

656 Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D.,
657 Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K.,
658 Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: Significant
659 chlorine liberation from ClNO_2 and subsequent gas and particle phase Cl-VOC production, *Atmos. Chem. Phys. Discuss.*, 2018, 1-25, 2018.

660 Li, S. W., Liu, W. Q., Xie, P. H., Qin, M., and Yang, Y. J.: Observation of Nitrate Radical in the Nocturnal Boundary
661 Layer During a Summer Field Campaign in Pearl River Delta, China, *Terr Atmos Ocean Sci*, 23, 39-48, Doi
662 10.3319/Tao.2011.07.26.01(a), 2012.

663 Li, Q. Y., Zhang, L., Wang, T., Tham, Y. J., Ahmadov, R., Xue, L. K., Zhang, Q., and Zheng, J. Y.: Impacts of
664 heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen
665 partitioning: improvement and application of the WRF-Chem model in southern China, *Atmos Chem Phys*, 16,
666 14875-14890, 10.5194/acp-16-14875-2016, 2016.

667 Liu, X. G., Gu, J. W., Li, Y. P., Cheng, Y. F., Qu, Y., Han, T. T., Wang, J. L., Tian, H. Z., Chen, J., and Zhang, Y. H.:
668 Increase of aerosol scattering by hygroscopic growth: Observation, modeling, and implications on visibility,
669 *Atmos Res*, 132, 91-101, 10.1016/j.atmosres.2013.04.007, 2013.

670 Liu, M. X., Song, Y., Zhou, T., Xu, Z. Y., Yan, C. Q., Zheng, M., Wu, Z. J., Hu, M., Wu, Y. S., and Zhu, T.: Fine
671 particle pH during severe haze episodes in northern China, *Geophys Res Lett*, 44, 5213-5221,
672 10.1002/2017gl073210, 2017.

673 Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz, A., Hallquist, M.,
674 Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition:
675 description and evaluation of a Filter Inlet for Gases and AEROSols (FIGAERO), *Atmos Meas Tech*, 7, 983-
676 1001, 10.5194/amt-7-983-2014, 2014.

677 Lu, K. D., Zhang, Y. H., Su, H., Brauers, T., Chou, C. C., Hofzumahaus, A., Liu, S. C., Kita, K., Kondo, Y., Shao,
678 M., Wahner, A., Wang, J. L., Wang, X. S., and Zhu, T.: Oxidant ($\text{O}_3 + \text{NO}_2$) production processes and formation
679 regimes in Beijing, *J Geophys Res-Atmos*, 115, 2010.

680

681

682 McLaren, R., Wojtal, P., Majonis, D., McCourt, J., Halla, J. D., and Brook, J.: NO₃ radical measurements in a polluted
683 marine environment: links to ozone formation, *Atmos Chem Phys*, 10, 4187-4206, 10.5194/acp-10-4187-2010,
684 2010.

685 [McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A.: The effect of varying levels of surfactant on the reactive uptake of N₂O₅ to aqueous aerosol, Atmos Chem Phys, 6, 1635-1644, 2006.](#)

687 Mentel, T. F., Sohn, M., and Wahner, A.: Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on
688 aqueous aerosols, *Phys Chem Chem Phys*, 1, 5451-5457, Doi 10.1039/A905338g, 1999.

689 [Mielke, L. H., Furgeson, A., and Osthoff, H. D.: Observation of CINO₂ in a Mid-Continental Urban Environment, Environ Sci Technol, 45, 8889-8896, 10.1021/es201955u, 2011.](#)

690 Mielke, L. H., Stutz, J., Tsai, C., Hurlock, S. C., Roberts, J. M., Veres, P. R., Froyd, K. D., Hayes, P. L., Cubison, M.
691 J., Jimenez, J. L., Washenfelder, R. A., Young, C. J., Gilman, J. B., de Gouw, J. A., Flynn, J. H., Grossberg, N.,
692 Lefer, B. L., Liu, J., Weber, R. J., and Osthoff, H. D.: Heterogeneous formation of nitryl chloride and its role as
693 a nocturnal NO_x reservoir species during CalNex-LA 2010, *J Geophys Res-Atmos*, 118, 10638-10652, Doi
694 10.1002/Jgrd.50783, 2013.

695 Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J., Rosenberg,
696 P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol chemical composition on
697 N₂O₅ uptake: airborne regional measurements in northwestern Europe, *Atmos Chem Phys*, 15, 973-990, DOI
698 10.5194/acp-15-973-2015, 2015.

699 Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D.,
700 Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) formation from reaction
701 of isoprene with nitrate radicals (NO₃), *Atmos Chem Phys*, 8, 4117-4140, 2008.

702 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry,
703 J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-
704 Scharr, A., Lee, B. H., Luecken, D. J., Mao, J. Q., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-
705 Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A.,
706 Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds:
707 oxidation, mechanisms, and organic aerosol, *Atmos Chem Phys*, 17, 2103-2162, 10.5194/acp-17-2103-2017,
708 2017.

709 Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S.,
710 Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F.
711 C., and Brown, S. S.: High levels of nitryl chloride in the polluted subtropical marine boundary layer, *Nat Geosci*,
712 1, 324-328, Doi 10.1038/Ngeo177, 2008.

713 Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F., Borrmann, S.,
714 Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake coefficients using ambient
715 measurements of NO₃, N₂O₅, CINO₂ and particle-phase nitrate, *Atmos Chem Phys*, 16, 13231-13249,
716 10.5194/acp-16-13231-2016, 2016.

717

718 Platt, U., Perner, D., Winer, A. M., Harris, G. W., and Pitts, J. N.: Detection of NO_3 in the Polluted Troposphere by
719 Differential Optical-Absorption, *Geophys Res Lett*, 7, 89-92, Doi 10.1029/GI007i001p00089, 1980.

720 Pye, H. O. T., Chan, A. W. H., Barkley, M. P., and Seinfeld, J. H.: Global modeling of organic aerosol: the importance
721 of reactive nitrogen (NO_x and NO₃), *Atmos Chem Phys*, 10, 11261-11276, 2010.

722 Riedel, T. P., Bertram, T. H., Ryder, O. S., Liu, S., Day, D. A., Russell, L. M., Gaston, C. J., Prather, K. A., and
723 Thornton, J. A.: Direct N₂O₅ reactivity measurements at a polluted coastal site, *Atmos Chem Phys*, 12, 2959-
724 2968, DOI 10.5194/acp-12-2959-2012, 2012.

725 Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., Vlasenko, A., Li, S. M., Williams,
726 E. J., Lerner, B. M., Veres, P. R., Roberts, J. M., Holloway, J. S., Lefer, B., Brown, S. S., and Thornton, J. A.:
727 An MCM modeling study of nitril chloride (ClNO₂) impacts on oxidation, ozone production and nitrogen oxide
728 partitioning in polluted continental outflow, *Atmos Chem Phys*, 14, 3789-3800, 10.5194/acp-14-3789-2014,
729 2014.

730 Riemer, N., Vogel, H., Vogel, B., Anttila, T., Kiendler-Scharr, A., and Mentel, T. F.: Relative importance of organic
731 coatings for the heterogeneous hydrolysis of N₂O₅ during summer in Europe, *J Geophys Res-Atmos*, 114, 2009.

732 Roberts, J. M., Osthoff, H. D., Brown, S. S., Ravishankara, A. R., Coffman, D., Quinn, P., and Bates, T.: Laboratory
733 studies of products of N₂O₅ uptake on Cl⁻ containing substrates, *Geophys Res Lett*, 36, Artn L20808,
734 10.1029/2009gl040448, 2009.

735 Rollins, A. W., Kiendler-Scharr, A., Fry, J. L., Brauers, T., Brown, S. S., Dorn, H. P., Dube, W. P., Fuchs, H., Mensah,
736 A., Mentel, T. F., Rohrer, F., Tillmann, R., Wegener, R., Wooldridge, P. J., and Cohen, R. C.: Isoprene oxidation
737 by nitrate radical: alkyl nitrate and secondary organic aerosol yields, *Atmos Chem Phys*, 9, 6685-6703, 2009.

738 Sarwar, G., Simon, H., Xing, J., and Mathur, R.: Importance of tropospheric ClNO₂ chemistry across the Northern
739 Hemisphere, *Geophys Res Lett*, 41, 4050-4058, 10.1002/2014gl059962, 2014.

740 Spittler, M., Barnes, I., Bejan, I., Brockmann, K. J., Benter, T., and Wirtz, K.: Reactions of NO₃ radicals with
741 limonene and alpha-pinene: Product and SOA formation, *Atmos Environ*, 40, S116-S127,
742 10.1016/j.atmosenv.2005.09.093, 2006.

743 Stutz, J., Wong, K. W., Lawrence, L., Ziembka, L., Flynn, J. H., Rappengluck, B., and Lefer, B.: Nocturnal NO₃ radical
744 chemistry in Houston, TX, *Atmos Environ*, 44, 4099-4106, 10.1016/j.atmosenv.2009.03.004, 2010.

745 Su, X., Tie, X. X., Li, G. H., Cao, J. J., Huang, R. J., Feng, T., Long, X., and Xu, R. G.: Effect of hydrolysis of N₂O₅
746 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation, *Sci Total Environ*, 579,
747 221-229, 10.1016/j.scitotenv.2016.11.125, 2017.

748 Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., Holland,
749 F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A.,
750 and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model
751 calculations of OH, HO₂ and RO₂ radicals, *Atmos. Chem. Phys.*, 17, 663-690, 10.5194/acp-17-663-2017, 2017.

752 Tang, M. J., Schuster, G., and Crowley, J. N.: Heterogeneous reaction of N₂O₅ with illite and Arizona test dust
753 particles, *Atmos Chem Phys*, 14, 245-254, 2014.

754 Tang, M. J., Thieser, J., Schuster, G., and Crowley, J. N.: Kinetics and mechanism of the heterogeneous reaction of
755 N_2O_5 with mineral dust particles, *Phys Chem Chem Phys*, 14, 8551-8561, 2012.

756 Tang, M., Huang, X., Lu, K., Ge, M., Li, Y., Cheng, P., Zhu, T., Ding, A., Zhang, Y., Gligorovski, S., Song, W., Ding,
757 X., Bi, X., and Wang, X.: Heterogeneous reactions of mineral dust aerosol: implications for tropospheric
758 oxidation capacity, *Atmos. Chem. Phys.*, 17, 11727-11777, <https://doi.org/10.5194/acp-17-11727-2017>, 2017.

759 Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N., Bohn, B., Li, X.,
760 Kecorius, S., Gross, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Significant concentrations of
761 nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a
762 polluted region of northern China, *Atmos Chem Phys*, 16, 14959-14977, 10.5194/acp-16-14959-2016, 2016.

763 Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N_2O_5 hydrolysis on sub-micron organic aerosols: the effect of
764 relative humidity, particle phase, and particle size, *Phys Chem Chem Phys*, 5, 4593-4603, Doi
765 10.1039/B307498f, 2003.

766 Thornton, J. A., and Abbatt, J. P. D.: N_2O_5 reaction on submicron sea salt aerosol: Kinetics, products, and the effect
767 of surface active organics, *J Phys Chem A*, 109, 10004-10012, Doi 10.1021/Jp054183t, 2005.

768 Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W. P., Wolfe, G. M.,
769 Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred from
770 mid-continental reactive nitrogen chemistry, *Nature*, 464, 271-274, Doi 10.1038/Nature08905, 2010.

771 Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S., Middlebrook, A. M.,
772 Ozturk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and
773 Brown, S. S.: N_2O_5 uptake coefficients and nocturnal NO_2 removal rates determined from ambient wintertime
774 measurements, *J Geophys Res-Atmos*, 118, 9331-9350, Doi 10.1002/Jgrd.50653, 2013.

775 Wahner, A., Mentel, T. F., and Sohn, M.: Gas-phase reaction of N_2O_5 with water vapor: Importance of heterogeneous
776 hydrolysis of N_2O_5 and surface desorption of HNO_3 in a large teflon chamber, *Geophys Res Lett*, 25, 2169-
777 2172, Doi 10.1029/98gl51596, 1998.

778 Wang, S. S., Shi, C. Z., Zhou, B., Zhao, H., Wang, Z. R., Yang, S. N., and Chen, L. M.: Observation of NO_3 radicals
779 over Shanghai, China, *Atmos Environ*, 70, 401-409, DOI 10.1016/j.atmosenv.2013.01.022, 2013.

780 Wang, M., Shao, M., Chen, W., Yuan, B., Lu, S., Zhang, Q., Zeng, L., and Wang, Q.: A temporally and spatially
781 resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing,
782 China, *Atmos Chem Phys*, 14, 5871-5891, 10.5194/acp-14-5871-2014, 2014.

783 Wang, D., Hu, R. Z., Xie, P. H., Liu, J. G., Liu, W. Q., Qin, M., Ling, L. Y., Zeng, Y., Chen, H., Xing, X. B., Zhu, G.
784 L., Wu, J., Duan, J., Lu, X., and Shen, L. L.: Diode laser cavity ring-down spectroscopy for in situ measurement
785 of NO_3 radical in ambient air, *J Quant Spectrosc Ra*, 166, 23-29, 10.1016/j.jqsrt.2015.07.005, 2015.

786 Wang, H. C., and Lu, K. D.: Determination and Parameterization of the Heterogeneous Uptake Coefficient of
787 Dinitrogen Pentoxide (N_2O_5), *Prog Chem*, 28, 917-933, 10.7536/Pc151225, 2016.

788 Wang, T., Tham, Y. J., Xue, L. K., Li, Q. Y., Zha, Q. Z., Wang, Z., Poon, S. C. N., Dube, W. P., Blake, D. R., Louie,
789 P. K. K., Luk, C. W. Y., Tsui, W., and Brown, S. S.: Observations of nitryl chloride and modeling its source and

790 effect on ozone in the planetary boundary layer of southern China, *J Geophys Res-Atmos*, 121, 2476-2489,
791 10.1002/2015jd024556, 2016.

792 Wang, H. C., Chen, J., and Lu, K. D.: Development of a portable cavity-enhanced absorption spectrometer for the
793 measurement of ambient NO_3 and N_2O_5 : experimental setup, lab characterizations, and field applications in a
794 polluted urban environment, *Atmos Meas Tech*, 10, 1465-1479, 10.5194/amt-10-1465-2017, 2017a.

795 Wang, H. C., Lu, K. D., Tan, Z. F., Sun, K., Li, X., Hu, M., Shao, M., Zeng, L. M., Zhu, T., and Zhang, Y. H.:
796 Model simulation of NO_3 , N_2O_5 and ClNO_2 at a rural site in Beijing during CAREBeijing-2006, *Atmos Res*,
797 196, 97-107, 10.1016/j.atmosres.2017.06.013, 2017b.

798 Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D. J., Tan, Z. F:
799 High N_2O_5 concentrations observed in urban Beijing: Implications of a large nitrate formation pathway.,
800 *Environ. Sci. Technol. Lett.*, 10, doi: 10.1021/acs.estlett.7b00341, 2017c.

801 Wang, X. F., Wang, H., Xue, L. K., Wang, T., Wang, L. W., Gu, R. R., Wang, W. H., Tham, Y. J., Wang, Z., Yang, L.
802 X., Chen, J. M., and Wang, W. X.: Observations of N_2O_5 and ClNO_2 at a polluted urban surface site in North
803 China: High N_2O_5 uptake coefficients and low ClNO_2 product yields, *Atmos Environ*, 156, 125-134,
804 10.1016/j.atmosenv.2017.02.035, 2017.

805 Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and Wang, T.: Fast heterogeneous
806 N_2O_5 uptake and ClNO_2 production in power plant and industrial plumes observed in the nocturnal residual
807 layer over the North China Plain, *Atmos Chem Phys*, 17, 12361-12378, 2017. 10.5194/acp-17-12361-2017

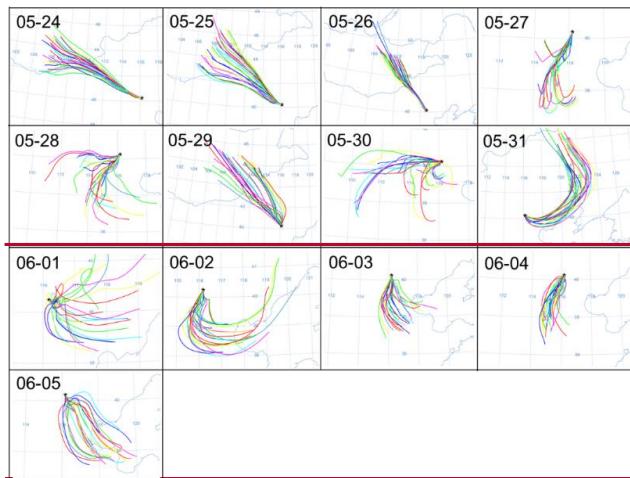
808 Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosamas, C. E., Hjorth, J., Lebras, G., Moortgat, G. K., Perner,
809 D., Poulet, G., Restelli, G., and Sidebottom, H.: The Nitrate Radical - Physics, Chemistry, and the Atmosphere,
810 *Atmos Environ a-Gen*, 25, 1-203, Doi 10.1016/0960-1686(91)90192-A, 1991.

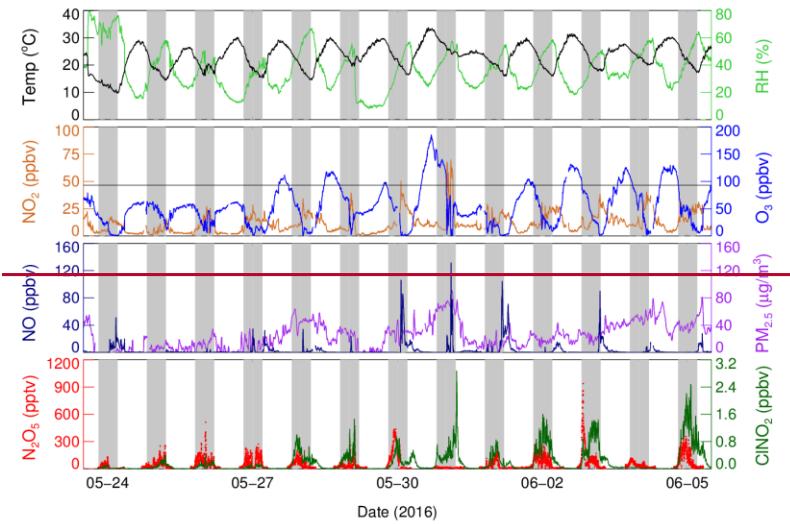
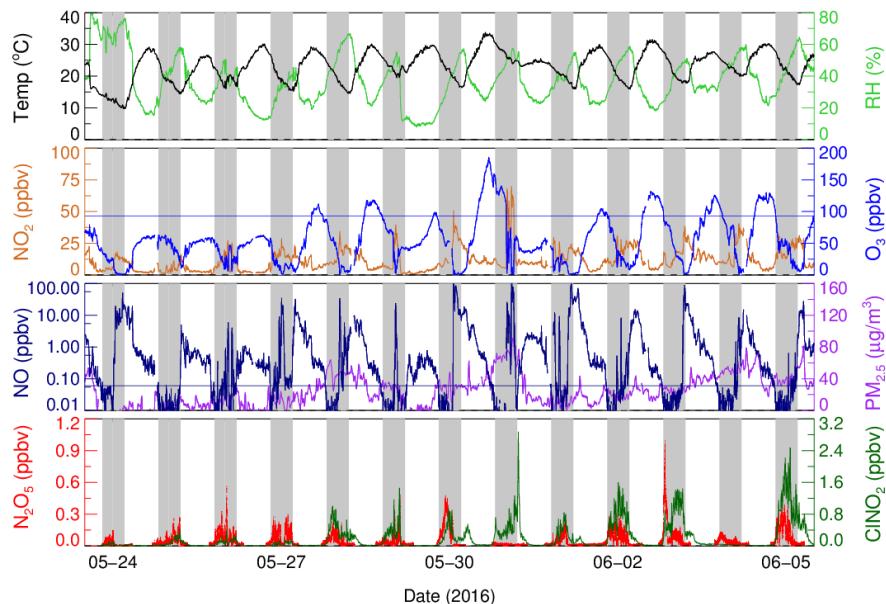

811 Xue, L. K., Saunders, S. M., Wang, T., Gao, R., Wang, X. F., Zhang, Q. Z., and Wang, W. X.: Development of a
812 chlorine chemistry module for the Master Chemical Mechanism, *Geosci Model Dev*, 8, 3151-3162,
813 10.5194/gmd-8-3151-2015, 2015.

814 Ye, N. N. L., K. D. Dong, H. B. Wu, Y. S. Zeng, L. M and Zhang, Y. H.: A study of the Water-Soluble Inorganic Salts
815 and Their Gases Precursors at Wangdu Site in the Summer Time, *Acta Scientiarum Naturalium Universitatis*,
816 52, p1109-1117, doi.org/10.13209/j.0479-8023.2016.116, 2016.

817 Yue, D. L., Hu, M., Wu, Z. J., Wang, Z. B., Guo, S., Wehner, B., Nowak, A., Achtert, P., Wiedensohler, A., Jung, J.,
818 Kim, Y. J., and Liu, S.: Characteristics of aerosol size distributions and new particle formation in the summer in
819 Beijing, *J Geophys Res-Atmos*, 114, Artn D00g1210.1029/2008jd010894, 2009.

820 Zheng, J., Hu, M., Du, Z. F., Shang, D. J., Gong, Z. H., Qin, Y. H., Fang, J. Y., Gu, F. T., Li, M. R., Peng, J. F., Li, J.,
821 Zhang, Y. Q., Huang, X. F., He, L. Y., Wu, Y. S., and Guo, S.: Influence of biomass burning from South Asia at
822 a high-altitude mountain receptor site in China, *Atmos Chem Phys*, 17, 6853-6864, 10.5194/acp-17-6853-2017,
823 2017.


824



825

826 **Figure 1.** Map of Beijing and surrounding area. The red star shows the location of the Changping site,
 827 and red dots show other sites where previous N_2O_5 measurements were conducted in the North China
 828 Plain (NCP), including Wangdu, Jinan and Mt. Tai (Tai' an).

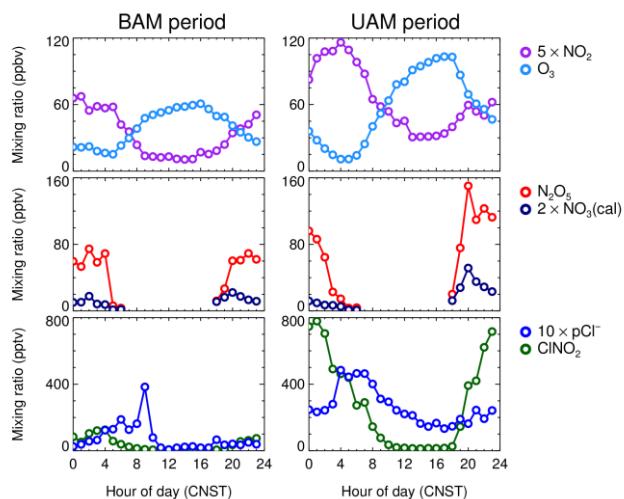
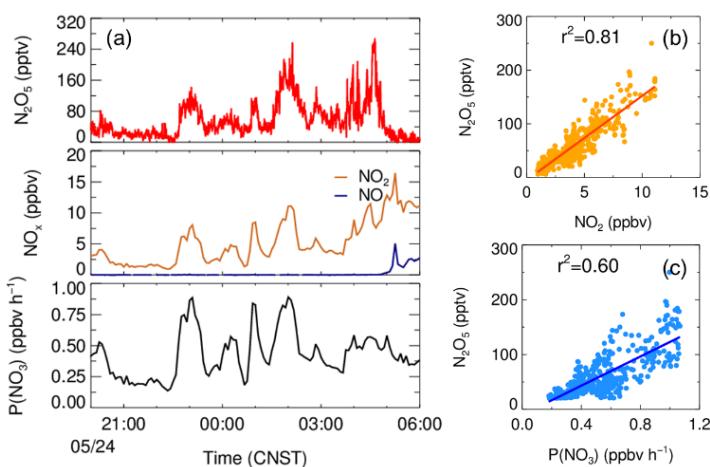
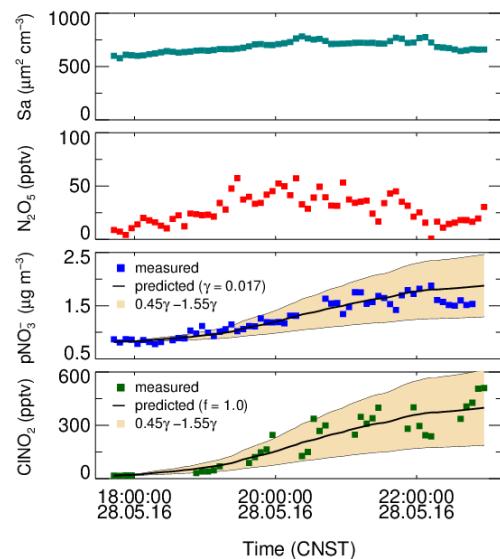
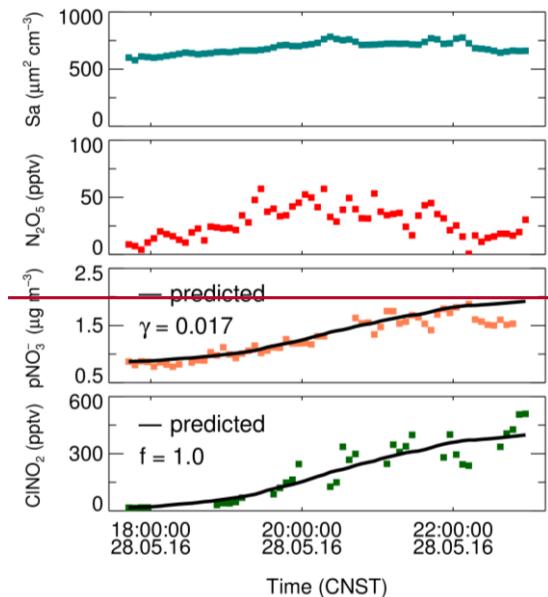
829

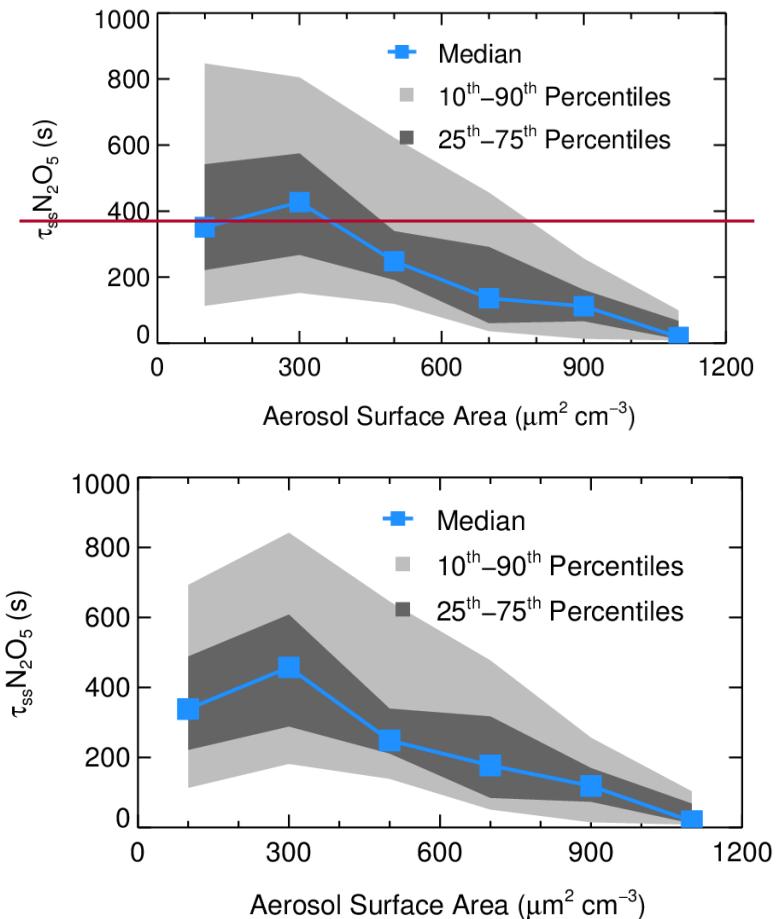
830

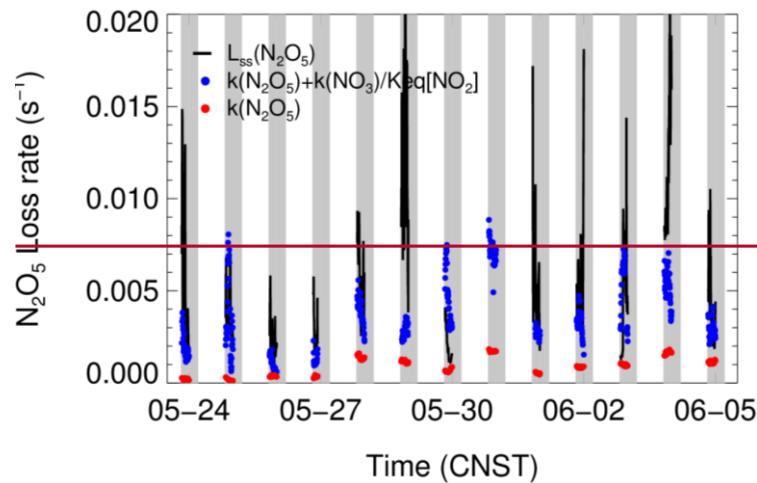
带格式的：居中，段落间距段后：0 磅

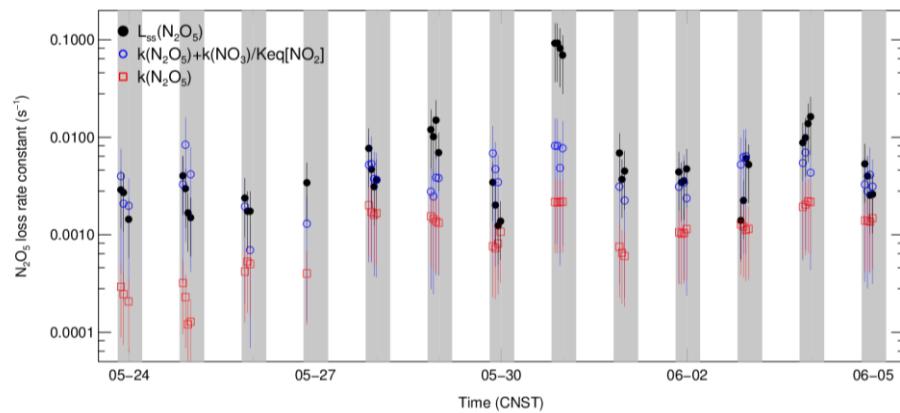
Figure 3. Time series of N_2O_5 , ClNO_2 and other relevant parameters. The black line in the O_3 panel denotes Chinese national air quality standard for O_3 (ca. 93 ppbv for the surface conditions).

The black line in the NO panel denotes 0.06 ppbv.


Figure 43. Mean diurnal profiles of $5 \times \text{NO}_2$, O_3 , N_2O_5 , $2 \times \text{NO}_3$ (calculated), ClNO_2 , and $10 \times \text{pCl}^-$. The left three panels depict the background air mass (BAM) period and the right three panels depict the urban air mass (UAM) period.


844 **Figure 54.** The correlation of the mixing ratio of N_2O_5 and NO_2 and the production rate of NO_3 on the
 845 night of May 24.


849 **Figure 65.** The best fit of γ and f to reproduce the observed ClNO_2 and pNO_3^- with an offset on May
850 28. The black lines are the predicted results of the integrated NO_3^- and ClNO_2 by using the observed
851 S_a and N_2O_5 .

852
853 **Figure 76.** The dependence of N_2O_5 lifetime on aerosol surface area. Data were selected from 20:00 to
854 04:00 and are shown as medians, 25 - 75th percentile ranges, and 10 - 90th percentile ranges, as shown
855 in the legend.
856

858

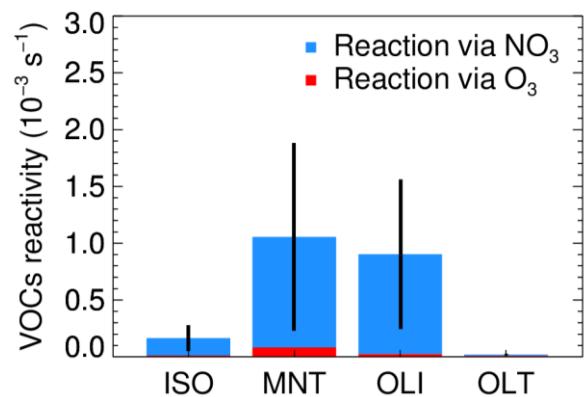
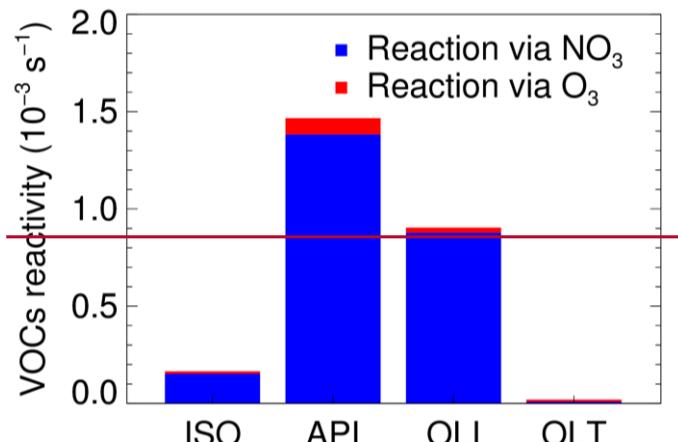
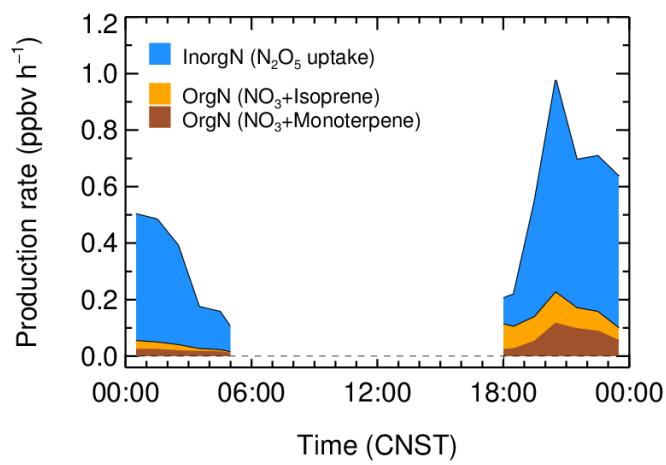
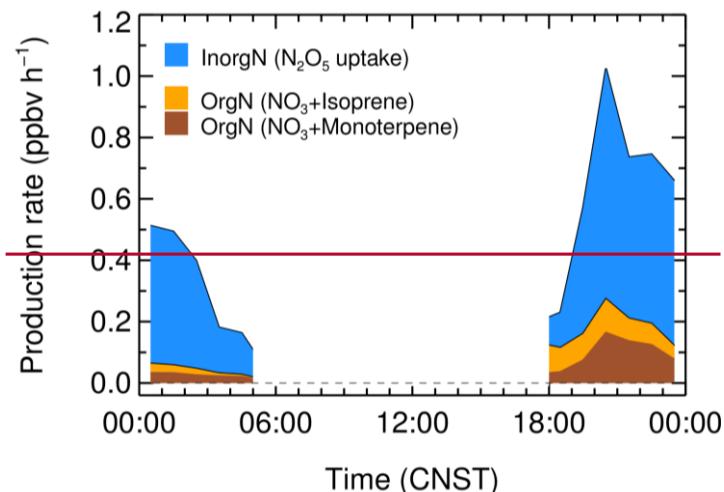


859

Figure 87. Time series of the individual N_2O_5 loss terms and the loss rate constant of N_2O_5 in steady state ($L_{ss}(\text{N}_2\text{O}_5)$).

带格式的: 字体: 三号

860



带格式的: fontstyle01

866 **Figure 98.** The nighttime VOCs reactivity of NO_3 and O_3 ; (defined as the classification was based on
 867 RACM2, pseudo first order loss rate of VOCs initiated by oxidants, include NO_3 and O_3); the VOCs
 868 are classified as isoprene (ISO), monoterpene (MNT), the terminal alkenes (OLT) and the internal
 869 alkenes (OLI). The data were selected from 20:00 to the next day 04:00. -

带格式的: 字体: 加粗

带格式的: fontstyle01

873 **Figure 109.** The nighttime production rate of organic and inorganic nitrates; the inorganic nitrates
 874 were calculated from the N_2O_5 heterogeneous hydrolysis, and the ONs were calculated by the NO_3
 875 reacted with isoprene and monoterpene.

876

877

878 **Table 1.** The observed gas and particle parameters used in this analysis during the campaign.

Species	Limit of detection	Methods	Accuracy
N_2O_5	2.7 pptv (1 σ , 1 min)	CEAS	$\pm 19\%$
ClNO_2	16 pptv (2 σ , 1 min)	FIGAERO-ToF-CIMS	$\pm 23\%$
NO	60 pptv (2 σ , 1 min)	Chemiluminescence	$\pm 20\%$
NO_2	0.3 ppbv (2 σ , 1 min)	Mo convert	$\pm 20\%$
O_3	0.5 ppbv (2 σ , 1 min)	UV photometry	$\pm 5\%$
Aerosol surface area	- (4 min)	SMPS, APS	$\pm 30\%$
VOCs	0.1 ppbv (5 min)	PTR-MS	$\pm 30\%$
$\text{PM}_{2.5}$	0.1 $\mu\text{g m}^{-3}$ (1 min)	TEOM	$\pm 5\%$
$\text{PM}_{1.0}$ components	0.15 $\mu\text{g m}^{-3}$ (4 min)	HR-ToF-AMS	$\pm 30\%$

879

880 **Table 2.** Summary of the field observed ambient $\text{ClNO}_2/\text{N}_2\text{O}_5$.

Location	Region	$\text{ClNO}_2/\text{N}_2\text{O}_5$ ^a	References
Beijing, China	Inland	0.7 – 42.0 (5.4)	This work
Wangdu, China	Inland	0.4 - 131.3 (29.5)	Tham et al., 2016
Jinan, China	Marine	25.0 - 118.0 ^b	ZX, F. Wang et al., 2017
Mt. Tai, China	Marine	~ 4.0	X, FZ. Wang et al., 2017
Hong Kong, China	Marine	0.1 - 2.0	T. Wang et al., 2016
London, UK	Inland	0.02 - 2.4 (0.51)	Bannan et al., 2015
Frankfurt, Germany	Inland	0.2 - 3.0	Phillips et al., 2012
Colorado, USA	Inland	0.2 - 3.0	Thornton et al., 2010
California, USA	Marine	$\sim 0.2 - 10.0$ ^c	Mielke et al., 2013

881 Note: ^a Daily average results; ^b Power plant plume cases at Mt. Tai in Shandong, China; ^c Estimated according to Mielke
882 et al., (2013).

883 **Table 3.** Summary of the average $\gamma \times f$ values derived in the field observations.

Location	Region	$\gamma \times f$	References
Beijing, China	suburban	0.019 <u>± 0.009</u>	This work
Frankfurt, Germany	suburban	0.014	Phillips et al., 2016
Mt. Tai, China	suburban	0.016	<u>X.F.Z.</u> Wang et al., 2017
Jinan, China	urban	<0.008	<u>Z.X. F.</u> Wang et al., 2017
California, USA	urban	0.008	Mielke et al., 2013

带格式表格

884 885 **Table 4.** List of the N_2O_5 uptake coefficients and the yield of ClNO_2 in this campaign.

Start time	End time	γ	f
05/25 00:00	05/25 05:00	0.047 <u>± 0.023</u>	0.60 <u>± 0.30</u>
05/25 18:30	05/25 23:00	0.012 <u>± 0.006</u>	1.0 <u>± 0.50</u>
05/27 19:00	05/27 20:40	0.040 <u>± 0.032</u>	0.50 <u>± 0.40</u>
05/28 19:00	05/28 23:00	0.017 <u>± 0.009</u>	1.0 <u>± 0.50</u>
05/30 21:00	05/31 00:00	0.055 <u>± 0.030</u>	0.55 <u>± 0.30</u>