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Abstract. We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) 

to estimate the return dates of the stratospheric ozone layer from depletion caused by 

anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 

models, including a range of sensitivity studies which examine the impact of climate change on 

ozone recovery. For the control simulations (unconstrained by nudging towards analysed 5 

meteorology) there is a large spread (±20 DU in the global average) in the predictions of the 

absolute ozone column. Therefore, the model results need to be adjusted for biases against 

historical data. Also, the interannual variability in the model results need to be smoothed in order 

to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with 

previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new 10 

CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with 

a 1-σ uncertainty of 2043-2055). At Southern Hemisphere mid-latitudes column ozone is projected 

to return to 1980 values in 2045 (2039-2050), and at Northern Hemisphere mid-latitudes in 2032 

(2020-2044). In the polar regions, the return dates are 2060 (2055-2066) in the Antarctic in 

October and 2034 (2025-2043) in the Arctic in March. The earlier return dates in the NH reflect 15 

the larger sensitivity to dynamical changes. Our estimates of return dates are later than those 

presented in the 2014 Ozone Assessment by approximately 5-17 years, depending on the region, 

with the previous best estimates often falling outside of our uncertainty range. In the tropics only 

around half the models predict a return of ozone to 1980 values, at around 2040, while the other 

half do not reach the 1980 value. All models show a negative trend in tropical total column ozone 20 

towards the end of the 21st century. The CCMI models generally agree in their simulation of the 

time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and 

recovery. However, there are a few outliers which show that the multi-model mean results for 

ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread 

of ozone return dates to 1980 values between models tends to correlate with the spread of the 25 

return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced 

cooling speeds up the return by about 10-20 years. In the lower stratosphere, and for the column, 

there is a more direct link in the timing of the return dates of ozone and chlorine, especially for 

the large Antarctic depletion. Comparisons of total column ozone between the models is affected 

by different predictions of the evolution of tropospheric ozone within the same scenario, 30 

presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, 

clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. 

As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O 

and CH4. However, quantifying the effect in the simulations analysed here is limited by the few 

realisations available for these experiments compared to internal model variability. The large 35 

increase in N2O given in RCP 6.0 extends the ozone return globally by ~15 years relative to N2O 

fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The 

effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 

scenario compared to RCP 6.0 also lengthens ozone return by ~15 years, again mainly through its 

impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both 40 

uncertainties in future scenarios, in particular of greenhouse gases, and uncertainties in models. 

The scenario uncertainty is small in the short term but increases with time, and becomes large by 

the end of the century. There are still some model-model differences related to well-known 

processes which affect ozone recovery. Efforts need to continue to ensure that models used for 

assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of 45 

ozone-depleting substances, and only those models are used to calculate return dates. For future 

assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric 

column ozone return dates, this work suggests that is more important to have multi-member (at 

least 3) ensembles for each scenario from every established participating model, rather than a large 

number of individual models.  50 
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1) Introduction 

It is well established that stratospheric ozone depletion over the past few decades has been mostly 

driven by the increase in stratospheric chlorine and bromine originating from the use of 

halogenated ozone-depleting substances (ODSs). The production of these ODSs has now been 5 

largely controlled by the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer, 

and its subsequent amendments and adjustments. For this reason, the protocol has been recognised 

as one of the most successful international environmental treaties ever enacted. Following its 

implementation, the atmospheric burdens of many ODSs have peaked and are now declining at a 

rate dependent on their respective atmospheric lifetimes, which are typically many decades. This 10 

has led to the overall levels of tropospheric chlorine and bromine peaking in 1993 and 1998, 

respectively (WMO, 2014). These levels are now slowly decreasing and are expected to return to 

their 1980 values, an arbitrary reference date before the discovery of the Antarctic ozone hole, 

around the middle of this century. Accordingly, stratospheric ozone is expected to recover from 

the effects of halogen-induced decreases on a similar timescale, which is already detectable in the 15 

Antarctic and upper stratosphere (e.g. see Solomon et al., 2016; Chipperfield et al., 2017; Strahan 

and Douglass, 2018 and references therein). However, other atmospheric changes, notably climate 

change through increasing levels of greenhouse gases (GHGs) are also expected to modify the rate 

of return of ozone and its subsequent evolution (e.g., Shepherd and Jonsson, 2008; Eyring et al., 

2010a). The effect of this climate impact is likely to be different in various latitudinal and 20 

altitudinal regions of the stratosphere and, for the polar regions, depends on the dynamical 

evolution of the polar vortices. 

 

The prediction of ozone recovery and return therefore requires the use of three-dimensional (3D) 

coupled chemistry-climate models (CCMs) which contain details of the important stratospheric 25 

chemical processes, as well as a realistic, interactive representation of stratospheric temperature 

and dynamics (Morgenstern et al., 2010, 2017 and references therein). In these models, the 

simulated composition of the atmosphere is fully interactive, wherein the radiatively active gases, 

e.g., carbon dioxide (CO2), water vapour (H2O), nitrous oxide (N2O), methane (CH4), 

chlorofluorocarbons (CFCs), and ozone (O3) affect model heating and cooling rates and therefore 30 

dynamics. The representation of stratospheric chemistry includes species and chemical reactions 

contained in the odd oxygen (Ox), nitrogen (NOx), hydrogen (HOx), chlorine (ClOx), and bromine 

(BrOx) chemical families as recommended, for example, by the NASA Chemical Kinetics and 

Photochemical Data for Use in Atmospheric Studies evaluation reports (e.g., Sander et al., 2011). 

These chemical recommendations also include heterogeneous processes on sulfate aerosols and 35 

polar stratospheric clouds (PSCs). In addition, many of the CCMs include a detailed representation 

of tropospheric chemistry. 

 

A process-oriented evaluation of CCMs was performed as part of the Stratospheric Processes And 

their Role in Climate (SPARC) Chemistry Climate Model Validation Activity (CCMVal). 40 

Quantitative performance metrics (Eyring et al., 2008; Waugh and Eyring 2008) were used in an 

extensive effort to evaluate the ability of CCMs to represent key processes related to dynamics, 

transport, chemistry, and climate. These CCMs have been used in support of several international 

assessments of ozone depletion and recovery (e.g., Austin et al., 2003, 2010; WMO/UNEP 2003, 

2007, 2011, 2014; Eyring, et al., 2007, 2010a, b, 2013b). The models used in this current paper 45 

have benefitted from the testing and development that came out of these studies and many are 

direct updates of the models tested in CCMVal. 
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Radiative, dynamical and chemical processes affect ozone recovery and return date. The radiative 

effects of changing GHG concentrations and ozone-induced temperature changes can affect the 

wave driving of the atmosphere and subsequently can accelerate the Brewer-Dobson (Brewer, 

1949) (BD) circulation (Rind et al., 1990, 2001; Butchart and Scaife, 2001; Sigmond et al., 2004, 

Eichelberger and Hartmann, 2005; Butchart et al., 2006, 2010; Olsen et al., 2007; Garcia and 5 

Randel, 2008; McLandress et al., 2010, Polvani et al., 2017, 2018). These studies have shown that 

the acceleration of the BD circulation is a robust result across the majority of CCMs. This 

acceleration can affect ozone recovery by causing faster removal of ODSs and hence earlier ozone 

recovery, although decreases in tropical stratospheric ozone may result in column ozone remaining 

permanently below the 1980 value at these latitudes. Butchart and Scaife (2001) estimated that 10 

the recovery of the global ozone layer could be brought forward by 8-10 years. This shortening of 

the ozone recovery was also found by Morgenstern et al. (2018) for the models represented in this 

study, although it is important to note that the use of surface mixing ratios in studies largely 

removes the feedback between circulation changes and ODS return dates. In addition, this 

strengthening of the BD circulation leads to a decrease in the mean age of stratospheric air by 15 

about 0.05 years per decade (Butchart et al., 2010). 

 

Increases in GHGs lead to cooling of the upper stratosphere (e.g., Fels et al., 1980; Rind et al., 

1990) which slows down temperature-dependent odd-oxygen loss processes and increases upper 

stratospheric ozone (e.g., Haigh and Pyle, 1982; Brasseur and Hitchman, 1988; Pitari et al., 1992; 20 

Rosenfeld et al., 2002; Waugh et al., 2009; Oman et al., 2010; Bekki et al., 2013; Marsh et al., 

2016). Evolution of N2O and CH4 can also impact ozone recovery by both chemistry and climate 

processes (Randeniya et al., 1997; Chipperfield and Feng, 2003; Ravishankara et al., 2009; 

McLandress et al., 2010; Revell et al., 2012; Morgenstern et al., 2014; Revell et al., 2015; Kirner 

et al., 2015). 25 

 

A number of studies have used detailed coupled CCMs to predict the future evolution of 

stratospheric column ozone. For example, using the GFDL model, Austin and Wilson (2006) 

showed that the October monthly mean Antarctic ozone return to 1980 abundances mainly 

depends on halogen loading and will not occur until ~2065. They also showed that Arctic ozone 30 

returns about 25-35 years earlier than Antarctic ozone does, while Li et al. (2009) showed that in 

the tropics ozone may never return to 1980 values due to changes in transport. However, due to 

various biases and weaknesses amongst various CCMs, our best estimates of ozone return dates 

come from multi-model assessments such as CCMI. 

 35 

The aim of this paper is to provide updated estimates of the return dates of stratospheric ozone in 

different latitude regions. The year at which column ozone is expected to return to a particular, 

historic level is a key metric for quantifying the recovery of the ozone layer (e.g., Table 2-5, WMO 

2014). Note that we estimate return dates based on mean atmospheric behaviour, independent of 

the extremes caused by dynamically driven variability, for example. Our estimates of return dates 40 

are based on analysis of the new, extensive range of CCMI simulations which have been produced 

using updated and improved models compared to previous studies such as CCMVal-2. All models 

compute the impact on ozone of future stratospheric cooling, the intensification of the Brewer-

Dobson circulation, as well as numerous other dynamical and chemical factors. Three types of 

uncertainties are considered: internal variability, model uncertainty, and scenario uncertainty. 45 

Internal variability refers to short-term variations in computed ozone, which are not dependent on 

long-term change driven by ODSs and GHGs. Model uncertainty represents the fact that various 

CCMs can provide different return dates, for the same prescribed time series of ODSs and GHGs, 

due to alternate representations of processes such as the impact of rising GHGs on stratospheric 

circulation. Finally, scenario uncertainty means that the return date found by a CCM will be 50 

sensitive to the particular, prescribed time series of ODSs and GHGs used as model input. 
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The layout of the paper is as follows. Section 2 briefly summarises the models, scenarios, and 

simulations used in this study. Section 3 describes how the results of the CCM simulations are 

processed in order to smooth over interannual variability and adjust some model ozone values for 

biases compared to observations. Section 4 presents our main results on the return and recovery 5 

of stratospheric ozone and how it varies between different simulations and between models. 

Finally, Section 5 presents our conclusions. 

 

2) Models, Scenarios, and Simulations 

The model simulations used in this work are taken from the Chemistry–Climate Model Initiative 10 

(CCMI), which is a joint activity from the International Global Atmospheric Chemistry (IGAC) 

project and SPARC. One of the main goals of CCMI is to provide support for the quadrennial 

Scientific Assessment of Ozone Depletion, produced by the World Meteorological Organisation 

(WMO) Global Ozone Research and Monitoring Project and United Nations Environment 

Programme (UNEP). This is done through the provision of scenarios and input forcings that the 15 

models can use for standard experiments. This paper provides analysis to support the results that 

will be presented in the forthcoming 2018 assessment. 

 

Descriptions of the CCMI experiments used in this work are given in Table 1. These scenarios 

are discussed in detail in Eyring et al. (2013a) and Morgenstern et al. (2017). Table 2 summarises 20 

the simulations performed by each model considered here. Briefly, there are three reference 

simulations designed to understand both past and future ozone evolution. The first (labelled REF-

C1) is a hindcast simulation of the recent past [1960-2010] that is closely tied to the following 

observed time-dependent forcings: 1) greenhouse gases (GHGs) and ozone-depleting substances 

(ODSs); 2) 11-year solar variability; 3) sulfate aerosol surface area density (including background 25 

and volcanically active periods); 4) sea surface temperatures (SSTs) and sea ice concentrations 

(SICs); 5) additional organic bromine from very short-lived substances (VSLS); and 6) 

tropospheric ozone and aerosol precursor emissions. The meteorology in REF-C1 is free-running. 

The second reference simulation (labelled REF-C1SD) has the same observed forcings as REF-

C1, with the additional constraint that model temperature and dynamics are nudged to analysed 30 

meteorology, i.e., specified dynamics (SD). The third reference scenario (labelled REF-C2) 

includes both a hindcast and forecast period [1960-2100]. It should be noted that for REF-C2, 

several of the models used in this study have an interactive ocean/sea ice modules (Morgenstern 

et al., 2018). For this scenario, the hindcast forcings are similar to REF-C1 with the main exception 

that the SSTs/SICs are based on model results (Morgenstern et al., 2018). The forecast component 35 

of the REF-C2 scenario uses GHGs (i.e., CO2, CH4, and N2O) that follow the Intergovernmental 

Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) 

Representative Concentration Pathways 6.0 (RCP 6.0) scenario (Meinshausen et al., 2011; Masui 

et al., 2011). 

 40 

Table 2 shows the number of realisations that were available for each simulation from every 

model. For REF-C1 a total of 19 models performed 38 realisations, including 8 models which 

performed multi-member ensembles. For simulations REF-C1SD and REF-C2 the numbers are 13 

models (13 realisations) and 19 models (33 realisations), respectively. In addition to these 

reference simulations, eight additional sensitivity scenarios based on the REF-C2 simulation were 45 

defined by CCMI. SEN-C2-RCP26 (5 models, 5 realisations), SEN-C2-RCP45 (7, 9) and SEN-

C2-RCP85 (8, 10) follow RCP 2.6, 4.5 and 8.5, respectively. These scenarios diverge from the 

REF-C2 definition in year 2000. SEN-C2-fODS (8, 12) and SEN-C2-fGHG (8, 13) are identical 

to REF-C2, except that concentrations of ODSs and GHGs, respectively, are fixed at 1960 levels. 
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Finally, there are three scenarios that examine the sensitivity of ozone return to N2O and CH4. 

Scenario SEN-C2-fN2O [1960-2100] is the same as REF-C2 but with surface N2O mixing ratios 

fixed to 1960 values. This results in the N2O surface abundance being ~40% higher in 2100 for 

the REF-C2 scenario versus the SEN-C2-fN2O scenario. Scenario SEN-C2-fCH4 [1960-2100] is 

the same as REF-C2 but with surface CH4 abundance fixed to 1960 values; the late 21st century 5 

REF-C2 surface abundance of CH4 is 30-50% higher than in SEN-C2-fCH4. Scenario SEN-C2-

CH4RCP85 [2000-2100] replaces the REF-C2 RCP 6.0 CH4 surface abundance with that from 

RCP8.5. Since the RCP8.5 surface CH4 is considerably larger than in REF-C2, there is 110-125% 

more CH4 in SEN-C2-CH4RCP85 relative to REF-C2 in the late 21st century. There are 8 (8), 8 

(8), 6 (6) CCMs (realisations) included for SEN-C2-fN2O, SEN-C2-fCH4 and SEN-C2-10 

CH4RCP85, respectively. For scenarios SEN-C2-RCP26 and SEN-C2-CH4RCP85, in particular, 

the numbers of realisations available are limited. 

 

3) Methodology 

We present an analysis based on seven latitude bands: Southern Hemisphere (SH) polar (90oS-15 

60oS), SH mid-latitudes (60oS-35oS), tropics (20oS-20oN), Northern Hemisphere (NH) mid-

latitudes (35oN-60oN), NH polar (60oN-90oN), near-global (60oS-60oN) and global (90oS-90oN). 

For the SH and NH polar regions we only consider the months of October and March, respectively, 

which typically correspond to the end of the winter/spring ozone loss periods. For the other latitude 

bands, we use annual means from each model simulation. We use 60oS-60oN for the near-global 20 

means, and 90oS-90oN for the global means, to allow for various latitudinal definitions of “global" 

ozone analyses in WMO ozone assessments (e.g. WMO 2011; WMO, 2014). In their analysis of 

CCMVal-2 simulations, Eyring et al. (2010b) used time-series additive model (TSAM) (Scinocca 

et al., 2009) but here we show absolute ozone time series to identify models to be excluded as 

outliers. As shown in Table 2, there are variations in the number of simulations for each 25 

reference/sensitivity experiment. Therefore, we decided to calculate the model averages (means 

and median) for each scenario using the following procedure. 

 

 First, we calculate the zonal mean October, March or annual mean time series for each 

realisation. If more than one realisation is available for a particular model then we calculate 30 

an ensemble mean of monthly/annual mean time series. If only one realisation is available 

then we apply a 3-point (i.e. 3-year) boxcar smoothing to remove the short-term variations 

and somewhat mimic the effect of averaging an ensemble. 

 

 These single time series for individual models are used to calculate the multi-model mean 35 

(MMM) and corresponding standard deviations for each year. We also calculate the ‘1-σ 

multi-model mean’ (MMM1S) where we exclude models lying outside 1σ of the MMM 

for each year. Finally, all of the single time series are used to calculate the median model 

(MedM) along with the 10th and 90th percentiles. 

 40 

 To calculate smoothed and adjusted time series with respect to a reference year (e.g. 1960, 

1980), we apply a 10-point boxcar smoothing to the individual model time series as well 

as the MMM, MMM1S and MedM time series. 

 

 In order to make a robust estimate of ozone return dates we need to account for the different 45 

biases between the model simulations and observations. We calculate the mean biases 

between observational data and the REF-C2 MMM, MMM1S and MedM timeseries for 

the 1980-1984 time period. We choose the REF-C2 simulation as that is the reference that 

is used to estimate ozone return dates. An adjusted timeseries for each individual model is 
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then calculated by subtracting the respective observational bias. This procedure also results 

in the multi-model mean agreeing with the observations in the 1980-1984 period. 

 

 Finally, using the MMM1S timeseries from REF-C2 as a reference line, the MMM1S 

timeseries from REF-C1, REF-C1SD, SEN-C2-fODS, SEN-C2-fGHG, SEN-C2-fCH4 5 

and SEN-C2-fN2O are adjusted for the year 1980. The MMM1S timeseries from 

simulations starting in year 2000 (SEN-C2-RCP45, SEN-C2-RCP85) are adjusted for the 

year 2000 using the REF-C2 reference. 

 

We compare the CCM simulations with selected observations to provide a basic evaluation of their 10 

performance. In particular, to test the height-resolved evolution of the modelled ozone fields we 

use BSVertOzone v1.0 (Bodeker Scientific Vertical Ozone, hereafter referred to as 

"BSVertOzone"), which is an updated and further developed version of the BDBP (Binary 

Database of Profiles) v1.1.0.6 that is described in detail in Bodeker et al. (2013). BSVertOzone 

consists of monthly mean zonal mean ozone values on either pressure or altitude levels (from 15 

Earth’s surface to about 70 km), where ozone is provided in mixing ratio or number density. For 

the data presented here the following improvements over the latest version of the BDBP were 

made: (1) ozone measurements from different data sources that are used as input for the monthly 

mean zonal mean calculation were updated (different satellite measurements and ozone 

soundings); (2) additional data sources were added (Microwave Limb Sounder, MLS, ozone 20 

profiles and recent years of ozone soundings); (3) drifts and biases between measurements from 

different data sources are adjusted (using a chemical transport model as transfer standard); (4) 

uncertainties are propagated from individual measurements through all preparation and calculation 

procedure steps to the final product; and (5) the calculation of the monthly mean zonal mean values 

was updated to correctly take into account the variable measurement frequencies of the different 25 

available data sources. The methodology of filling data gaps to construct a globally filled database 

is an updated version of the method described in Bodeker et al. (2013) where a pre-filling 

processing step was added. A more detailed description of BSVertOzone can be found in Hassler 

et al. (2018). 

 30 

BSVertOzone spans 70 pressure levels that are approximately 1 km apart (878.4 hPa to 0.046 

hPa). For the calculation of the partial columns, ozone was interpolated to the exact boundaries of 

the partial columns from the two closest BSVertOzone pressure levels, and then ozone was 

integrated between the determined levels. The boundaries for the partial columns were defined as 

follows: tropospheric column (surface-tropopause), lower stratospheric column (tropopause – 10 35 

hPa), upper stratospheric column (10 hPa and above; for BSVertOzone this means up to 

0.046hPa). The tropopause pressure was defined as 100 hPa in the tropics (20oS-20oN), 150 hPa 

in the mid-latitudes (20o-60oN/S), and 200 hPa in the polar regions (60o-90oN/S). CCM partial 

columns were integrated between the same partial column boundaries, but directly from the CCM 

pressure levels. No additional interpolation of CCM ozone profiles or BSVertOzone profiles was 40 

performed. 

 

4) Results 

4.1 Adjustment of model results 

Figure 1 shows October mean total column ozone (TCO) from the REF-C2 simulations for the 45 

Antarctic to illustrate how the model simulations compare before and after adjustment to fit 

observations. (Other regions are shown in the Supplementary Material (SM) Figures S1-S5). 

Figure 1a shows the mean TCO time series from the individual models (with a 3-point boxcar 

smoothing if only 1 realisation is available) along with three estimates of the model mean. These 
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are the overall multi-model mean (MMM), the mean of the models which lie within 1σ of the 

MMM (MMM1S), and the median model (MedM). While all models show the characteristic 

behaviour of depletion followed by recovery, there is a large spread of around 150 DU between 

the model values at any time. This complicates the determination of the ozone return dates relative 

to a baseline. Therefore, Figure 1b shows the same model runs after bias-correcting the individual 5 

model values to the observations over the period 1980-1984 and applying a 10-point boxcar 

smoothing. This correction to the models also forces the model means to fit the observations 

during this time period. With the bias correction, the individual models clearly give a more 

coherent picture and therefore, throughout this paper we generally show just the adjusted model 

results (unless indicated otherwise). However, it is important to note that the values of the multi-10 

model mean, which are used for our best estimate of ozone return dates, are similar between 

Figures 1a and 1b. Evidently, given enough model simulations, this approach of adjusting the 

model time series does not significantly alter the best estimate but does provide a smaller, more 

meaningful range of uncertainty. In other words, positive and negative model biases appear to be 

equally represented in the CCMI ensemble, but removing them will allow comparison of model 15 

returns to the same common 1980 baseline. Concerning the different methods to estimate the 

model average, for the Antarctic October case shown here the results are very similar. The 

difference is in the estimated range of variability which is shown by the shading. The 10th and 90th 

percentiles of the median give the largest spread of around 100 DU. The 1σ variation of the MMM 

is around ±40 DU. As expected the 1σ variation of the MMM1S, which has removed the outlying 20 

models, is smaller and around ±25 DU in this case. The MMM1S has an advantage over the 

median approach for the scenarios where there are not many realisations, and hence the 10th/90th 

percentiles cannot be derived robustly. Therefore, we use the MMM1S and the 1σ deviation (of 

the forecasts provided by the adjusted models) to determine our best estimate of return dates and 

associated uncertainty, respectively. 25 

 

4.2 Column ozone return dates 

Figure 2 compares the MMM1S TCO from REF-C2 with the standard CCMI historical 

simulations REF-C1 and REF-C1SD, in which the models are nudged towards analysed 

meteorology. Results are shown for both the direct and adjusted comparisons for the Antarctic and 30 

Arctic. The top panels show that, as expected, the REF-C1SD simulations reproduce better the 

observed evolution of TCO, as well as capturing much of the observed interannual variability. In 

particular, in the Antarctic the REF-C1SD mean reproduces the observed increase and then 

decrease in ozone after the year 2000. This was also shown in Hardiman et al. (2017) who 

investigated the contributions of dynamics, transport and chemistry to these differences and is 35 

consistent with chemical transport model analyses in Chipperfield et al. (2015, 2017). For the 

Arctic it is noticeable that the REF-C1SD simulations give significantly lower TCO than the REF-

C1 in the 1990s. This is related to the series of cold Arctic winters during this period when low 

TCO was caused through large chemical loss (e.g. 1994/95 and 1995/96) along with dynamical 

contributions (e.g. 1996/97). The mean of the free-running REF-C1 simulations do not capture 40 

these low-column-ozone events. In contrast, Figure 2 shows that the REF-C2 mean gives a more 

climatological picture of gradually varying ozone. The REF-C1 and REF-C2 means for the 

hindcast period are consistent. Therefore, within the limitations of the comparison of the heavily 

smoothed lines, the choice of ocean / sea ice representation does not seem to affect the 

climatological TCO evolution in the regions shown, although as noted by Zhang et al. (2016) sea 45 

ice loss may affect zonally asymmetric TCO trends. 

 

Figure 3 shows TCO results of the REF-C2 MMM1S for five latitude bands and the near-global 

(60oS-60oN) values. Also shown are the means from the sensitivity simulations SEN-C2-fGHG 
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and SEN-C2-fODS, which isolate the impacts of GHG and ODS changes. In all cases the shading 

gives the MMM1S 1σ variability. The TCO return dates from REF-C2, and the estimated range 

of that based on the 1σ variability, are summarised in Table 3 and plotted in Figure 4 (left panel). 

Globally the models predict a return to 1980 TCO values in 2049, with a 1σ spread from 2043-

2055. Earlier return dates are predicted in the NH mid-latitudes (2032), NH polar region (2034), 5 

and SH mid-latitudes (2045). In contrast, the return date from the large depletion in the SH polar 

region is much later at 2060. The 1σ variability gives the smallest range of return dates in the 

Antarctic (11 years) and SH mid-latitudes (11 years). The corresponding ranges in the NH, where 

dynamical variability is larger, are 24 years in mid-latitudes and 18 years near the pole. In the 

tropics, the MMM1S shows a return to 1980 values towards 2058, followed by a turnaround and 10 

further decline. Note that individual models differ in whether they predict a return to 1980 values 

or not, before predicting the decrease at the end of this century (see SM Figure S4). The MMM1S 

near-global (60oS-60oN) column ozone also shows a decline after about 2080, which is mostly due 

to a decline in the tropics, with a small contribution from NH mid-latitudes. Dynamical decreases 

in tropical TCO due to increased upwelling would be expected to cause increases in TCO at mid-15 

high latitudes. For these variations in near global TCO after 2080 small changes of 2-3 DU in the 

tropospheric column, especially in the NH, are important factors (see Figure 9 below). The right 

panel of Figure 4 and Table 4 show the return dates of stratospheric column ozone (SCO, see 

below). 

 20 

Our predictions of TCO return dates can be compared with previous estimates, particularly those 

used in past WMO Ozone Assessments. WMO (2011) used results from the CCMVal-2 

experiments to derive ozone return dates and these are shown in Table 3. As no major update to 

CCMVal-2 had occurred, these same CCMVal-2 values were also used as the best estimates in the 

subsequent WMO (2014) assessment. However, that assessment also showed results from a subset 25 

of four CCMVal-2 models, selected for their good representation of stratospheric circulation 

(Figures 2-21 and 3-15 from that assessment), and analysis of five CMIP5 models (Figure 2-23; 

Eyring et al., 2013). We have included an analysis of these CMIP5 simulations in Table 3. Note 

that the CCMVal-2 runs used the A1b GHG scenario while the additional runs shown in WMO 

(2014) used RCP 6.0 or 4.5. This study represents the first comprehensive update of TCO return 30 

dates since CCMVal-2. Compared to those values our return dates (albeit for a different GHG 

scenario) are later by values ranging from 4 years in the Arctic, 10 years in the Antarctic to 10-11 

years at mid-latitudes. Similar differences are seen in the tropics, where not all models show a 

return. Interestingly, the subset of four CCMVal-2 models that performed new experiments for 

WMO (2014), based on RCP 6.0 or 4.5, also showed later return dates than CCMVal-2, more in 35 

accord with our simulations. Compared to the CMIP5 models, which also use the RCP 6.0 

scenario, our return dates are also later. The difference is small in northern mid-latitudes but it is 

as large as 14 years in the Antarctic (2046 compared to 2060).  

 

There are three major differences in the assumptions used for the CCMVal-2 runs compared to 40 

the CCMI simulations, all of which likely contribute to our present estimate of up to a 17 year 

later return of total column ozone to the 1980 level. First, future atmospheric CO2 rose more 

rapidly in the A1b scenarios used for CCMVal-2 compared to the RCP 6.0 scenario used by CCMI 

(Figure S13). Within A1b, CO2 reaches 454 ppm in year 2032, which was the year given for 

recovery of total column ozone in WMO (2011). This same mixing ratio for CO2 is reached 9 45 

years later within RCP 6.0. As a result, climate-driven changes in circulation within CCMI, which 

accelerate the recovery of the global ozone layer, will be similarly delayed. Next, the specification 

of CH4 within A1b resulted in a more rapid rise compared to RCP 6.0 (Figure S13). For A1b in 

year 2032, atmospheric CH4 is projected to be 44% larger than the 1980 value. For RCP 6.0, CH4 

is projected to rise by only 17% relative to 1980. As detailed in Section 4.5, the slower rise in CH4 50 

assumed for CCMI reduces the chemically-induced increase of ozone in both the stratosphere and 
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troposphere, contributing to a longer time for total column ozone to return to 1980 levels. The 

differences in the assumptions for future N2O between A1b and RCP 6.0 are small, and therefore 

not responsible for our later return dates. Finally, the return of effective equivalent stratospheric 

chlorine to 1980 levels is delayed by about 5 years in the baseline WMO (2011) scenario (used in 

this study) compared to the scenario used to drive CCMVal-2, reflecting new knowledge of 5 

lifetimes and emissions of various ODSs between the times these two scenarios were formulated. 

Since the return dates used in our study are based on analysis of results from 20 models, whereas 

the WMO (2011) return dates were based on results of 17 models, we have also examined the 

impact of restricting our return date estimates to a subset of the common models used by WMO 

(2011). Return dates for global and near-global ozone found using only 9 common models differ 10 

by only 1 to 3 years compared to values given in Table 3 for the complete set of models. Therefore, 

the primary causes of the later dates for global and near-global ozone to return to 1980 levels 

reported in Table 3, compared to WMO (2011) return dates, are assumptions regarding future 

atmospheric levels of CO2, CH4, and ODSs inherent to CCMVAL-2 and CCMI. As our estimates 

are based on a large number of dedicated stratospheric simulations, with many models which have 15 

benefitted from further testing and development since CCMVal-2, we would argue that our values 

provide the best current estimates. 

 

The sensitivity simulations in Figure 3 also illustrate the effect of climate change and ODS 

changes on total column ozone recovery, confirming the results of previous studies (e.g. 20 

Morgenstern et al., 2018 and references therein). The smallest impact of climate change is 

predicted in the Antarctic where the simulation with fixed GHGs is very similar to REF-C2. In the 

mid-latitudes, increasing GHGs brings forward the return dates by about 10 (NH) to 20 (SH) years. 

In the Arctic, there is a larger impact. However, the variation of the MMM1S line for SEN-C2-

fGHG stays close to the 1980 reference line without crossing it, showing the challenge in 25 

extracting a return date (or range of dates) from the model runs. In the tropics, the competing 

effects of changes in ODSs, which increase ozone, and changes in GHGs, which decrease ozone, 

are clearly illustrated. In this region, the small rise in ozone due to ODS recovery is masked by 

decreases due to GHG increases. The net result is a decrease in tropical TCO in REF-C2. 

 30 

4.3 Ozone profile variations 

We now consider ozone recovery of partial columns in the lower (tropopause-10hPa; Figure 5) 

and upper (10 hPa and above; Figure 6) stratosphere separately. The figures include partial 

column observations derived from the composite BSVertOzone data set (Bodeker et al., 2013; 

Hassler et al., 2018). This composite dataset has the advantage, compared to observations from 35 

any single instrument, of being fully height resolved and available continuously over 1979-2016. 

BSVertOzone consists of several different data sets. We use here the Tier 1.4 data set that is based 

on observations, but has been created by applying a least squares regression model to attribute 

variability to various known forcing factors (natural and anthropogenic) for ozone. The variability 

in this data set is reduced compared to pure observations, since it describes only the variability for 40 

which basis functions were included in the regression model. This data set is therefore optimised 

for the use in comparisons with CCM simulations that do not exhibit the same unforced variability 

as reality. Figures S10 and S11 in the Supplementary Material show results from the specific 

altitudes of 50 hPa and 5 hPa, respectively, compared to GOZCARDS observations (Froidevaux 

et al., 2015). In the lower stratosphere, where ozone has a long photochemical lifetime, the 45 

adjusted results from the models show some variations, especially in the polar regions. Overall, in 

the extra-tropical regions the models follow the observed behaviour in the BSVertOzone dataset 

although the MMM1S appears to overestimate depletion in the Antarctic and underestimate it in 

the Arctic. Interestingly, in the tropics the BSVertOzone dataset indicates ongoing decreases after 
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the year 2000 while the models show a levelling off and turnaround. This observed decrease in 

tropical lower stratospheric ozone has been noted by Ball et al. (2018) and is not captured by the 

models shown here. There are also significant differences between the models in the tropics where 

the lower stratosphere column does not return to 1980 values in all REF-C2 simulations. This is 

also the case for the near-global lower stratospheric column, reflecting the large influence of the 5 

tropics. In the upper stratosphere (Figure 6), ozone behaves more similarly in all regions and 

between all models (i.e. depletion followed by recovery to values larger than 1980) as dynamical 

variations are less important. Therefore, there is generally less spread in the model forecasts of 

ozone recovery than over the whole stratosphere, although the ULAQ-CCM, CHASER and 

CESM1-CAM4 models are outliers in certain regions. Note that the models consistently 10 

underestimate the BSVertOzone values and appear to show larger depletion. At this altitude, the 

feedback of temperature changes on ozone becomes important (Haigh and Pyle, 1982) and there 

is a larger increase in ozone than determined by ODS changes alone due to stratospheric cooling. 

As the CCMs are based on similar photochemical data, they should be expected to exhibit similar 

climate sensitivities, although they may predict different magnitudes of climate change. The 15 

reason for the disagreement between models and BSVertOZone in the upper stratosphere requires 

further investigation, but these upper stratospheric differences will not have a large impact on 

column ozone return years. 

 

Since the main driver of past ozone depletion and ozone recovery is the evolution of stratospheric 20 

halogen loading, we pay particular attention to how well the CCMs model the time-dependent 

abundance of organic and inorganic chlorine and bromine. These are based on prescribed scenarios 

should be fields for which the CCMs agree well. Figure 7 shows the evolution of the modelled 

inorganic chlorine (Cly = HCl + ClONO2 + HOCl + ClO + 2Cl2O2 + Cl + BrCl + OClO + …) and 

total chlorine (Cly + organic) in the upper and lower stratosphere in the Antarctic from the REF-25 

C2 simulations. This region was chosen as an example to illustrate model-model differences. 

Long-term variations in the modelled chlorine loading are determined by the specified surface 

mixing ratios of the ODS. Through this, the different models are constrained to show the same 

approximate timescale for chlorine to return to its values in e.g. 1980. If the stratospheric ODSs 

were simulated using emissions, rather than specified surface mixing ratios, then the timing of the 30 

model return dates would vary depending on the speed of the model circulation (Douglass et al., 

2008). Despite this constraint, the models do show a variation in the Cly loading at any time, 

especially in the lower stratosphere where the fractional conversion of organic chlorine to Cly is 

smaller. Nevertheless, some models show lower Cly than would be expected based on differences 

in circulation (EMAC-L47MA, EMAC-L90MA, CCSRNIES). Moreover, in the upper 35 

stratosphere, where most chlorine would be in the form of Cly, there are still large variations 

between the models. The reasons for this require further investigation beyond the scope of this 

study, but, if models are conserving chlorine in their chemistry and transport schemes, the 

evolution of Cly at 5 hPa should closely track that of the specified tropospheric chlorine with a 

lag of around 3-6 years. Figure 7 also includes Microwave Limb Sounder (MLS) observations of 40 

the October vortex-mean volume mixing ratio of HCl + ClO. This provides a lower limit of the 

amount of Cly present, though it will be a good approximation in these locations. The year-to-year 

variation at 50 hPa (around 250 pptv) is due to variability in the polar vortex and chlorine 

activation, which is not an issue at 5 hPa. The comparison with the MLS data clearly shows that 

the three models with low Cly are unrealistic. 45 

 

Bromine loading is another driver of ozone depletion and recovery. Figure S12 compares total 

inorganic bromine modeled at 5 and 50 hPa in the Antarctic from the models. The highest values 

of bromine are reported by the SOCOL3 and EMAC-L90MA models. For SOCOL3, the model 

was run using surface mixing ratios of 1.63 and 1.21 ppt for CHBr3 and CH2Br2, respectively, 50 

which results in a bromine content for these very short lived substances (VSLS) of 7.31 ppt.  This 
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is larger than the 5 ppt estimate for total bromine of VSLS suggested for use in CCM models by 

Eyring et al. (2013a). Within EMAC-L90MA, bromine sources are explicitly represented by 

considering oceanic emission of CHBr3 and CH2Br2, three other VSLS species, as well as sea salt 

(Warwick et al., 2006). The tendency of Bry within EMAC-L90MA to be larger than found by 

other models, and to exceed an empirical estimate based on field observations in the Tropical 5 

Western Pacific, has been noted in a recent model intercomparison study focused on bromine 

(Wales et al., 2018). The EMAC-L90MA over-estimate is likely caused by the oceanic emission 

terms being too large. The outlier is CHASER-MIROC, which has a bromine loading that peaks 

near 9 ppt in the upper stratosphere of the Antarctic, which is more than a factor of two less than 

surface mixing ratios of bromocarbons that reach the stratosphere (e.g., Wales et al., 2018) as well 10 

as the mean value of peak Bry from the other models. The low value of Bry within CHASER-

MIROC is due to the consideration of only CH3Br, without scaling to represent either halons and 

VSLS bromocarbons, for the simulations conducted for CCMI. Within this model, the BrO+ClO 

cycle will have an unrealistically low effect on ozone. 

 15 

The decline in stratospheric halogen loading is a main driver in the increase of stratospheric ozone. 

However, ozone is also affected by other stratospheric factors, notably driven by changing climate, 

such as rising temperature in the upper stratosphere. Moreover, differences in this estimated 

climate effect is a source of variations between the projections provided by the models analysed 

here. This climate effect is illustrated by the difference in the return dates to 1980 levels of 20 

stratospheric chlorine versus ozone. Figure 8 (top and middle rows) shows how these return dates 

compare for local changes in the polar upper stratosphere and lower stratosphere, as well as 

column ozone return versus lower stratospheric Cly. For the upper stratosphere in both polar 

regions, the ozone return dates are much earlier than the Cly return dates and span a slightly larger 

range. In the lower stratosphere and for the column in the Antarctic there is a much closer 25 

correspondence between the Cly return date (at 50 hPa) and the ozone return date. For the Arctic, 

the ozone return dates are earlier than for Cly (see also Figure 3). Figure 8 also shows the large 

spread in return dates between individual models. However, these return dates do generally 

correlate with each other so that an earlier Cly return date corresponds to an earlier ozone return 

date. Some exceptions to this occur – e.g. for the CMAM and EMAC-L90 models. 30 

 

Figure 9 shows the evolution of the tropospheric partial column ozone (PCO) from simulations 

based on scenario REF-C2. In the Antarctic (October), the MMM1S shows very little change from 

year 1980 through the forecast period. This is most likely due to limited tropospheric ozone 

precursor abundance in the polar SH region (e.g., low NOx). In the other five regions, the MMM1S 35 

evolution typically shows 2-5 DU enhancement going from year 1980 to the peak tropospheric 

PCO in the forecast period. The models then generally show a decrease in the final few decades 

of the century. It is also interesting to note the large spread across participating CCMs in 

tropospheric PCO in the 21st century. For example, the SH and NH mid-latitude panels show, for 

year 2060, the range across the models is ~8-10 DU. The range is even larger near the end-of-the 40 

21st century where the NH mid-latitudes and Arctic (March) ranges are ~15 DU and ~20 DU, 

respectively. Several models have less tropospheric PCO in year 2100 relative to year 1980. This 

is suggestive that the tropospheric chemistry sensitivity to mainly CH4 is very different in the 

CCMs. There is more discussion of this topic in Section 4.5. 

 45 

4.4 Sensitivity of ozone return to climate change 

Figure 10 shows the sensitivity of the tropospheric PCO evolution to assumed GHG RCP 

scenarios. The CH4 temporal trend is the largest in SEN-C2-RCP85, followed by REF-C2, and 

SEN-C2-RCP45 scenarios. As discussed later in Section 4.5, an increase in tropospheric CH4 will 
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enhance the NOx-HOx-smog net ozone production (Haagen-Smit et al., 1950). Therefore, the 

larger future trend in CH4 as represented in the SEN-C2-RCP85 scenario, relative to the REF-C2 

scenario (Figure S12), increases the year 2100 global annual average MMM1S tropospheric PCO 

by ~5 DU. Previous studies (e.g. Shindell et al., 2009; Eyring et al., 2013b; Morgenstern et al., 

2018) have also found that the tropospheric impact of CH4 increases is a major contributor to the 5 

TCO changes. Because of this difference in tropospheric PCO between scenarios we will only 

consider the evolution of SCO for derivation of return dates in the RCPs and SEN-C2 simulations 

in the discussion below. 

 

Figure 11 shows the sensitivity of the SCO return dates to the assumed GHG RCP scenarios. The 10 

relative change is smaller in the Antarctic, where recovery is largely determined by Cly loading, 

but larger in all other regions. However, the absolute changes between, for example, the Antarctic 

(October) and Arctic (March) are similar. Simulation SEN-C2-RCP26 (not shown), which 

assumes only small climate change but for which we only have 5 realisations, does not return to 

1980 values at all except in the Arctic. Globally and at mid-low latitudes, simulation SEN-C2-15 

RCP45 shows a behaviour between the RCP 2.6 and RCP 6.0 simulations. Compared to REF-C2, 

the simulation with the largest impact of climate change, SEN-C2-RCP85, shows a similar 

behaviour globally, but with regional differences, i.e. a positive effect on ozone at all latitudes 

except the tropics, where ozone decreases the most under RCP 8.5. The impact on return dates in 

different regions is summarized in Figure 12. This figure shows the return date for each model 20 

(coloured dots) along with the MMM1S (red triangle) for each scenario, all for six regions. The 

grey triangle is the MMM1S for the REF-C2 scenario (see Figure 4, right panel). The uncertainty 

in the MMM1S is represented by the solid vertical line. The SCO magnitude and range for all 

scenarios is listed in Table 4. For all regions shown in Figure 12, the derived MMM1S return 

date for SEN-C2-RCP45 is within the uncertainties range of the MMM1S return date for REF-C2. 25 

This is also true for SEN-C2-RCP85, although in the Antarctic (Oct.) region where the MMM1S 

return date for SEN-C2-RCP85 MMM1S is shortened by 12 years the uncertainly range only just 

overlaps with the MMM1S from REF-C2. 

 

4.5 Sensitivity of ozone return to methane and nitrous oxide 30 

We now focus on the sensitivity simulations (Table 1) which examine the individual roles of CH4 

(SEN-C2-fCH4 and SEN-C2-CH4RCP85) and N2O (SEN-C2-fN2O), and their combined impact 

with CO2 (SEN-fGHG), on ozone recovery. We will only consider stratospheric ozone columns 

(SCO), thereby eliminating any impact from changes in tropospheric ozone discussed above. We 

first give a general overview based on prior studies of the expected ozone recovery impacts of 35 

changing CH4, N2O and the combined GHGs. We then discuss the individual ozone recovery 

impacts of N2O, CH4, and GHGs based on this work. The derived impacts are compared to the 

REF-C2 recovery dates. We will not attempt here to diagnose the reason why models vary in the 

derived impacts; these details are beyond the scope of this study and will be addressed in future 

work. 40 

 

Many studies have investigated the impacts of CH4, N2O, and CO2 evolution on ozone abundance 

and recovery (e.g., Haigh & Pyle, 1979; Le Texier et al., 1988; Rosenfield et al., 2002; Randeniya 

et al., 2002; Royer et al., 2002; Chipperfield and Feng, 2003; Portmann and Solomon, 2007; 

Shepherd et al., 2008; Ravishankara et al., 2009; Oman et al., 2010; Fleming et al., 2011; Revell 45 

et al. 2012, 2015, 2016; Kirner et al., 2015; Butler et al., 2016; Keeble et al., 2017). In summary, 

increases in CH4 and N2O will generate higher amounts of hydrogen oxides (HOX) and nitrogen 

oxides (NOX), respectively. It is well known that increased NOX will enhance catalytic 

stratospheric ozone loss (Crutzen, 1970). Therefore, one would expect the ozone return date to be 
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extended for temporal increases in N2O, or shortened for decreases in N2O. Nonetheless, the effect 

of future increases of N2O varies with altitude and also depends on the temporal evolution of other 

GHGs (Wang et al., 2014; Revell et al., 2015). For changes in CH4 the situation is more 

complicated. In a similar manner to NOX, increased HOX will decrease upper stratospheric ozone. 

However, CH4 can also affect the partitioning of reactive chlorine through the reaction of CH4 + 5 

Cl → HCl + CH3, with more CH4 leading to an increase in stratospheric ozone via a decrease in 

the abundance of reactive chlorine. Overall, temporal increases in CH4 lead to increases in 

stratospheric column ozone (Revell et al., 2012). In the troposphere, increases in CH4 will enhance 

chemical production through NOX-HOX-smog process (Haagen-Smit et al., 1950). This 

tropospheric ozone net production and subsequent tropospheric partial column change is shown 10 

for the REF-C2 simulations in Figure 9. It should be noted that UMSLIMCAT shows a small 

tropospheric trend since the ozone is prescribed in the troposphere. UMUKCA-UCAM has only 

simplified tropospheric chemistry, whereas NIWA-UKCA has a representation of C2-C3-isoprene 

oxidation. In addition, the tropospheric trend is affected by the coupling to the stratosphere via 

changes in stratotosphere-to-troposphere exchange and photolytic feedbacks. Although CO2 is 15 

chemically inert below about 60 km, increases in its abundance (along with CH4 and N2O) will 

cool the stratosphere (Haigh & Pyle, 1979). This cooling will slow down the catalytic ozone 

destruction cycles and increase ozone, therefore temporal increases in CO2, CH4, and N2O will 

shorten the ozone return date due to this process, which is most important in the upper stratosphere 

and mesosphere. The warming of the troposphere and the cooling of the stratosphere can also 20 

affect the Brewer-Dobson circulation and therefore impact ozone through transport (e.g., Polvani 

et al., 2017, 2018 and references therein). The cooling process operates throughout the 

stratosphere, but is most important for dynamical processes in the lower to middle stratosphere. 

Outside of the tropics, a speed-up of the Brewer-Dobson circulation would shorten the ozone 

recovery date, while a slow-down of the BD circulation would extend it. 25 

 

All of the above-mentioned chemical, radiative, and dynamical impacts are represented within the 

REF-C2 simulations (using RCP 6.0 GHGs for the future period). Here we examine the sensitivity 

scenarios for N2O and CH4 individually, along with the combined GHGs scenario impacts relative 

to the REF-C2 scenario. It should be noted that for the two CH4 and one N2O sensitivity scenarios, 30 

there is only one realisation available for each model, whereas for many models the REF-C2 

scenario has multiple ensemble members (Table 2). The SEN-C2 temporal abundances compared 

to REF-C2 are shown for N2O, CH4, and CO2 in Figure S13. For N2O (SEN-C2-fN2O), the 

abundance is approximately 290 ppbv and 405 ppbv for 1960 and 2100, respectively, an increase 

of 115 ppbv (~40%). For CH4 (SEN-C2-fCH4) the abundance is 1.24 ppmv in 1960 and a 35 

maximum of 1.96 ppmv in the 2070s, an increase of 57%. The SEN-C2-RCP85 scenario increases 

CH4 over that given by the REF-C2 scenario by 2.1 ppmv in 2100, an increase of 128%. The CO2 

change in REF-C2 from 1960 to 2100 is 352 ppmv, approximately a 110% increase. 

 

Figure 13 shows the evolution of October mean SCO in the Antarctic region for the REF-C2, 40 

SEN-C2-fN2O (fixed N2O at 1960 conditions), SEN-C2-fCH4 (fixed CH4 at 1960 conditions), 

and SEN-C2-CH4RCP85 (RCP8.5 CH4 abundance) scenarios. The SCO observations are again 

based on the BSVertOzone data set (Bodeker et al., 2013). The panels show results from eight 

different models. Solid lines show 10-year smoothed SCO for a given simulation. Shading 

indicates the 1-σ standard derivation from an ensemble of realisations (or 3-box smoothed line if 45 

only one realisation is available). In addition, the SEN-C2-fODS (fixed ozone-depleting 

substances in 1960) is shown. This scenario shows the behaviour of SCO without the evolution of 

halogens (i.e., no ozone depletion and recovery due to halogens). This scenario does include the 

previously discussed impacts of N2O, CH4, and CO2 on SCO. However, since there is no ozone 

depletion period from ODSs in this simulation, it does not make sense to calculate an ozone 50 

recovery date. The red lines in all panels show the evolution of SCO for the REF-C2 scenario, 
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which can be directly compared to the BSVertOzone dataset. For each model, the REF-C2 

simulations have been bias corrected to the BSVertOzone dataset for the 1980-1984 period. The 

SEN-C2 simulations are then adjusted to the bias corrected REF-C2 ensemble mean for the 1960 

period. Comparison of the SCO for the REF-C2 simulations show that models generally compare 

well to BSVertOzone for the depletion period, although CMAM and UMSLIMCAT appear to be 5 

biased low. In summary, when one examines the relative impact on the ozone return date across 

the eight models from the four SEN-C2 scenarios, there is no consistent pattern. Therefore, the 

result suggests that the Antarctic region is not sensitive to the perturbations presented in this work. 

 

This is not the case when one examines the annual average SH mid-latitude region (Figure 14). 10 

Generally, across the models the ozone return date varies as follows. The SEN-C2-fN2O (light 

blue line) simulations return before the REF-C2 simulations. This is consistent with our 

understanding that less NOX produced from a fixed 1960 N2O abundance will allow the SCO to 

recover earlier than the increasing NOX in a REF-C2 scenario. However, it should be noted that 

there can be a smaller impact of N2O on the return date due to cancellation of the upper and lower 15 

stratospheric response of N2O on ozone (Morgenstern et al., 2018). The SCO from the SEN-C2-

CH4RCP85 simulations (dark blue line), for the four models which performed this run, also tends 

to have a recovery date that is earlier than the REF-C2 simulations. Again, with more CH4 

specified in the 21st century, ozone will recover faster due to the sequestering of reactive chlorine 

into HCl and the stratospheric cooling effect of slowing down ozone loss rates. The impact of 20 

increased HOX production from increased CH4, causing more ozone depletion to extend the 

recovery, does not dominate over these two processes. In contrast, the SEN-C2-fCH4 simulation 

(purple line), has less CH4 in the 21st century than the REF-C2 simulation and therefore has later 

return date. Finally, the SEN-C2-fGHG simulation generally has the latest ozone return date. The 

corresponding time evolution results for the SEN-C2 scenarios for the Arctic (March), annual 25 

average NH mid-latitude region, and annual average near-global (60°S-60°N) are shown in 

Figures S14, S15, and S16, respectively. 

 

The SCO return dates for the simulations based on the four sensitivity scenarios are also 

summarised and compared to the REF-C2 scenario in Figure 12 (see above) and Table 4. The 30 

individual model details regarding the SCO return date (similar in format to Figure 8) between 

the SEN-C2 simulations and the REF-C2 simulations are shown in Figures S17-S20. We first 

discuss the change in SCO return dates between the SEN-C2-fGHG and REF-C2 simulations. The 

Antarctic (October) region difference between the two scenarios is small, within 2 years. The 

uncertainty range for both scenarios are approximately ±12 years. The SH mid-latitudes region 35 

shows that the MMM1S SCO recovery date is extended in the SEN-C2-fGHG case by ~16 years 

relative to the REF-C2 case. This extended SCO recovery period is even larger in the NH mid-

latitudes and Arctic (March) by ~25 years. This is consistent with the GHG cooling impact on 

ozone loss rates and a lack of strengthening of the BD circulation. In this comparison, having 1960 

abundances of GHGs compared to the REF-C2 evolution means less cooling of the stratosphere 40 

and therefore an extension of the SCO recovery date. In addition, the CH4 abundance is less in 

SEN-C2-fGHG which also decreases sequestering of reactive chlorine into HCl and acts to extend 

the SCO recovery date. Both of these factors override the direct impact of less production of NOX 

and HOX from N2O and CH4 which would shorten the SCO recovery. Interestingly the near-global 

(annual) average SCO return date is not that different between the two scenarios. This is most 45 

likely due to the fact that when the BD circulation strengthens, tropical ozone is reduced and 

extratropical ozone is increased. Therefore, the net impact on the stratospheric column ozone 

return date cancels out for this process in the global average. Figure 12 and Table 4 shows the 

comparison of the SCO return dates for the SEN-C2-fN2O and the REF-C2 simulations. In this 

comparison, one would expect that SEN-C2-fN2O with 1960 abundances of N2O would bring 50 

forward the SCO recovery date. This is certainly true for the near-global (annual) average 
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comparison, where the MMM1S SEN-C2-fN2O SCO recovery date is shortened by ~20 years 

relative to the REF-C2 case. This is mostly due to a shortening of the return date in the tropics; at 

mid-high latitudes there is little change. As noted above, the future rise in N2O can lead to 

significant increases in lower stratospheric ozone, particularly for regions where the loss rate of 

ozone due to halogens exceeds that due to NOx prior to the perturbation of N2O. The effect of N2O 5 

on ozone varies as a function of latitude and altitude (Wang et al., 2014), complicating the 

sensitivity to the ozone return date to variations in N2O (Morgenstern et al., 2018). Figure 12 and 

Table 4 also shows the comparison of the SCO return dates for the SEN-C2-fCH4 simulations. 

Here all regions except the Antarctic (and the tropics, for which the return date is undefined) show 

an extension of the SCO return date. This is consistent with the discussion above for the fixed 10 

GHG scenario. The near-global (annual) average SCO return date is extended by ~5 years. For the 

SEN-C2-CH4RCP85 scenario the MMM1S near-global (annual) average SCO return date is 

reduced relative to the REF-C2 scenario by ~15 years. As expected, this is an opposite effect to 

that derived from the SEN-C2-fCH4 scenario. In the other regions for SEN-C2-CH4RCP85 

MMM1S there is less separation between the REF-C2 reference and the CH4 perturbation 15 

scenario. Unfortunately for this work, there was only one realisation from each modelling group 

for the SEN-C2-fN2O, SEN-C2-fCH4, and SEN-C2-CH4RCP85 scenarios. Therefore, the signal 

from the perturbation on the SCO return date may be affected by the internal variability of each 

CCM. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on SCO 

the return date, a recommendation based on this work is to have at least three ensemble members 20 

per scenario type. 

 

5) Summary and Conclusions 

We have analysed simulations performed for the Chemistry-Climate Modelling Initiative (CCMI) 

to estimate the return dates of the stratospheric ozone layer from depletion caused by 25 

anthropogenic stratospheric chlorine and bromine. CCMI represents an extensive multi-model 

exercise to study the future evolution of the ozone layer under changing climate conditions. Here 

we consider a total of 155 simulations from 20 models, including a range of sensitivity studies. 

For the control simulations (unconstrained by nudging towards analysed meteorology) there is a 

large spread in the predictions of the absolute ozone column. Therefore, the model results need to 30 

be adjusted for biases against historical data. Also, the interannual variability in the model results 

need to be smoothed in order to provide a reasonable and useful estimate of the range of ozone 

return dates.  

 

The total column ozone return dates calculated here differ from those presented in the previous 35 

WMO/UNEP assessment (WMO, 2014). The differences could be explained by the choice of 

GHG scenario for the baseline estimate (A1b in WMO (2014) versus RCP 6.0 here), and some 

model updates including realistic tropospheric chemistry. In addition, the time series for surface 

ODSs used here results in a return of stratospheric halogen loading to the 1980 value that is about 

5 years later than assumed for the CCM runs examined in WMO (2014). The CCMI models project 40 

that global total column ozone will return to 1980 values in 2049 (with a 1-σ uncertainty of 2043-

2055). At mid-latitudes, Southern Hemisphere ozone is projected to return to 1980 values in 2045 

(2039-2050), and Northern Hemisphere ozone in 2032 (2020-2044). In the polar regions, the 

return dates are 2060 (2055-2066) in the Antarctic in October and 2034 (2025-2043) in the Arctic 

in March. The earlier return dates in the NH reflect larger impact of dynamics on ozone in this 45 

hemisphere. In the tropics only around half the models predict a return to 1980 values, at around 

2040, while the other half do not show a return to 1980 values (giving the mean of 2058). All 

models show a negative trend in tropical total column ozone towards the end of the 21st century. 
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An important result from the simulations presented here is the strong regional differences in the 

future evolution of total column ozone due to the effects of climate change. These climate effects 

are least evident in the Antarctic spring where future ozone depends largely on halogen loading. 

In contrast, in the NH the models predict a super-recovery while in the tropics the models predict 

a possible further decrease in column ozone, possibly without any return to 1980 values. 5 

 

There is different behaviour in the partial column ozone between the lower and upper stratosphere. 

In the lower stratosphere, where ozone is long-lived and affected by dynamics, there are 

differences in the timescale for recovery between the polar regions and mid-latitudes. Moreover, 

in the tropics, increased upwelling prevents the return of partial column ozone (PCO) in many 10 

models. In contrast in the upper stratosphere the predicted behaviour is similar in all regions. 

Ozone returns to values larger than in 1980 by 2040 and carries on increasing due to the effect of 

stratospheric cooling. For the upper stratosphere, the CCM predictions do not vary a lot and are in 

good agreement with past observations, indicating that relevant processes are represented 

adequately in the models. For the lower stratosphere, some obvious differences are seen between 15 

the CCM results, indicating possible inadequate descriptions of dynamical (transport) and 

chemical (heterogeneous) processes due to temperature biases (in the polar regions and tropics) in 

the CCMs. 

 

The CCMI models generally agree in their simulation of the time evolution of stratospheric 20 

inorganic chlorine (Cly), which is the main driver of ozone loss and recovery, although there is 

some inter-model variability. The situation is similar for the simulation of inorganic bromine but 

with a larger relative spread between the models due to varying treatments of short-lived species 

and a model without a representation of halons. However, there do appear to be issues with the 

chemistry and/or transport in a few of the model simulations. Throughout the stratosphere the 25 

spread of ozone return dates to 1980 values between models tends to correlate with the spread of 

the return of Cly to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds 

up the return by about 10-20 years. In the lower stratosphere, and for the column, there is a more 

direct link in the timing of the return dates, especially for the large Antarctic depletion. 

Comparisons of total column ozone between the models is affected by different predictions of the 30 

evolution of tropospheric ozone within the same scenario, presumably due to differing treatment 

of tropospheric chemistry. Therefore, for some scenarios clear conclusions can only be drawn for 

stratospheric ozone columns. 

 

As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O 35 

and CH4. However, the effect in the simulations analysed here is small and at the limit of 

detectability from the small number of realisations available for these experiments compared to 

internal model variability. The sensitivity scenarios examined in this study did show that a future 

decline of N2O below an RCP6.0 projection (i.e., back to 1960 abundances) could reduce the 

global SCO return date by up to 15 years. In the opposite sense, an increase of CH4 above the 40 

RCP6.0 projection (i.e., using RCP8.5 abundances) could again reduce the global SCO return date 

by up to 15 years. Both the N2O and CH4 global column ozone sensitivities are mainly realised 

through chemical impacts in the tropics. 

 

Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future 45 

scenarios, in particular of GHGs, and uncertainties in models. The scenario uncertainty is small in 

the short term but increases with time, and is large by the end of the century. For the models, while 

it is possible that they all may be missing important but unknown processes, there are still some 

model-model differences related to known first-order processes which affect ozone recovery. 

Work needs to continue to ensure that models used for assessment purposes accurately represent 50 

stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those 
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models are used to calculate return dates. Nevertheless, the agreement between the results 

presented here and previously published work gives some confidence that we can model the future 

evolution of the ozone layer. For future assessments of single forcing or combined effects of CO2, 

CH4, and N2O on the stratospheric column ozone return dates, this work suggests that is more 

important to have multi-member (at least 3) ensembles for each scenario from each established 5 

participating model, rather than a large number of individual models. 
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Tables 

 

Table 1. Definitions of CCMI scenarios. Adapted from Eyring et al., (2013a). 
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Table 2. CCMI simulations analysed in this study. The numbers indicate the number of 

realisations by each model for each simulation. 
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CHASER (MIROC-ESM)  1 1 1 1 1  1 1  1 8 

CMAM 3 1 1 1 1 1 1 1 1 1 1 13 

CNRM-CM5-3 4 1 2         7 

EMAC-L47 1 1 1         3 
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Table 3. Total column ozone (TCO) return dates to 1980 baseline from REF-C2 simulations using 

different averaging methods. Values in brackets indicate recovery dates based on either 1-σ 

standard deviation or 10th and 90th percentile estimates. The number 2100 in italics indicates that 

the estimated ozone uncertainty range has not returned to the 1980 values within the time range 5 

of the model simulation. The MMM for RCP 6.0 derived from the CMIP5 models (Erying et al., 

2013b) is shown in column two. 

 

WMO1 

(2011, 2014) 

CMIP52 

Eyring et al. 

(2013) 

CCMI REF-C2 (this work) 

MMM Median MMM1S 

SH pole 

(October) 

2050 
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SH Mid-
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2041 

(2033-2046) 
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(2028-        ) 

N/A 2100 

(2034-2100) 
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(2013-2100) 
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(2011-2047) 
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NH pole 

(March) 

2030 

(2025-2035) 
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Near Global 
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Global 
2032 

(2027-2038) 

 2046 

(2035-2058) 

2048 

(2040-2073) 

2049 

(2043-2055) 

1. Based on CCMVal-2 model simulations (A1b GHG scenario) and reported in WMO (2011) and Table 

2-5 and Figure 3-16 of WMO (2014). 

2. Based on CMIP5 models used in Figure 2-23 of WMO (2014) with the point-wise 95% confidence 10 
interval. This approach to estimating uncertainties was also used in Eyring et al. (2013b), Eyring et al. 

(2010b) and Chapter 3 of WMO (2011). 
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Table 4. Stratospheric column ozone (SCO) return dates to 1980 baseline from various 

simulations. Values in brackets indicate the range of recovery dates based on 1-σ standard 

deviation. The number 2100 in italics indicates that the estimated ozone uncertainty range has not 

returned to the 1980 values within the time range of the model simulation. Simulations starting in 5 

year 2000 (SEN-C2-CH4RCP85, SEN-C2-RCP45 and SEN-C2-RCP85) use 1980 baseline from 

REF-C2 simulations. 
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Figure 1. (a) Total column ozone time series (DU) for Antarctic in October from 19 individual 5 

CCMs for the REF-C2 simulations along with observations from the Solar Backscatter 

Ultraviolet (SBUV) merged ozone dataset (MOD) (Frith et al., 2017). The MMM, median 

(MedM) and MMM1S are shown with thick green, blue and red lines, respectively. The light 

blue shaded region indicates the 10th and 90th percentile range. Light green and red regions show 

1-σ variability w.r.t. MMM and MMM1S lines, respectively. (b) Same as panel (a) but adjusted 10 

total ozone time series w.r.t. mean 1980-1984 observations and after application of 10-point 

boxcar smoothing. The dashed black line indicates 1980 reference value. 
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Figure 2. MMM1S total column ozone time series (DU) from REF-C1 (blue), REF-C1SD (dark 

cyan) and REF-C2 (red) simulations for the (left) SH polar (October) and (right) NH polar 5 

(March) regions. The dashed black lines show the 1980 reference value for each latitude band. 

The shaded regions show 1-σ variability w.r.t. the MMM1S lines of the same colour. The top 

row shows the unadjusted modelled values and the bottom row shows the time series adjusted 

w.r.t. mean 1980-1984 observations and after application of a 10-point boxcar smoothing. Also 

shown are the merged SBUV observations. 10 
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Figure 3. MMM1S total column ozone time series (DU) from REF-C2 (red), SEN-C2-fGHG 

(dark green), and SEN-C2-fODS (brown) simulations for five latitudinal bands and the near-5 

global (60oS-60oN) mean (see main text). The dashed black lines show the 1980 reference value 

for each latitude band. Also shown are the merged SBUV observations. 
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Figure 4. Estimated MMM1S return dates (red triangles) from the REF-C2 simulations for (left) 

total column ozone (TCO) and (right) stratospheric column ozone (SCO) for different latitude 5 

bands. The estimated 1-σ uncertainties are shown with vertical black lines. Estimates for 

individual models are shown with coloured dots. Some individual models do not predict a return 

of column ozone in the tropics and so this uncertainty is indicated by a dashed line. 
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Figure 5. Evolution of partial column ozone (DU) for the lower stratosphere (tropopause - 10 

hPa) from the REF-C2 simulations from 14 individual models, along with the MMM1S. Also 5 

shown are estimates of the partial column from the Bodeker Scientific Vertical Ozone 

(BSVertOzone) database, which is based on a compilation of satellite, balloon and ground-based 

measurements (Bodeker et al., 2013). 
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Figure 6. As Figure 5 but for the upper stratosphere (≥ 10 hPa). 
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Figure 7. Evolution of (left) inorganic chlorine (Cly, ppb) and (right) total (organic + inorganic) 

chlorine from the REF-C2 simulations for 17 individual models and the MMM1S over the 5 

Antarctic in October at (top) 5 hPa and (bottom) 50 hPa. The dashed black lines show the 1980 

reference value. Also shown in the left panels are observed October mean values of the sum of 

HCl and ClO from version 4 of the Microwave Limb Sounder (MLS) data (Waters et al., 2006; 

Livesey et al., 2017) from 2005 to 2017 (black dots) and the mean value over that period (red 

square). Note that not all models are plotted in the right-hand panels. 10 

  



  

37 

 

 

 
 

Figure 8. Correlation plots of ozone return dates against Cly return dates for (left) the Antarctic 

and (right) the Arctic from REF-C2 simulations for individual models and the MMM1S at (top) 5 

5 hPa, (middle) 50 hPa and (bottom) stratospheric column (SCO). The red triangle is the multi-

model mean. The dashed blue line is the 1:1 line between Cly and ozone return dates. The model 

symbols are the same as those used in Figure 4. 
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Figure 9. Evolution of tropospheric partial column ozone (DU) (surface - tropopause) from 14 

individual models and the MMM1S for the REF-C2 simulations. Also shown is the tropospheric 5 

partial column ozone derived from BSVertOzone data. 
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Figure 10. Evolution of tropospheric partial column ozone (DU) (surface-tropopause) MMM1S 

for REF-C2 and the RCP scenarios SEN-C2-RCP45 and SEN-C2-RCP85. Also shown is the 5 

tropospheric partial column ozone derived from BSVertOzone data. 
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Figure 11. As Figure 10 but for stratospheric column ozone (SCO). 
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Figure 12. Estimated MMM1S return dates (red triangles) from stratospheric column ozone time 

series for (top) SEN-C2-fGHG, SEN-C2-fN2O and SEN-C2-fCH4 and (bottom) SEN-C2-5 

CH4RCP85, SEN-C2-RCP45 and SEN-C2-RCP85. Estimated uncertainties are shown with 

vertical black lines. Grey triangles indicate SCO return dates from REF-C2 (Figure 4). 

Estimates for individual models are shown with coloured dots. Points with return dates (and 

uncertainties) that are greater than year 2100 are not shown. 
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Figure 13. Evolution of Antarctic October mean stratospheric column ozone (DU) from 8 

selected models for the REF-C2, SEN-C2-fCH4, SEN-C2-fN2O, SEN-C2-fODS, SEN-C2-5 

fGHG and SEN-C2-CH4RCP85 simulations. Each panel gives the name of the model shown. 

The solid lines are the 10-year smoothed SCO for a given simulation. The shading on the lines 

shows either the standard deviation from an ensemble of realisations from that model, or the 

deviation from a 3-box smoothed line if only 1 realisation is available. Note that not all models 

have performed all simulations. Also shown in each panel is the SCO derived from 10 

BSVertOzone data (filled black circles). 
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Figure 14. As Figure 13 but for SH mid-latitude annual mean. 


