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	54	
	55	
Abstract	56	
	57	
In	 this	 study	 we	 introduce	 a	hybrid	 ensemble	 consisting	 of	 air	 quality		 models	58	
operating	at	both	 the	global	 and	 regional	 scale.	 The	work	 is	motivated	by	 the	 fact	59	
that	 these	 different	 types	 of	 models	 treat	 specific	 portions	 of	 the	 atmospheric	60	
spectrum	with	different	levels	of	detail	and	it	is	hypothesized	that	their	combination	61	
can	 generate	 an	 ensemble	 that	 performs	 better	 than	 mono-scale	 ensembles.	 A	62	
detailed	analysis	of	the	hybrid	ensemble	is	carried	out	in	the	attempt	to	investigate	63	
this	hypothesis	and	determine	the	real	benefit	 it	produces	compared	to	ensembles	64	
constructed	from	only	global	scale	or	only	regional	scale	models.	The	study	utilizes	65	
13	 regional	 and	 7	 global	 models	 participating	 in	 the	 HTAP2/AQMEII3	 activity	 and	66	
focuses	 on	 surface	 ozone	 concentrations	 over	 Europe	 for	 the	 year	 2010.	67	
Observations	 from	 405	 monitoring	 stations	 are	 used	 for	 the	 evaluation	 of	 the	68	
ensemble	 performance.	 The	 analysis	 first	 compares	 the	 modelled	 and	 measured	69	
spectra	and	then	assesses	the	properties	of	the	mono-scale	ensembles,	particularly	70	
their	level	of	redundancy,	in	order	to	inform	the	process	of	constructing	the	hybrid	71	
ensemble.	The	main	conclusion	of	this	study	 is	that	the	 improvements	obtained	by	72	
the	hybrid	ensemble	relative	 to	 the	mono-scale	ensembles	can	be	attributed	to	 its	73	
hybrid	 nature.	Moreover,	 the	optimal	 set	 is	 constructed	 from	an	 equal	 number	of	74	
global	and	regional	models	at	only	15%	of	 the	stations.	Finally,	 the	study	reaffirms	75	
the	importance	of	an	in-depth	inspection	of	any	ensemble	of	opportunity	in	order	to	76	
extract	the	maximum	amount	of	information	and	to	have	full	control	over	the	data	77	
used	in	the	construction	of	the	ensemble.	78	
	 	79	

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-86
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 15 February 2018
c© Author(s) 2018. CC BY 4.0 License.



	 3	

1.	Introduction	80	

It	 has	 been	widely	 demonstrated	 (e.g	 Potempsky	 and	 Galmarini,	 2009)	 that	when	81	

multiple	 model	 results	 are	 distilled	 to	 retain	 only	 original	 and	 independent	82	

contributions	 (Solazzo	 et	 al.	 2012)	 and	 thereafter	 statistically	 combined	 in	what	 is	83	

usually	 called	 an	 ensemble,	 one	obtains	 results	 that	 are	 systematically	 superior	 to	84	

the	performance	of	the	individual	models	and	therefore	can	provide	more	accurate	85	

and	robust	assessments	or	predictions.		86	

	87	

An	additional	advantage	of	using	an	ensemble	treatment	resides	in	the	fact	that	the	88	

multiplicity	 of	 the	 results	 also	quantifies	 the	 spread	of	 the	model	 solutions,	which	89	

provides	 useful	 information	 for	 the	 subsequent	 use	 of	 the	 model	 predictions	 for	90	

planning	 purposes	 or	 more	 generically	 decision-making	 as	 it	 is	 a	 measure	 of	 the	91	

variability	of	the	options,	scenarios	or	simply	predictions.	92	

	93	

When	 using	 ensembles	 in	 the	 realm	 of	 air	 quality	 modeling	 and	 atmospheric	94	

dispersion,	the	general	tendency	is	to	combine	results	of	models	that	belong	to	the	95	

same	 category.	 Especially	 when	 referring	 to	 ensembles	 of	 opportunity	 (e.g.	96	

Galmarini	et	al.	2004;	Tebaldi	and	Knutti	al.	(2007);	Potempsky	and	Galmarini,	2009,	97	

Solazzo	 et	 al.	 2012;	 Solazzo	 and	 Galmarini,	 2015),	 which	 combine	 results	 from	98	

different	 models	 applied	 to	 the	 same	 case	 study,	 it	 is	 customary	 to	 consider	 as	99	

members	 those	obtained	 from	a	homogeneous	group	of	models.	 In	particular,	 the	100	

scale	 at	which	models	 operate	 seems	 to	 be	 a	 discriminant	 in	 all	 such	 studies	 that	101	

have	been	performed	 to	date.	 Therefore,	meso-,	 regional-,	 and	global-scale	model	102	

results	are	grouped	in	ensembles	according	to	their	scale	of	pertinence.	In	air	quality	103	

studies,	 this	 has	 been	 the	 case	 for	 example	 in	 Fiore	 et	 al.	 (2009),	 Solazzo	 et	 al.	104	

(2012),	Kioutsoukis	and	Galmarini	(2014),	and	Kioutsoukis	et	al	(2016).	Colette	et	al.	105	

(2012)	 analyzed	 as	 part	 of	 an	 analysis	 of	 the	 exposure	 in	 Europe,	 results	 from	 an	106	

ensemble	 of	 opportunity	 of	 a	 total	 of	 6	 models,	 3	 of	 which	 where	 global	 and	 3	107	

regional.	The	focus	however	was	not	the	analysis	of	the	contribution	of	neither	the	108	

hybrid	character	of	the	group	to	the	ensemble	result	nor	the	role	of	redundancy	and	109	

reducibility	 of	 the	 set,	 but	 more	 obtaining	 a	 robust	 assessment	 of	 the	 2030	 air	110	

quality	 in	Europe.	A	potential	benefit	of	the	mixed	ensemble	was	spelled	out	there	111	
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but	never	verified	in	line	with	the	opportunity	character	of	the	grouping.	Therefore	112	

there	is	no	record	in	the	literature	of	a	study	of	an	ensemble	of	models	working	at	113	

different	scales.		114	

	115	

When	developing	a	model,	 the	 scale	 selection	 is	deeply	 rooted	 in	 the	approach	 to	116	

atmospheric	 modeling	 and	 it	 finds	 a	 theoretical	 justification	 in	 the	 alleged	 scale-117	

separation	shown	in	the	energy	spectrum	of	dynamic	variables	such	as	horizontal	or	118	

vertical	wind	velocities	(Van	der	Hoven,	1957).	Although	it	is	now	well	accepted	that	119	

the	 assumed	 scale	 separation	does	not	 have	 general	 validity,	 (e.g.	Galmarini	 et	 al.	120	

1999,	 Pielke,	 2013)	 and	 especially	 not	 for	 scalars	 (e.g.	 Galmarini	 et	 al.,	 2000;	121	

Michelutti	 et	 al.,	 1999;	 Jonker	 et	 al.,	 1999;	 Jonker	 et	 al.,	 2004),	 it	 has	 become	 a	122	

convenient	 theoretical	 justification	 for	 the	 development	 of	 numerical	 models	 at	123	

specific	 scales	and	to	address	 the	challenge	that	 the	computational	solution	of	 the	124	

fundamental	 equation	 is	 imposing.	 Numerical	 constraints,	 in	 fact,	 oblige	 us	 to	125	

identify	 the	portion	of	 the	energy	spectrum	to	be	explicitly	 resolved	by	the	model.	126	

Larger	domains	 imply	 larger	grid	spacing	for	practical	constraints	on	the	number	of	127	

grid	points	where	the	equations	are	to	be	solved.	Larger	domains	on	the	one	hand	128	

allow	 us	 to	move	 the	 resolved	 scales	 up	 in	 the	 atmospheric	 spectrum	 but	 at	 the	129	

same	time	the	coarser	resolution	leads	to	the	loss	of	detail	in	the	treatment	of	sub-130	

grid	 processes	 which	 are	 represented	 by	 parameterizations.	 Thus,	 for	 example,	 a	131	

model	that	has	the	entire	globe	as	simulation	domain	will	have	to	use	a	horizontal	132	

grid	 spacing	 of	 25	 to	 100	 km	 and	 therefore	 approximate	 (parameterize)	 the	 large	133	

number	 of	 important	 processes	 occurring	 below	 those	 grid	 sizes.	 Conversely	 and	134	

under	 normal	 conditions,	 a	 regional	 scale	model	 that	works	with	 a	 horizontal	 grid	135	

spacing	of	approximately	12-15	km	will	resolve	explicitly	the	dynamics	and	transport	136	

that	 occurs	 at	 scales	 larger	 than	 that	 distance	 but	 will	 not	 be	 able	 to	 extend	 the	137	

computational	domain	to	the	hemispheric	or	the	global	scale.	The	scale	separation	138	

hypothesis	states	that	the	energy	peak	of	boundary	layer	processes	is	isolated	from	139	

the	 rest	 of	 the	 spectrum,	 thus	 justifying	 their	 parameterization	 in	 a	 global	model.	140	

The	 same	 principle	 holds	 for	 a	 regional	 scale	 model.	 However,	 in	 the	 case	 of	 a	141	

regional	scale	model,	all	the	processes	with	scales	falling	in	between	12-15	km	and	a	142	

global-scale	model	grid-spacing	(25-100	km)	are	resolved	explicitly.	143	
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	144	

Although	 models	 are	 developed	 according	 to	 specific	 scales,	 nothing	 prevents	 us	145	

from	 combining	 them	 in	 an	 across-scale	 ensemble.	 What	 may	 appear	 to	 be	 just	146	

another	 attempt	 to	 combine	 model	 results	 for	 the	 sake	 of	 further	 and	 diversely	147	

populating	an	ensemble,	has	in	fact	a	more	rigorous	motivation.	Models	working	at	148	

different	scales	represent	with	different	degrees	of	accuracy	and	precision	different	149	

portions	 of	 the	 atmospheric	 spectrum	 and	 therefore	 processes.	 Our	 working	150	

hypothesis	 is	 therefore	that	by	combining	global	and	regional	scale	models	 into	an	151	

ensemble,	there	is	a	high	probability	that	they	would	complement	each	other	across	152	

scales	and	consequently	provide	an	 improved	ensemble	performance	compared	to	153	

single	scale	ensembles.	154	

	155	

Since	in	this	study	we	are	dealing	with	chemical	transport	models	(CTM)	we	should	156	

also	 consider	 that	 chemical	mechanisms	 span	 across	 a	 wide	 range	 of	 time	 scales.	157	

This	 could	 also	 constitute	 an	 element	 of	 diversity	 among	 the	 models	 working	 at	158	

different	 space	 scale	 although	 the	 time	 resolutions	 for	 regional	 and	 global	 scale	159	

models	 are	 comparable.	 One	 could	 argue	 that	 in	 regional	 domains	 in	 particular,	160	

regional	models	essentially	represent	in	detail	the	chemistry	over	a	timescale	of	10-161	

days	 which	 then	 gets	 advected	 out	 and	 “reset”.	 For	 example,	 differing	162	

representations	of	organic	nitrate	lifetimes	and	how	long	they	sequester	NOx	in	the	163	

system,	impacts	large	scale	O3.	Thus	the	difference	in	chemical	mechanisms	related	164	

to	longer-lived	species	and	multi-day	chemistry	could	also	introduce	diversity	and	be	165	

another	reason	for	exploring	such	an	“across-scale	ensemble”.	166	

	167	

Apparent	 ancillary	 elements	 that	 could	 also	 improve	 the	 ensemble	 results	 are	 for	168	

example	 the	 differences	 in	 emission	 inventories	 or	 in	 general	 sources	 of	 primary	169	

information,	 whose	 accuracy	 and	 precision	 cannot	 be	 guaranteed	 a	 priori	 or	170	

evaluated	 and	 that	 could	 contribute	 to	 the	 development	 of	 additional	 probable	171	

solutions.		172	

	173	

As	presented	 in	the	past,	 the	diversity	of	modeling	approaches	 is	 the	element	that	174	

favors	a	better	ensemble	product	 (Kioutsoukis	 and	Galmarini,	 2014;	Kioutsoukis	et	175	
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al.,	 2016).	 In	 this	 sense	 the	 combination	 of	 model	 results	 that	 focus	 on	 different	176	

scales	 and	 that	 account	 in	 a	 different	 form	 for	 the	 chemical	 mechanism	 has	 the	177	

potential	to	increase	the	value	of	an	ensemble	to	which	we	will	refer	from	now	on	as	178	

the	hybrid	ensemble.		179	

	180	

The	focus	in	this	paper	will	therefore	be	on	the	analysis	of	the	behavior	of	a	hybrid	181	

ensemble.	 The	 variable	 considered	 is	 the	 ozone	 concentration	 measured	 and	182	

modeled	 for	 the	 year	 2010	 over	 the	 European	 continent.	 The	 analysis	 takes	183	

advantage	of	the	unique	opportunity	offered	by	the	HTAP2/AQMEII3	activity	which	184	

brought	together	global	and	regional	scale	models	to	work	on	the	same	case	study	185	

with	a	high	level	of	coordination	(Galmarini	et	al.,	2017)	as	far	as	the	input	data	are	186	

concerned.	187	

	188	

In	section	2,	the	observations	and	model	results	used	in	the	analysis	are	presented	in	189	

detail.	In	Section	3	the	model	results	are	characterized	in	the	phase	space	to	clearly	190	

establish	whether	the	two	scale	groups	do	indeed	account	for	different	portions	of	191	

the	energy	spectrum	in	a	distinctly	different	way.	Prior	to	analyzing	the	performance	192	

of	 the	different	ensembles,	 in	Section	4	we	evaluate	 the	 individual	models	against	193	

the	measurements	using	conventional	statistics	as	well	as	the	newly	developed	error	194	

apportionment	analysis	presented	by	Solazzo	and	Galmarini	(2016).	Section	5	and	6	195	

are	 dedicated	 to	 the	 analysis	 of	 the	 individual	 scale	 ensembles	 and	 the	 hybrid	196	

ensemble.	Section	7	is	dedicated	to	the	comparison	hybrid	ensemble	and	single	scale	197	

ensemble	performance.	The	conclusions	are	discussed	in	section	8.	198	

	199	

	200	

2.	The	models	used	and	the	case	study	201	

The	 set	 of	 models	 results	 considered	 and	 analyzed	 in	 this	 work	 are	 those	 that	202	

contributed	to	the	HTAP2	and	AQMEII3	modeling	initiatives	described	in	Galmarini	et	203	

al.	(2017).		204	

	205	

HTAP2	 is	 the	 second	 phase	 of	 the	 modeling	 activities	 of	 the	 Task	 Force	 on	206	

Hemispheric	 Transport	 of	 Air	 Pollutants	 (TF-HTAP)	 during	 which	 a	 community	 of	207	
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global	scale	CTMs	performed	a	large	number	of	simulations	with	the	primary	goal	of	208	

investigating	the	transcontinental	exchange	of	atmospheric	pollutants	(Dentener	et	209	

al,	 2010;	 Fiore	 et	 al.	 2009).	 AQMEII3	 is	 the	 third	 phase	 of	 the	 Air	 Quality	 Model	210	

Evaluation	International	Initiative	(AQMEII,	Rao	et	al.	2011)	which	brings	together	a	211	

community	of	 European	 (EU)	 and	North	American	 (NA)	 regional	 scale	modelers	 to	212	

work	on	coordinated	case	studies	over	EU	and	NA.	For	this	third	phase,	the	regional	213	

scale	air	quality	modeling	activity	has	been	performed	within	HTAP2	framework.	The	214	

coordination	 between	 HTAP2	 and	 AQMEII3,	 as	 detailed	 in	 Galmarini	 et	 al.	 (2017),	215	

relates	 to	 the	 use	 of	 HTAP2	 global	 model	 results	 as	 boundary	 conditions	 to	 the	216	

regional	 scale	models	 and	 the	 use	 of	 the	 same	 anthropogenic	 emission	 inventory	217	

(Janssens-Maenhout	 et	 al.,	 2015)	 by	 both	 communities.	 The	 list	 of	 regional	 and	218	

global	scale	models	analyzed	in	this	work	is	presented	in	Tables	1	and	2	respectively.	219	

The	simulations	are	for	the	year	2010	and	the	regional	scale	models	were	all	initiated	220	

and	received	boundary	conditions	from	the	same	global	chemistry	transport	model	221	

C-IFS	(Flemming	et.al,	2015).	C-IFS	 is	also	one	of	the	global	models	that	are	part	of	222	

the	global	model	ensemble.	The	two	sets	of	models	have	been	extensively	evaluated	223	

(Solazzo	et	al.	2017;	Solazzo	and	Galmarini,	2016;	Jonson	et	al.,	2018;	Galmarini	et	al.	224	

2018).		225	

	226	

The	analysis	presented	here	focuses	exclusively	on	ozone	over	the	EU	continent	for	227	

which	the	largest	abundance	of	models	for	the	two	groups	is	available	and	for	which	228	

case	we	can	take	stock	on	the	fact	that	the	models’	performance	has	been	analyzed	229	

with	 respect	 to	other	 species	elsewhere	 (Im	et	al.,	2017).	 In	 the	 figures	and	 tables	230	

resulting	from	our	analysis,	we	shall	not	identify	the	individual	models	used	since	our	231	

goal	 is	 the	 identification	 of	 possible	 advantages	 in	 using	 hybrid	 ensembles	 rather	232	

than	evaluating	individual	model	results.	233	

	234	

Hourly	modeled	concentrations	of	ozone	were	extracted	by	the	modeling	groups	at	235	

European	routine	and	non-routine	sampling	locations	presented	in	Figure	1.	Details	236	

on	 the	 networks	 used	 can	 be	 found	 in	 Solazzo	 et	 al.	 (2012),	 Im	 et	 al.	 (2015),	 and	237	

Solazzo	et	al.	 (2017).	Surface	data	were	provided	by	 the	European	Monitoring	and	238	

Evaluation	Programme	(EMEP;	http://www.emep.int/)	and	the	European	Air	Quality	239	
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Database,	 AirBase	 (http://acm.eionet.europa.eu/databases/airbase).	 For	 the	240	

purposes	 of	 comparing	 the	 ensemble	 performance	 with	 observations,	 only	 rural	241	

stations	with	data	completeness	greater	than	75%	for	the	entire	year	and	elevation	242	

above	 ground	 lower	 than	 1000	 m	 have	 been	 included	 in	 the	 analysis.	 The	 total	243	

number	of	valid	time	series	used	is	483.	244	

	245	

	246	

3.	 Spectral	 analysis	 of	 the	 global	 and	 regional	 model	 time	 series	 of	 ozone	247	

concentrations	248	

One	year	of	one-hour	 resolution	ozone	data	allows	us	 to	produce	detailed	 spectra	249	

from	the	two	groups	of	models	and	the	measured	concentrations.	 In	Figure	2a	the	250	

spectrum	of	the	monitoring	time	series	is	shown	as	a	function	of	the	frequency	and	251	

without	any	smoothing.	 In	Figures	2b	and	c,	 smoothed	 individual	power	spectra	of	252	

ozone	(plotted	against	the	period	in	days	for	easier	interpretation)	from	global	(2b)	253	

and	regional	 (2c)	models	are	compared	with	the	spectrum	of	the	measured	ozone.	254	

The	 time	 series	 of	 the	 rural	 monitoring	 stations	 have	 been	 averaged	 prior	 to	255	

producing	the	spectra.	In	all	subsequent	results	the	measured	time	series	should	be	256	

interpreted	as	ensemble	averages	of	all	available	rural	monitoring	stations.		257	

	258	

Since	ozone	is	a	scalar	quantity,	its	spectrum	grows	monotonically	in	log-log	scale	as	259	

expected	(e.g.	Galmarini	et	al.,	2000),	showing	a	distinct	peak	around	a	period	of	24	260	

hours	(more	visible	in	the	unsmoothed	spectrum	(Figure	2a)),	corresponding	to	the	261	

daily	boundary	layer	evolution	and	photochemical	production	of	ozone.	This	peak	is	262	

captured	 well	 by	 the	 two	 groups	 of	 model.	 The	 global	 set	 tends	 to	 slightly	263	

underestimate	the	energy	associated	with	this	period	with	only	a	single	model	that	264	

overestimates	 it.	 The	 regional	 scale	 models	 are	 evenly	 distributed	 around	 the	265	

spectrum	of	the	measured	time	series.	The	two	groups	behave	remarkably	similarly	266	

at	scales	smaller	 than	the	daily	peak.	The	majority	of	 the	models	overestimate	the	267	

energy	but	capture	the	slope	of	the	measured	spectrum.	As	expected,	the	spectra	of	268	

the	 global	models	 are	more	 scattered	 but	 yet	 very	 well	 behaved.	 A	 weak	 second	269	

peak	 is	 visible	 between	 30	 and	 50	 days,	 which	 could	 be	 easily	 attributed	 to	 the	270	

synoptic	variability.	Solazzo	and	Galmarini	(2016)	demonstrated	that	it	could	indeed	271	
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be	 connected	 to	 meteorology	 and/or	 removal	 by	 dry	 deposition.	 Moving	 up	 the	272	

period	 scale,	 after	 the	 daily	 peak,	 all	 regional	 scale	 model	 spectra	 are	 below	 the	273	

observed	spectra	a	behavior	that	continues	apart	from	a	few	exceptions	up	until	the	274	

60-70	day	period	range.	Out	of	seven	global	models	however,	only	3	under-	or	over-275	

estimate	 the	 energy	 in	 this	 period-range	 while	 the	 rest	 match	 the	 observed	276	

spectrum.	 At	 70-80	 days	 a	 new	 peak	 appears	 in	 the	 observed	 time	 series,	277	

corresponding	 to	 the	 seasonal	 variability.	 Only	 one	 global	 model	 captures	 the	278	

observed	time	series,	three	models	seem	to	anticipate	it	at	smaller	periods	and	even	279	

in	 the	 regional	 scale	 group	 there	 is	 a	 variety	 of	 behaviors	 including	 a	 monotonic	280	

increase	of	the	energy	throughout	this	period	range.		Beyond	the	100-day	period	the	281	

ozone	energy	spectrum	grows	monotonically,	which	the	global	model	group	matches	282	

the	power	 line	very	closely	whereas	 the	regional	scale	group	shows	a	more	erratic	283	

behavior.	284	

	285	

This	 first	 test	 is	 important	 to	assess	 the	 fundamental	differences	between	 the	 two	286	

sets	 of	 models	 with	 respect	 to	 the	 characteristics	 of	 the	 signal,	 the	 periodicities	287	

present	 in	 the	 latter	and	the	ability	 to	reproduce	the	power	or	 the	variance	of	 the	288	

measured	signal	at	the	various	frequencies	(periods).	 	 In	addition,	 it	can	give	us	an	289	

idea	of	the	level	of	complementarity	that	exists	between	the	two	groups	of	models	290	

in	 the	 representation	 of	 the	 measured	 power	 spectrum.	 As	 clearly	 evident	 from	291	

Figure	2,	both	groups	of	models	show	an	internal	coherence	in	the	representation	of	292	

the	power	spectra.	A	remarkable	result	is	the	capacity	of	global	models	to	represent	293	

the	high	frequency	part	of	the	ozone	spectrum	with	an	accuracy	that	is	comparable	294	

with	regional	models.	We	can	expect	a	complementarity	in	the	behavior	of	the	two	295	

groups	 in	 the	 large-scale	 energy	 range,	which	 should	 be	 regulating	 the	 long-range	296	

transport	and	background	values.	The	global	models	have	a	better	representation	of	297	

that	portion	of	the	spectrum	than	the	regional	one.	An	element	of	surprise	resides	in	298	

the	fact	that	the	behavior	of	the	two	groups	is	rather	similar	for	ozone	as	measured	299	

by	a	power	spectrum.	300	

	301	

	302	

4.	Group	performance	and	error	apportionment	303	
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A	 characterization	 of	 model	 performance	 for	 the	 individual	 members	 of	 the	 two	304	

groups	 beyond	 the	 information	 provided	 in	 Galmarini	 et	 al.	 (2018),	 Solazzo	 et	 al.	305	

(2017),	and	Jonson	et	al.	(2018)	is	also	appropriate	at	this	stage.		306	

	307	

The	 Taylor	 diagrams	 presented	 in	 Figures	 3a	 and	 b	 provide	 an	 overview	 of	 the	308	

individual	 model	 performance	 across	 the	 year	 of	 reference.	 All	 model	 results	309	

underwent	 un-biassing	 (subtract	 the	 annual	 mean	 bias	 from	 the	 predicted	 hourly	310	

values,	 which	 produces	 a	 shift	 of	 the	 annual	 time	 series	 up	 or	 down	 by	MB).	We	311	

notice	 that	 the	 global	models	 show	 a	more	 scattered	 behaviour	 compared	 to	 the	312	

regional	 scale	 models,	 with	 performance	 distributed	 across	 a	 wider	 range	 of	313	

standard	 deviation	 values.	 Among	 the	 global	 scale	models	 we	 find	 a	 clear	 outlier	314	

(model	 5)	 whereas	 the	 rest	 tend	 to	 group	 in	 a	 rather	 narrow	 range	 of	 standard	315	

deviation	 values	 and	 correlations.	 Among	 the	 regional	 scale	 models	 we	 can	 also	316	

identify	 an	 outlier	 specifically	model	 9.	 The	 RMSE	 values	 range	 from	 22.4	 to	 25.9	317	

ugm-3	 for	 the	global	models	and	21	 to	24.7	ugm-3	 for	 the	 regional	models	and	are	318	

thus	comparable.	Global	models	overestimate	the	observed	standard	deviation	while	319	

regional	 scale	models	with	 the	 exception	of	model	 9	 are	 evenly	 distributed	 across	320	

the	observed	values.	The	correlation	coefficient	is	comparable	for	the	two	groups	of	321	

models. 322	

		323	

Figure	4a	and	b	present	two	classical	skill	scores	for	categorical	events	also	applied	324	

by	 Kioutsioukis	 et	 al.	 (2016),	 namely	 the	 probability	 of	 detection	 (POD)	 and	 false	325	

alarm	rate	(FAR).	The	former	represents	the	proportion	of	occurrences	(e.g.	events	326	

exceeding	a	threshold	value)	that	were	correctly	identified,	whereas	the	latter	is	the	327	

proportion	 of	 non-occurrences	 that	 were	 incorrectly	 identified	 as	 happening.	 In	328	

other	 words	 they	 measure	 true	 and	 false	 positives.	 In	 this	 case	 the	 scores	 are	329	

calculated	on	 the	basis	of	 the	 individual	model	performances	at	each	station.	POD	330	

and	FAR	plots	 are	presented	as	probabilities	 above	a	 fixed	 threshold	of	 100	ugm-3	331	

(Figure	4a)	and	as	breakdowns	for	different	threshold	values	(Figure	4b),	where	the	332	

abundance	of	the	observed	data	per	concentration	range	is	also	given	as	histogram.		333	

The	 POD	 charts	 show	 that	 the	 global	models	 have	 a	 notably	 higher	 probability	 to	334	

identify	 true	 positives	 and	 that	 this	 POD	 is	 maintained	 at	 the	 various	 threshold	335	
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levels.	 At	 the	 same	 time	 the	 global	models	 also	 have	 a	 higher	 percentage	of	 false	336	

positives	 as	 can	 be	 gleaned	 from	 the	 FAR	 index	 in	 Figure	 4a.	 This	 analysis	 is	337	

important	to	establish	the	capacity	of	the	models	to	simulate	extreme	values.	338	

	339	

Using	 the	methodology	 proposed	 by	 Solazzo	 and	Galmarini	 (2016),	 in	 Figure	 5	we	340	

present	the	decomposition	of	the	model	errors	according	to	specific	time	scales.	 In	341	

this	 figure,	 the	 individual	 model	 errors	 are	 shown	 as	 decomposed	 in	 the	 diurnal	342	

(<6h),	 inter-diurnal	 (6h-1d),	 synoptic	 (1-10d),	and	 long-term	(>10d)	 time	scales	and	343	

the	 residual.	 The	 decomposition	 is	 performed	 using	 a	 Kolmogorov-Zurbenko	 filter	344	

(Rao	and	Zurbenko,	1997)	applied	to	the	Mean	Squared	Error	(MSE)	calculated	from	345	

each	model	and	the	observed	ozone	time	series.		Such	analysis	can	be	very	revealing	346	

as	it	identifies	the	scale	and	therefore	the	processes	that	are	mainly	responsible	for	347	

the	 deviation	 of	 the	 model	 results	 from	 the	 measurements	 as	 well	 as	 possible	348	

persistence	of	errors	at	specific	scales.		349	

	350	

The	 figure	reveals	 that	most	of	 the	error	 is	contained	 in	 the	 long	term	and	diurnal	351	

time	 scales.	 For	 regional-scale	 models,	 this	 is	 in	 agreement	 with	 the	 findings	 of	352	

Solazzo	and	Galmarini	 (2016)	and	Solazzo	et	al.	 (2017).	The	same	behaviour	 is	also	353	

found	in	the	group	of	global	models.	What	is	remarkable	is	the	similarity	of	the	error	354	

values	 at	 the	 diurnal	 time	 scale	 across	 the	 two	 groups.	 This	 suggests	 that	 the	355	

difference	 in	 spatial	 resolution	between	 the	 two	 sets	 of	models	 does	not	 seem	 to	356	

influence	the	error	at	the	scale	at	which	atmospheric	boundary	layer	dynamics	and	357	

daily	emissions	of	ozone	precursors	are	 the	dominant	processes.	Apart	 from	a	 few	358	

exceptions	 (model	13	and	17	 in	 the	regional	scale	group	and	model	5	and	1	 in	 the	359	

global	 scale	 group),	 all	 other	models	 have	 very	 comparable	 errors	 at	 that	 scale.	 A	360	

comparable	error	across	the	two	groups	is	found	at	the	synoptic	scale	although	this	361	

is	less	surprising	because	this	scale	is	explicitly	resolved	by	the	models	in	both	groups	362	

and	 strongly	depends	on	 the	quality	of	 the	meteorological	 driver	used.	 Since	both	363	

global	and	regional	models	employ	assimilation	of	meteorological	observations,	they	364	

are	 able	 to	 represent	 the	 synoptic	 scale	 comparably	 and	 are	 less	 dependent	 on	365	

parameterizations	employed.	The	long-term	components	have	the	largest	error	and	366	

also	show	the	most	variability	across	models.	Remarkably,	the	regional-scale	models	367	
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seem	to	show	smaller	long-term	error	values	than	the	global	models	although	they	368	

are	highly	variable	 from	model	 to	model.	The	strong	dependence	of	 the	 long-term	369	

error	 on	 boundary	 conditions,	 (specifically	 lateral	 boundary	 conditions	 and	 long	370	

range	transport	in	the	case	of	a	global	model,	upper	air	stratospheric	intrusions	and	371	

surface	 emission	 of	 ozone	 precursors	 and	 direct	 ozone	 deposition)	 appears	 to	372	

influence	the	global	scale	group	concentrations	more	than	the	regional	scale,	though	373	

one	should	consider	that	almost	all	regional	scale	models	used	boundary	conditions	374	

from	 the	 same	 global	model	which	 nevertheless	 does	 not	 have	 the	 smallest	 long-375	

term	error	component		of	the	error.	376	

	377	

A	useful	pre-characterization	of	an	ensemble	can	be	obtained	by	the	construction	of	378	

the	 Talagrand	 diagram	 (Talagrand	 et	 al.	 1997).	 This	 construction	 is	 achieved	 by	379	

binning	the	range	from	the	minimum	to	the	maximum	modelled	concentrations	with	380	

as	many	bins	as	the	number	of	ensemble	members	plus	one.	The	bins	are	then	filled	381	

with	observed	 values	 based	on	where	 they	 fall	within	 the	modelled	 concentration	382	

range.	For	example,	if	an	observed	value	is	lower	than	the	lowest	model	value,	it	is	383	

assigned	 to	 the	 first	 bin,	 if	 it	 falls	 between	 the	 lowest	 and	 second-lowest	 model	384	

value,	 it	 is	 assigned	 to	 the	 second	 bin,	 and	 so	 on.	 If	 it	 exceeds	 the	 highest	model	385	

value,	it	 is	assigned	to	the	last	bin.	Figures	6a	and	6b	show	the	Talagrand	diagrams	386	

for	the	global	and	regional	models	respectively.	 	The	figures	reveal	the	tendency	of	387	

the	global	model	ensemble	to	be	over-dispersed	as	indicated	by	the	accumulation	of	388	

most	of	the	observed	data	at	the	centre	of	histogram	and	relatively	few	observations	389	

falling	 into	 the	 more	 extreme	modelled	 bins.	 The	 regional	 scale	 model	 ensemble	390	

shows	 a	 flat	 diagram	 which	 is	 an	 indication	 of	 good	 group	 performance.	 A	 flat	391	

Talagrand	diagram	is	an	indication	of	the	fact	that	the	group	members	equally	cover	392	

(by	proportion)	all	 the	observed	range	of	values	and	the	group	variability	does	not	393	

show	 an	 excess	 or	 deficiency	 in	 the	 number	 of	 predictions	 in	 a	 specific	 range	 of	394	

observed	values.		395	

	396	

The	first	result	obtained	for	a	combined	set	of	model	results	 is	shown	in	Figure	6c,	397	

which	 presents	 the	 Talagrand	 diagram	 for	 the	 combination	 of	 the	 two	 groups	 of	398	

models.	Note	 that	 the	 number	 of	 bins	 (x-axis)	 has	 increased	 corresponding	 to	 the	399	
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new	total	number	of	models	considered	plus	1	(i.e.	7	global	models	plus	13	regional	400	

models	 plus	 1).	 The	 diagram	 for	 the	 combined	 group	 of	 models	 qualitatively	401	

constitutes	an	 improvement	compared	to	those	of	the	 individual	group	ensembles.	402	

The	combination	of	the	bell	shaped	diagram	of	the	global	set	with	the	relatively	flat	403	

shape	of	the	regional	set	produces	an	extension	of	the	range	correctly	modelled	by	404	

the	new	combined	set	of	models	(flat	region	between	bins	5	and	18)	and	an	under	405	

prediction	between	bins	1	and	5	and	19	and	21,	which	now	account	 for	 lower	and	406	

higher	values	respectively	compared	to	the	extreme	bins	of	the	global	and	regional	407	

sets.	408	

	409	

5.	Ensemble	analysis	per	scale	group	410	

Prior	to	analyzing	the	performance	of	the	hybrid	multi-model	ensemble	(mme_GR),	411	

let	 us	 concentrate	 on	 the	 individual	 ensembles	 (mme_R	 and	mme_G)	 of	 the	 two	412	

groups	 for	 the	 sake	 of	 having	 a	 term	 of	 comparison	 beyond	 the	 measured	413	

concentrations	against	which	to	compare	the	mme_GR	one.	In	this	study,	we	would	414	

also	like	to	build	upon	the	research	performed	in	other	multi-model	ensembles	over	415	

the	 years	 and	 rather	 than	 calculating	 only	 the	 classical	 model	 average	 or	median	416	

ensemble	(mme)	we	shall	also	calculate	three	ensembles	based	on	the	findings	from	417	

Potempski	and	Galmarini	(2009),	Riccio	et	al.	(2012),	Solazzo	et	al.	(2012);	Solazzo	et	418	

al.	 (2013);	Galmarini	 et	 al.	 (2013),	 and	 Kioutsoukis	 and	Galmarini	 (2014).	We	 shall	419	

therefore	refer	to	mmeS	(Solazzo	et	al.,	2012)	as	the	ensemble	made	by	the	optimal	420	

subset	of	models	that	produce	the	minimum	RMSE;	kzFO	(Galmarini	et	al.,	2013)	as	421	

the	 ensemble	produced	by	 filtering	measurements	 and	 all	model	 results	 using	 the	422	

Kolmogorov-Zurbenko	 decomposition	 presented	 earlier	 and	 recombining	 the	 four	423	

components	 that	 best	 compare	with	 the	 observed	 components	 into	 a	 new	model	424	

set;	 and	 the	 optimally	 weighted	 combination	 mmeW	 (Potempski	 and	 Galmarini,	425	

2009,	Kioutsioukis	and	Galmarini,	2014,	Kioutsoukis	et	al.,	2016).	426	

	427	

Figures	 7a	 and	b	 show	 the	 effect	 of	 the	 various	 ensemble	 treatments	 for	 the	 two	428	

groups	of	models	 separately	and	presented	as	Taylor	diagram.	The	correlation	has	429	

increased	and	narrowed	between	0.90	and	0.95	 for	both	groups.	As	expected,	 the	430	

best	ensemble	treatment	of	the	two	individual	groups	is	mmeW	which	in	the	case	of	431	
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the	 global	 models	 is	 comparable	 to	 mmeS	 and	 in	 the	 case	 of	 the	 regional	 scale	432	

models	is	farther	apart	from	mmeS.	The	fact	that	the	optimal	partition	of	the	error	in	433	

terms	of	accuracy	and	diversity	in	an	equal	weighted	sub-ensemble	(mmeS)	and	the	434	

analytical	 optimization	 of	 the	 error	 in	 a	 weighted	 full-ensemble	 (mmeW)	 are	435	

comparable	 for	 the	 global	 models	 implies	 that	 this	 group	 better	 replicates	 the	436	

behavior	of	an	 independent	and	 identically	distributed	(i.i.d.)	ensemble	around	the	437	

true	state	set	 (on	average).	The	 range	of	 improvement	of	 the	RMSE	 is	comparable	438	

for	the	two	groups	of	models.	439	

	440	

Of	the	entire	set	of	ensemble	treatments	proposed,	mmeS	is	the	only	one	that	works	441	

with	an	identified	subset	of	elements.	The	elements	chosen	in	this	context	are	those	442	

that	 minimize	 a	 specific	 metric	 (e.g.	 RMSE).	 The	 combination	 of	 all	 possible	443	

permutations	 of	 a	 pre-defined	 subset	 and	 for	 all	 possible	 subsets	 allows	 us	 to	444	

identify	the	subgroup	of	models	that	performs	best	(Solazzo	et	al.	2012).	This	group	445	

is	the	one	that	best	reduces	the	redundancies	and	optimizes	the	complementarity	of	446	

the	 model	 results	 (Kioutsioukis	 and	 Galmarini,	 2014).	 Other	 methods	 have	 been	447	

devised	to	determine	the	optimal	number	of	models	(Bretherton	et	al.,	1999;	Riccio	448	

et	al.	2012)	that	are	equally	effective	as	the	one	used	here,	though	they	do	not	allow	449	

identifying	the	members	of	the	subset.		Beyond	the	use	of	the	mmeS	for	the	current	450	

analysis,	given	the	diversity	in	the	number	of	models	comprising	the	two	ensembles	451	

we	have	calculated	the	effective	numbers	of	models	(Bretherton	et	al.,	1999)	for	the	452	

regional	and	global	sets	in	the	attempt	to	verify	whether	the	effective	numbers	were	453	

close	for	the	two	sets.	Figure	8a	shows	the	values	obtained	for	the	global	set	and	the	454	

regional	set.	At	over	two	third	of	the	stations,	the	mmeS	used	3-4	global	models	and	455	

3-5	regional	models.	In	other	words,	roughly	half	of	the	global	models	(3-4	out	of	7)	456	

produce	 the	best	 result	when	 constructing	 the	mmeS	globally	while	 in	 the	 case	of	457	

the	 regional	 scale	models	 less	 than	half	 (3-5	out	of	13)	of	all	models	are	 required.	458	

Figure	 8b	 provides	 the	 frequency	 of	 contribution	 of	 the	 individual	 models	 to	 the	459	

mmeS	thus	confirming	the	dominance	of	3	global	and	4	regional	models	determined	460	

with	the	Neff	analysis.	What	is	presented	in	Figure	8	is	the	analysis	for	the	aggregated	461	

set	 of	 model	 results	 at	 all	 available	 monitoring	 points.	 We	 also	 would	 like	 to	462	

determine	 the	spatial	 variability	of	 this	 result,	 i.e.	 to	answer	 the	question	whether	463	
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Neff	is	uniform	throughout	the	domain	or	whether	there	are	sub	regions	that	require	464	

more	or	less	models	to	construct	mmeS.		465	

	466	

In	order	to	have	a	more	objective	assessment	of	the	result	presented	in	Figure	8	we	467	

introduce	a	metric	which	samples	only	the	diversity	of	the	model	results	(see	section	468	

6).	Following	Pennel	and	Reichler	(2011)	and	Solazzo	et	al.	(2013)	we	introduce	the	469	

metric	dm	defined	for	M	models	at	location	i	as:	470	

	471	

𝑑!,! = 𝑒!,!∗ − 𝑅!,!!"𝑚𝑚𝑒!∗			 	 	 (1)	472	

where	473	

𝑚𝑚𝑒! =
!
!

𝑒!,!!
!!! 			 	 	 	 (2)	474	

	475	

𝑒!,! =
!"#!,!!!"#!

!!"#
		 	 	 	 	 (3)	476	

	477	

and	 the	 *	 version	 of	𝑒!,! 	and	𝑚𝑚𝑒! 	is	 obtained	 by	 normalizing	 them	 with	𝜎! 	and	478	

𝜎!!"# 	respectively.	𝑅!,!!"	is	 the	 correlation	 between	 the	 individual	 and	 average	479	

model	 results.	 Therefore	 only	 the	 uncorrelated	 portion	 of	 the	 individual	 result	 is	480	

retained	 in	d	as	measure	of	 the	diversity	whereas	the	correlated	portion	 is	 filtered	481	

out.	Applying	this	metric,	the	model	results	have	been	decomposed	by	means	of	the	482	

Kolmogorov-Zurbenko	filter	described	earlier	and	Neff	has	been	calculated	across	the	483	

domain	 for	 the	 most	 relevant	 components	 LT,	 SY,	 and	 DU.	 Figure	 9	 presents	 the	484	

results	 for	 the	 two	 groups	 of	 models.	 For	 the	 long-term	 component,	 Neff	 results	485	

shown	in	Figure	8a	are	largely	confirmed	with	an	overall	spatial	homogeneity	of	Neff.	486	

The	global	model	set	appears	to	require	a	larger	number	of	models	than	the	average	487	

in	 critical	 areas	 like	 Northern	 Italy	 where	 the	 resolution	 would	 be	 insufficient	 to	488	

capture	the	inhomogeneity	of	the	concentration	field	due	to	the	complex	terrain	in	489	

that	region	(similarly	 in	the	western	part	of	the	domain).	At	the	synoptic	scale,	the	490	

regional	 scale	models	 require	 slightly	more	models	 on	 average	 than	 the	 numbers	491	

presented	in	Figure	8	and	in	some	portions	of	the	domain	almost	all	available	models	492	

are	required.	The	number	of	required	models	 increases	even	further	at	the	diurnal	493	

scale.	 In	 the	 case	 of	 the	 global	 set,	 the	 average	 Nef	 is	 the	 same	 across	 these	 two	494	
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scales	and	more	models	are	required	in	the	Po	valley	(Italy)	at	the	synoptic	scale	and	495	

western	Poland	at	the	diurnal	scale.	496	

	497	

	498	

6.	Building	the	hybrid	ensemble	499	

Given	the	fact	that	there	is	redundancy	in	the	two	groups	of	models	and	a	disparity	500	

exists	in	the	overall	and	effective	number	of	models	in	the	two	groups,	a	strategy	has	501	

to	be	devised	so	that	no	pre-determined	weight	is	assigned	to	one	of	the	two	groups	502	

thus	masking	the	potential	outcome	of	this	study	or	creating	false	results.	This	goal	is	503	

accomplished	by	applying	the	following	strategy.	504	

	505	

We	want	to	compare	three	equally	populated	ensembles	of	just	global,	just	regional,	506	

and	mixed	global	and	 regional	models.	We	will	 therefore	 	 reduce	 the	ensemble	of	507	

regional-scale	models	 and	 include	 extra	models	 in	 the	 ensemble	 of	 global	models	508	

beyond	the	effective	number	calculated	in	Figures	8	and	9	so	that	the	joint	ensemble	509	

will	 not	 be	 too	 small.	 In	 order	 to	 accomplish	 this,	 we	 select	 the	 global	 models	510	

contributing	most	to	the	global	ensemble	beyond	those	identified	by	Neff.	We	begin	511	

by	 assuming	 that	 six	 is	 a	 reasonably	 abundant	 ensemble	 (as	 also	 indicated	 by	 the	512	

effective	number	of	 regional	 scale	models)	 and	as	 such	 the	 single-scale	ensembles	513	

will	be	based	on	six	members.	Taking	advantage	of	the	various	techniques	developed	514	

to	build	an	ensemble	presented	earlier	we	define	the	following	sets:	515	

- 	(mme_GR)	hybrid	ensemble	of	 rank	6	 (ensemble	of	6	members)	composed	516	

of	the	best	three	global	models	and	the	best	three	regional	models		517	

- (mme_G)	global	ensemble	of	best	six	global	models		518	

- (mme_R)	regional	ensemble	of	best	six	regional	models	519	

- (mmeS_GR)	optimally	generated	hybrid	ensemble	of	rank	6	from	the	pool	of	520	

the	best	six	global	models	and	the	best	six	regional	models	521	

- (mmeS_G)	optimal	global	ensemble	of	rank	6		522	

- (mmeS_R)	optimal	regional	ensemble	of	rank	6		523	

- (mmeW_GR)	 weighted	 hybrid	 ensemble	 composed	 from	 the	 best	 three	524	

global	models	and	the	best	three	regional	models	525	

- (mmeW_G)	weighted	global	ensemble	of	best	six	global	models	526	
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- (mmeW_R)	weighted	regional	ensemble	of	best	six	regional	models		527	

	528	

7.	Comparing	the	single	scale	multi	model	ensembles	with	the	hybrid	one	529	

The	comparison	of	 the	ensemble	performances	will	be	 restricted	 to	 the	months	of	530	

June	 -August	when	 the	photochemical	production	of	ozone	 is	 at	 its	maximum	and	531	

the	 number	 of	 exceedances	 is	 expected	 to	 peak	 throughout	 the	 continent.	 The	532	

results	 of	 the	 comparison	 of	 the	 mme,	 mmeS	 and	 mmeW	 for	 the	 regional	 (_R),	533	

global	(_G)	and	hybrid	cases	(_GR)	are	shown	in	Figures	10a,b,	and	c	and	11	a,	b	and	534	

c.	The	elements	common	to	the	three	figures	are:	535	

	536	

• The	hybrid	ensemble	of	rank	6	composed	of	the	three	best	global	models	and	537	

the	three	best	regional	models	(mme_GR)	when	compared	to	mme_G	(best	538	

six	 global	 models)	 and	 mme_R	 (best	 six	 regional	 models)	 does	 not	 show	539	

improved	performance,	rather	its	skill	is	inferior	to	both	mme_G	and	mme_R.		540	

• For	 the	 other	 two	 kinds	 of	 ensemble	 treatments	 (mmeS	 and	mmeW),	 the	541	

combination	 of	 global	 and	 regional	 models	 produces	 a	 systematic	542	

improvement	compared	to	just	the	global	or		regional	ensembles	in	terms	of	543	

correlation	coefficients,	standard	deviations	and	RMSE.	544	

• The	partition	of	global	and	regional	models	 in	mmeS	(Figure	11)	shows	that	545	

the	 contribution	 of	 regional	 models	 is	 more	 frequent.	 Specifically,	 at	 two	546	

thirds	of	the	stations,	the	optimum	hybrid	ensemble	of	rank	6	consists	of	one	547	

or	two	global	models	and	five	or	 four	regional	models,	respectively.	At	only	548	

15%	of	the	stations,	mmeS	consists	of	an	equal	number	of	global	and	regional	549	

models.	The	maximum	number	of	global	models	in	the	mmeS_GR	ensemble	550	

is	four,	achieved	at	roughly	1%	of	the	stations.	Conversely,	at	around	10%	of	551	

the	stations	the	hybrid	ensemble	utilized	only	regional	models.			552	

• POD	 and	 FAR	 (Figures	 12	 a	 and	 b)	 show	 a	 net	 improvement	 over	 the	553	

mmeW_G	results	when	the	hybrid	ensemble	is	considered,	with	a	minimum	554	

in	 false	 positives	 and	 a	 maximum	 in	 true	 positives	 that	 closely	 match	 the	555	

mmeW_R	results.	556	

	557	
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The	real	improvement	of	the	hybrid	ensemble	with	respect	to	the	single	scale	model	558	

ensembles	becomes	evident	when	analyzing	Figure	13.	The	plots	in	the	figure	are	the	559	

collective	 representation	 of	 three	 of	 the	 most	 important	 characteristics	 of	 an	560	

ensemble	as	proposed	by	Kioutsioukis	and	Galmarini	 (2014),	 i.e.	diversity,	accuracy	561	

and	error.	On	the	x	and	y	axes	respectively	“diversity”	and	“accuracy”	are	presented.	562	

The	 former	represents	 the	average	square	deviation	of	 the	single	models	 from	the	563	

mean	of	the	models,	whereas	the	latter	is	the	square	of	the	average	deviation	of	the	564	

individual	 model	 results	 from	 the	 observed	 value.	 As	 presented	 by	 Krogh	 and	565	

Vedelsby	 (1995),	 the	difference	of	 the	diversity	and	accuracy	defines	 the	quadratic	566	

deviation	of	 the	ensemble	average	 from	the	observed	value.	From	the	definition	 it	567	

follows	that	in	order	for	the	ensemble	result	to	be	closer	to	the	observed	value	one	568	

has	to	find	the	right	trade	off	between	accuracy	and	diversity	(A-D).	A	mere	increase	569	

in	diversity	does	not	guarantee	a	minimization	of	the	ensemble	error	since	it	will	also	570	

produce	 a	 reduction	 in	 the	 accuracy.	 What	 one	 hopes	 to	 obtain	 is	 the	 right	571	

combination	 of	 models	 that	 provides	 the	 maximum	 accuracy	 and	 maximum	572	

diversity.	In	the	plot	of	Figure	13,	the	optimal	condition	is	achieved	when	the	model	573	

results	 concentrate	 in	 the	 upper	 left	 quadrant	 of	 the	 plot	 toward	 the	574	

(x=100/(Number	 of	 Models),y=1)	 point.	 In	 the	 plot,	 the	 accuracy	 parameter	 is	575	

presented	 as	 deviation	 from	 the	 best	model	 performance.	 The	 dots	 represent	 the	576	

estimate	 of	 the	 two	 parameters	 at	 every	 location	 where	 measurements	 are	577	

available.	 The	 colour	 scale	 is	 based	 on	 the	 RMSE.	 The	 two	 upper	 panels	 (13a	 and	578	

13b)	give	 the	A-D	mapping	 for	 the	mme_R	and	mme_G	ensembles;	 the	 lower	 two	579	

panels	 give	 the	map	 for	 the	 hybrid	 ensembles,	 i.e.	mme_GR	 (13c)	 and	mmeS_GR	580	

(13d).	The	difference	 in	nature	of	 the	two	ensembles	 is	clear	 form	the	two	panels.	581	

Ensemble	mme_G	is	more	diverse	and	accurate	than	mme_R	(y	values:69	 in	G	and	582	

66	for	R,	x:	0.75	in	G,	0.66	in	R).	The	combination	of	the	two	produces	a	decrease	in	583	

the	two	parameters	(13c).	However,	if	the	models	are	selected	as	in	mmeS_GR,	both	584	

accuracy	and	diversity	increase.	The	real	advantage	of	the	combination	is	visible	in	a	585	

slight	increase	of	the	diversity	as	compared	to	mme_GR	and	a	marked	improvement	586	

of	the	accuracy	from	0.71	to	0.81.	The	error	decreases	from	a	median	value	of	17.9	587	

to	15.6	and	from	an	Inter	Quartile	Range	of	5.1	to	3.8.	588	
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In	 Figures	 14	 a,	 b	 and	 c	 the	 spectra	 of	 the	 ensembles	 are	 presented.	 For	 the	 just	589	

global	 and	 just	 regional-scale	 ensembles,	 the	 spectra	 of	mme,	mmeS,	mmeW	and	590	

kFO	are	shown	in	Figures	14	a	and	b	and	the	ensembles	are	based	on	the	entire	set	591	

of	 available	 members	 per	 group.	 	 Figure	 14	 c	 shows	 the	 spectra	 of	 the	 four	592	

ensembles,	mme_R6,	mme_G6,	mme_GR6	and	mmeS_GR6	for	which	the	largest	six	593	

contributors	from	the	regional	models,	the	six	global,	and	three	regional	plus	three	594	

global	models	were	used.	From	the	picture	we	see	that	regardless	of	the	treatment,	595	

the	 ensemble	data	 captures	 the	ozone	power	 spectrum	with	no	notable	deviation	596	

from	the	measured	spectrum.	It	is	important	to	note	that	an	ensemble	treatment	is	597	

a	 purely	 statistical	 treatment	 that	 does	 not	 consider	 any	 physics	 constraints.	 The	598	

deficiencies	 that	 were	 originally	 present	 in	 the	 individual	 model	 spectra	 are	 still	599	

present	 in	 the	 ensemble	 results,	 particularly	 the	 large	 power	 deficit	 in	 the	 range	600	

from	 0.8	 days	 to	 100	 days.	 The	 mme_GR	 spectrum	 appears	 to	 produce	 a	 slight	601	

improvement	toward	filling	this	energy	gap,	but	the	change	is	very	small.	602	

	603	

8.	Discussion	and	conclusions.	How	much	 is	 the	 improvement	attributable	 to	 the	604	

hybrid	character	of	the	ensemble?		605	

The	analysis	presented	above	gives	us	clear	indications	that	the	combination	of	the	606	

two	 sets	 of	 models	 analysed	 produces	 an	 improvement	 in	 the	 ensemble	607	

performance.	 In	 particular,	 the	 hybrid	 ensemble	 appears	 to	 be	 superior	 to	 any	608	

single-scale	 ensemble	 in	 the	 optimum	 setting.	 For	 example,	 given	 six	 global,	 six	609	

regional	 and	 three	 global	 and	 three	 regional	 ensembles,	 the	 optimization	 always	610	

favours	the	hybrid	ensemble.	This	was	repeated	for	all	examined	cases:	the	annual	611	

hourly	records,	the	JJA	hourly	records	and	the	annual	daily	maximum	records.	612	

- The	 improvement	 is	 in	 the	 range	 1-5%	 compared	 to	 single	 scale	 optimum	613	

ensembles		614	

- POD/FAR	 show	 a	 remarkable	 improvement,	 with	 a	 steep	 increase	 in	 the	615	

largest	POD	values,	though	comparable	to	the	other	for	the	hybrid	ensemble	616	

and	comparatively	smallest	values	of	FAR	across	the	concentration	ranges.	617	

	618	

Some	 important	considerations	need	to	be	made	at	 this	point.	 It	 is	difficult	 to	 find	619	

quantitative	 evidence	 for	 the	 fact	 that	 the	 hybrid	 ensemble	 improvement	 can	 be	620	
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unequivocally	 attributed	 to	 the	 multi-scale	 nature	 of	 the	 ensemble.	 We	 have	 no	621	

evidence,	nor	guarantee,	 that	 the	 same	kind	of	 improvement	could	be	 reached	by	622	

adding	more	 regional-scale	models	 to	 the	 regional-scale	 ensemble,	 or	more	 global	623	

models	 to	 the	 global-scale	 ensemble.	 However,	 what	 is	 clear	 is	 that	 the	 regional-624	

scale	ensemble	is	characterised	by	a	higher	level	of	redundancy	in	the	members	than	625	

the	 global	 ensemble,	 since	 less	 than	 half	 of	 the	 members	 produced	 the	 optimal	626	

ensemble,	 and	 that	 the	 use	 of	 the	 three	 best	 members	 from	 the	 regional-scale	627	

ensemble	 and	 three	 best	 global-scale	 models	 produces	 an	 improvement	 in	 the	628	

ensemble	performance.	This	last	argument	suggests	that	the	addition	of	more	model	629	

results	of	 the	 same	“nature”	would	 just	 contribute	 to	 further	 increase	 the	 level	of	630	

redundancy,	while	on	 the	other	hand,	 the	 improvement	obtained	 could	 indeed	be	631	

attributed	 to	 the	 different	 “nature”	 of	 the	 global-scale	 models	 compared	 to	 the	632	

regional-scale	models.		633	

	634	

Therefore,	considering:		635	

• the	 large	number	of	 regional	 scale	models	and	 the	 spectrum	of	diversity	 in	636	

their	nature	(only	a	small	number	of	the	same	models	were	used	by	multiple	637	

groups	 and	 there	 was	 an	 abundance	 of	 models	 developed	 independently	638	

from	one	another);		639	

• the	 relatively	 smaller	 number	 of	 global	 model	 results	 compared	 to	 the	640	

regional	models	and	also	their	different	nature;		641	

• the	 fact	 that	 the	two	groups	of	models	used	the	same	emission	 inventories	642	

and	 all	 the	 regional	 scale	models	 used	boundary	 conditions	 from	 the	 same	643	

global	model;		644	

one	 could	 attribute	 the	 improvement	 of	 the	mmeS_GR	 ensemble	 performance	 to	645	

the	difference	in	nature	of	the	two	groups	and	a	complementary	contribution	of	the	646	

two	toward	an	improved	result.		647	

	648	

	649	
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Figure	Captions	860	

	861	

Figure	1:	Spatial	distribution	of	the	405	rural	monitoring	stations	where	ozone	model	862	

results	where	produced	and	observations	were	available	863	

	864	

Figure	2:	(a)	Power	spectrum	of	observed	ozone	obtained	from	the	average	one	year	865	

time	 series	 across	 all	 measuring	 locations.	 Running	 averaged	 spectrum	 of	866	

observations	(thick	red	line),	global	models	(b)	and	regional	models	(c)	867	

	868	

Figure	3:	Taylor	diagram	of	Global	models	(a)	and	regional	models	(b)	869	

	870	

Figure	4:	Cumulated	(a)	Probability	of	detection	(POD)	and	False	alarm	ration	(FAR)	871	

for	Global	and	regional	models;	(b)	POD	and	FAR	for	ozone	concentration	ranges	872	

	873	

Figure	5:	Distribution	of	the	Mean	Square	Error	(MSE)		across	the	models	of	the	two	874	

communities	and	the	scales	in	which	the	signal	has	been	decoposed	(LT,	long	term;	875	

SY	synoptic;	DU	diurnal;	ID	inter	diurnal;	see	text	for	definition)	876	

	877	

Figure	 6:	 Talagrand	 diagrams	 of	 Global	 (a)	 and	 Regional	 (b)	 models	 and	 Global	 +	878	

Regional	set	of	model	results	(c)	879	

	880	

Figure	 7:	 Taylor	 diagram	 of	 the	 four	 ensemble	 treatments	 considered	 in	 the	 text	881	

obtained	from	the	global	(a)	and	regional	(b)	models	882	

	883	

Figure	8:	Effective	number	(Neff)	of	models	calculated	according	to	Bretherton	et	al.	884	

(1999)	 for	 the	 two	 groups	 of	 models	 (a);	 and	 frequency	 of	 contribution	 of	 each	885	

model	to	the	relative	ensemble	(b)	886	

		887	

Figure	9:	Number	of	effective	models	for	the	two	groups	obtained	at	all	monitoring	888	

locations	 considered	 thus	 giving	 the	 spatial	 structure	of	 the	ensemble	 size	 and	 for	889	
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three	 of	 the	 four	 components	 in	 which	 the	 modelled	 time	 series	 have	 been	890	

decomposed,	namely:	LT,	SY	and	DU.	891	

	892	

Figure	 10:	 Comparison	 of	 the	 performance	 of	 three	 ensemble	 treatments	 (mme,	893	

mmeS	and	mmeW)	for	three	groupings	of	models	(regional	R,	global	_G,	and	mixed	894	

global	and	regional	_RG)	895	

	896	

Figure	11:	Contribution	of	Global	models	to	mmeS	897	

	898	

Figure	12:	POD	and	FAR	for	the	best	performing	ensemble	treatment	(mmeW)	and	899	

for	 three	ensemble	grouping	 (regional	R,	 global	_G,	and	mixed	global	and	 regional	900	

_RG)	901	

	902	

Figure	13:	Representation	of	the	accuracy	(y-axis)	vs	diversity	(x-axis)	and	RMSE	for	903	

and	ensemble	of	the	most	present	6	global	and	regional	models	respectively	and	an	904	

hybrid	ensemble	of	three	most	frequently	present	global	and	3	regional	models.	905	

	906	

Figure	14:	Spectra	behaviour	of	 the	ensemble	treatments:	 (a)	 full	global	ensemble;	907	

(b)	full	regional	ensemble;	(c)	mme	of	6	most	frequently	present	global	and	regional	908	

models	and	the	hybrid	ensemble	909	

	910	

	911	
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TABLE	 1.	 PARTICIPATING	 REGIONAL	 MODELLING	 SYSTEMS	 AND	 KEY	 FEATURES.	 THE	 DARK	 SHADED	 CELLS	925	
CONTAIN	INFORMATION	ON	MODELS	THAT	WORKED	OVER	THE	NA	DOMAIN	THEOTHERS	ON	THE	EU	ONE	926	

	927	
	928	

Operated	by	 Modelling	
system	

Horizontal	
grid	

Vertical	grid	 Global	meteo	
data	provider	

Gaseous	
chemistry	
module	

Finnish	Meteorological	
Institute	
(working	with	2	versions)	

ECMWF-	
SILAM_H,	
SILAM_M	

0.25	x	0.25	
deg	(LatxLon)	

12	uneven	layers	
up	to	13km.	First	
layer	∼30m	

ECMWF	
(nudging	within	
the	PBL)	

CBM-IV	

Netherlands	Organization	
for	Applied	Scientific	
Research	

ECMWF-L.-
EUROS	

0.5	x	0.25	deg	
(latxlon)	
	

Surface	layer	
(∼25m	depth),	
mixing	layer,	2	
reservoir	layers	
up	to	3.5km.		

Direct	
interpolation	
from	ECMWF	

CBM-IV	

University	of	L’Aquila	 WRF-
WRF/Chem1	 23	km	

33	levels	up	to	
50hPa.	12	layers	
below	1km.	First	
layer	∼12m	

ECMWF	
(nudging	above	
the	PBL)	

RACM-ESRL	

University	of	Murcia	 WRF-
WRF/Chem2	 23	x	23	km2	

33	levels,	from	
∼24m	to	50hPa	

ECMWF	(nudging	
above	the	PBL)	 RADM2	

Ricerca	Sistema	Energetico	 WRF-CAMx	 23	x	23	km2	
14	layers	up	to	
8km.	First	layer	
∼25m.	

ECMWF	
(nudging	within	
the	PBL)	

CB05	

University	of	Aarhus	 WRF-DEHM	 50	x	50	km2	
29	layers	up	to	
100hPa	

ECMWF	
(no	nudging	
within	the	PBL)	

Brandt	et	al.	
(2012)	

Istanbul	Technical	
University		

WRF-CMAQ1	 30	x	30	km2	 24	layers	up	to	
10hPa		

NCEP	(nudging	
within	PBL)	

CB05	

Kings	College	 WRF-CMAQ4	 15	x		15	km2	

23	layers	up	to	
100hPa,	7	layer	
below	1km.	First	
layer	∼14m	

NCEP	(Nudging	
within	the	PBL)	

CB05	

Ricardo	E&E	 WRF-CMAQ2	 30	x	30	km2	

23	VL	up	to	
100hPa,	7	layers	
<	1km.	1st	
@∼15m	

NCEP	
(nudging	above	
the	PBL)	

CB05-TUCL	

Helmholtz-Zentrum	
Geesthacht	

CCLM-CMAQ	 24	x	24	km2	 30	VL	from	∼40m	
to	50hPa	

NCEP	
(spectral	nudging	
above	f.	
troposhere)	

CB05-TUCL	

University	of	Hertfordshire	 WRF-CMAQ3	 18	x	18	km2	 35	VL	from	∼20m	
to	∼16km		

ECMWF	
(nudging			above	
PBL)	

CB05-TUCL	

INERIS/CIEMAT	
ECMWF-
Chimere_H	
Chimere_M	

0.25	x	0.25	
deg		

9		VL		up	to	
500hPa.	1st	L	
@∼20m	

Direct	
interpolation	
from	ECMWF	

MELCHIOR2		

	929	
	930	
	931	
	932	
	933	
	934	
	935	
	936	
	937	
	938	
	939	
	940	
	941	

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-86
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 15 February 2018
c© Author(s) 2018. CC BY 4.0 License.



	 29	

	942	
TABLE	2.	PARTICIPATING	GLOBAL	MODELLING	SYSTEMS	AND	KEY	FEATURES.	943	

	944	
Operated	by	 Modelling	

system	
Horizontal	grid	 Vertical	grid	 Global	meteo	

data	provider	
Gaseous	
chemistry	
module	

References	

NAGOYA,	
JAMSTEC,	
NIES	

CHASER_re
1	

128x64	cells,	
Approximately	
2.8x2.8deg	

32	VL	up	to	40	
km	

ECMWF	
(nudging	above	
PBL)	

Sudo	et	al.	
(2002)	

Sudo	et	al.	
(2002),	
Watanabe	et	al.	
(2011)	

NAGOYA,	
JAMSTEC,	
NIES	

CHASER_t1
06	

320x160	cells,	
Approximately	
1.1x1.1deg	

32	VL	up	to	40	
km	

ECMWF	
(nudging	above	
PBL)	

Sudo	et	al.	
(2002)	

Sudo	et	al.	
(2002),	
Watanabe	et	al.	
(2011)	

ECMWF	 C-IFS	 Ca.	80	km	 60	VL	from	
surface	to	0.1	
hPa	–	lowest	
level	15	m	

IFS	 CB05	 Flemming	et	al.	
2015	
http://emep.int
/mscw/mscw_p
ublications.html	
	

MetNo	 EMEP_rv4.
8	

0.5	x	0.5	deg	Lat	

x	Lon	
	

20	uneven	
layers	up	to	
100hpa.	First	
layer	~90m	

	ECMWF	IFS	
dedicated	model	
run	

EMEP	 Simpson	et	al.	
2012	
	

Univ.	
Tennesee	

H-CMAQ	 108	km	x	108	
km	

44	layers	up	to	
50hPa	

WRF	 CB05	 Xing	et	al.	
(2015)	

Univ.Col.	
Boulder	

GEOSCHEM
-ADJOINT	

2°	lat	x	2.5°	lon	 47	levels	up	to	
0.066	mb	

GEOS-5	 GEOS-
Chem	

Henze	et	al.	
(2007)	

US-EPA	 Hemispheri
c	CMAQ	

108kmx108km	 44	lev	to	50hPa	 WRF	nudged	with	
NCEP/NCAR		

CB05TUCL	 Mathur	et	al.	
(2017)	
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Figure	2	
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Figure	3	a	and	b	 	
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Figure	4	a	and	b	
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Figure	6	a,b	and	c	 	
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Figure	7	a	and	b	
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Figure	8	a	and	b	
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Figure	9	
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Figure	10	a	b	and	c	
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Figure	11	
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Figure	12	a	b		
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Figure	13		
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Figure	14	a,b	and	c	
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