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Abstract. Vegetation fires emit large quantities of aerosol to the atmosphere impacting regional air quality and climate. 10 

Previous work has used comparisons of simulated and observed aerosol optical depth (AOD) in regions heavily impacted by 

fires to suggest emissions of aerosol particles from fires may be underestimated by a factor of 2-5. Here we use surface, 

aircraft and satellite observations made over the Amazon during September 2012 along with a global aerosol model to 

improve understanding of aerosol emissions from vegetation fires. We apply three different satellite-derived fire emission 

datasets (FINN, GFED, GFAS) in the model. Daily mean aerosol emissions in these datasets vary by up to a factor 3.7 over 15 

the Amazon during this period, highlighting the considerable uncertainty in emissions. We find variable agreement between 

the model and observed aerosol mass concentrations. The model well reproduces observed aerosol concentrations over 

deforestation fires in the western Amazon during dry season conditions with FINN or GFED emissions and during dry-wet 

transition season conditions with GFAS emissions. In contrast, the model underestimates aerosol concentrations over 

savannah fires in the Cerrado environment east of the Amazon Basin with all three fire emission datasets. The model 20 

generally underestimates AOD compared to satellite and ground stations, even when the model reproduces the observed 

vertical profile of aerosol mass concentration. We suggest it is likely caused by uncertainties in the calculation of AOD, 

which are as large as ~90%, with the largest sensitivities due to uncertainties in water uptake and relative humidity. Overall, 

we do not find evidence that particulate emissions from fires are systematically underestimated in the Amazon region and we 

caution against using comparison with AOD to constrain particulate emissions from fires. 25 

1 Introduction 

Vegetation and peat fires (open biomass burning) are a major source of particulate matter (aerosol) to the atmosphere (van 

der Werf et al., 2010, Langmann et al., 2009) dominating the aerosol burden in many tropical regions (Lelieveld et al., 2015). 

There is considerable uncertainty in the magnitude of aerosol emissions from tropical fires (Reddington et al., 2016), 

hindering estimates of the impacts of fire on weather (Kolusu et al., 2015; Archer-Nicholls et al., 2016), climate (Rap et al., 30 
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2013; Thornhill et al., 2018) and human health (Johnston et al., 2012, Marlier et al., 2013, Reddington et al., 2015, Reid et 

al., 2016). Here we evaluate the Global Model of Aerosol Processes (GLOMAP; Spracklen et al., 2005) against a 

comprehensive set of measurement data (including surface, aircraft and satellite observations) collected during the South 

American Biomass Burning Analysis (SAMBBA) field campaign in September/October 2012 over the Amazon basin. Our 

aims are to: 1) quantify the effects of biomass burning emissions on the aerosol distribution over the Amazon; and 2) explore 5 

how different fire emissions datasets affect simulated aerosol concentrations over this region. 

Models systematically underestimate aerosol optical depth (AOD) in regions impacted by tropical biomass burning, 

potentially suggesting that emission datasets underestimate aerosol emissions (Reddington et al., 2016). Fire emissions 

datasets are typically created through combining information on fire location and extent from satellite remote sensing with 

estimates of biomass consumption and species-specific emission factors (Langmann et al., 2009).  Emissions could be 10 

underestimated due to missing fire detections or uncertainties in burned area (Randerson et al., 2012), fuel consumption (van 

Leeuwen et al., 2014; Andela et al., 2016), or emission factors (van Leeuwen et al., 2013; Stockwell et al., 2016). Agreement 

between bottom-up and top-down approaches for carbon emissions from fires is typically better than for particulate matter 

(PM) (Yin et al., 2016), suggesting that uncertainties in burned area or fuel loads do not dominate. 

Estimating emissions of PM from fires is further complicated by the emission of a range of semi-volatile and intermediate 15 

volatility organic compounds that can contribute to aerosol formation (Grieshop et al., 2009; Jathar et al., 2014). These 

processes are poorly understood and are not treated in many models. Observational studies report varying amounts of 

secondary organic aerosol (SOA) formation in different biomass burning plumes. Analysis of Siberian biomass burning 

plumes (Konovalov et al., 2017) and southern African savannah and grassland fire plumes (Vakkari et al., 2018) show 

substantial in-plume SOA formation, whereas other studies report little SOA formation in tropical biomass burning plumes 20 

(Jolleys et al., 2012). At the global scale, a recent modelling study (Tsimpidi et al., 2016) estimates that 30% of organic 

aerosol (OA) in biomass burning aerosol originates from direct particulate emissions with the remainder being formed in the 

atmosphere. Analysis of OA:CO ratios in biomass burning plumes during the SAMBBA campaign suggests limited SOA 

formation from Amazon fires (Brito et al., 2014).  

Top-down studies typically use AOD, available from satellite remote sensing, to help constrain aerosol emissions from fires. 25 

In addition to particle mass concentration, simulated AOD is sensitive to assumptions about particle size, chemical 

composition, vertical profile of aerosol, optical properties, water uptake as well as meteorology and model resolution (Brock 

et al., 2016). Reddington et al. (2016) found that a global aerosol model showed better agreement with observed PM mass 

concentration compared to AOD, potentially suggesting that some of the discrepancy between top-down and bottom up 

studies may be connected to the calculation of AOD.  30 

To help explore these issues we analyse observations from the SAMBBA field campaign over the southern Amazon during 

the end of the dry season and transition to wet season. The Amazon exhibits a very strong seasonal cycle in aerosol 

concentrations (Martin et al., 2010). In the wet season (~December to ~May), PM2.5 (particulate matter with diameters 
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smaller than 2.5 μm) concentrations in the central Amazon are ~1.5 μg m-3 and aerosol number concentrations of 220 cm-3 

(Poschl et al., 2010, Artaxo et al., 2013), some of the lowest concentrations observed in a terrestrial environment. In the dry 

season (~June to ~November), fires occur across Southern Amazonia, resulting in aerosol concentrations that are an order of 

magnitude higher (PM2.5 concentrations of >30 μg m-3 and aerosol number concentrations > 20 000 cm-3 (Artaxo et al., 

2013).  5 

Fires in the Amazon are a consequence of both climate and human activity (van Marle et al., 2017). There was relatively 

little fire activity in the Amazon before the mid-1980s (van Marle et al., 2017), when large scale clearance of the Amazon 

forests began. Fire is used to clear forest and vegetation resulting in positive relationships between the rate of deforestation 

and fire activity in the Amazon (Aragao et al., 2008, Reddington et al., 2015, van Marle et al., 2017). A reduction in the rate 

of deforestation across the Brazilian Amazon between 2002 and 2012 (Hansen et al., 2013) has led to reductions in 10 

deforestation-related fires (Reddington et al., 2015) and observed reductions in CO (Jiang et al., 2017) and AOD 

(Reddington et al., 2015). Fires are also used to maintain agricultural and pastoral land and may escape into surrounding 

forest leading to forest degradation (Chen et al., 2013a) and resulting in a disconnection between fire and deforestation 

(Aragao and Shimabukuro, 2010, Cano-Crespo et al., 2015). There has been reduction in area burned by fires in SW Amazon 

and increase in area burned further east during the last decade (Andela et al., 2017). Droughts enhance the occurrence of fire 15 

(Chen et al., 2013b) with seasons of increased large fire occurrence coinciding with the Amazon droughts of 2005, 2007 and 

2010 (Chen et al., 2013a).   

Aerosol from fires degrades air quality with negative impacts on human health (Marlier et al., 2013, Reddington et al., 2015, 

Koplitz et al., 2016, Crippa et al., 2016). Inhalation of smoke from fires in the Amazon causes DNA damage and death of 

human lung cells (de Oliveira Alves et al., 2017), impacts lung function (Jacobson et al., 2014), causes increased 20 

hospitalisations for respiratory diseases (Smith et al., 2014) and is estimated to result in thousands of mortalities each year 

(Reddington et al., 2015). Estimates on the health impacts of degraded air quality from fires require accurate information on 

the magnitude of particulate emissions from fire. A range of policy interventions will be necessary to reduce Amazonian fire 

(Morello et al., 2017).  

Here we combine detailed observations of aerosol vertical profiles made over the Brazilian Amazon during the dry season of 25 

2012 with surface observations, remote sensing and an aerosol model to better understand model representations of the 

magnitude and spatial distributions of particulate emissions from biomass burning. 

2. Method 

2.1 GLOMAP global aerosol model 

We used the TOMCAT chemical transport model (Chipperfield, 2006) coupled to the GLOMAP global aerosol model 30 

(Spracklen et al., 2005) to simulate aerosol during the SAMBBA campaign. Below we describe the features of the model 
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relevant for this study, please see Spracklen et al. (2005) and Mann et al. (2010) for more detailed descriptions of the model 

and see Reddington et al. (2016) for further details of the model set-up used here. 

Large-scale atmospheric transport and meteorology in TOMCAT are specified from European Centre for Medium-Range 

Weather Forecasting (ECMWF) ERA-Interim reanalyses, updated every six hours and linearly interpolated onto the model 

time step. The model has a horizontal resolution of 2.8°×2.8° with 31 vertical model levels between the surface and 10 hPa. 5 

The vertical resolution in the boundary layer ranges from ~60 m near the surface to ~400 m at ~2 km above the surface. 

The aerosol size distribution is represented by a two-moment modal aerosol scheme (Mann et al., 2010). GLOMAP includes 

black carbon (BC), particulate organic matter (POM), sulfate (SO4), sea spray and mineral dust. Concentrations of oxidants 

are specified using monthly mean 3-D fields at 6-hourly intervals from a TOMCAT simulation with detailed tropospheric 

chemistry (Arnold et al., 2005) linearly interpolated onto the model time step.  10 

Wet removal of aerosol in GLOMAP occurs by two processes: 1) in-cloud nucleation scavenging, calculated for both large-

scale and convective-scale precipitation based on rain-rates diagnosed from successive ECMWF ERA-Interim reanalysis 

fields; and 2) below-cloud impaction scavenging via collection by falling raindrops. For dry deposition of aerosol, GLOMAP 

calculates the wind speed and size-dependent deposition velocity due to Brownian diffusion, impaction and interception. 

Detailed descriptions of the dry and wet aerosol removal process are in Mann et al. (2010). 15 

Anthropogenic emissions of sulfur dioxide (SO2), BC and organic carbon (OC) were specified using the MACCity emissions 

inventory for 2010 (Lamarque et al., 2010). Open biomass burning emissions of SO2, BC and OC are described in Sect. 2.2. 

Primary carbonaceous aerosol particles are assumed to be non-volatile and are emitted into the model with a fixed log-

normal size distribution, assuming a number median diameter of 150 nm for biomass burning emissions and 60 nm for fossil 

fuel emissions and modal width (σ) of 1.59. We convert primary OC to POM using a prescribed POM:OC ratio of 1.4, which 20 

is at the lower end of the range prescribed in other global models (1.4 to 2.6) (Tsigaridis et al., 2014). Monthly mean 

emissions of biogenic monoterpenes are taken from the Global Emissions InitiAtive (GEIA) database (Guenther et al., 

1995). Monoterpenes are oxidised to form a product that condenses irreversibly in the particle phase (Scott et al., 2014). 

Size-resolved emissions of mineral dust are prescribed from daily varying emissions fluxes provided for AEROCOM 

(Dentener et al., 2006). 25 

2.1.1 Description of model simulations 

We performed four main model simulations with GLOMAP: one simulation excluding open biomass burning emissions 

(“noBBA”), and three simulations including open biomass burning emissions (using three different open biomass burning 

emissions datasets: “FINN”, “GFED” and “GFAS”; see Sect 2.2). Simulations were run from 1st January 2003 to 31st 

December 2012, using ECMWF ERA-Interim reanalyses that correspond to the simulation date/time. The model aerosol 30 

fields were generated from an initially aerosol-free atmosphere initialised on 1st October 2002 and spun-up for 92 days to 

produce a realistic aerosol distribution (Spracklen et al., 2005). The model was set up to output 3-D monthly-mean global 
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fields and 1-D daily-mean vertical profiles at the locations of ground and AERONET stations (Sect. 2.3). In this study, we 

show results from the model simulations for the year 2012. Specifically for this study, the model was set up to output 

additional 3-D fields every hour between July and November 2012 over a South American domain. 

2.1.2 Calculation of aerosol optical depth 

AOD was calculated from the simulated aerosol size distribution as in Reddington et al. (2016), using Mie theory assuming 5 

spherical particles (Grainger et al., 2004) that are internally mixed within each log-normal mode. Modelled AOD was 

calculated at specific wavelengths to match observations (500 nm and 550 nm), using component-specific refractive indices 

at the closest wavelength available from Bellouin et al. (2011).  

The aerosol hygroscopicity in the AOD calculation was obtained directly from GLOMAP using the aerosol water uptake 

calculated online in the model using Zdanovskii-Stokes-Robinson (ZSR) theory (Stokes and Robinson, 1966) (described in 10 

Sect. S1.1). We explore the sensitivity of simulated AOD to the calculation of aerosol water uptake in Sect. 3.5, by also 

using the κ-Köhler scheme (Petters and Kreidenweis, 2007) to calculate an offline estimate of water uptake (described in 

Sect. S1.2). The ZSR and κ-Köhler methods used in this study represent high and low aerosol water uptake cases, 

respectively (Reddington et al., 2016). In Sect. 3.5 we also explore the sensitivity of simulated AOD to assumed refractive 

indices and aerosol mixing state.  15 

2.2 Biomass burning emissions 

2.2.1 Biomass burning emissions in GLOMAP 

We used three different emissions datasets of aerosol from open biomass burning: the National Centre for Atmospheric 

Research Fire Inventory (FINN) (Wiedinmyer et al., 2011),  the Global Fire Emissions Dataset (GFED) (van der Werf et al., 

2010) and the Global Fire Assimilation System (GFAS) (Kaiser et al., 2012). We use daily mean fire emissions from FINN 20 

version 1.5, GFED version 4.1s (Mu et al., 2011; van der Werf et al., 2017) and GFAS version 1.2 (hereafter referred to as 

GFAS, FINN and GFED respectively).  

Brito et al. (2014) analysed OA:CO ratios and found little enhancement of OA in fire plumes during the SAMBBA 

campaign, suggesting that SOA formation is limited or balanced by loss of OA through volatilization. A recent study 

analysed airborne in-situ observations of biomass burning carbonaceous aerosol during SAMBBA and found find limited 25 

evidence for net increases in aerosol mass through atmospheric aging (Morgan et al., 2019). These observations suggest that 

SOA formation in plumes may be occurring on short timescales (Morgan et al., 2019) but since a net increase in OA mass 

was not observed in the regional-scale analyses of Brito et al. (2014) and Morgan et al. (2019), we do not include any SOA 

formation associated with biomass burning emissions.  

Fires can inject emissions above the surface due the buoyancy of the fire plume. Marenco et al. (2016) analysed Lidar data 30 

during the SAMBBA campaign and found that the mean height of aerosol layers was 2.0±0.4 km, suggesting that the 
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majority of the aerosol is injected into the boundary layer. Fire emissions in GLOMAP are distributed vertically over six 

ecosystem-dependent altitudes between the surface and 6 km according to Dentener et al. (2006). Over Brazil ~53% of 

emissions were injected below 500 m elevation, ~30% between 500 m and 1000 m elevation, and ~17% between 1000 m 

and 3000 m elevation. We also performed a sensitivity simulation where fire emissions were injected into the model surface 

layer. We evaluate the vertical profile of simulated aerosol in Sect. 3.2.   5 

2.2.2 Description of biomass burning emissions datasets 

FINN, GFED and GFAS provide daily fire emissions of aerosol and gas-phase species. FINN emissions are available from 

2002 to 2018 on a 1 km2 grid (Wiedinmyer et al., 2011; available at http://bai.acom.ucar.edu/Data/fire/); GFAS emissions 

are available from 2003 to present on a 0.1⁰x0.1⁰ grid (Kaiser et al., 2012; available at: 

https://apps.ecmwf.int/datasets/data/cams-gfas/); GFED emissions are available from 2003 to 2018 (monthly emissions are 10 

available from 1997) on a  0.25⁰x0.25⁰ grid (van der Werf et al., 2017; available at: 

https://www.geo.vu.nl/~gwerf/GFED/GFED4/). Reddington et al. (2016) include a detailed a description of the FINN 

version 1.0, GFED version 3 and GFAS version 1.0 datasets.  A brief description of the updated datasets is given below. 

FINN emissions are based on the location and timing of active fire detections from the MODIS Fire and Thermal Anomalies 

Product (Giglio et al., 2003); using MODIS Land Cover Type and Vegetation Continuous Fields products to specify land 15 

cover classes and identify fractions of tree and non-tree vegetation, and bare ground. A burned area is assigned to each fire 

count (0.75 km2 fires detected on grassland and savannah land cover classes and 1 km2 for all other fire detections), with 

adjustments made to the assumed burned area if the fire pixel extends partially over bare ground. Estimates of biomass 

loading are taken from Hoelzemann et al. (2004) and emission factors for each species are taken from Akagi et al. (2011). 

The version 1.5 dataset used here (acquired in 2014) includes emission factors updated to incorporate measurements 20 

published in Yokelson et al. (2013) and Akagi et al. (2013) (for more information see updates described here: 

http://bai.acom.ucar.edu/Data/fire/). 

GFAS uses the observed geo-location of active fires (like FINN) combined with fire radiative power (FRP) derived from the 

MODIS instrument. The FRP fields are corrected for observation gaps due to partial cloud-cover and/or spurious signals 

(e.g., from volcanoes, gas flares etc.). FRP is converted to the combustion rate of dry matter using land-cover-specific 25 

conversion factors based on data from GFED (Heil et al., 2010; Kaiser et al., 2012). Trace gas and aerosol emission rates are 

calculated using updated emission factors based on Andreae and Merlet (2001). The version 1.2 dataset is at higher spatial 

resolution than previous versions with improvements made to the processing and assimilation of satellite observations. 

GFED emissions are based on estimates of burned area (Giglio et al., 2013), active fire detections, and plant productivity 

from the MODIS instrument. To derive total carbon emissions the satellite datasets are combined with estimates of fuel loads 30 

and combustion completeness for each monthly time step from the Carnegie-Ames-Stanford-Approach biogeochemical 

model. Carbon emission fluxes are converted to trace gas and aerosol emissions using species specific emission factors based 

http://bai.acom.ucar.edu/Data/fire/
https://apps.ecmwf.int/datasets/data/cams-gfas/
https://www.geo.vu.nl/~gwerf/GFED/GFED4/
http://bai.acom.ucar.edu/Data/fire/
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on Akagi et al. (2011) and Andreae and Merlet (2001) with updates provided in 2013 by M.O. Andreae. Significant updates 

in the version 4.1s dataset relevant for this study include: i) higher spatial resolution; ii) new burned area estimates (Giglio et 

al., 2013) with additional contributions from small fires (Randerson et al., 2012); and iii) improved representation of fuel 

consumption (see van der Werf et al., (2017) for more detail on updates from version 3 to version 4). 

2.2.3 Comparison of biomass burning emissions datasets 5 

Figure 1 compares total annual OC emissions from GFAS, FINN and GFED. The figure shows long-term (2002-2012) mean 

annual total emissions as well as annual total emissions in 2012, the year of the SAMBBA field campaign (total emissions 

for the SAMBBA field campaign are shown in Fig. S1). For the long-term mean, all datasets show broadly similar spatial 

patterns with greatest OC emissions across the arc-of-deforestation (roughly 65-50°W, 8-14°S). Total annual BC emissions 

show very similar spatial patterns to the OC emissions shown in Figs. 1 and S1. Table 1 compares total annual BC and OC 10 

emissions from the three datasets and Figs. S2, S3 and S4 compare the total daily OC emissions for the 2012 dry season and 

the SAMBBA campaign period.  

For annual total emissions averaged over the 2002-2012 period, FINN emissions are greater than GFED and GFAS across 

regions of deforestation in the western Amazon, but lower than GFED and GFAS in eastern Amazonia (50-40°W, 4-15°S). 

Annual total aerosol (OC+BC) emissions averaged over 2002-2012 differ by up to a factor 2.4 (FINN:GFAS) in the western 15 

region and by up to a factor 1.9 (GFAS:FINN) in the eastern region. Matching 2002-2012 comparisons, FINN emissions in 

2012 (and during the SAMBBA period) were also greater than GFED and GFAS over deforestation regions of western 

Amazonia and lower than GFED and GFAS in eastern Amazonia. Annual total OC+BC emissions in 2012 vary by up to a 

factor 3.5 in the west (FINN:GFAS) and up to a factor 2.1 in the east (GFAS:FINN). Pereira et al. (2016) also reported that 

FINN had lower (higher) aerosol emissions in the eastern (western) Amazon compared to GFAS during the SAMBBA 20 

period. Reddington et al. (2016) reported similar patterns for comparison of GFAS version 1.0, FINN version 1.0 and GFED 

version 3 emissions. During the SAMBBA campaign, daily mean aerosol (OC+BC) emissions differ between the different 

datasets by up to a factor 3.7 in the western Amazon (FINN:GFAS) and by up to a factor 2.4 in the eastern Amazon 

(GFAS:FINN). 

Figure 1 also shows the difference in annual total OC emissions between 2012 and the 2002-2012 mean (very similar spatial 25 

patterns are seen for BC emissions). All three datasets show consistently lower emissions in 2012 compared to 2002-2012 

across the arc-of deforestation in western Brazil and Bolivia (70°-50°W, 8°-18°S). OC emissions in 2012 in the western 

Amazon were 4-47% lower than the 2002-2012 mean (Table 1). Aerosol emissions from fire in Brazil have declined over 

this period, related to reductions in deforestation (Reddington et al., 2015) and consistent with observed declines in CO 

(Jiang et al., 2017) and AOD (Reddington et al., 2015). Figure S5 shows a reduction in the area dominated by deforestation 30 

type fires (and an increasing dominance of savannah-type fires) in 2012 relative to the 2002-2012 mean. In 2012, emissions 

were greater than the 2002-2012 average across much of Peru, possibly due to increased deforestation there (Kalamandeen et 
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al., 2018). In the eastern Amazon, emissions in 2012 were 30-96% greater than the 2002-2012 mean (Table 1), with largest 

differences in GFAS and GFED datasets.  

2.3 South American Biomass Burning Analysis (SAMBBA) 

We used observations from the South American Biomass Burning Analysis (SAMBBA) campaign. Aircraft and ground 

observations took place from 13 September to 3 October 2012. We separate the campaign into the dry season (Phase 1; 13 to 5 

22 September) and the dry-wet season transition (Phase 2; 23 September to 3 October) following Brito et al. (2014). Figure 2 

shows locations of aircraft flights and surface measurement sites.  

2.3.1 Aircraft observations 

The BAe-146 research aircraft from the Facility for Airborne Atmospheric Measurements (FAAM) made 20 research flights 

with measurements of a range of gas-phase and aerosol species. We use measurements of OA and sulfate mass in the 50 - 10 

750 nm size range from an Aerosol Mass Spectrometer (AMS) (Canagaratna et al., 2007; Morgan et al., 2010; Allan et al., 

2014), refractive BC from a Single Particle Soot Photometer (SP2) (Stephens et al., 2003; McMeeking et al, 2010; Allan et 

al., 2014) and aerosol size distribution from a Scanning Mobility Particle Sizer (SMPS) (Wang and Flagan, 1990; Morgan et 

al., 2015) and a GRIMM model 1.108 optical particle counter (OPC) (Heim et al., 2008). Further details about the 

instruments used aboard the Bae-146 during SAMBBA can be found in Sect. S2.1, including information about 15 

measurement uncertainty. See Allan et al. (2014) for more specific details regarding the aerosol sampling during SAMBBA. 

The flights sampled a broad region spanning 46-68°W, 1-12°S (Fig. 2). Aerosol properties and fire emissions (Fig. 1) varied 

across this region, so we separated data into a western region (54-68.5°W, 6-12°S) and an eastern region (43-50°W, 4.5-

15°S) following Johnson et al. (2016). We note that the aircraft sampling in the eastern region (including one full flight and 

sections of three flights) was limited relative to the sampling performed in the western region (including 14 full flights and 20 

sections of five flights). We used aircraft data from both vertical profiles and straight and level runs (SLR). To avoid bias, 

time periods when the plane was actively sampling smoke plumes were removed from the SLR data using a plume removal 

algorithm (Darbyshire et al., 2018). Visually observable plumes were specifically avoided when performing vertical profiles 

during SAMBBA so any enhancements due to smoke plumes in the profile data are small. Time periods when in-cloud 

sampling was performed were also filtered out of the data; specifically the data was screened for cloud artefacts when the 25 

liquid water content exceeded 0.05 g m-3 (Darbyshire et al., 2018). 

2.3.2 Ground observations 

A large suite of instruments were deployed at a site in the southwest Amazon (8.69°S, 63.87°W) (Brito et al., 2014). The site 

is located in a forest reserve about 5 km from Porto Velho (population of around 500 000) and is usually upwind of the city 

(Brito et al., 2014).  Here we used measurements from an Aerosol Chemical Speciation Monitor (ACSM; Ng et al. (2011)) 30 
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and an Aethalometer (Magee Scientific, model AE30). The ACSM measured 30 min resolution mass concentrations of 

particulate ammonium, nitrate, sulfate, chloride, and organic species in the 75 - 650 nm size range. The Aethalometer 

measured 5 min resolution equivalent black carbon (BCeq) mass concentrations. Details regarding the Aethelometer and 

ACSM measurement uncertainty can be found in Sect. S2.2. Data from both instruments are available from the 6th 

September to the 1st October 2012. Mean aerosol mass concentration (ACSM + Aethalometer) during this period was 13.7 5 

μg m-3, with OA contributing an average of 83% of total mass. Mean aerosol mass concentrations were lower in Phase 2 (6.0 

μg m-3) compared to Phase 1 (17.8 μg m-3). Full details are provided in Brito et al. (2014). PM2.5 concentrations were 

measured using gravimetric filter analysis, with a measurement duration ranging from less than 1 day to ~7 days (Artaxo et 

al., 2013). 

2.3.3 AERONET aerosol optical depth 10 

We used spectral columnar AOD measured by Aerosol Robotic Network (AERONET) Cimel sun photometers (Holben et 

al., 1998) from 5 stations deployed across the region that have data available for the SAMBBA campaign period: Porto 

Velho UNIR (63.94°W, 8.84°S), Alta Floresta (56.10°W, 9.87°S), Rio Branco (67.87°W, 9.96°S), Cuiaba-Miranda 

(56.02°W, 15.73°S), Santa Cruz UTEPSA (63.20°W, 17.77°S). We used Version 3 Level 2 cloud-screened and quality 

assured daytime average AOD (Giles et al., 2019), retrieved at 500 nm. Locations of the AERONET stations are shown in 15 

Fig. 2.  

2.3.4 MODIS aerosol optical depth 

We used daily AOD retrieved at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on 

board the Terra and Aqua satellites for the SAMBBA campaign period to calculate regional average AODs. Specifically, we 

used the Collection 5.1 Level-3 MODIS Atmosphere Daily Global Product gridded to 1°×1° resolution (Terra: MOD08_D3; 20 

Aqua: MYD08_D3; https://modis-atmosphere.gsfc.nasa.gov/products/daily) (Hubanks et al., 2008) acquired through 

NASA’s Level 1 and Atmosphere Archive and Distribution System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/). 

Daytime equator crossing is at 1030LT for Terra and at 1330LT for Aqua.  

2.3.5 Measurement uncertainty 

Section S2 describes further details of the instrumentation used during SAMBBA; including information about measurement 25 

calibration and uncertainty. In summary, for conditions during SAMBBA the mass concentration measurement uncertainty 

has been estimated to be: ~20% for the aethelometer (Schmid et al., 2006); 10-35% for the ACSM (depending on the species, 

OA is 15%; Crenn et al., 2015); ~30% for the AMS (Bahreini et al., 2009; Middlebrook et al., 2012); and ~30% for the SP2 

(Schwarz et al., 2008; Shiraiwa et al., 2008). For AOD retrievals, the 1σ uncertainty is estimated to be ±0.05+15% for 

MODIS (Levy et al., 2010) and ±0.01 AERONET (Giles et al., 2019). 30 

https://modis-atmosphere.gsfc.nasa.gov/products/daily
https://ladsweb.modaps.eosdis.nasa.gov/
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2.3.6 Comparing model and observations 

To compare the model to the aircraft and ground-based observations, we linearly interpolated the simulated hourly data 

along the flight path of the aircraft and to the horizontal location of the Porto Velho ground station. To compare with the 

aircraft AMS and ground-based ACSM measurements, the same detection ranges of the instruments (see Sects. 2.3.1 and 

2.3.2) were applied to the simulated mass concentrations. Prior to analysis, simulated data corresponding to periods of 5 

missing or invalid measurement data were removed. To quantify the agreement between model and observations, we use the 

Pearson correlation coefficient (r) and normalised mean bias factor (NMBF) as defined by Yu et al. (2006): 

𝑁𝑀𝐵𝐹 =  
(∑ 𝑀𝑖 − ∑ 𝑂𝑖)

|∑ 𝑀𝑖 − ∑ 𝑂𝑖|
[exp (|ln

∑ 𝑀𝑖

∑ 𝑂𝑖
|) − 1] 

where M and O represent model and observed values, respectively, for each time step, i. A positive NMBF indicates the 

model overestimates the observations by a factor of NMBF+1. A negative NMBF indicates the model underestimates the 10 

observations by a factor of 1–NMBF. 

3. Results and Discussion 

3.1 Surface aerosol measurements 

Figure 3 shows surface PM2.5 concentrations observed at Porto Velho, in the southwest Amazon, from January to November 

2012. Observed PM2.5 concentrations are less than 2 μg m-3 between January to July 2012, increasing to 30-50 μg m-3 in late 15 

August and September, then declining to less than in 10 μg m-3 in October. This seasonal cycle is well reproduced by the 

model with all fire emission datasets. Simulated PM2.5 concentrations are enhanced by biomass burning from August 

through to October, when more than 80% of PM2.5 concentrations are from biomass burning. PM2.5 concentrations during 

September are well reproduced by the model with GFED and FINN emissions, but underestimated by the model with GFAS 

emissions. PM2.5 concentrations are underestimated during early August, potentially indicating that emission datasets have 20 

missed fires during the start of the dry season (see Fig. S2). During the SAMBBA campaign (13 Sep – 3 Oct), PM2.5 

concentrations are well reproduced by the model with FINN (r2=0.65; NMBF=0.03) and GFED (r2=0.69; NMBF=-0.45) but 

underestimated with GFAS (r2=0.44; NMBF=-1.09) (see Table 2 for a summary of NMBF values). 

Figure 4 compares simulated and measured composition-resolved aerosol at Porto Velho during September 2012. Measured 

total aerosol mass, calculated as mass measured by the ACSM plus BCeq measured by the aethelometer, varies consistently 25 

with measured PM2.5 concentrations during the campaign (Fig. S6). However, when averaged over the gravimetric filter 

analysis sampling time, measured total (ACSM+BCeq) aerosol mass concentrations are consistently lower than measured 

PM2.5 concentrations by ~20-60% (Fig. S6a). This difference in the measurements is mostly apportioned to the reduced 

aerosol detection-size range from the ACSM (i.e. submicrometric) in comparison to the gravimetric analysis (< 2.5 µm) 
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(Sect. 2.3.2), and, to a smaller extent, the different measurement techniques and aerosol species unaccounted by the on-line 

instrumentation (ACSM) e.g. crustal elements.  

Average observed total (ACSM+BCeq) aerosol mass concentrations are 20 μg m-3 in Phase 1 reducing to 7 μg m-3 in Phase 2. 

The model with fire emissions captures the decrease in observed aerosol mass concentrations between Phase 1 and Phase 2, 

but underestimates the magnitude of the reduction (5-10 μg m-3, depending on the fire emission dataset, compared to 13 μg 5 

m-3 in the observations). The model with GFED simulates observed total mass well in the ACSM detection range in Phase 1 

(NMBF=0.08), but overestimates observed mass in Phase 2 (NMBF=0.89). Conversely, the model with GFAS emissions 

simulates observed total mass reasonably well in Phase 2 (NMBF=0.30) but underestimates in Phase 1 (NMBF=-0.49). The 

model with FINN emissions overestimates observed total mass in both Phase 1 (NMBF=0.45) and Phase 2 (NMBF=1.94). 

Observed total aerosol mass is dominated by OA (84%), with BC contributing 9% and summed NH4, NO3 and Chl 10 

contributing less than 5% of total mass during the SAMBBA campaign (Fig. 4b). Simulated aerosol (with fire emissions 

included) is also dominated by OA (86-88%) with BC contributing a slightly smaller fraction of the total aerosol mass (5%) 

than observed (see Fig. S7 for simulated and measured hourly OA and BC time series). NH4, NO3 and Chl are not accounted 

for in GLOMAP. Sulfate accounts for 2.6% of the observed total aerosol mass during the campaign, but 5-11% in the model 

(Fig. 4b). Sulfate concentrations are well reproduced by the model with no fire emissions and are overestimated when fire 15 

emissions are included (Table 2). This suggests that either emissions of sulfate from fires are overestimated or that other 

sources of sulfate are overestimated in the model in the region of Porto Velho. 

3.2 Aerosol mass concentration vertical profile 

Figure 5 compares average vertical profiles of OA, sulfate and BC measured on the aircraft to that simulated by GLOMAP. 

As before the data is split into Phase 1 (flights 1–8) and Phase 2 (flights 9–20). We also split the data spatially into western 20 

and eastern Amazon regions (see Fig. 2). We note that the aircraft sampling in the eastern region was limited relative to 

sampling in the western region (Sect. 2.3.1). Figure S8 shows the number of OA (from the AMS) and BC (from the SP2) 

observations per vertical bin for the western region (Phases 1 and 2) and eastern region. Figure 5 shows that observed 

aerosol concentrations are greatest in the boundary layer (BL) then reduce rapidly above (see also Fig. S9). Figures 5 and S9 

show that the shape of the aerosol vertical profile is well reproduced by the model, further confirming that simulated vertical 25 

mixing and the vertical injection height of fire emissions are reasonable. Observed aerosol concentrations are relatively 

constant between the surface and ~2500 m in the western Amazon and between the surface and ~4000 m in the eastern 

Amazon. This behaviour is reproduced by the model, and is likely due to a deeper BL over grassland vegetation in the 

eastern Amazon (Fig. S10).  

In the western Amazon, average concentrations of OA below 2.5 km (roughly the BL) were 19 μg m-3 in Phase 1 compared 30 

to 6 μg m-3 in Phase 2, similar in both magnitude and temporal pattern to the surface observations at Porto Velho. In Phase 1, 

the model underestimates observed OA concentrations in the BL with all emission datasets (NMBF=-0.25 for FINN to -1.64 
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for GFAS). OA concentrations in Phase 1 in the western Amazon between 3 km and 4.5 km are also underestimated by the 

model with all emission datasets consistent with comparisons in the BL. The model does not simulate the observed reduction 

in OA concentrations between Phase 1 and Phase 2 overestimating OA concentrations in the western Amazon in Phase 2 

with GFED (NMBF=0.39) and FINN (NMBF=1.21) emissions, but good agreement with GFAS (NMBF=0.02). This may be 

because the emission datasets report only moderately lower emissions in Phase 2 compared to Phase 1 (Figure S3a; Table 1), 5 

but also because the model may underestimate wet removal of aerosol during Phase 2 (consistent with model and 

observation comparisons in Archer-Nicholls et al. (2015)). In the eastern Amazon, average  concentrations of OA below 4 

km (roughly the BL) of 16 μg m-3 are underestimated by the model with all three emission datasets (NMBF=-0.92 for GFAS 

to -3.14 for FINN).  

Disagreement between observed and simulated OA may be due to uncertainty in the OA:OC ratio. In this study we assume 10 

an OA:OC ratio of 1.4, at the lower end of the range (1.4 to 2.6) assumed by other models (Tsigaridis et al., 2014). Philip et 

al. (2014) combined satellite data and AMS measurements to estimate an OA:OC ratio of 1.3 to 2.1. Preliminary analysis of 

aircraft data during SAMBBA suggests an OA:OC ratio of 1.5 to 1.8 for fresh BB aerosol and 2.0 to 2.3 for aged aerosol 

(Johnson et al., 2016). Assuming an OA:OC ratio of 2.3 would enhance our simulated OA concentrations by 60% reducing 

our underestimate of OA in both the western (Phase 1: NMBF=-0.64 to 0.29) and eastern (NMBF=-1.59 to -0.20) Amazon. 15 

Observed refractive BC (rBC) concentrations in the BL are ~1.0 μg m-3 in the western Amazon during Phase 1 dropping to 

~0.5 μg m-3 during Phase 2. BC concentrations observed at the surface (Sect. 3.1; Phase 1, 1.6 μg m-3; Phase 2, 0.9 μg m-3) 

are greater than those measured on the aircraft, although this may be partly due to the different measurement techniques used 

and different size detection ranges. In the eastern Amazon, observed rBC concentrations are higher (1.8 μg m-3), qualitatively 

reproduced by the model with GFAS and GFED emissions but not with FINN emissions. The model strongly underestimates 20 

BC concentrations in the eastern Amazon with all emission datasets, particularly with FINN (NMBF=-1.48 for GFAS to -

6.10 for FINN). In the west, the agreement is more variable, with the model well simulating concentrations in Phase 1 with 

FINN emissions but overestimating in Phase 2, GFED underestimating in Phase 1 but well simulating concentrations in 

Phase 2 and the model with GFAS emissions underestimating in both phases.  

In the western Amazon, comparison with sulfate aerosol is fairly consistent with OA and BC comparisons, with the model 25 

underestimating in Phase 1 and overestimating in Phase 2. In the eastern Amazon, the model overestimates sulfate 

concentrations even without a contribution from fires, suggesting that other natural and anthropogenic sulfate sources may 

be overestimated in the model. 

Observed average BC:OA mass concentration ratios in the BL vary from 0.05 in the western Amazon (Phase 1, 1/19=0.05; 

Phase 2, 0.5/6=0.08) to 0.11 (1.8/16=0.11) in the eastern Amazon. These ratios reflect the much higher BC emission factors 30 

found for flaming Cerrado fires in the eastern Amazon relative to tropical forest fires in the western Amazon (Hodgson et al., 

2018). Simulated ratios are in good agreement with observations in the western Amazon with all emission datasets (e.g. 
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Phase 1, FINN: 0.9/15=0.06; Phase 2, FINN: 0.8/13=0.06). In the eastern Amazon, BC:OC ratios are underestimated using 

FINN (0.26/3.8=0.07) emissions, with better agreement using GFED (0.63/7.0=0.09) and GFAS (0.74/8.2=0.09) emissions. 

In the western Amazon, average aerosol concentrations at 4 km are ~27-50% of concentrations in the BL (<2.5 km) (OAP1: 

7/19=0.37, OAP2: 3/6=0.50; BCP1: 0.27/1=0.27, BCP2: 0.26/0.5=0.52). Marenco et al. (2016) reported a mean aerosol layer of 

2.0±0.4 km during the SAMBBA campaign, which is consistent with the model results presented here. A plume-rise model 5 

coupled to WRF-Chem overestimated OA concentrations at 6-8 km altitude observed over tropical forest regions during 

SAMBBA, suggesting the plume rise model overestimated fire injection height (Archer-Nicholls et al., 2015). Injecting fire 

emissions into the surface layer (Fig S11, “GFED_surflev”) has a relatively small impact on the simulated aerosol vertical 

profile in the west (a mean change of -0.3% below 2.5 km), with a small change in the bias against observations (e.g. for OA 

in Phase 1; NMBF= -0.82 for GFED and -0.77 for GFED_surflev), demonstrating that vertical mixing rapidly redistributes 10 

aerosol in the model. In the eastern region, the impact is larger (a mean change of +5% below 4 km), with a slight 

improvement in the model bias (e.g. for OA; NMBF= -1.23 for GFED and -0.90 for GFED_surflev). Overall there appears to 

be limited evidence for the need for substantial injection of fire emissions above the BL for fires in this region.  

Overall, the comparisons with aircraft observations show variable agreement between model and observations. The model 

with GFAS emissions consistently underestimates observed aerosol mass concentrations by up to a factor 3, but gives the 15 

best agreement (relative to GFED and FINN) with observations in the eastern Amazon. Agreement between the model and 

observations with GFED and FINN emissions is more variable with up to a factor 2-3 underestimation or overestimation, 

depending on the region and time period. In general, the model with FINN emissions performs well against observations in 

the western Amazon in Phase 1 (when observed aerosol mass concentrations are relatively high), but gives the largest 

underestimation of aerosol mass concentrations in the eastern Amazon (relative to GFED and GFAS). 20 

3.3 Aerosol size distribution 

Figure 6 compares simulated aerosol size distributions against those measured on the aircraft during straight and level runs. 

In the eastern Amazon, the model underestimates particle number below 300 nm diameter, consistent with aerosol mass 

comparisons (Sect. 3.2). In the western Amazon, the model with FINN and GFED emissions generally well matches the 

observed size distribution above 200 nm diameter (N200), with a small underestimate during Phase 1 with GFED (NMBFP1=-25 

0.52; NMBFP2=-0.08) and a small overestimate during Phase 2 with FINN (NMBFP1=-0.13; NMBFP2=0.39) consistent with 

the vertical profiles of aerosol mass (Fig. 5). The model with GFAS emissions underestimates throughout the size 

distribution (e.g. for N200: NMBFP1=-1.20; NMBFP2=-0.45), consistent with earlier comparisons.  

There is a persistent underestimation of aerosol number at particle sizes below about 100 nm. We assume all biomass 

burning emissions are emitted into the accumulation mode with geometric mean diameter of 150 nm (Sect. 2.1.1; Mann et 30 

al., 2010), which is substantially higher than observed in the Porto Velho ground station data (94 nm; Brito et al., 2014). The 

observations suggest biomass burning makes a considerable contribution to aerosol number from ~50 to 200 nm diameter 
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that is not included in the model. This is consistent with Vakkari et al. (2018), where assumed emission size distributions in 

models poorly represented the number of particles in the 30–100 nm (Aitken mode) size range for southern African savannah 

and grassland fires.  

We performed two sensitivity tests where we varied the assumed emission size distribution for primary biomass burning 

aerosol in GLOMAP (Fig. S12). Reid and Hobbs (1998) measured count median diameters (CMD) of 130±10 nm 5 

(σ=1.68±0.02) and 100±10 nm (σ =1.77±0.02) for deforestation fires and 100±10 nm (σ=1.91±0.15) for Cerrado fires (Reid 

et al., 2005). Assuming a CMD of 100 nm increases the simulated particle number concentration below 100 nm diameter by 

factors of ~1.8 (with σ=1.7) and ~1.5 (with σ=1.8) over the SAMBBA regions. This results in a reduction in the negative 

bias in simulated number concentration above 50 nm (N50) (GFED (150 nm, σ=1.59): NMBFWestP1=-1.85; GFED (100 nm, 

σ=1.7): NMBF WestP1=-0.51), but a slight increase in the negative bias in N200 (GFED (100 nm, σ=1.7): NMBF WestP1=-0.55). 10 

Therefore, reducing the assumed emission size distribution for primary BC and OC from biomass burning may be important 

for cloud condensation nuclei concentrations, but will have a small effect on simulated aerosol mass and AOD (see Sect. 

3.5.1).  

3.4 Aerosol optical depth 

Figure 7 compares simulated and satellite-retrieved (MODIS) AOD at 550 nm (AOD550) over the eastern and western 15 

regions for the SAMBBA campaign period. Compared to MODIS, the model generally underestimates AOD550 over both 

regions and with all fire emission datasets (NMBF=-2.41 to -0.38; Table 2). The model with GFAS emissions has the largest 

underestimation in the western Amazon (the smallest with FINN) and the model with FINN emissions has the largest 

underestimate in the eastern Amazon (the smallest with GFAS). The model with FINN emissions underestimates AOD550 in 

the western Amazon in Phase 2 even when it overestimates aerosol mass concentrations throughout the vertical profile. In 20 

the eastern region, the underestimation of AOD550 with all emission datasets is consistent with the comparison of the 

vertical profile of aerosol mass concentration.  

Figure 8 compares simulated and observed AOD at 500 nm (AOD500) at five AERONET sites across western and southern 

Amazonia during SAMBBA (no data is available from the AERONET station located in the eastern region during the 

campaign). There is reasonable agreement between AOD500 reported by AERONET and AOD550 reported by MODIS, 25 

with AERONET generally reporting higher values (Aqua, NMBF=-0.60 to -0.27; Terra, NMBF=-0.47 to -0.18), partly due 

to differences in the wavelengths of the retrievals.  

Consistent with comparisons to MODIS, the model generally underestimates AOD500 at all stations and with all fire 

emissions, except at two stations in the western Amazon (Rio Branco (in both campaign phases) and Porto Velho (in Phase 

2)) with FINN emissions. The negative model bias in AOD500 across all AERONET stations is consistent with the negative 30 

model bias in AOD550 (against MODIS) (Table 2), but is smaller at some individual stations (Fig. 8). This is likely due to 

multiple reasons including differences in: i) the AOD wavelengths (500 nm versus 550 nm); ii) the AERONET and MODIS 
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retrieval uncertainties (Sect. S2.3); iii) the location/region of comparison, affecting magnitude and sources of AOD; and iv) 

the AERONET and MODIS data coverages. 

For all stations, the model with GFAS emissions has the largest underestimation (Table 2). The fire emission dataset that 

gives the smallest model bias varies between GFED and FINN depending on the station and time period (Phase 1 or 2 of the 

campaign; Table 2). At Porto Velho, the model with GFED emissions underestimates AOD500 (NMBF=-0.70; Table 2) 5 

during Phase 2 even when it overestimates aerosol mass concentrations at the surface (NMBF=0.89; Table 2). The smallest 

model bias for all simulations is at Rio Branco in the western Amazon (e.g. with FINN: NMBFP1 = 0.03, NMBFP2 = 0.11). 

Figure 9 compares average vertical profiles of aerosol scattering and extinction coefficients (at 550 nm) measured on the 

aircraft to that simulated by GLOMAP. In the western region, during Phase 1, the model underestimates the observed 

scattering coefficient throughout the vertical profile (NMBF=-1.29 with GFAS to -0.29 with FINN; Table 2); consistent with 10 

the comparisons against MODIS and AERONET AOD. During Phase 2, the agreement between simulated and measured 

scattering coefficient is more consistent with the vertical profile of aerosol mass concentrations than with MODIS or 

AERONET AOD; with good agreement or overestimation (NMBF=-0.07 with GFAS to 0.92 with FINN). The agreement 

between simulated and measured extinction coefficient is similar, but with larger negative biases during Phase 1 and slightly 

smaller positive biases in Phase 2. In the eastern region, the model strongly underestimates observed scattering (NMBF= -3.3 15 

to -1.29) and extinction (NMBF= -3.90 to -1.51) coefficients, consistent with MODIS AOD550 (with larger negative biases 

than for total aerosol mass concentrations).     

In summary, the model generally underestimates observed AOD during the SAMBBA campaign. The negative biases in 

simulated AOD and scattering and extinction coefficients are generally larger than in simulated aerosol size distribution (> 

200 nm diameter) and in total aerosol mass concentrations at the surface (consistent with Reddington et al. (2016)) and aloft, 20 

which suggests that model underestimation of AOD is not solely due to an underestimation of biomass burning aerosol mass 

and/or emissions. The calculation of AOD also depends on aerosol optics and water uptake. We explore the sensitivity of 

simulated AOD to these other factors in the following section. 

3.5 Exploring the sensitivity of simulated aerosol optical depth 

In Reddington et al. (2016) we identified a greater model underestimation of AOD than surface PM2.5 in the Amazon 25 

region, where coincident observations were available, suggesting that the negative model bias in AOD could be caused by 

errors in the calculation of AOD rather than by errors in simulated aerosol properties. However, due to a lack of available 

observations, we were unable to rule out errors in simulated aerosol size distribution and vertical profile (i.e. an 

underestimation of aerosol aloft) with any certainty. 

In this work, using the detailed SAMBBA observations, we have shown that the model well represents the vertical profile of 30 

aerosol mass concentrations and aerosol size distribution (in the diameter range relevant for visible light) in the western 

Amazon, yet continues to underestimate AOD. Below we explore the sensitivity of simulated AOD to the treatment of 
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biomass burning emissions in GLOMAP and to other relevant aerosol properties including aerosol mixing state, refractive 

indices and hygroscopicity (summarised in Table 3, Fig. 10 and Fig. S13). To quantify the sensitivity of each simulation we 

calculate the percentage change of simulated hourly AOD550 during the SAMBA campaign relative to simulation 1 in Table 

3; the relative changes are summarised in Fig. 10. Figure S13 summarises the agreement between simulated and measured 

optical properties during the SAMBBA campaign for each simulation in Table 3. 5 

3.5.1 Biomass burning aerosol emission strength, particle size and injection height 

Figure 10 shows that simulated AOD is sensitive to the fire emission dataset used in the model. Changing between GFED 

emissions (simulation 1 in Table 3) and GFAS emissions (simulation 2 in Table 3) changes simulated hourly AOD550 

during the SAMBBA campaign by -14% on average in the western region and by +10% on average in the eastern region 

(Fig. 10). Changing from GFED emissions to FINN emissions (simulation 3 in Table 3) increases simulated AOD550 in the 10 

western region (a mean change of +32%) and decreases simulated AOD550 in the eastern region (a mean change of -28%) 

(Fig. 10). As discussed in Sect 3.4, the model with FINN emissions has the smallest underestimate against MODIS AOD550 

in the western region (the largest underestimation is with GFAS), but overestimates measured scattering and absorption 

coefficients during Phase 2 (Fig. S13). In the eastern region, the model with GFAS has the smallest underestimate of MODIS 

AOD550 and aircraft-measured scattering and absorption coefficients (the largest underestimation is with FINN) (Fig. S13). 15 

Altering the injection height of biomass burning emissions to the surface level (simulation 4 in Table 3) has an almost 

negligible effect on simulated AOD550, with mean changes of <1% in the eastern region (ranging from +6 to -17% on the 

hourly timescale) and -3% in the western region relative to the control simulation (Fig. 10). Injecting GFED emissions at the 

surface results in an increase in the model NMBF in AOD550 against MODIS in the west (e.g. Phase 1: from 0.97 to -1.03) 

and a slight reduction in the NMBF in the east (from -1.44 to -1.42) (Fig. S13).  20 

Reducing the assumed emission size for primary BC and OC particles from biomass burning (from a CMD of 150 nm to 100 

nm; simulation 5 in Table 3) decreases simulated AOD550 in both the eastern (-9%) and western (-13%) regions (Fig. 10), 

consistent with the decrease in simulated N200 (Sect. 3.3). As a result, the model bias in AOD550 against MODIS is 

increased relative to the control from NMBF=-0.97 to -1.28 in the west (Phase 1) and from NMBF= -1.44 to -1.70 in the east 

(Fig. S13).  25 

3.5.2 Mixing state 

We find that simulated AOD is relatively insensitive to the assumption about the aerosol mixing state; with less than 5% 

difference in the magnitude of AOD550 between internally mixed (simulation 1; Table 3) and externally mixed (simulation 

6; Table 3) cases (consistent with Reddington et al., 2016). Calculating AOD550 assuming optical properties derived from 

an external mixture of aerosol species leads to slightly reduced values (by ~1-4%; mean reduction in the west: ~2%; mean 30 

reduction in the east: ~1%; Fig. 10) when compared to AOD550 calculated assuming an internal (volumetrically-averaged) 
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aerosol mixture (Fig. 10). Therefore, assuming an internal mixture leads to slightly improved agreement between simulated 

and observed AOD over the external mixture assumption (Fig. S13). 

Han et al. (2013) also find relatively small changes in the magnitude of AOD (0.03 to 0.07) in high AOD regions (~0.8 to 

2.0) between internally and externally mixed cases, with the internal mixture assumption giving higher values than the 

external mixture assumption. Curci et al. (2015) find a greater difference (~37%) in simulated AOD between internally and 5 

externally mixed assumptions, with the external mixed case giving the highest AOD. However, the greater sensitivity of 

simulated AOD to the mixing state assumption in Curci et al. (2015) was primarily due to the difference in the calculation of 

the aerosol number size distribution rather than the difference in the calculated optical properties. The GLOMAP model 

simulates both mass and number concentration of each size mode so the total number concentration stays identical for both 

mixing state assumptions (in the externally mixed case the number concentration of particles in a given size mode is split 10 

between aerosol components based on the volume fraction of that component in the mode). We note that the internally mixed 

case used in this study does not consider different mixing structure assumptions i.e. core-shell internal mixing, which may 

account for an additional uncertainty of ~5-10% in simulated AOD (Curci et al., 2015).  

3.5.3 Refractive index 

To investigate the sensitivity of simulated AOD to assumptions about the aerosol optical properties, we calculated AOD550 15 

from the model simulation with GFED emissions assuming a range of refractive indices appropriate for BC and POM 

aerosol (see simulations 7 to 12 in Table 3). We find that the magnitude of simulated AOD550 varies by up to ~7% (relative 

to the control AOD550) depending on the choice of refractive indices.  

Applying smoke aerosol refractive indices from Matichuk et al. (2007; 2008) to the model BC and POM components 

(simulations 8-10 in Table 3) leads to a small mean decrease in AOD550 relative to the control (by 2-5% in the eastern 20 

region and 0-3% in the western region; Fig. 10). Assuming medium and highly absorbing refractive indices for BC from 

Bond and Bergstrom (2006) (simulation 11 in Table 3) increases AOD550 by an average of 4-6% in the eastern region and 

2-4% in the western region. Using the highly absorbing refractive index for BC (simulation 12 “rfidx_6” in Table 3) gives 

the best agreement between model and satellite-retrieved (MODIS) AOD550 out of the refractive index sensitivity tests (Fig. 

S13).  25 

The relatively small sensitivity of simulated AOD to assumed aerosol refractive indices is consistent with previous studies 

(Matichuk et al., 2007; Curci et al., 2015; Reddington et al., 2016) and suggests that the negative bias in AOD cannot be 

wholly explained by the uncertainty associated with this assumption. 

3.5.4 Aerosol water uptake 

Aerosol water uptake plays a significant role in determining AOD, altering the refractive index and the size distribution of 30 

the aerosol. Our estimate of aerosol water uptake depends on the calculation method (including assumptions made regarding 
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aerosol hygroscopicity; described in Sects. 2.1.2 and S1), the model relative humidity (from ECMWF reanalyses) and the 

simulated aerosol physical/chemical properties (size distribution and composition). 

To test the sensitivity of AOD to the calculation of aerosol water uptake, we compare AOD550 calculated using two 

methods (described in Sect. S1): 1. using ZSR online in the model (simulation 1 in Table 3); and 2. using the κ-Köhler water 

uptake scheme (Petters and Kreidenweis, 2007) offline during post-processing (simulation 13 in Table 3). Our previous work 5 

demonstrated that simulated AOD is sensitive to this calculation, with simulated AOD440 varying by a factor of ~1.6 

between the upper and lower estimates of water uptake (Reddington et al., 2016). We find the same here, with AOD550 

varying by a mean factor of 1.6 over the western Amazon and a mean factor of 1.5 over the eastern Amazon, between the 

two calculation methods. Using the κ-Köhler water uptake scheme decreases AOD550 (by 32-39%; Fig. 10) relative to 

AOD550 calculated using ZSR, thus increasing the negative model bias against observations (Fig. S13). 10 

To explore the sensitivity to assumed κ values, we varied κ values separately for the sulfate and POM components in the 

model. Assuming a higher κ for sulfate (1.19 as for sulphuric acid; Petters and Kreidenweis, 2007) (simulation 14 “κK_2” in 

Table 3) results in simulated AOD550 being 26% and 33% lower on average than ZSR in the eastern and western regions, 

respectively (Fig. 10). Assuming a higher κ for both sulfate (1.19) and for POM (0.2) (simulation 15 “κK_3” in Table 3) 

results in simulated AOD550 being a 23-25% lower than ZSR on average (Fig. 10). Figure S14 shows the change in 15 

simulated AOD550 due to assuming different κ values for sulfate and POM relative to the simulation using the κ-Köhler 

water uptake scheme with κ of 0.53 for sulfate and 0.1 for POM (simulation 1 “κK_1” in Table 3). Using high κ values for 

both sulfate and for POM (simulation 15 “κK_3” in Table 3) increases simulated AOD550 on average by 12-23%, 

improving agreement with MODIS AOD550, relative to simulation “κK_1” (Fig. S13). However, these high κ values are 

likely to be unrealistically high for biomass burning aerosol (particularly for sulfate) and despite this, the model bias remains 20 

negative. 

The higher AOD550 values calculated using the ZSR scheme can be explained by the steeper hygroscopic growth curve for 

biomass burning aerosol (at ambient relative humidity (RH) < 90%) when calculated with the GLOMAP ZSR scheme 

compared with the κ-Köhler scheme (see Fig. 13 of Johnson et al. (2016)). At ambient RH above 90% the opposite is true, 

with a steeper growth curve for the κ-Köhler scheme (due to the RH-restriction of 90% applied in GLOMAP for ZSR; see 25 

Sect. S1.1). However, the model RH stays below 90% during the SAMBBA campaign (see Sect. 3.5.5). We note that AOD 

simulated with ZSR (assuming sulfuric acid and high water uptake for organics) is likely to be an upper estimate for water 

uptake. Our results confirm the large uncertainty present in the simulated AOD due to aerosol hygroscopicity.  

3.5.5 Relative humidity 

In Reddington et al. (2016) we discussed the potential sensitivity of simulated AOD to errors in ambient RH. In this work we 30 

are able to evaluate the model relative humidity against SAMBBA aircraft observations. The model captures the shape of the 

mean profile of observed relative humidity in both western and eastern regions (NMBF=-0.03); with small 
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over/underestimates in the BL in the western/eastern regions, respectively (western BL: NMBF=0.10; eastern BL: NMBF=-

0.05) (Fig. S15). However, the model underestimates the variability in observed RH above ~1.5 km altitude in the west and 

below ~4 km altitude in the east. In particular, in the western region, the model does not capture the elevated observed RHs 

(≥ 90%), which disproportionately affect aerosol water uptake and hygroscopic growth. This underestimation is likely due to 

the relatively coarse vertical and horizontal resolution of the model. A recent study by Haslett et al. (2019) found that high 5 

AODs observed by AERONET in southern West Africa could only be recreated by accounting for very elevated and variable 

RHs in the BL. They found that humid layers had a significant impact on AOD (particularly for RH > 98 %), resulting in a 

wet AOD more than 1.8 times the dry AOD (Haslett et al., 2019). This suggests that inadequate representation of sub-grid 

variability of RH may contribute to the model discrepancy in AOD.  

To explore the sensitivity of model AOD to variability in RH, we forced the model RH to match either the mean or 10 

maximum observed RH in each vertical model level (on days with available aircraft data) and calculated the resulting water 

uptake using the κ-Köhler scheme (with κPOM=0.1; κSO4=0.53; simulations 18-20 in Table 3). These sensitivity tests have 

mixed results on simulated AOD (see Figs. 10 and S14). Setting the model RH to the mean observed RH in each vertical 

level (simulation 18 “κK_RH” in Table 3) results in a small mean increase in simulated AOD550 in the east (by ~11%) and 

small mean decrease in the west (by ~8%) relative to AOD550 calculated using κ-Köhler and GLOMAP RH (simulation 13 15 

“κK_1” in Table 3; see Fig. S13). Setting the model RH to the maximum observed RH in each vertical level (with a 

restriction of RH ≤ 99%; simulation 20 “κK_RHmax99” in Table 3) increases model AOD550 (by ~58-87% on average; Fig. 

S14) improving agreement with MODIS AOD550 (Fig. S13), but leads to overestimation of the observed aerosol scattering 

and extinction coefficients between 4 and 6 km altitude. Using the maximum observed RH but with a restriction of RH ≤ 

96% (simulation 19 “κK_RHmax96” in Table 3) increases by ~20-58% on average, improving agreement with MODIS 20 

AOD550 relative to simulation “κK_1” (Fig. S13) and maintains good agreement with the relative vertical profiles of the 

scattering and extinction coefficients. However, the negative bias in AOD550 remains larger than for total aerosol mass 

concentrations (Table 2).  

Although these sensitivity tests do not resolve the model discrepancy in model AOD, they demonstrate firstly, the large 

sensitivity of simulated AOD to the magnitude and variability of RH and secondly, that changes in RH can be important for 25 

simulated AOD even at RH < 90% (for instance, in the eastern region). Improving model representation of RH variability, 

whilst using an upper estimate for water uptake (e.g., the online ZSR scheme in GLOMAP), would likely bring the model 

bias in AOD more in-line with that of total aerosol mass concentration but this would require thorough testing in a high 

resolution model. 

3.5.6 Model spatial resolution 30 

The relatively coarse spatial resolution of the simulated aerosol and relative humidity (Sect 3.5.5) fields may also contribute 

to the model underestimation of AOD, due to underestimation of sub-grid variability (e.g. Weigum et al., 2016). Increasing 
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model spatial resolution has been shown to increase simulated AOD by ~11-13% (Bian et al., 2009; Weigum et al., 2016), 

depending on the initial and altered grid resolutions. However, we note that comparisons between simulated and aircraft 

observed aerosol mass concentrations suggest that the model captures observed spatial variations in aerosol mass 

concentrations reasonably well for the SAMBBA period, at least over the western Amazon region. 

Model spatial resolution will also affect the model–measurement sampling uncertainty, which can be up to 50% for hourly 5 

time-resolution data (e.g. Schutgens et al., 2016a; 2017; Reddington et al., 2017). In our analysis we have strived to reduce 

spatial and temporal sampling errors as much as possible by: 1) running the model and using analysed meteorology for the 

same time period as the observations; 2) temporally co-locating model and measurement data points, removing time periods 

with missing or invalid measurement points from the model data (as discussed in Schutgens et al., 2016b) (and temporal 

averaging for bias calculations and comparisons with aircraft measurements); and 3) spatially co-locating model data to 10 

observational data points using interpolation (and spatial averaging for comparisons with aircraft and MODIS observations). 

For comparisons with aircraft measurements, we have also attempted to reduce measurement representativeness error by 

removing in-plume and in-cloud sampling from the data where possible. We estimate remaining model–measurement 

sampling uncertainty to be up to ~30%, corresponding to monthly average model-measurement comparisons (Schutgens et 

al., 2016a). A higher resolution model would be required to accurately quantify the model–measurement sampling 15 

uncertainty for this specific analysis and to explore the degree of sensitivity of AOD to the spatial resolution of simulated 

aerosol and relative humidity fields in detail. 

3.6 Summary of AOD sensitivity simulations and uncertainties 

Simulated AOD varies by more than a factor 2 across the different sensitivity simulations (Figs. 10 and S14). The different 

emission inventories change simulated AOD by up to approximately ±30%. Altering assumed refractive indices changes 20 

simulated AOD by less than 8% and assumptions about external mixing change simulated AOD by less than 2%. Changes to 

assumptions controlling aerosol water uptake change simulated AOD by up to -40% (for assumptions regarding the water 

uptake calculation scheme) and up to +20% (for assumptions regarding the hygroscopicity parameter, κ). Uncertainty in the 

variability of RH changed simulated AOD by up to +87%. This analysis suggests that the largest uncertainties in simulated 

AOD are associated with uncertainty in aerosol water uptake and model representation of relative humidity.  25 

For the magnitude of AOD observed during the SAMBBA campaign, the uncertainty in the retrievals of AOD are 

approximately ±30% for MODIS AOD550 and <10% for AERONET AOD500 (see Sects. 2.3.5 and S2). Although the 

uncertainties in AOD retrievals are important to consider, they are smaller than the uncertainties associated with simulated 

biomass burning aerosol properties and AOD. 
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4. Conclusions 

We have used surface, aircraft and satellite observations made during the SAMBBA field campaign in the southern Amazon 

during September and October 2012 to improve our understanding of biomass burning emissions. We apply three different 

biomass burning emission datasets (FINN, GFAS, GFED) in the GLOMAP global aerosol model. In fire-impacted regions of 

the Amazon, total annual aerosol emissions from fires (averaged over 2002-2012) vary by up to a factor 2.4 across these 5 

datasets, highlighting the large uncertainty in aerosol emissions from fires. In 2012, annual aerosol fire emissions were 4-

47% less than the 2002-2012 mean in the western Amazon, but 30-6% greater than the long-term mean in the eastern 

Amazon. This reflects declining deforestation rate and associated fires in the western Amazon over this period (Reddington 

et al., 2015) and opposing trends in fires in the eastern Amazon (Andela et al, 2018). 

During 2012, observed surface PM2.5 concentrations in the southern Amazon increased from ~2 μg m-3 between January 10 

and July to 30-50 μg m-3 in September then declined to less than 10 μg m-3 in October. Observed aerosol mass (in the 75 - 

650 nm diameter size range) in September was dominated by OA which accounted for 84% of total mass with BC 

accounting for 9% of mass. The model reproduced the observed seasonal cycle of aerosol concentrations, with ~54-78% of 

simulated PM2.5 concentrations originating from fire emissions during September 2012. Fires are the dominant source of 

PM2.5 across the region during the dry season.   15 

In the western Amazon, where deforestation fires are the dominant fire type, agreement between simulated and observed 

aerosol mass concentrations in the BL is variable, depending on the fire emission dataset used both for OA (NMBF = -1.6 to 

+1.2) and BC (NMBF=-1.5 to +0.6). In this region we do not find evidence that aerosol emissions are systematically 

underestimated across all emission datasets. In the eastern Amazon, where grassland/savannah fires are dominant, GLOMAP 

underestimates OA (NMBF = -0.9 to -3.1) and BC (NMBF = -1.5 to -6.1) concentrations with all three emission datasets. 20 

This suggests that all emission datasets may underestimate aerosol emissions from grassland/savannah fires in the eastern 

Amazon, although we acknowledge the limited measurement sampling in this region relative to the western Amazon. We 

assume fire emissions have an OA:OC ratio of 1.4. Increasing our OA:OC ratio to 2.3, towards the upper end of that used in 

models (Tsigaridis et al., 2014) and matching aged aerosol observed in SAMBBA (Johnson et al., 2016), would improve the 

model-observation OA comparison in the eastern Amazon but would lead to an overestimate of OA in the western Amazon 25 

in some periods.  

Comparisons of the simulated particle number size distribution against aircraft observations revealed a persistent 

underestimation of number concentrations of particles smaller than ~100 nm diameter. Reducing the assumed emission size 

of primary carbonaceous aerosol in the model improved agreement with observed number concentrations of particles less 

than 100 nm diameter, but increased the negative bias in simulated AOD. Assuming a bimodal emission size distribution for 30 

primary biomass burning aerosol may solve the model discrepancy in particle number concentrations below ~100 nm 

diameter, while retaining the simulated accumulation mode of biomass burning aerosol. Model underestimation of particle 
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number concentration of particles less than 100 nm will have implications for simulation of cloud condensation nuclei 

concentrations and simulated aerosol-cloud interactions.  

Observed vertical profiles of aerosol mass concentrations were characterised by enhanced concentrations from the surface up 

to around 2 km altitude in the western Amazon and 4 km altitude in the eastern Amazon. In our model, we assume that all 

emissions from vegetation fires in this region are injected below 3 km altitude, with ~80% of emissions injected below 1 km. 5 

The model simulated a realistic relative vertical profile of aerosol mass concentrations, suggesting that our assumptions 

about injection height are valid. Our results further confirm that Amazon fires rarely inject emissions above the BL, as found 

by previous studies (Archer-Nicholls et al., 2015, Marenco et al., 2016). 

The model generally underestimates AOD across the Amazon both in comparison to AERONET (NMBF=-1.3 to -0.4) and 

MODIS (NMBF =-2.4 to -0.4). In the eastern Amazon, the underestimation of aerosol mass concentrations through the 10 

vertical profile contributes to this underestimation of AOD. In the western Amazon, the model underestimates AOD even 

when the vertical profile of aerosol mass concentration is either well predicted or overestimated. This suggests that 

underestimation of AOD may be due to uncertainties in the calculation of AOD, rather than underestimation of aerosol mass 

concentrations. To explore this possibility we tested the impact of uncertainty in refractive index, aerosol mixing state, 

aerosol water uptake and relative humidity on model AOD. We found that simulated AOD was most sensitive to 15 

assumptions about water uptake and the model representation of variability in relative humidity, leading to an average 

uncertainty range in simulated AOD of approximately -40% to +90%.  

Overall, our work suggests that aerosol emissions from fires are on average underestimated over the Amazon, particularly 

over grassland/savannah fires in the eastern Amazon, albeit by less than the factor ~3-5 assumed in some previous studies. 

Confirming our previous work (Reddington et al., 2016) we find that simulated and observed aerosol mass concentrations 20 

are generally in better agreement than simulated and observed AOD. We show that the model underestimates AOD even 

when it reproduces the observed vertical profile of aerosol mass. This suggests that uncertainties in the calculation of AOD, 

rather than the aerosol mass concentration, are the dominant reason for underestimation of AOD, and we find largest 

sensitivity to uncertainty in water uptake and model representation of relative humidity variability. We therefore caution 

against using comparison with AOD to scale particulate emissions from fires, as has been done in a number of previous 25 

studies. 

Data availability 

Data from all GLOMAP model simulations and processing codes are available from the corresponding author on request. All 

raw time series data from the FAAM research aircraft are publically available from the Centre for Environmental Data 

Analysis website, where the entire SAMBBA dataset may be accessed. Data masks for categorising flight patterns into 30 

plume-sampling and other sampling types (vertical profiles and SLRs) are currently available on request from Hugh Coe. 



23 

 

Biomass burning emissions datasets are available publically and can be accessed at the following web pages: 

http://bai.acom.ucar.edu/Data/fire/ (FINN); https://apps.ecmwf.int/datasets/data/cams-gfas/ (GFAS); 

https://www.globalfiredata.org/data.html (GFED). AERONET and MODIS aerosol optical depth data are available 

publically from NASA: https://aeronet.gsfc.nasa.gov/new_web/aerosols.html (AERONET) and 

https://ladsweb.modaps.eosdis.nasa.gov (MODIS).  5 
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Annual emission (2002-2012 mean) 

(Gg a-1) 

2012  / 

(2002-2012) 

SAMBBA emission (Gg 

day-1) 

 OC BC OC:BC OC+BC OC BC 

Western Amazon (54-68.5°W, 6-12°S) 

GFAS 429 56.4 7.6 0.53 

2.32;  

P1: 3.32;  

P2: 1.42 

0.305;  

P1: 0.436;  

P2: 0.187 

FINN 1060 [2.5] 118 [2.1] 9.1 0.77 

8.69 [3.7];  

P1: 11.9;  

P2: 5.81 

0.958 [3.1];  

P1: 1.31;  

P2: 0.637  

GFED 546 [1.3] 63.3 [1.1] 8.6 0.96 

5.02 [2.2];  

P1: 8.21;  

P2: 2.11 

0.580 [1.9]; 

P1: 0.944;  

P2: 0.249 

Eastern Amazon (43-50°W, 4.5-15°S) 

GFAS 336 46.6 7.2 1.46 5.64 0.796  

FINN 181 [0.5] 20.4 [0.4] 8.8 1.30 2.39 [0.4] 0.267 [0.3] 

GFED 223 [0.7] 29.9 [0.6] 7.5 1.94 5.23[0.9] 0.693 [0.9] 

Table 1. Comparison of organic carbon (OC) and black carbon (BC) emissions from biomass burning in the GFASv1.2, 10 

FINNv1.5 and GFED4.1s emissions inventories. Emissions are summed separately for the western (54-68.5°W, 6-12°S) and 

eastern (43-50°W, 4.5-15°S) Amazon as shown in Fig. 2. Table reports long-term (2002-2012) mean annual total emissions; 

the ratio of annual total emissions in 2012 to the 2002-2012 mean; and total emissions for the SAMBBA campaign period 

(13 September – 3 October 2012). All values are given to 3 significant figures. The ratios (FINN:GFAS and GFED:GFAS) 

of total annual emissions during the 2002-2012 period and mean daily emissions during the SAMBBA campaign are given in 15 

parentheses. For the western Amazon, daily emissions are also shown for the two phases of the campaign: P1 (13 – 22 

September) and P2 (23 September – 3 October).  
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 noBBA FINN GFED GFAS 

Western Amazon, Phase 1 

PVH PM2.5 -4.80 -0.09 -0.54 -1.35 

PVH Total mass -3.43 0.45 0.08 -0.49 

PVH OA -3.45 0.50 0.11 -0.50 

PVH BC -53.12 0.02 -0.34 -1.32 

PVH Sulfate 0.47 2.69 2.32 1.96 

Aircraft Total mass (<2.5 km) -6.83 -0.23 -0.76 -1.42 

Aircraft OA (<2.5 km) -7.63 -0.25 -0.82 -1.64 

Aircraft BC (<2.5 km) -37.23 -0.13 -0.78 -1.52 

Aircraft Sulfate (<2.5 km) -2.31 -0.48 -0.72 -0.83 

Aircraft Scattering (total column) -4.62 -0.29 -0.77 -1.29 

Aircraft Extinction (total column) -5.47 -0.37 -0.89 -1.46 

AOD550 (MODIS) -5.25 -0.51 -0.97 -1.43 

AOD500 (AERONET) -6.95 -0.47 -0.53 -1.26 

Western Amazon, Phase 2 

PVH PM2.5 -2.26 0.32 -0.25 -0.61 

PVH Total mass -0.72 1.94 0.89 0.30 

PVH OA -0.44 2.44 1.18 0.47 

PVH BC -34.63 0.12 -0.51 -1.51 

PVH Sulfate -0.06 2.22 1.51 1.24 

Aircraft Total mass (<2.5 km) -1.24 1.13 0.36 0.02 

Aircraft OA (<2.5 km) -1.16 1.21 0.39 0.02 

Aircraft BC (<2.5 km) -20.94 0.56 -0.06 -0.56 

Aircraft Sulfate (<2.5 km) -0.58 0.71 0.40 0.24 

Aircraft Scattering (total column) -0.85 0.93 0.34 -0.07 

Aircraft Extinction (total column) -1.07 0.83 0.26 -0.00 

AOD550 (MODIS) -3.68 -0.38 -0.70 -1.06 

AOD500 (AERONET) -4.50 -0.41 -0.68 -1.11 

Eastern Amazon 

Aircraft Total mass (<4 km) -8.43 -2.60 -1.00 -0.78 

Aircraft OA (<4 km) -13.17 -3.14 -1.23 -0.92 
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Aircraft BC (<4 km) -41.29 -6.11 -1.91 -1.48 

Aircraft Sulfate (<4 km) 0.29 0.69 1.40 1.22 

Aircraft Scattering (total column) -8.81 -3.30 -1.49 -1.29 

Aircraft Extinction (total column) -10.80 -3.90 -1.75 -1.51 

AOD550 (MODIS) -4.92 -2.41 -1.44 -1.23 

Table 2. Summary of comparison between model and observations expressed as normalised mean bias factor (NMBF, blue 

indicates model underestimation). Comparisons are shown for observations from the Porto Velho measurement station 

(PVH): PM2.5 (particulate matter with diameters smaller than 2.5 μm) mass, total aerosol mass (mass measured by the 

ACSM plus equivalent black carbon measured by the aethelometer), and organic aerosol (OA), black carbon (BC) and 

sulfate mass concentrations; the aircraft: total aerosol mass (mass measured by AMS plus refractive BC measured by the 5 

SP2), and OA, BC and sulfate mass concentrations, aerosol scattering, and aerosol extinction; satellite: aerosol optical depth 

at 550 nm (AOD550) from MODIS; and AOD500 from AERONET. Aircraft comparisons are for concentrations below 2.5 

km (western Amazon) or 4 km (eastern Amazon). AERONET comparisons are the average NMBF across 5 stations. For 

aircraft total aerosol mass, scattering and extinction, model and observations are compared only during time periods with 

available AMS measurements. Values are shown for the model with FINN1.5, GFAS1.2, GFED4.1s emissions and with no 10 

biomass burning emissions (noBBA). The numbers highlighted in bold show the model simulation with the smallest bias. 
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# Name Description Fire 

emissio

ns 

Refractive indices (RI) Mixing 

(internal/ 

external) 

Water uptake 

scheme 

RH fields 

BC  POM 

1 GFED Control (GFED 

emissions) 

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal ZSRb GLOMAP 

(ECMWF) 

2 FINN FINN emissions FINN 1.750 – 0.442286i 

(ʎ=542 nm) a 

1.500 – 0.00i 

(all ʎ) a 

Internal ZSRb GLOMAP 

(ECMWF) 

3 GFAS GFAS emissions GFAS 1.750 – 0.442286i 

(ʎ=542 nm) a 

1.500 – 0.00i 

(all ʎ) a 

Internal ZSRb GLOMAP 

(ECMWF) 

4 surflev GFED emissions 

injected into the model 

surface level 

GFED 1.750 – 0.442286i 

(ʎ=542 nm) a 

1.500 – 0.00i 

(all ʎ) a 

Internal ZSRb GLOMAP 

(ECMWF) 

5 emsize GFED emissions with a 

reduced emission size 

for BC/OC particles 

(CMD=100 nm, σ=1.7) 

GFED 1.750 – 0.442286i 

(ʎ=542 nm) a 

1.500 – 0.00i 

(all ʎ) a 

Internal ZSRb GLOMAP 

(ECMWF) 

6 extmix External mixing 

assumption. 

GFED 1.750 – 0.442286i 

(ʎ=542 nm) a 

1.500 – 0.00i 

(all ʎ) a 

External ZSRb GLOMAP 

(ECMWF) 

7 rfidx_1 RI calculated for young 

smoke aerosol over 

southern Africa. 

GFED 1.54 – 0.025i 

(ʎ=550 nm)c 

1.54 – 0.025i 

(ʎ=550 nm) c 

Internal ZSRb GLOMAP 

(ECMWF) 

8 rfidx_2 RI retrieved by Ndola 

AERONET station in 

Zambia; close to smoke 

sources (Sep 2000 

mean) 

GFED 1.51 – 0.024i 

(ʎ=440 nm)d 

1.51 – 0.024i 

(ʎ=440 nm)d 

Internal ZSRb GLOMAP 

(ECMWF) 

9 rfidx_3 RI retrieved by Ndola 

AERONET station in 

Zambia (16 Sep 2000) 

GFED 1.52 – 0.019i 

(ʎ=440 nm)d 

1.52 – 0.019i 

(ʎ=440 nm)d 

Internal ZSRb GLOMAP 

(ECMWF) 

10 rfidx_4 RI retrieved by 

AERONET station, Jaru 

Reserve in Brazil (20 

Sep 2002)  

GFED 1.50 – 0.02i  

(ʎ=440 nm)e 

1.50 – 0.02i  

(ʎ=440 nm)e 

Internal ZSRb GLOMAP 

(ECMWF) 

11 rfidx_5 Mid-range value for RI 

for light absorbing 

carbon 

GFED 1.85 – 0.71i  

(ʎ=550 nm)f 

[set to 1.500 – 

0.000i]a 

Internal ZSRb GLOMAP 

(ECMWF) 

12 rfidx_6 Upper limit of RI for 

light absorbing carbon 

GFED 1.95 – 0.79i  

(ʎ=550 nm)f 

[set to 1.500 – 

0.000i]a 

Internal ZSRb GLOMAP 

(ECMWF) 

13 κK_1 κ-Köhler to calculate 

aerosol water uptake.  

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal κ-Köhler 

(κOA=0.1g; 

κSO4=0.53h) 

GLOMAP 

(ECMWF) 

14 κK_2 κ-Köhler to calculate 

aerosol water uptake 

(using κ for H2SO4) 

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal κ-Köhler 

(κOA=0.1g; 

κSO4=1.19h) 

GLOMAP 

(ECMWF) 

15 κK_3 κ-Köhler to calculate 

aerosol water uptake 

(using high κ for OA 

and  κ H2SO4) 

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal κ-Köhler 

(κOA=0.2i; 

κSO4=1.19h) 

GLOMAP 

(ECMWF) 

16 κK_4 κ-Köhler to calculate 

aerosol water uptake 

(using CCN-derived κ 

for (NH4)2SO4) 

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal κ-Köhler 

(κOA=0.1g; 

κSO4=0.61h) 

GLOMAP 

(ECMWF) 

17 κK_5 κ-Köhler to calculate GFED 1.750 – 0.442286i 1.500 – 0.00i Internal κ-Köhler GLOMAP 
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aerosol water uptake 

(using high κ for OA 

and  CCN-derived κ for 

(NH4)2SO4) 

(ʎ=542 nm)a (all ʎ)a (κOA=0.2i; 

κSO4=0.61h) 

(ECMWF) 

18 κK_RH κ-Köhler to calculate 

aerosol water uptake 

with mean aircraft RH 

vertical profile. 

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal κ-Köhler 

(κOA=0.1g; 

κSO4=0.53h) 

Aircraft 

(mean 

RH) 

19 κK_RH

max96 

κ-Köhler to calculate 

aerosol water uptake 

with maximum aircraft 

RH vertical profile 

(capped at 96%). 

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal κ-Köhler 

(κOA=0.1g; 

κSO4=0.53h) 

Aircraft 

(max RH, 

capped at 

96%) 

20 κK_RH

max99 

κ-Köhler to calculate 

aerosol water uptake 

with maximum aircraft 

RH vertical profile 

(capped at 99%). 

GFED 1.750 – 0.442286i 

(ʎ=542 nm)a 

1.500 – 0.00i 

(all ʎ)a 

Internal κ-Köhler 

(κOA=0.1g; 

κSO4=0.53h) 

Aircraft 

(max RH) 

a Bellouin et al., 2011; b Stokes and Robinson, 1966; c Haywood et al., 2003; d Matichuk et al., 2007; e Matichuk et al., 2008; 

f Bond and Bergstrom, 2006; g Gunthe et al., 2009; h Petters and Kreidenweis, 2007; i Petters et al., 2009. 

Table 3. Summary of tests performed to explore the sensitivity of simulated aerosol optical depth (AOD) to assumptions 

about biomass burning emissions, aerosol optical properties (refractive indices (RI)), aerosol mixing state and aerosol water 

uptake calculation (Sect. 3.5). The water uptake schemes used (ZSR and κ-Köhler) are described in Sect. S1 (κ is the 5 

component-specific hygroscopiticy parameter). 
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Figure 1. Maps of estimated total annual organic carbon (OC) aerosol emissions from fire shown as (a)-(c) an average for 

the period 2002 to 2012 and (d)-(f) for 2012. The difference in OC emissions between 2012 and 2002 to 2012 (2012 

emissions minus 2002-2012 average) is shown in (g)-(i).  Blue colours show where emissions in 2012 were less than in 2002 

to 2012, while red colours show where emissions were greater. Emissions are shown for: GFAS version 1.0 (2002-2011) and 5 

version 1.2 (2012) (left); FINN version 1.5 (middle); and GFED version 4 (right). The GFAS, FINN and GFED OC 

emissions were re-gridded onto a common grid of 0.5°x0.5° resolution for comparison. The black boxes show the eastern 

(43-50°W, 4.5-15°S) and western (54-68.5°W, 6-12°S) domains (see Fig. 2). 

 

Figure 2. Flight tracks of the FAAM aircraft during the SAMBBA field campaign (Phase 1: 13 - 23 September; Phase 2: 23 10 

September – 3 October 2012). The location of the Porto Velho ground station is shown by a black circle. The locations of 

AERONET stations operating during the SAMBBA campaign are shown by black crosses: Porto Velho UNIR (63.94°W, 

8.84°S), Alta Floresta (56.10°W, 9.87°S), Rio Branco (67.87°W, 9.96°S), Cuiaba-Miranda (56.02°W, 15.73°S), Santa Cruz 

UTEPSA (63.20°W, 17.77°S). The eastern (43-50°W, 4.5-15°S) and western (54-68.5°W, 6-12°S) domains are shown with 

black boxes. Land cover type is shown using the standard MODIS land cover type data product (MCD12Q1) in the IGBP 15 

Land Cover Type Classification (Channan et al., 2014; Friedl et al., 2010). 

 

Figure 3. Time series of simulated (lines) and observed (bars) PM2.5 concentrations at Porto Velho between January and 

November 2012. Simulated daily mean concentrations are shown with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) 

emissions and with no biomass burning emissions (noBBA; orange). Observed PM2.5 concentrations are averages over 20 

sampling periods that ranged from <1 day to 7 days in 2012. The NMBF values are given separately for Phase 1 and Phase 2 

of the SAMBBA field campaign in Table 2. 

 

Figure 4. Composition resolved aerosol mass at Porto Velho ground station during the SAMBBA campaign. (a) Time series 

of hourly-mean observed (black) and simulated (colour) total aerosol mass. The observed aerosol mass is the total mass from 25 

the ACSM plus equivalent BC from the aethelometer. Simulated total aerosol mass is shown for the model with FINN1.5 

(green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning emissions (noBBA; orange). Numbers on the 

panel show the NMBF for the SAMBBA campaign separately for Phase 1 (P1) and Phase 2 (P2) (also see Table 2). (b) Bar 

chart showing observed and simulated average aerosol composition during the campaign: black carbon (BC; black), 

nitrate+ammonium+chloride (NO3+NH4+Chl; blue, not treated by the model), organic aerosol (OA; green) and sulfate 30 

(SO4; red). 
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Figure 5. Mean observed and simulated vertical profiles of (a) organic aerosol (OA), (b) black carbon (BC) and (c) sulfate 

(SO4) during the SAMBBA aircraft campaign, sectioned into 400 m altitude bins. Observations are shown by the black data 

points; simulated concentrations are shown for the model with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions 

and with no biomass burning emissions (noBBA; orange). The simulated data (linearly interpolated to the flight track of the 

aircraft) and the observations are split into western and eastern regions of the Amazon (Fig. 2) and by time (Phase 1: 5 

13/09/2012 – 22/09/2012, Phase 2: 23/09/2012 - 03/10/2012) for the western region. Error bars show the standard deviation 

of the observed mean. Concentrations are reported at standard temperature and pressure (STP) conditions (at 273.15 K and 

1013.25 hPa). The NMBF values are given separately for the western region (Phase 1 and Phase 2) and eastern region in 

Table 2. 

 10 

Figure 6. Mean observed (black) and simulated (colour) aerosol number size distributions during the SAMBBA aircraft 

campaign for two altitude bands: between the surface and 2 km (top panel) and between 2 and 4 km asl (bottom panel). The 

observed number size distribution was measured with Scanning Mobility Particle Sizer (SMPS; black crosses) and a Grimm 

optical particle counter (OPC; black diamonds). The simulated data (linearly interpolated to the flight track of the aircraft) 

and the observations are split into western and eastern regions of the Amazon (Fig. 2) and by time (P1: 13/09/2012 – 15 

22/09/2012, P2: 23/09/2012 - 03/10/2012) for the western region. Simulated concentrations are shown for the model with 

FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning emissions (noBBA; orange). 

 

Figure 7. Time series of simulated (colour) and observed (black) aerosol optical depth at 550 nm (AOD550) for the 

SAMBBA campaign (13 September – 3 October 2012) over (a) the western Amazon (54-68.5°W, 6-12°S) and (b) the 20 

eastern Amazon (43-50°W, 4.5-15°S). Observed AOD550 retrieved by MODIS on-board Terra (over pass timeː 10ː30 local 

time) is shown by the black diamonds and AOD550 retrieved by MODIS on-board Aqua (over pass timeː 13ː30 local time) 

is shown by the black crosses; the black line shows an average value for each day (plotted at midday local time). Simulated 

hourly AOD550 (plotted at local time for Rondônia, Brazil: UTC-4h) is shown for the model with FINN1.5 (green), 

GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning emissions (noBBA; orange). The NMBF values are 25 

given separately for the western region (Phase 1 and Phase 2) and eastern region in Table 2. 

 

Figure 8. Time series of simulated (colour) and observed (black) daily aerosol optical depth (AOD) during the SAMBBA 

campaign at 5 AERONET stations in the western and southern Amazon: (a) Porto Velho UNIR (63.94°W, 8.84°S), (b) Santa 

Cruz UTEPSA (63.20°W, 17.77°S), (c) Cuiaba-Miranda (56.02°W, 15.73°S), (d) Rio Branco (67.87°W, 9.96°S) and (e) Alta 30 

Floresta (56.10°W, 9.87°S). Daily mean AOD at 500 nm (AOD500) from AERONET (black line) is compared to AOD550 

retrieved by MODIS (Terra: black diamonds; Aqua: black crosses), using grid cells nearest the AERONET station location. 

Simulated daily mean AOD500 is shown for the model with FINN1.5 (green), GFAS1.2 (blue), GFED4 (red) emissions and 
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with no biomass burning emissions (noBBA; orange). The NMBF values are given separately for Phase 1 (P1) and Phase 2 

(P2) of the campaign. 

 

Figure 9. Vertical profiles of observed (black) and simulated (colour) aerosol scattering coefficient at 550 nm (top panel) 

and extinction coefficient at 550 nm (bottom panel) during the SAMBBA aircraft campaign, sectioned into 400 m altitude 5 

bins. Observations are shown by the black data points; simulated concentrations are shown for the model with FINN1.5 

(green), GFAS1.2 (blue), GFED4 (red) emissions and with no biomass burning emissions (orange). The simulated data 

(linearly interpolated to the flight track of the aircraft) and the observations are split into western and eastern regions of the 

Amazon (Fig. 2) and by time (Phase 1: 13/09/2012 – 22/09/2012, Phase 2: 23/09/2012 - 03/10/2012) for the western region. 

Error bars show the standard deviation of the observed mean. The NMBF values are given separately for the western region 10 

(Phase 1 and Phase 2) and eastern region in Table 2. 

 

Figure 10. Box and whisker plot summarising the relative difference between simulated hourly mean AOD550 from the 

control simulation (GFED emissions with ZSR water uptake scheme) and each of the sensitivity simulations listed in Table 

3. Simulation numbers in the figure correspond to the simulation numbers in Table 3. Simulations are compared during the 15 

SAMBBA campaign period (13 September – 3 October 2012) for the western region (54-68.5°W, 6-12°S; top panel) and the 

eastern region (43-50°W, 4.5-15°S; bottom panel) separately. Simulations 18, 19 and 20 are compared to the control 

simulation only on days with available aircraft measurements of RH. Circles show the mean values; whiskers show the 

minimum and maximum values; boxes show the 25th and 75th percentiles; and horizontal lines show the median values. 


