
We thank the reviewers for carefully reading and critically thinking about this paper. Below are 
our responses to the reviewers’ comments. Text from the main paper or supporting information 
are provided in italics with changes in the manuscript’s text highlighted in yellow. Reviewer 
comments are bold and our responses are normal typeface.  
 
Reviewer 1: 
This paper presents measurements of particulate organic compounds made during the 
FIREX lab campaign with a novel multi-stage measurement technique. The compounds are 
identified or assigned to functional groups where possible. The dependence of the emission 
factors of OC, EC, and the different compound classes and individual compounds with 
modified combustion efficiency and fuel type are analyzed. This is an important piece of 
work that will further our efforts to understand the chemistry of organic aerosols from 
biomass burning smoke. The work appears to have been carefully done and important 
uncertainties and caveats are made clear. The conclusions are generally justified by the 
results presented. The paper, tables, and figures are also generally clear and well 
presented. I have no major concerns about the manuscript. Below I discuss a few minor 
issues that I would like the authors to address, and a few typos that need to be fixed. 
 
P5, L31 and elsewhere: The numbers presented for the linear fits in this paragraph 
(including on page 6) do not match the numbers in Figure 1. Which set are correct? 
Please double-check all the numbers in the text to confirm they are consistent with the 
latest analysis of the data. 
 
We have corrected these typos and have gone through the rest of the text to ensure the written 
slopes match those of the figures.  
 
“EFs for OC and EC generally follow a logarithmic relationship such that log(EFOC) is 
inversely proportional to MCE (slope of -9.506) and log(EFEC) is directly proportional (slope 
5.441). Comparison of the slopes suggests that decreasing MCE of a fire will produce an 
increasing amount of OC compared to EC. This is further confirmed by examining the ratio of 
OC to EC (OC/EC) with MCE. Figure 1(b) illustrates how OC/EC sharply increases with more 
smoldering fire conditions (slope of -16.555).” 
 
P7, L9-18 and Figure 2: This may be outside the scope of this paper, but would it be 
possible to map the two axes of Figure 2 to the saturation vapor concentration, O/C 
ratio, or the hygroscopicity “kappa” parameter? If so, that would help modelers use this 
data more directly. 
Though we completely agree that displaying the chromatogram in terms of C* or kappa would 
be helpful for modelers, this would fall outside the scope of this study. Converting GC retention 
times to C* has done before for underivatized compounds (i.e. non-polar compounds); we refer 



the reviewer to Isaacman et al. (2011). However, this conversion method becomes more difficult 
and more uncertain for derivatized, polar compounds as each added trimethylsilyl group will 
alter the measured retention time and thus C*. A more accurate approach to estimate C* for these 
compounds can be found in Hatch et al. (2018).  
 
Obtaining O/C ratio from our measurements would require assigning parent masses for all the 
observed compounds. Previous work from the Goldstein group has done this for underivatized 
organic compounds, i.e., mostly non-polar compounds with minimal functionality (Isaacman et 
al., 2011). However, compounds emitted from biomass burning tend to be highly functionalized 
with groups such as hydroxyl, amino, and thiols. To detect these compounds using GCxGC 
entails derivatization. Therefore, converting parent mass to a molecular formula would require 
knowledge of the number of derivatized functional groups and the identity of the polar functional 
groups. This is knowledge we do not have for the vast majority of compounds. A much more 
detailed examination of the fragmentation pattern observed in the VUV (i.e., soft ionization) 
mass spectra could be done to help determine the number of derivatization groups and potential 
functionality. However, this would be a time-intensive process and would still have extremely 
high uncertainty. As a result, we believe extracting O/C ratios from our observations would be 
would be far outside the scope of this paper but may be worthwhile in the future.  
 
P8, L1-3: You mention the uncertainty in the organic nitrogen compounds, but what 
about the uncertainty in the other EFs? How should those be treated? 
We have clarified that the uncertainty for classified, unidentified, non-organic nitrogen 
compounds is ~30% and expanded the discussion on why this value is lower than previously 
reported from our group (see (Zhang et al., 2018)). In contrast, we do not have much chemical 
information for the unknown compounds in general. As a result, we estimate the uncertainty to 
be a factor of 2. These uncertainties are stated in the SI where the calibration method is discussed 
more in depth.  
 

Mass loading calibration curves were determined by measuring the instrument’s 
response to varying amounts of 99 standard compounds typically found in biomass burning 
organic aerosol particles. We estimate the systematic uncertainty in the mass loadings for the 
unknown compounds at a factor of 2. Unidentified but classified compounds exhibited lower 
uncertainty due to similarities in instrument response to standards within the same family. To 
illustrate this reduction of uncertainty, we examine compounds with a RI of in the range of 1800-
1900. Compounds that elute in this region include sugars, PAHs, aliphatics, and organic 
nitrogen. Their associated slopes from their mass loading calibration curves and compound 
family are provided in Table S2. Slopes within compound families are more similar than between 
families. For example, sugars exhibit slopes on average of 0.19 (not all shown in Table S2) 
whereas aliphatics have slopes of 1.1. An unclassified sample compound that elutes near 
myristic acid and galactose could be converted to mass loadings using either the slopes of 
myristic acid (0.43) or galactose (0.004). Depending which is chosen, the estimated mass 



loading of this unclassified compounds could range over three orders of magnitude. However, if 
this sample compound were classified as a sugar, then the estimated mass loadings would be 
significantly higher and more in-line with the how typical sugars respond in the instrument. Our 
observations using various standard compounds indicate this calibration technique primarily 
lowers the uncertainty of more polar compounds to ±~30%.   

Sampled compounds that exactly matched a standard compound have a lower uncertainty 
of ~±10% that is primarily due to instrument variation. Since the same data inversion factor was 
applied to the same observed compound across all samples, these systematic uncertainties do not 
affect the trends observed in this study but may affect the mass fractions each compound 
contributes to the total observed mass from a burn.  

 
P8, L10-14: The “shrub” class has the most variation in EFs, and I’m wondering if 
that’s because the plants also have the most biological diversity in that class? I could 
see where all pines are basically the same but shrubs can be very different from one 
another. 
 
Yes, we agree with the reviewer that the shrubs likely exhibit the widest diversity in plant 
chemical composition compared to the other fuel classes. Differences between fuel chemical 
composition, as also seen with peat, leads to a wider range in observed EFs. We have added this 
to the main text. 
 
Shrubs (MCE=0.92-0.98) exhibited the largest ranges in chemical family mass fractions (e.g., 0-
42% organic nitrogen compounds and 2-43% substituted phenols), suggesting that plants in this 
fuel type are less similar to each other than coniferous fuels. This may be due to a wider range of 
plant chemical composition for shrubs than for the other fuel types. Overall, the I/SVOC mass 
fractions tend to be more similar for fuels within a fuel type with the most variation exhibited for 
fuel mixtures and shrubs. 
 
P8, L17 and elsewhere: I agree that much of the variability in the EFs is due 
to MCE, but I think you understate the role of fuel type. It looks like the regression 
line is always low for conifers and always high for peat. I’d be curious 
what the effect of including fuel type as a factor variable in the linear regression 
would be (https://stats.idre.ucla.edu/r/modules/coding-for-categorical-variables-
inregression- 
models/) and if it would improve the fit. 
 
We agree with both reviewer 1 and 2 about the partial dependence of EFs on fuel type. However, 
we believe including fuel type as a co-variant would not be very useful for several reasons. (1) 
The number of plants within each fuel type except for the conifers and coniferous duff is low. 
This is simply due to the specific fuel samples chosen for burning during the Fire Lab studies. 



We would require more burns of a broader range of plants within each fuel type in order more 
definitely establish fuel type as a co-variant. (2) Fuel type and MCE are not independent 
variables. Note from Figure 3, fuels within the same fuel type fall within a characteristic MCE 
window. This indicates that fuel type (and likely other factors such as moisture and geometry) 
and MCE are not independent variables, which would also complicate regression modeling. 
Though this suggestion from reviewer 1 and 2 is logical, we believe to accomplish this would be 
outside the scope of this study and could be a separate study in the future. 
 
P9, L15: I don’t understand the statement that “the predicted total I/SVOC EFs are on 
average higher than the measured EFs by a factor of 2.” Isn’t the point of a regression 
fit that “on average” the predicted value is the same as the measured value? How 
should I interpret this statement and the statements about the different fuel types? 
We agree this is a confusing statement. We have changed it to clarify our point which is to 
highlight the differences between the model and particular fuel types. In addition, we have 
decided to present as a ratio of model to observed so the numbers have changed a bit.  
 
The goodness-of-fit for the multi-fuel regression models can be evaluated by comparing the 
predicted EFs to those measured for the various fuel types in this study and others (Liu et al., 
2017). As evident in Figure 4a, the predicted total I/SVOC to observed EFs are between 0.7-11 
times higher for shrubs, 0.90-0.97 for grasses, 0.22-0.74 for conifers, 0.63-3.0 for coniferous 
duff, and 0.28-0.85 for woody debris. 
 
P11, L17: I think this is the first time you discuss that the fuel structure of peat may 
be responsible for the difference, and I’m not sure you have any evidence for that 
statement, so I’d remove it from the conclusions. 
 
We actually mention this is section 3.4 and cite Stockwell et al. (2016) since we are not the first 
to observe differences of peat with other fuels.  
 
Figure 2 caption: “Size of a point approximately scales with its emission factor” – is this 
a quantitative mapping from a function of some sort? It’s be nice if the supplemental 
data explained how the size of the point relate to EF, or if you added a point size scale 
to the legend. 
 
Though the points do scale with EFs, we had to make corrections to the floor and ceiling limits 
of point sizes. This was done to prevent some points from dominating the entire area of the 
chromatogram and the minute points from fading from view. As a result, we cannot add a useful 
point scale size to the legend. However, we do mention in the main text that all the EFs as a 
function of MCE are provided in UCB-GLOBES. We have added this information to the 
supporting information (in section 3).  



 
EFs for all observed compounds are provided in the open access FIREX data archive (see Data 
Sets of the main paper). Figure 2 illustrates the EFs for the observed compounds from a 
lodgepole pine burn. The marker sizes approximately scale with EFs. However, corrections were 
made to the floor and ceiling limits of the marker sizes. This was done to prevent some markers 
from dominating the entire area of the chromatogram and the minute points from fading from 
view. 
 
Table S6: That is a lot of significant figures given the error. Is there a reason you 
reported so many digits? 
 
We have cut down the significant digits to better reflect the standard deviation.  
 

 Shrubs Grass Wood Coniferous 
Litter Conifers Peat Dung Coniferous 

Duff 
Woody 
Debris 

Unknown 50%, 5% 60%, 6% 50%, 14% 50%, 9% 60%, 13% 50% 50% 60%, 15% 88%, 1% 
Non-cyclic 

aliphatics/oxy 10%, 9% 8%, 2% 8%, 2% 7%, 2% 6%, 2% 26% 9% 9%, 2% 1%, 0% 

Sugars 10%, 3% 12%, 2% 20%, 8% 15%, 6% 20%, 10% 3% 14% 10%, 6% 5%, 1% 

PAH/methyl+oxy 1%, 1% 0%, 0% 1%, 1% 2%, 0% 1%, 0% 1% 0%, 2%, 0% 1%, 0% 
Resin acids 

/diterpenoids 0%, 0% 0%, 0% 0%, 0% 8%, 1% 3%, 2% 0% 0% 3%, 2% 0%, 0% 

Sterols, 
triterpenoids 1%, 0% 0%, 0% 0%, 0% 1%, 0% 0%, 0% 0% 1% 0%, 0% 0%, 0% 

Organic nitrogen 13%, 8% 12%, 1% 8%, 4% 14%, 1% 10%, 5% 15% 22% 11%, 6% 1%, 1% 
Oxy aromatic 
heterocycles 1%, 2% 1%, 0% 1%, 0% 0%, 0% 1%, 0% 0% 0% 0%, 1% 0%, 0% 

Oxy cyclics 0%, 0% 3%, 2% 0%, 0% 1%, 0% 1%, 1% 0% 1% 1%, 1% 0%, 0% 

Methoxyphenols 3%, 1% 3%, 2% 7%, 3% 3%, 0% 2%, 1% 4% 3% 4%, 1% 3%, 1% 
Substituted 

phenols 7%, 0% 1%, 0% 0%, 0% 1%, 0% 1%, 1% 1% 1% 1%, 0% 0%, 0% 

Substituted 
benzoic acids 1%, 1% 0%, 0% 0%, 0% 0%, 0% 0%, 0% 0% 0% 0%, 0% 0%, 0% 

Average MCE. 0.958 0.898 0.958 0.955 0.931 0.840 0.902 0.871 0.878 

 
Typos: 
P3, L10: Consider changing to “Therefore, a better representation”? 
 
We have done this.  
 
Therefore, a better or estimable representation of the chemical composition in smoke particles 

within models requires condensing the information from molecular-level speciation into useable 

relationships that correlate typical particle composition to a measurable burn variable.  

P5, L7: “laser transmittance laser”? 
We removed the second laser.  



 
Section 3.2 heading and elsewhere: You don’t need a colon at the end of headings 
We have removed them.  
 
Figure 4f: The other panels listed the R2 and equation below the chemical family name, 
but it is listed at the bottom here. Please make consistent.. 
 
We have tried to keep the labels consistent but were unable for some. This is due to space 
constraints where the label would overlap with a data point. Therefore, we had to switch the 
order of the label around to make it legible.  
 
 
Reviewer 2: 
 
Jen et al. have speciated particles and vapors from emissions of laboratory fires 
representative of those found in the Western US, as conducted at the Fire Sciences Lab in 
Missoula, MT. They performed 2D gas-chromatography/mass spectrometry to speciate a 
significant fraction of compounds from a whole range of organic families. Additionally, 
they were also able to develop log-linear regressions of the emission factors for these 
compounds with modified combustion efficiency (MCE) to aid development of fuel- and 
phase-specific emissions from fires in the Western US. The study is well motivated, the 
methods are appropriate, and the manuscript is well written. I had a few major comments 
surrounding the methods and data analysis. Regardless of my comments, I believe the 
speciation data from this study should help with modeling efforts to supplement the multi-
agency ground, aircraft, and satellite based studies involving fires in the United States (e.g., 
WE-CAN, FIREX-AQ). I would like to recommend publication of this study in 
Atmospheric Chemistry and Physics after the authors have responded to the following 
major and minor comments. 
 
Major comments: 
1. Identification, Page 6, Section 3.2: Of the 3000 compounds measured across the 29 
fires, 149 seem to be positively identified. These probably have the highest certainty 
amongst the speciated compounds. What fraction of the total speciated and total mass 
do these represent? I am sure they probably change with fuel type but it would still be 
nice to know the range and some basic statistics (mean, standard deviation).  
 
This is an excellent suggestion. We have looked into this. The mass fractions of positively 
identified compounds range between 4-37% between the various burns (mean of 20% with a std 
of 9%). There does not appear to be a correlation of mass fractions of positively identified with 



MCE. This is expected because which compounds are identified does not depend on combustion 
efficiency. We have added this quantification to the main text in section 3.2.  
 
Identified compounds account for 4-37% of the total observed organic mass (mean of 20% with 
a standard deviation of 9%). 
 
For the remaining (3000-149) compounds, the authors refer to the SI for a more complete 
description of the methodology used to identify these compounds. It seems like Section 5 in 
the SI is what the authors are referring to. I found this description to be unsatisfactory and 
I am not sure this is a useful guide for readers if there were to replicate your methodology 
for their own work.  
 
We agree that there should be some form of algorithm developed to automatically classify 
compounds into chemical families. However, the signals in derivatized electron ionization mass 
spectra, retention times, and vacuum ultra-violet ionization mass spectra vary considerably 
between compounds within the same family. Close examination of all the available information 
and expert judgement allow identification of patterns within chemical families; some examples 
of the useful patterns are given in the section 5 of the. To our knowledge, no formal algorithm 
exists that is capable of combing through large chemical data set to organize compounds by 
families. There is clearly a need to develop such an algorithm but this falls outside the scope of 
this study.     
 
What fraction of the total speciated and total mass do these remaining compounds account 
for, resolved by identified and unidentified?  
 
The identified compounds (149 of them) account for 4-37% of the total observed mass. 
Classified compounds (~400 compounds), including identified compounds, account for 10-65% 
of the total observed mass (see Figure 3(a)). We did not measure the total mass which would also 
include inorganic species, black carbon, and non-volatile organic compounds (e.g., extremely 
low volatility organic compounds). These types of compounds would not thermally desorb off 
the filters and thus not be measured.   
 
Finally, are the methods described herein common to analysis of GC/MS data and those of 
this research group? If they are, it would be beneficial to cite the group’s earlier work in 
Section 3.2. 
In general, our technique for identifying compounds is standard for GC/MS analysis in that we 
first compare the electron ionization mass spectra and first dimension retention index against the 
National Institute of Standards and Technology (NIST) mass spectral database. However, NIST 
MS Library contains only a small fraction of possible compounds and an even smaller fraction of 
possible derivatized compounds. As a result, our group developed a soft ionization technique to 



help preserve the parent ion of these compounds for improved identification. This paper, 
Isaacman et al. (2012),  has been cited in our main text. Furthermore, Worton et al. (2017a) have 
shown that even “great” matches with NIST mass spectral database (match factors above 900) 
still have a 14% chance of incorrect identification for underivatized compounds. Consequently, 
positive identification requires running a standard compound on the instrument to confirm 
identity. The method used to ID compounds here is a combination of comparing to NIST MS 
Library, parent ion mass, and standards and is shown in Table S1 in the ID Method column.  
 
We have added the reference Worton et al. (2017) to the main text. 
 
From those compounds, 149 compounds were identified using a combination of matching 
authentic standards (STD), RI, EI mass spectrum (via NIST mass spectral database, 2014 
version), and VUV parent and fragment mass ions. True positive identification requires 
analyzing a standard compound on the instrument; however comparing the NIST match to parent 
mass determined from VUV mass spectrum analysis can also provide a level of identification 
(Worton et al., 2017b). Identified compounds account for 4-37% of the total observed organic 
mass (mean of 20% with a standard deviation of 9%). A table of these identified compounds 
with their identifying methods (e.g., standard matching, previous literature, or NIST mass 
spectral database), RI, 5 most abundant mass ions from the EI mass spectra, and fuel source(s) 
are given in Table S1. 

 
2. Calibration, Page 5, lines 13-18: Has the calibration technique described here been 
validated to work? If yes, can you cite the most recent literature? If not, would it be 
possible to split the dataset to validate this technique? How well would it work? Also, what 
are typical uncertainties in using a projected calibration (e.g., nearest sugar standard or 
nearest eluting standard) to calculate masses? 
 
The reviewer is correct in identifying the uncertainties involved with this calibration technique. 
The issue with calibrating unknown compounds is that assumptions must be made about their 
behavior in the instrument. Previous studies from our group have calibrated unknown 
compounds using the closest eluting (in both dimensions of the chromatogram) standard 
compound. We refer the reviewer to the SI of Zhang et al. (2018) and have added this reference 
to the text. Zhang et al. estimated the uncertainty to be ~40% though this value is likely higher 
for more polar compounds.   
 
In an effort to reduce uncertainties, we have refined this approach to better include chemical 
information. We assume compounds of the same chemical family will behave similarly in the 
instrument. Thus, we decided to calibrate classified compounds with the nearest eluting standard 
compound from the same chemical family. To illustrate this reduction of uncertainty, we 
examine compounds with a first-dimension linear retention index of ~1800. Compounds that 



elute in this region include sugars, PAHs, aliphatics, and organic nitrogen. Their associated 
slopes from their mass loading calibration curves and compound family are provided in the table 
below. Slopes within compound families are more similar than between families. For example, 
sugars exhibit slopes on average of 0.19 whereas aliphatics have slopes of 1.1. A sample 
compound that elutes near myristic acid and galactose may have estimated mass loadings over 
three orders of magnitude depending on which standard compound is used. However, if this 
sample compound were classified as a sugar, then the estimated mass loadings will be 
significantly lower and more in-line with the how typical sugars respond in the instrument. Our 
observations using various standard compounds indicate this calibration technique primarily 
lowers the uncertainty of more polar compounds (i.e., compounds that require derivatization) 
from previously unknown percentage to ~30%. Illustrative data for selected standards is in below 
table. 
  

Compound 
Name 

1st dimension 
retention index 

2nd Dimension 
retention time (s) 

Slopes from Mass 
Calibration 

Compound 
Family 

Octadecane 
(C18) 1831 0.260 1.70 Aliphatic 

Mannose 1831 0.310 0.19 Sugar 
Anthracene 1836 0.680 1.82 PAHs 

Pinitol 1856 0.330 0.37 Sugar 

5-Nitrovanillin  1866 1.350 0.67 
Organic 
nitrogen 

Myristic Acid 
(C14 acid) 1879 0.380 0.43 Aliphatic 

Galactose 1885 0.320 0.004 Sugar 
 
We have added this discussion into the supporting information, section 3.  
 

Mass loading calibration curves were determined by measuring the instrument’s 
response to varying amounts of 99 standard compounds typically found in biomass burning 
organic aerosol particles. We estimate the systematic uncertainty in the mass loadings for the 
unknown compounds at a factor of 2. Unidentified but classified compounds exhibited lower 
uncertainty due to similarities in instrument response to standards within the same family. To 
illustrate this reduction of uncertainty, we examine compounds with a RI of in the range of 1800-
1900. Compounds that elute in this region include sugars, PAHs, aliphatics, and organic 
nitrogen. Their associated slopes from their mass loading calibration curves and compound 
family are provided in Table S2. Slopes within compound families are more similar than between 
families. For example, sugars exhibit slopes on average of 0.19 (not all shown in Table S2) 
whereas aliphatics have slopes of 1.1. An unclassified sample compound that elutes near 
myristic acid and galactose could be converted to mass loadings using either the slopes of 
myristic acid (0.43) or galactose (0.004). Depending which is chosen, the estimated mass 



loading of this unclassified compounds could range over three orders of magnitude. However, if 
this sample compound were classified as a sugar, then the estimated mass loadings would be 
significantly higher and more in-line with the how typical sugars respond in the instrument. Our 
observations using various standard compounds indicate this calibration technique primarily 
lowers the uncertainty of more polar compounds to ±~30%.   

 

Table S2 Example mass loading calibrations slopes for compounds in the RI=1800 range. 
Compound 

Name 
1D RI 2D retention time (s) Mass Calibration 

Slopes  
Compound 

Family 
Octadecane 

(C18) 1831 0.260 1.70 Aliphatic 

Mannose 1831 0.310 0.19 Sugar 
Anthracene 1836 0.680 1.82 PAHs 

Pinitol 1856 0.330 0.37 Sugar 

5-Nitrovanillin  1866 1.350 0.67 
Organic 
nitrogen 

Myristic Acid 
(C14 acid) 

1879 0.380 
0.43 

Aliphatic 

Galactose 1885 0.320 0.004 Sugar 
 
 
3. Fuel type as covariate, Sections 3.3-3.5: Despite the authors repeatedly saying that fuel 
type was an important covariate, they failed to account for it in the regression models and 
limited their modeling to one with just a single covariate (i.e., MCE). The regression models 
in Figures 4 and 5 clearly show that the model when blanket-ly applied to any fuel can 
over/underestimate the emissions for certain types of fuels. Please consider using fuel type 
as a covariate to see if the regression model can be improved. 
 
The reviewer does point out an important observation of this study in that emission factors (EFs) 
of I/SVOCs does partially depend on fuel type. A notable example is coniferous fuels emitting 
high amounts of sugar compounds. Though the reviewer does suggest a valid way of improving 
the accuracy of our model by including dependence on fuel type, we have opted to not change 
our model for several reasons. First, relating EFs to MCE and fuel type is more complex than 
including fuel type as a covariant. Fuel type and MCE are not independent variables as fuel types 
can often burn within a characteristic range of MCE. For example, shrubs burned efficiently with 
MCE~0.97 and coniferous duff burned inefficiently with MCE~0.85. Furthermore, to include a 
robust analysis of EFs on fuel type would require significantly more emission samples within 
each fuel type that span a wider range of MCE. Though we conducted stack burns at the FIREX 
FSL campaign, we focused primarily on fuels found in the western US and only a handful of 
plants in each of the fuel types. We would need to burn similar fuels across a wider range of 
MCE and more fuels in general in order to better tease out the relationship of EFs with fuel type.  



In real world modeling, the actual fuel type-specific measurements we present can be used if the 
fuels are known for a fire. However, the fuels, or mix thereof, are often unknown in which case 
our regression model provides a reasonable estimate for EFs of specific compounds or chemical 
families. 
 
We have made this final point clearer in the conclusion of the main paper.  
 
To provide modelers with useful relationships in estimating particle-phase I/SVOC emissions, 
logarithmic fits were applied to the measured EFs as a function of MCE. These regression 
models can be used to approximate EFs of I/SVOCs or their chemical families from average 
MCE of real wildfires where fuel loadings, fuel types, and fuel mixtures are often unknown. 
 
 
4. OC for mass closure, Page 7, lines 9-10: How did the final observed mass on the 
filters compare to the OC measurements? Wouldn’t the OC be the gold standard to 
test for mass closure? If it is, shouldn’t Figure 3 be done by normalizing with OC? 
Further, can the mass distribution from OC1 through OC4 be another useful constraint 
on the identification and calibration techniques since the 1 through 4 OC types are 
crude approximations for decreasing vapor pressure species? 
 
Organic carbon mass closure is the ultimate goal of speciated measurements of organic 
compounds in aerosol particles. We have carefully considered this during our data analysis 
however we stopped short of including an organic carbon to total observed I/SVOC comparison 
for two reasons: (1) converting organic carbon to organic aerosol is not trivial and (2) parent 
mass identification for all observed I/SVOCs is required. Organic carbon (OC) is often converted 
to organic mass (OM) using an empirically derived number between 1.4-1.7. Russell has shown 
that this number varies widely between samples collected from various locations (Russell, 2003). 
Aiken et al. provide ratios between 1.5-1.7 from Fire Lab burns of Lodgepole Pine and grass 
burns. The range of ratio values leads us to believe that we should determine our own OM/OC 
value as our TD-GCxGC VUV-EI/HRTOFMS can provide parent masses for all observed 
compounds. However, assigning parent masses using the VUV spectrum requires knowing the 
number of derivatized groups on the unknown organic compounds and which functional groups 
were derivatized (hydroxyl, amino, thiol). We currently have no method for determining these 
constraints. Furthermore, our technique sees a specific window of organic compounds 
(I/SVOCs) and does not include low volatility compounds which may account for a significant 
fraction of the organic carbon (~20% of total per May et al. (2013)). As stated in the main paper, 
collection onto quartz fiber filters likely includes gas-phase artifacts (i.e., VOCs) that would be 
seen by the OCEC analyzer but not by our GCxGC. We concluded from these reasons that we 
cannot easily compare OC to our total observed I/SVOC mass. 
 



Comparing the OCEC thermograms to the retention time distributions of the GCxGC also cannot 
be done easily. This is due to the presence of VOCs on the filters which would impact the OCEC 
thermograms and the fact that we derivatize our compounds prior to GCxGC analysis. 
Derivatizing a compound will alter its volatility and therefore its retention time in the GCxGC.   
 
With regards to OC being the gold standard: Studies have shown the measured OC and EC 
amounts (and thus the OC:EC ratio) is impacted by the measurement technique such as the 
transmittance and reflectance charring correction (see Chen et al. (2011) as an example). We 
hesitate to claim the OC measurement is a gold standard though it very likely has lower 
uncertainty values than our measured mass loadings from the GCxGC.   
 
5. Gas/particle partitioning: Were C* identified/developed for these species? What 
phase are these species expected to be in inside a fire plume or near background 
concentrations of organic aerosol? The C* for the species could be provided in the SI. 
 
Reviewer 1 mentions this same point. We completely agree that C* is a very useful parameter for 
the community. However, converting retention time/index into C* with derivatized compounds 
has not been done before and would likely lead to large errors in estimated C*. We refer the 
reviewer to Hatch et al. (2018) for a more accurate method in determining C*.   
 
Minor comments: 
1. Page 4, lines 10-11: If the quartz filters were the only ones analyzed in this study, I 
would state that after this sentence.  
We have added this.  
 
2. Page 4, line 18: Of the 75 fires, were only 29 sampled? Was there a reason the 
others were not?  
Yes, 29 out of the 75 burns were analyzed. These 29 represent all the unique fuels burned, 
including several replicates and fuels from different collection locations to explore potential 
variability between burns of the same fuel. After examining the chromatograms of several 
replicate burns, we determined the variability between replicates was minor (except for fuels 
from a different location). Thus, we opted to not analyze the remaining 46 burns with the same 
level of detail as required for the presented analyses due to the large amount of time required. 
We have added this explanation to the text.  
 
Chromatograms from replicate burns showed minor variation thus the remaining 46 burns were 
not analyzed in detail. 
 
3. Page 5, line 11: Why is a data inversion needed and what is it? Mention briefly in 
the main text. 



The GCxGC does not measure mass directly but rather provides a signal that is affected by 
matrix effects, instrument sensitivity, and other factors. Data inversion is needed to convert 
instrument signal to mass loadings (and subsequent emission factors). We have opted to change 
the text to remove confusion of using the word inversion.  
 
Full details of the data conversion to mass loadings and emission factors with its associated 
uncertainties are provided in the SI with important steps outlined here. 
 
4. Page 7, lines 3-5: Does this library also contain the emission factors for all the 
species measured in this study? This would be a useful resource to share with the 
community. It would also be beneficial to list the emission factors for species by fire that 
contribute a significant amount of the total observed mass in the SI (e.g., levoglucosan). 
 
Since numerous compounds are found in multiple burns, the library contains the EFs vs MCE 
relationships. We apologize for not including this in the library description and have now added 
it. These EF relationships have always been in UCB-GLOBES FIREX and now we have added it 
to the description.  
 
This spectral library is compatible with NIST MS Search and contains mass spectra, n-alkane RI, 
potential compound identification or chemical families, EFs as a function of fire conditions, and 
fuel sources of all unique compounds detected from the 29 analyzed burns. 
 
Each separated compound’s mass spectrum, n-alkane retention index, chemical family, EF vs. 
MCE relationship, and fuel source are reported here in a publicly available mass spectral 
library (UCB-GLOBES FIREX) for future comparisons and identification of biomass burning 
organic compounds in atmospheric samples. 
 
We have opted to not list the EFs for species that contribute a significant amount to the total 
observed mass in the SI because for most of the burns, these compounds are unknown and 
unclassified. However, we do believe this information is useful, so we have directed the reader in 
the “Data Sets” section to the open access data archives for NOAA FIREX where all of our 
observed EFs are given for each of the burns. This can be found at 
http://esrl.noaa.gov/csd/groups/csd7/measurements/2016firex/FireLab/DataDownload/.  
   
UCB-GLOBES can be downloaded at the Goldstein website, 
https://nature.berkeley.edu/ahg/data/MSLibrary/. The specific library for FIREX is 
FSL_FIREX2016_vX.msp  where X is the version number. The library contains information on 
all separated compounds observed during the FSL FIREX campaign in 2016 and will be 
periodically updated as compounds are matched across other campaigns. Observed emission 
factors for all of the observed compounds for each of the analyzed burns can be accessed for free 

http://esrl.noaa.gov/csd/groups/csd7/measurements/2016firex/FireLab/DataDownload/
https://nature.berkeley.edu/ahg/data/MSLibrary/FSL_FIREX2016_v1.msp
https://nature.berkeley.edu/ahg/data/MSLibrary/FSL_FIREX2016_v1.msp


through the NOAA FIREX data archives 
(http://esrl.noaa.gov/csd/groups/csd7/measurements/2016firex/FireLab/DataDownload/). 

 
5. Page 8, lines 13-14: Can this final point about similarity within fuels be made 
statistically? 
 
This is a good suggestion though we believe this falls outside the scope of this study as we are 
more qualitatively comparing mass fractions between fuel types here. Our collaborators Lindsay 
Hatch and Kelley Barsanti at UC Riverside have two papers that more quantitatively compared 
compounds between fuel types: (Hatch et al., 2018) and a paper under review in EST.  
 
6. Page 9, line 14: Is ‘accuracy’ the right word here? Since you are testing the fit to the 
data, you are looking at the ‘goodness-of-fit’. 
We agree and have changed this to goodness of fit.  
 
The goodness-of-fit for the multi-fuel regression models can be evaluated by comparing the 
predicted EFs to those measured for the various fuel types in this study and others (Liu et al., 
2017).  
 
7. Figures 4 and 5: Consider adding a factor of 2, 5, or 10 envelope on here to bound 
the deviation of the data from the fit. 
 
We have added a plus/minus factor of 2 bounds to figure 4 and 5.  
 
 

http://esrl.noaa.gov/csd/groups/csd7/measurements/2016firex/FireLab/DataDownload/


 

Figure 4 Summed emission factors 
(EFs) within a chemical family for 
each burn as a function of modified 
combustion efficiency (MCE). Each 
panel depicts a different family with 
(a) total observed I/SVOC EF, (b) 
unknowns, (c), sugars, (d) Polycyclic 
aromatic hydrocarbons (PAHs, 
including methylated and 
oxygenated forms), (e) 
methoxyphenols, and (f) 
sterols/triterpenoids. Dashed lines 
represent a log fit of the form 
log(EF) inversely proportional to 
MCE. The dotted lines represented 
a factor of 2 above and below the 
model. Symbols denote different 
fuel types. 
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Figure 5 Emission factors (EFs) of (a) 
levoglucosan (sugar), (b) 
fluoranthene (PAH), (c) 
acetovanillone (methoxyphenol), 
(d) coniferyl aldehyde 
(methoxyphenol) for various fuel 
burns as a function of MCE. Dashed 
lines indicate a log fit of the form 
log(EF) inversely proportional to 
MCE. Dotted lines show a factor of 
2 above and below the model. 
Note, peat (open pentagon) is not 
included in any of the fits. Different 
symbols represent fuel categories. 

 

 

 
8. SI: The Selimovic et al. citation seems to have shown up as both the ACPD and 
ACP paper. Please correct. 
 
We have fixed this. 
 
9. SI, page 12: A sentence in this section says ‘see SI for more details’. Self-referencing? 
 
We have fixed this to refer to the next section. 
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Abstract: Western U.S. wildlands experience frequent and large-scale wildfires which are predicted to increase in the future. 

As a result, wildfire smoke emissions are expected to play an increasing role in atmospheric chemistry while negatively 

impacting regional air quality and human health. Understanding the impacts of smoke on the environment is informed by 

identifying and quantifying the chemical compounds that are emitted during wildfires and by providing empirical 20 

relationships that describe how the amount and composition of the emissions change based upon different fire conditions and 

fuels. This study examined particulate organic compounds emitted from burning common western U.S. wildland fuels at the 

U.S. Forest Service Fire Science Laboratory. Thousands of intermediate and semi-volatile organic compounds (I/SVOCs) 

were separated and quantified into fire-integrated emission factors (EFs) using thermal desorption, two-dimensional gas 

chromatograph with online derivatization coupled to an electron ionization/vacuum ultra-violet high-resolution time of flight 25 

mass spectrometer (TD-GC×GC-EI/VUV-HRToFMS). Mass spectra, EFs as a function of modified combustion efficiency 

(MCE), fuel source, and other defining characteristics for the separated compounds are provided in the accompanying mass 

spectral library. Results show that EFs for total organic carbon (OC), chemical families of I/SVOCs, and most individual 

I/SVOCs span 2-5 orders of magnitude, with higher EFs at smoldering conditions (low MCE) than flaming. Logarithmic fits 

applied to the observations showed that log(EF) for particulate organic compounds were inversely proportional to MCE. 30 
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These measurements and relationships provide useful estimates of EFs for OC, elemental carbon (EC), organic chemical 

families, and individual I/SVOCs as a function of fire conditions.   

1 Introduction 

Wildfires in the western U.S. have become larger and more frequent, and this trend is expected to continue in the coming 

decades (Dennison et al., 2014; Miller et al., 2009). This is due to historical wildfire suppression leading to high fuel loading 5 

and climate changes that include longer springs and summers, earlier snow melts, and prolonged droughts (Dennison et al., 

2014; Jolly et al., 2015; Spracklen et al., 2009; Westerling et al., 2006). Smoke emissions from wildfires primarily contain 

carbon dioxide (CO2), carbon monoxide (CO), and thousands of organic compounds in the gas and particle phases. These 

organic compounds can significantly influence atmospheric chemistry, cloud formation, regional visibility, and human 

health. Thus, increased occurrences and magnitudes of wildfires will likely lead to greater smoke impacts on regional and 10 

global environments.  

The extent to which smoke will adversely impact human health and the environment depends, in part, on the chemical 

composition and amount of emissions produced. In general, biomass burning, which includes wildfires, is the main global 

source of fine carbonaceous aerosol particles (~75%) in the atmosphere (Andreae and Merlet, 2001; Bond and Bergstrom, 

2006; IPCC, 2014; Park et al., 2007). Individual and categorized organic emissions from wildfires have previously been 15 

identified and quantified (Akagi et al., 2011; Andreae and Merlet, 2001; Hatch et al., 2015; Kim et al., 2013; Koss et al., 

2018; Liu et al., 2017; Mazzoleni et al., 2007; Naeher et al., 2007; Oros et al., 2006; Oros and Simoneit, 2001a; Simoneit, 

2002; Stockwell et al., 2015; Yokelson et al., 2013). The bulk of previous studies on speciated organic compound emissions 

focused on gas-phase volatile organic compounds (VOCs). Particle-phase results are typically reported as total organic 

carbon (OC) or particulate matter (PM) with aerodynamic diameters less than 10 or 2.5 μm (PM10 and PM2.5). These types of 20 

measurements provide no chemical specificity of the particle phase and thus limits the ability to predict how smoke will age 

in the atmosphere and impact the environment.  

Several studies have examined specific particle-phase organic compounds in smoke such as toxic retene and other polycyclic 

aromatic hydrocarbons (PAHs) (e.g., Jayarathne et al., 2018; Kim et al., 2013; Naeher et al., 2007; Sullivan et al., 2014) or 

abundant tracer compounds, like levoglucosan and vanillic acid (Simoneit et al., 1999). Out of the likely thousands of unique 25 

compounds, roughly 400 known particle-phase organic compounds and their amounts produced per mass of dry fuel burned 

(a quantity known as the emission factor, EF) have been published and organized by wildland type (Oros et al., 2006; 2001a, 

2001b). These compounds span many chemical families (i.e., functionalities), like sugars and methoxyphenols, and provide 

key insights into how different wildland burns lead to different organic particulate composition and EFs.  

New advances in instrumentation, such as two-dimensional gas chromatography or electrospray ionization coupled to high 30 

resolution mass spectrometers (Isaacman et al., 2011; Laskin et al., 2009), now allow for unprecedented levels of molecular 
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speciation of atmospheric aerosol particles that can further identify and quantify the thousands of previously unreported 

biomass burning compounds. Nevertheless, current fire and atmospheric chemistry models that predict amount of smoke 

produced, its atmospheric transformation/transportation, and its physiochemical properties (e.g., French et al., 2011; 

Reinhardt et al., 1997; Wiedinmyer et al., 2011) do not model the thousands of organic compounds emitted from fires due 

primarily to limited computational resources. To address this deficiency, Alvarado et al. (2015) used measured volatility 5 

distribution bins of organic compounds from fresh smoke and modeled their atmospheric aging by assuming shifts in 

volatility distribution via reactions with ozone and hydroxl radicals. Though this approach does better predict secondary 

organic aerosol particle formation, it still does not consider the wide variety of chemical compounds found in smoke, thus 

limiting its ability to predict physiochemical properties of aged smoke particles and their impacts on the environment. 

Therefore, a better or estimable representation of the chemical composition in smoke particles within models requires 10 

condensing the information from molecular-level speciation into useable relationships that correlate typical particle 

composition to a measurable burn variable.  

The purpose of this study is to (1) identify, classify, and quantify organic compounds in smoke particles produced during 

laboratory burns and (2) provide scalable EFs of individual compounds and their chemical families from various fuels as a 

function of fire conditions. A selection of fuels and fuel combinations commonly consumed in western U.S. wildland fires 15 

was burned at the U.S. Forest Service Fire Sciences Laboratory (FSL) in Missoula, MT during the NOAA Fire Influence on 

Regional and Global Environments Experiment (FIREX) campaign in 2016 (Selimovic et al., 2018). Regression models 

representing EFs as a function of fire conditions are provided for groupings of organic compounds that vary in chemical 

complexity, from generalized organic carbon and total particulate organic compounds to specific chemical families and 

individual compounds. In addition, a mass spectral database, compatible with the National Institute of Standards and 20 

Technology (NIST) Mass Spectral Search program, containing the mass spectra, retention indices, identities/compound 

classifications for all the separated compounds observed from the various burns is included. This database will be a valuable 

resource for the community for identifying specific chemicals in air masses impacted by biomass burning plumes and 

understanding the dominant source materials burned, fire characteristics, and atmospheric transformations.  

2 Materials and Methods 25 

Thirty-four different fuels were combusted in 75 “stack” burns during the 2016 FIREX campaign at FSL (Selimovic et al., 

2018). Most fuels were representative of common biomass components found in the western U.S wildlands. Non-western 

U.S. wildland fuels were also burned and are used to demonstrate the applicability of the reported regression models across a 

wider range of fuels. A detailed description of the FSL combustion room can be found elsewhere (Christian et al., 2004; 

Stockwell et al., 2014) with pertinent details described here. The 12.5 m × 12.5 m × 22 m combustion room contained a fuel 30 

bed on the floor. Fuels were placed in the fuel bed and ignited by resistance-heated coils. Above the fuel bed was a 3.6 m 

inverted funnel connected to a 1.6 m diameter exhaust stack that vented through the roof of the combustion room. The room 
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was kept at positive pressure to provide a constant air flow that diluted and carried the smoke up the stack. A platform was 

located 17 m above the fuel bed and allowed instrument sampling access into the stack (see Figure S1 in the supporting 

information, SI). The samples studied here were collected from the platform and thus represent fresh emissions. 

Smoke from the stack was pulled through a custom-built sampler known as DEFCON, Direct Emission Fire CONcentrator 

(see diagram Figure S2 in SI). DEFCON’s inlet was a 20.3 cm × 1.3 cm OD stainless steel tube that reached 15.2 cm into the 5 

stack. 10.3 LPM of smoke was pulled through the inlet, with two 150 ccm flows branching off from the main sample flow. 

These low-flow channels went to 2 parallel flows consisting of a Teflon filter followed by sorbent tube for gas-phase sample 

collection; analysis of those samples will be described in future publications. The remaining 10 LPM was passed through a 

1.0 μm cutoff cyclone before being sampled onto a 10 cm quartz fiber filter (Pallflex Tissuquartz). Total residence time was 

~2 s. One quartz fiber filter collected both particles and likely low volatility gases for the duration of each fire which lasted 10 

~5-50 minutes. These filters were analyzed for this study. A few fires were terminated “early” when a small amount of fuel 

and smoldering combustion remained. Prior to collection, filters were baked at 550˚C for 12 hours and packed in similarly 

baked aluminum foil inside Mylar bags. The flows were monitored to ensure constant flow rates. Flow paths within 

DEFCON were passivated with Inertium® (Advanced Materials Components Express, Lemont, PA) which has been shown 

to reduce losses of oxygenated organics (Williams et al., 2006). After each burn, the inlet of DEFCON was replaced with a 15 

clean tube and the remainder of the system was purged with clean air. A background filter sample was collected each 

morning prior to the burns to estimate background contributions from sampling components and room air.  

29 fire-integrated smoke filter samples, including one from each specific fuel (with some replicates), were selected and 

analyzed using a thermal desorption, two-dimensional gas chromatograph with online derivatization coupled to an electron 

ionization/vacuum ultra-violet ionization high-resolution time of flight mass spectrometer (TD-GC×GC-EI/VUV-20 

HRToFMS) (Isaacman et al., 2012; Worton et al., 2017). A list of analyzed fuels are summarized in Table 1. Chromatograms 

from replicate burns showed minor variation thus the remaining 46 burns were not analyzed in detail.  Punched samples of 

each filter (0.21-1.64 cm2) were thermally desorbed at 320˚C under a helium flow using a thermal desorption system (TDS3 

and TDSA2, Gerstel). Desorbed samples were then mixed with gaseous derivatization agent, MSFTA (N-methyl-N-

trimethylsilyltrifluoroacetamide). MSFTA replaces the hydrogen in polar hydroxyl, amino, and thiol groups with 25 

trimethylsilyl group, creating a less polar and thus elutable compound. Derivatized samples then were focused on a quartz 

wool glass liner at 30˚C (cooled injection system, CIS4, Gerstel) before rapid heating to 320˚C for injection into the gas 

chromatograph (GC, Agilent 7890). GC×GC separation was achieved with a 60 m × 0.25 mm × 0.25 μm semi-nonpolar 

capillary column (Rxi-5Sil MS, Restek) followed by medium-polarity second dimension column (1 m × 0.25 mm × 0.25 μm, 

Rtx-200MS, Restek). A dual-stage thermal modulator (Zoex), consisting of a guard column (1 m × 0.25 mm, Rxi, Restek), 30 

was used to cryogenically focus the effluent from the first column prior to heated injection onto the second column 

(modulation period of 2.3 s). The main GC×GC oven ramped at 3.5°C/min from 40°C to 320°C and was held at the final 

temperature for 5 min and the secondary oven ramped at the same rate from 90°C to 330°C and held for 40 min. Separated 
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compounds were then ionized either by traditional EI (70 eV) or VUV light (10.5 eV). HRToFMS (ToFWerk) was used to 

detect the ions and was operated with a resolution of 4000 and transfer line and ionizer chamber temperatures at 270˚C. 

VUV light was provided by the Advanced Light Source, beamline 9.0.2, at Lawrence Berkeley National Laboratories. 

During the VUV experiments, the HRToFMS operated at a lower ionizer chamber temperature of 170˚C to further reduce 

molecular fragmentation (Isaacman et al., 2012). 5 

Punches from the filter samples were also analyzed for organic and elemental carbon (OC and EC respectively) using a 

Sunset Model 5 Lab OCEC Aerosol Analyzer following the NIOSH870 protocol in the Air Quality Research Center at the 

University of California, Davis. Thermal pyrolysis (charring) was corrected using laser transmittance. OC and EC were also 

measured on the background filters.  

2.1 Emission Factor Calculations 10 

The mass loadings for all separated compounds measured by TD-GC×GC-EI/VUV-HRToFMS were determined using a set 

of calibration curves. Full details of the data conversion to mass loadings and emission factors with its associated 

uncertainties are provided in the SI with important steps outlined here. The TD-GC×GC-EI/VUV-HRToFMS responses to a 

wide range of standard compounds commonly found in biomass burning samples were measured at varying mass loadings to 

create calibration curves. Measured peaks from the filters were calibrated using a standard compound that exhibited similar 15 

first and second dimension retention times and compound classification. For example, a sampled compound classified as 

sugar was quantified using the nearest sugar standard compound in the chromatogram. Unknown compounds were matched 

to the nearest eluting standard compound, similar to the approach taken by Zhang et al. (2018). The mass loadings of all 

observed compounds were then background subtracted; however, the mass on the background filter for all compounds was 

negligible. The compound’s emission factor (EFcompound) was then calculated by normalizing mass loadings by background-20 

corrected sampled CO2 mass. This ratio was then multiplied by the corresponding EFCO2, as given in Selimovic et al. (2018). 

EFs for OC and EC were calculated similarly, using background-corrected OC and EC mass loadings.  

3 Results and Discussion 

3.1 Emission factors of organic and elemental carbon 

OC and EC EFs were first related to the fire-integrated modified combustion efficiency (MCE). MCE reflects the mix of 25 

combustion processes in the fire and is defined as background-corrected values of CO2/(CO2+CO) (Akagi et al., 2011; Ward 

and Radke, 1993). MCE values near 1 indicate almost pure flaming, while values near 0.8 are almost pure smoldering with 

0.9 representing a roughly equal mix of these processes. Figure 1(a) shows the EFs of OC and EC (EFOC and EFEC) as a 

function of MCE across a variety of fuel types (see table 1). Decreasing MCE (more smoldering) results in increased OC and 

decreased EC emissions across all studied fuel types. These observed trends are in general agreement with previous studies 30 

(e.g., Christian et al., 2003; Hosseini et al., 2013). EFs for OC and EC generally follow a logarithmic relationship such that 
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log(EFOC) is inversely proportional to MCE (slope of -9.506) and log(EFEC) is directly proportional (slope 5.441). 

Comparison of the slopes suggests that decreasing MCE of a fire will produce an increasing amount of OC compared to EC. 

This is further confirmed by examining the ratio of OC to EC (OC/EC) with MCE. Figure 1(b) illustrates how OC/EC 

sharply increases with more smoldering fire conditions (slope of -16.555). This trend also follows a similar inversely 

proportional logarithmic relationship as EFOC vs. MCE but with even stronger correlation (R2=0.85 compared to 0.66, 5 

respectively). Note, values for Douglas Fir rotten log (burn 31), peat (burn 55), rice straw (burn 60), and Engelmann spruce 

duff (burn 26) fires are not shown due to measured EC at background levels. In addition, significant losses (~40%) of 

organic compounds were only observed for the Douglas Fir rotten log burn and was determined by comparing GC×GC 

chromatograms taken prior to OC/EC analysis (~2 years after collection) and ~1 month after collection at FSL. The 

combined results clearly show that flaming combustion produce slightly more particulate EC compared to OC whereas 10 

smoldering combustion emits 1-2 orders of magnitude higher levels of OC compared to EC.  

3.2 Identification and quantification of I/SVOCs 

Filter samples were analyzed for intermediate and semi-volatile organic compounds (I/SVOCs) using the TD-GC×GC EI-

VUV-HRToFMS. Between 100-850 peaks (i.e., unique compounds) were separated in each fire-integrated chromatogram 

with fewer peaks observed for more flaming fires such as from shrub fuels (see Table 1). An example two-dimensional 15 

chromatogram of a lodgepole pine burn (burn 63) is shown in Figure 2. Based on the GC×GC configuration, all compounds 

elute between dodecane (C*~106 μg m-3 and an n-alkane retention index, RI, of 1200) and hexatriacontane (C*~10-1 μg m-3, 

RI=3600) and thus are classified as I/SVOCs with a small fraction as low-volatility organic compounds (Donahue et al., 

2009). In total, approximately 3000 unique compounds were separated across the 29 analyzed burns (see  Table 1). From 

those compounds, 149 compounds were identified using a combination of matching authentic standards (STD), RI, EI mass 20 

spectrum (via NIST mass spectral database, 2014 version), and VUV parent and fragment mass ions. True positive 

identification requires analyzing a standard compound on the instrument; however comparing the NIST match to parent mass 

determined from VUV mass spectrum analysis can also provide a level of identification (Worton et al., 2017). Identified 

compounds account for 4-37% of the total observed organic mass (mean of 20% with a standard deviation of 9%). A table of 

these identified compounds with their identifying methods (e.g., standard matching, previous literature, or NIST mass 25 

spectral database), RI, 5 most abundant mass ions from the EI mass spectra, and fuel source(s) are given in Table S1.  

To help reduce the chemical complexity from the 3000 observed compounds, each separated compound was sorted into a 

chemical family. This was achieved using a combination of parent ion mass (VUV), fragment ion mass spectra (VUV and 

EI), RI, and second-dimension retention time to estimate the compound’s functionality. More details on the classification 

process and examples within each category can be found in the SI. The chemical families were broadly named and include 30 

non-cyclic aliphatic/oxygenated, sugars, PAHs/methylated+oxygenated, resin acids/diterpenoids, sterols/ triterpenoids, 

organic nitrogen, oxygenated aromatic heterocycles, oxygenated cyclic alkanes, methoxyphenols, substituted phenols, and 



 7/22 

substituted benzoic acids. Almost 400 compounds, including the identified and most frequently observed compounds in the 

analyzed burns, were grouped into these families. The remainder of the compounds, which were both uncategorizable and 

unidentifiable, were placed into the unknown category. Figure 2 illustrates the chemical families (indicated by color) of all 

the separated compounds emitted from an example lodgepole pine burn.  

Despite many compounds remaining unknown, their defining traits such as mass spectra or retention index (i.e., volatility) 5 

can be compared to atmospheric samples to help the community better define the composition of biomass-burning derived, 

particle-phase organic compounds. As such, all ~3000 observed compounds have been compiled into a publicly available 

mass spectral database and first reported here as the University of California, Berkeley- Goldstein Library of Organic 

Biogenic and Environmental Spectra (UCB-GLOBES) for FIREX (see SI). This spectral library is compatible with NIST 

MS Search and contains mass spectra, n-alkane RI, potential compound identification or chemical families, EFs as a function 10 

of fire conditions, and fuel sources of all unique compounds detected from the 29 analyzed burns.  

3.3 Average observed I/SVOC composition 

The masses of observed I/SVOCs from each chemical family were summed over each fire-integrated sample and normalized 

to either the total observed I/SVOC mass or total classified I/SVOC mass. Figure 3a illustrates mass fractions of the 

unidentified and unclassified (unknown) compounds out of the total observed mass from the 29 analyzed burns. Mass 15 

fractions for each chemical family out of the total observed mass are given in Table S5. Unknowns represent ~35 to 90% of 

I/SVOCs mass emitted during the analyzed burns, with woody debris (rotten logs) exhibiting the highest mass fraction of 

unknowns (~90%). Since the compounds that make up the unknown mass fraction varied between burns, differences in the 

mass fractions between fuel types is not indicative of higher emissions of any particular compound. However, notably the 

two woody debris burns showed similar unknown compounds (i.e., 99% of the unknown mass was of compounds found in 20 

both burns) but occurred under two different fire conditions (burn 13 at MCE=0.98 and burn 31 at MCE=0.78). In both 

cases, the unknown mass fractions were similar at 87-89%. This observation provides some indication that fuel type plays a 

larger role than MCE in determining the unknown organic mass fraction in smoke particles.  

Given that the unknown compounds typically varied between burns, the mass of each classified chemical family was 

normalized to the total observed classified mass (i.e., excluding the unknown mass) in order to better compare classified 25 

compounds between burns. These results are shown in Figure 3b. Conifers, coniferous litter, and wood exhibited the highest 

fraction of sugars (38%, 29%, and 44% respectively) compared to other fuels (between 6-30%). Furthermore, levoglucosan 

was the largest single contributor to the sugars for these burns and ranged from 10-40% of the total sugars. These 

observations are consistent with previous studies that have shown high levoglucosan emissions from cellulose-rich wood 

samples (Mazzoleni et al., 2007; Simoneit et al., 1999). Coniferous fuels also emitted higher amounts of resin 30 

acids/diterpenoids (7%, 16%, 7%, and 3% for conifers, coniferous litter, coniferous duff, and woody debris respectively), as 

previously observed (Hays et al., 2002; Oros and Simoneit, 2001a; Schauer et al., 2001). Peat (from Indonesia) emitted the 



 8/22 

largest fraction of aliphatic compounds (52%) compared to other fuels, in agreement with previous observations (George et 

al., 2016; Iinuma et al., 2007; Jayarathne et al., 2018). Manzanita burns produced the highest amounts of substituted phenols 

(34% of total classified mass compared to 1-4% for other fuels), mostly as hydroquinone (Hatch et al., In Prep. 2018; Jen et 

al., 2018). Organic nitrogen compounds, most of which were nitro-organics, also contributed significantly (up to 43%) to the 

total observed classified mass for all fuels. These compounds tend to absorb light (Laskin et al., 2015) and may contribute to 5 

observed brown carbon light absorption from these burns (Selimovic et al., 2018). However, it should be noted that the 

instrument is not as sensitive to this class of compounds. Thus, the EF uncertainty is high (factor of 2) for compounds that 

are not positively identified with a standard but are categorized as organic nitrogen.  

Figure 3b also provides some evidence that fuels within the same type generally show similar mass fractions of chemical 

families. For example, conifers, which consist of a mixture of coniferous ecosystem fuel component (e.g., canopy, duff, 10 

litter, and twigs), exhibit relatively similar mass fractions with sugars accounting for 30-50%, 4-28% non-cyclic aliphatic, 

13-30% organic nitrogen, 2-20% resin acid/diterpenoids, and 1-4% PAH/methyl+oxy across the MCE range of 0.90-0.95. 

Coniferous duff (MCE=0.85-0.89) exhibited lower sugar fraction (11-31%) but higher non-cyclic aliphatics 15-38% than the 

conifers. Burning grasses (MCE=0.90-0.95) produced roughly equal amounts of sugars and organic nitrogen compounds 

(30%) and higher amounts of oxygenated cyclic compounds (3-11%), like lactones, than the coniferous fuels. (~1%). Shrubs 15 

(MCE=0.92-0.98) exhibited the largest ranges in chemical family mass fractions (e.g., 0-42% organic nitrogen compounds 

and 2-43% substituted phenols), suggesting that plants in this fuel type are less similar to each other than coniferous fuels. 

This may be due to a wider range of plant chemical composition for shrubs than for the other fuel types. Overall, the I/SVOC 

mass fractions tend to be more similar for fuels within a fuel type with the most variation exhibited for fuel mixtures and 

shrubs. 20 

3.4 EFs as a function of fire conditions (MCE) 

Unlike the dependence of chemical family mass fractions on fuel type, EFs for each chemical family showed a correlation 

with MCE across all fuels examined and to a much lesser extent on fuel type. Figure 4 presents EFs for total observed 

organic compounds and 5 of the chemical families (unknowns, sugars, PAHs/methyl/oxy, methoxyphenols, and 

sterols/triterpenoids, with others given in Figure S4) as a function of MCE. Fuels not found in the western U.S. are also 25 

included in these figures to demonstrate that their EFs generally follow the trend with MCE. The notable exception is peat, a 

semi-fossilized fuel (Stockwell et al., 2016), whose EFs for all chemical families are roughly an order of magnitude lower 

than other fuels at similar MCE values, except non-cyclic aliphatic/oxygenated EF which is approximately equal to burns at 

similar MCE (see Figure S4). In general, EFs measured by the TD-GC×GC-EI/VUV-HRToFMS agree with previous 

literature (Hays et al., 2002; McDonald et al., 2000; Oros et al., 2006; Oros and Simoneit, 2001a, 2001b). For example, Oros 30 

and Simoneit (2001a) provided the sum of carboxylic acids and alkanes/enes/ols for conifer burns at ~1 g/kg, which is within 

our reported range 0.4-2.3 g/kg (MCE=0.90-0.95) for non-cyclic aliphatic/oxygenated emitted from burning conifers. Other 
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chemical family EFs presented here for conifers, including PAHs (0.4 g/kg), diterpenoids (1-3 g/kg), and methoxyphenols (1 

g/kg), are also in good agreement with those published in Oros and Simoneit (2001a). Hays et al. (2002) reported EF for 

unknown compounds from ponderosa pine ~ 20 g/kg, higher than 11 g/kg (MCE=0.94) for the ponderosa pine burn studied 

here. This may be due to more compounds being classified here than in Hays et al. (2002) or differences in MCE between 

the studies. In contrast to previous work, EFs for chemical families reported here were measured over a wider range of fire 5 

conditions and fuel types and show a clear relationship with MCE.  

Chemical family EFs span ~3 orders of magnitude and therefore logarithmic fits (given as a dashed line in the semi-log 

graphs of Figure 4) were applied to all the measurements excluding peat. Slopes range between -9.425 for 

sterols/triterpenoids to -14.637 for PAHs/methyl+oxy (fitted slopes, intercepts, and their errors for all chemical families are 

provided in Table S6). Three decimal places are provided for both the slope and intercept in order to reproduce the 10 

regression line. The R2 values for the sugars (Figure 4) and resin acids/diterpenoids (Figure S4) are noticeably lower at 0.32 

and 0.31, respectively, than the other chemical families (R2~0.4). This is primarily due to the high mass fraction of sugars 

and resin acids/diterpenoids found in conifers, as stated above, and suggests that high emissions of both types of compounds 

are indicative of burning conifers. Also, coniferous litter emitted high amounts of resin acids/diterpenoids. Removing 

conifers from the semi-logarithmic model for sugars yields a log10(EFsugars)= -10.299(MCE)+9.361 with R2=0.66 and 15 

removing conifers and coniferous litter for resin acids/diterpenoids results in log10(EFresin)= -19.598(MCE)+16.360 with 

R2=0.77. These R2 values are then more similar to those of other chemical families. In general, these results indicate that 

MCE can be used to estimate EFs for various chemical across of broad range of fuels, including those not found in the 

western U.S. wildlands except peat, with minimal dependence on fuel type.  

The goodness-of-fit for the multi-fuel regression models can be evaluated by comparing the predicted EFs to those measured 20 

for the various fuel types in this study and others (Liu et al., 2017). As evident in Figure 4a, the predicted total I/SVOC to 

observed EFs are between 0.7-11 times higher for shrubs, 0.90-0.97 for grasses, 0.22-0.74 for conifers, 0.63-3.0 for 

coniferous duff, and 0.28-0.85 for woody debris. The model is also compared to previously reported EFs from wildfires. 

Specifically, Liu et al. (2017) reported MCE values from three different California wildfires and total organic aerosol (OA) 

particle EFs, which are the most equivalent to total I/SVOC EFs measured here (though at MCE values of <0.8, we observed 25 

higher IVOCs mass loadings in our chromatograms which would likely not be included in the OA EFs at lower particle mass 

loadings (May et al., 2013)). Liu et al. measured MCE values of 0.935, 0.877, and 0.923 with OA EFs of 23.3, 30.9, and 18.8 

g/kg respectively. The model given in Figure 4a predicts total I/SVOC EFs of 8, 35, and 10 g/kg for those MCE values. The 

predicted EFs are within a factor of ~2-3, consistent with measured total I/SVOC EFs reported here. No other previous 

experiments report chemical family EFs from wildfires with corresponding MCE values thus the accuracy of applying the 30 

chemical family regressions cannot be evaluated at this time. Without this information, uncertainty in using the reported 

regression models in predicting EFs of various chemical families is estimated to be a factor of 3. However, this uncertainty 

in EFs is minor when compared to uncertainties in estimating the amount of fuel burned in large-scale carbon emission fire 



 10/22 

models (French et al., 2011; Urbanski et al., 2011), which is primarily due to high spatial and temporal variations in fuel 

loadings and lack of observational data. Thus, these regressions can be used to approximate EFs of various chemical families 

for a wide range of fuels and fuel mixtures from measured MCE values. 

Figure 5 shows the fire-integrated EFs of four specific compounds, levoglucosan (sugar), fluoranthene (PAH), 

acetovanillone (methoxyphenol), and coniferyl aldehyde (methoxyphenol), as a function of MCE. Acetovanillone and 5 

coniferyl aldehyde, both methoxyphenols, have been reported previously as tracers for lignin pyrolysis and levoglucosan 

(and more broadly sugars) from cellulose (Hawthorne et al., 1989; Oros and Simoneit, 2001a; Schauer et al., 2001; Simoneit, 

2002). In addition, fluoranthene and other PAHs are known carcinogenic compounds (Boffetta et al., 1997; Kim et al., 2013). 

EFs for levoglucosan, the most widely reported particulate tracer compound for biomass burning (Mazzoleni et al., 2007; 

Simoneit et al., 1999; Sullivan et al., 2014), range between ~0.004-1 g/kg from this study.  Hosseini et al. (2013) reported 10 

EFlevo for chaparral ecosystems at 0.02-0.1 g/kg, similar to EFlevo for shrubs measured (0.004-0.1) in this study. Schuaer et al. 

(2001) provided average EFlevo for pine trees at 1.4 g/kg, roughly a factor of 2 higher than the average 0.6 g/kg EFlevo for 

conifers of this study. Oros and Simoneit (2001a) examined levoglucosan emissions from various types of pine trees with an 

average EFlevo of 0.02 g/kg, a factor of 30 lower than reported here. Many reasons could explain this difference, such as 

different smoke sampling/filter extraction procedures and different MCE conditions during sampling. Regardless, the 15 

levoglucosan EFs reported in this study generally fall within the ranges measured by previous groups.  

EFs for the compounds shown in Figure 5 span 2-5 orders of magnitude across fire conditions and fuels, including fuels 

found outside of the western U.S. Similar to the chemical family EFs, peat displays significantly lower EFs (factor of ~10) 

than the other fuels. Consequently, applied logarithmic fits, given as dashed lines in Figure 5, exclude peat. Slopes of these 

fits range from -6.455 to -19.443 for the four displayed compounds. Figure 5a also shows that the R2 value for levoglucosan 20 

is the lowest (0.34) compared to the other compounds (0.40-0.63). This poorer correlation with MCE is similar to that seen 

for the sugar EFs in Figure 4c, where EFs from burning conifers were higher than the model predicted. Removing the 

conifers’ levoglucosan EFs results in log(EFlevo)= -9.547 (MCE)+8.041 and improves the correlation (R2=0.43). Nonetheless, 

these measurements suggest compound EFs do depend to some extent on fuel type in addition to MCE. However, the spread 

of measured EFs around the logarithmic fit in Figure 5 indicate a factor of 3 uncertainty in estimating EFs from MCE.  25 

In addition to the well-known biomass burning particulate compounds shown in Figure 5, these measurements provide useful 

models to estimate EFs for hundreds of previously unreported compounds (not shown in Figure 5). These commonly 

detected compounds (i.e., found in >10 burns and occur in almost all fuel types) exhibited EFs that were inversely 

proportional to MCE. Regression parameters for compounds not displayed here are provided in the UCB-GLOBES FIREX 

mass spectral library. Many of these compounds still remain unidentified or unknown (see Figure 3) but are now quantified 30 

as a function of fire conditions. Future work can be done to identify these compounds and ultimately, with the use of these 
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regressions, estimate their contribution to I/SVOC mass in fresh smoke and model how they chemically transform in the 

atmosphere.  

4 Conclusions 

Smoke produced from burning a wide variety fuels, primarily from the western U.S. wildlands, was collected onto quartz 

fiber filters at the Fire Science Laboratory and analyzed for elemental and organic carbon. The organic carbon fraction was 5 

further separated, identified, classified, and quantified using TD-GC×GC-EI/VUV-HRToFMS with online derivatization. 

Each separated compound’s mass spectrum, n-alkane retention index, chemical family, EF vs. MCE relationship, and fuel 

source are reported here in a publicly available mass spectral library (UCB-GLOBES FIREX) for future comparisons and 

identification of biomass burning organic compounds in atmospheric samples. Between 10-65% of the I/SVOC mass for 

each burn could be specifically identified or placed into a chemical family. Fuels within the same type tended to exhibit 10 

similar mass fractions, regardless of fire condition (as quantitated modified combustion efficiency, MCE). For example, 

similar unknown compounds accounted for ~90% of the total observed mass for the two woody debris burns (MCE=0.78-

0.98). Conifers exhibited similar sugar and resin acid/diterpenoid mass fractions (out of total classified mass) of 30-50% and 

2-20% respectively (MCE=0.90-0.95). Burns of coniferous duff (MCE=0.85-0.89) emitted higher classified mass fractions 

of methoxyphenols (6-18%) than conifers. Peat, a semi-fossilized fuel, displayed a high classified mass fraction of non-15 

cyclic aliphatic/oxy compounds (52%).  Shrubs showed the widest range in mass fractions, indicating fuels in this type were 

the most dissimilar.   

Unlike mass fractions which depend primarily on fuel type, measured emission factors (EFs), classified into either organic 

carbon, chemical families, or specific compounds, primarily depended on fire conditions (MCE). Regardless of 

classification, EFs spanned 2-5 orders of magnitude from smoldering to flaming conditions. EFs were shown to follow an 20 

inversely proportional relationship to MCE across the wide variety of all fuels studied. However, peat EFs for chemical 

families (except non-cyclic aliphatic compounds) and specific compounds were approximately a factor of 10 lower than 

fuels at similar MCE values. This is likely due to significant differences in fuel structure of peat. Furthermore, conifers 

exhibited higher sugar (factor of 5) and levoglucosan (factor of 3) emissions compared to other fuels within the same MCE 

range. This indicates that fuel type and specific fuels plays some role in the EFs, though more minor compared to MCE. This 25 

is particularly true for nitrogen species and fuel-specific tracer compounds, i.e. compounds that are only emitted from a 

particular fuel, which will be discussed in a forthcoming paper. However, in general, EFs for these particulate compounds 

primarily depend on MCE and can be estimated from the fire conditions.  

To provide modelers with useful relationships in estimating particle-phase I/SVOC emissions, logarithmic fits were applied 

to the measured EFs as a function of MCE. These regression models can be used to approximate EFs of I/SVOCs or their 30 

chemical families from average MCE of real wildfires where fuel loadings, fuel types, and fuel mixtures are often unknown. 

For example, comparison with Liu et al. (2017) shows the estimated particulate organics from the regression model to be 
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within a factor of 2-3 from those measured in that study. The comparison between predicted and previously measured EFs is 

affected by methodology, concentration regime, and the definitions of I/SVOC. Regardless, these regression models provide 

approximate EFs (within a factor of 3) of numerous chemical families and organic species as solely a function of fire 

conditions across a wide variety of fuels. These regressions will allow modelers and other experimentalist to better define the 

chemical composition of smoke particles emitted from wildland burns in the western U.S. and potentially other parts of the 5 

world.  

 

5 Data Sets 

UCB-GLOBES can be downloaded at the Goldstein website, https://nature.berkeley.edu/ahg/data/MSLibrary/. The specific 

library for FIREX is FSL_FIREX2016_vX.msp  where X is the version number. The library contains information on all 10 

separated compounds observed during the FSL FIREX campaign in 2016 and will be periodically updated as compounds are 

matched across other campaigns. Observed emission factors for all of the observed compounds for each of the analyzed 

burns can be accessed for free through the NOAA FIREX data archives 

(http://esrl.noaa.gov/csd/groups/csd7/measurements/2016firex/FireLab/DataDownload/). 
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 Table 1 List of fuels analyzed with the number of compounds separated and quantified from each burn. Note conifer fuel type 

refers to a realistic mixture of a coniferous ecosystem unless otherwise noted. 

Fuel Description Burn 
# Fuel Type Number of 

Compounds 
MCE 

Engelmann Spruce 9 Conifer 714 0.9334 
Engelmann Duff 12 Coniferous Duff 751 0.859 

Ponderosa Pine Rotten Log 13 Woody Debris 709 0.9778 
Ponderosa Pine Litter 16 Coniferous Litter 687 0.9607 

Engelmann Spruce Canopy 17 Conifer 403 0.8953 
Douglas Fir Litter 22 Coniferous Litter 585 0.9501 

Engelmann Spruce Duff 26 Coniferous Duff 398 0.8474 
Manzanita Canopy 28 Shrub 679 0.9789 

Douglas Fir Rotten Log 31 Woody Debris 776 0.7785 
Manzanita Canopy 33 Shrub 570 0.9788 

Engelmann Spruce Duff 36 Coniferous Duff 596 0.8773 
Ponderosa Pine 37 Conifer 811 0.9403 

Lodgepole Pine Canopy 40 Conifer 444 0.9231 
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Lodgepole Pine 42 Conifer 634 0.9524 
Chamise Canopy 46 Shrub 128 0.9566 

Subalpine Fir 47 Conifer 596 0.9396 
Excelsior 49 Wood 173 0.9712 
Yak Dung 50 Dung 515 0.9016 

Peat, Kalimantan 55 Peat 392 0.8405 
Subalpine Fir Duff 56 Coniferous Duff 522 0.8874 

Rice Straw 60 Grass 288 0.951 
Excelsior 61 Wood 230 0.9508 

Bear Grass 62 Grass 656 0.9036 
Lodgepole Pine 63 Conifer 834 0.938 

Jeffery Pine Duff 65 Coniferous Duff 472 0.8833 
Sage 66 Shrub 328 0.9191 

Juniper Canopy 68 Conifer 522 0.9293 
Kiln-Dried Lumber 70 Wood 209 0.953 
Ceanothus Canopy 74 Shrub 97 0.9748 

 

 

Figure 1 (a) Measured organic and elemental carbon (OC and EC, respectively) as a function of modified combustion efficiency 

(MCE) and (b) OC/EC as a function of MCE. Symbols indicate the different fuel types. 
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Figure 2 Two-dimensional chromatogram of smoke collected from burning lodgepole pine (burn 63). First dimension separates 

compounds by their volatility and second dimension by their polarity. Each point (~800 in total) represents a separated compound 

with the colors signifying the compound’s classification. Size of a point approximately scales with its emission factor (see SI section 

3). 5 
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Figure 3 (a) Contributions of unknown mass to the total observed mass for the 29 analyzed burns. (b) Mass fractions for each 
chemical family compared to total classified mass. Fuels are grouped by type and numbers after fuel name indicate the burn 
number during the FIREX campaign. 
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Figure 4 Summed emission factors 
(EFs) within a chemical family for 
each burn as a function of 
modified combustion efficiency 
(MCE). Each panel depicts a 
different family with (a) total 
observed I/SVOC EF, (b) 
unknowns, (c), sugars, (d) 
Polycyclic aromatic hydrocarbons 
(PAHs, including methylated and 
oxygenated forms), (e) 
methoxyphenols, and (f) 
sterols/triterpenoids. Dashed lines 
represent a log fit of the form 
log(EF) inversely proportional to 
MCE. The dotted lines represented 
a factor of 2 above and below the 
model. Symbols denote different 
fuel types. 
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Figure 5 Emission factors (EFs) of 
(a) levoglucosan (sugar), (b) 
fluoranthene (PAH), (c) 
acetovanillone (methoxyphenol), 
(d) coniferyl aldehyde 
(methoxyphenol) for various fuel 
burns as a function of MCE. 
Dashed lines indicate a log fit of 
the form log(EF) inversely 
proportional to MCE. Dotted lines 
show a factor of 2 above and below 
the model. Note, peat (open 
pentagon) is not included in any of 
the fits. Different symbols 
represent fuel categories. 
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1. Sampling position and diagram of DEFCON, Direct Emission Fire CONcentrator:  

 Smoke was collected directly from the stack at a position ~17 m above the burn (Figure 
S1). A flow of 10.3 LPM was pulled through DEFCON. 300 sccm of the flow was diverted to 
two parallel absorbent tube sampling channels (150 sccm each channel). The reminder of the 
smoke flow (10 LPM) was then passed through a 1.0 μm cyclone prior to collection on a 10 cm 
quartz fiber filter. Flow rates were continuously monitored to ensure correct flows. All metal 
surfaces except for the cyclone and filter holders were passivated with Inertium® to minimize 
loss of oxygenated organics (Williams et al., 2006). A diagram of DEFCON is given in Figure 
S2. 

 
Figure S1 Diagram of the smoke stack in the burn room and 
the placement of DEFCON 

 
Figure S2 Schematic of DEFCON and how it sampled from the 
stack 

2. I/SVOCs from the FIREX FSL experiments-- University of California, Berkeley- 
Goldstein Library of Organic Biogenic and Environmental Spectra (UCB-GLOBES): 

 The mass spectrum and retention index of each compound separated by the TD-GC×GC-
EI/VUV-HRToFMS was compared to the NIST mass spectral database (2014 version) and/or to 
previous literature. Table S1 provides a list of all 149 identified compounds and its identification 
method. In addition, all separated and unique compounds from the 29 analyzed burns were 
compiled into UCB-GLOBES (FIREX), https://nature.berkeley.edu/ahg/data/MSLibrary/. 
Information includes compound chemical classification, deuterated and non-deuterated n-alkane 
retention indices, mass spectrum, instrument/method details, derivatization agent, list of fuel, 
and, if found in 10 or more burns, the slope, intercept, standard errors, and R2 for the model 
log(EF)=slope(MCE)+int. UCB-GLOBES (FIREX) is NIST MS Search compatible and can be 
used in the future to better identify biomass-burning derived organic compounds found in the 
atmosphere.   

DEFCON  
(Filter+tube sampler) 

17 m 

Platform 

Room air 
dilution 

 
Fuel burn 

Stack 

https://nature.berkeley.edu/ahg/data/MSLibrary/FSL_FIREX2016_v1.msp
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Table S1 List of identified compounds and their sources, characteristic EI ions and retention index (RI). Compounds were identified using a combination of RI, mass spectrum, 
VUV parent ion mass, or standard matching.  

Compound name Underiv. 
Formula 

Derivatized 
Formula 

Exact 
Mass (no 

deriv) 

Exact 
Mass 

(Deriv) 

Top 5 masses 
(deriv) 

RI ID Method Comments 

Glycerol 3TMS C3H8O3 C12H32O3Si3 92.047 308.166 69, 73, 147, 
131, 205 

1266 RI, MS, VUV All forms of pine, dung, 
rice straw, sage 

Glyceric acid 3TMS C3H6O4 C12H30O4Si3 106.027 322.145 73, 147, 189, 
133, 117 

1319 RT, MS, VUV Rotten log 

Catechol 2TMS C6H6O2 C12H22O2Si2 110.037 254.116 73, 254, 239, 
45, 74 

1307 RT, MS, VUV, 
STD 

All 

Hydroquinone 2 TMS C6H6O2 C12H22O2Si2 110.037 254.116 239, 254, 73, 
240, 255 

1393 RT, MS, VUV, 
STD 

All 

Resorcinol 2TMS C6H6O2 C12H22O2Si2 110.037 254.116 239, 254, 73, 
69, 91 

1372 RT, MS, VUV, 
STD 

All forms of pine, ground, 
manzanita, juniper 

1,2-cyclohexanediol C6H12O2 C12H28O2Si2 116.084 260.162 '147, 73, 142, 
81, 245' 

1253 RT, MS, VUV Duff 

Butanedioic acid 2TMS C4H6O4 C10H22O4Si2 118.027 262.106 147, 73, 75, 
148, 45 

1306 RI, MS, VUV All 

3-methylcatechol 2TMS C7H8O2 C13H24O2Si2 124.052 268.131 73, 268, 74, 
45, 253 

1379 RI, MS, VUV All 

4-methylcatechol 2TMS C7H8O2 C13H24O2Si2 124.052 268.131 73, 69, 268, 
253, 45 

1390 RT, MS, VUV, 
STD 

All 

Benzoic acid TMS 
steroisomer 1 

C7H8O2 C10H16O2Si 124.052 196.092 105, 179, 135, 
77, 194 

1242 RI, MS, VUV All 

Benzoic Acid TMS 
steroisomer 2 

C7H8O2 C10H16O2Si 124.052 196.092 105, 179, 135, 
77, 194 

1234 RI, MS, VUV All 

Methylhydroquinone 
2TMS 

C7H8O2 C13H24O2Si2 124.052 268.131 268, 253, 73, 
237, 254 

1454 RI, MS, VUV All 

5-(hydroxymethyl) 
furfural TMS 

C6H6O3 C9H14O3Si 126.032 198.071 183, 109, 111, 
73, 81 

1304 RI, MS, VUV All 

Maltol TMS C6H6O3 C9H14O3Si 126.032 198.071 183, 184, 153, 
75, 111 

1277 RT, MS, VUV, 
STD 

All 

Pyrogallol 3TMS C6H6O3 C15H30O3Si3 126.032 342.150 239, 73, 342, 
240, 211 

1531 RT, MS, VUV All 

Pyroglutamic acid TMS C5H7NO3 C11H23NO3S
i2 

129.043 273.122 84, 75, 73, 41, 
45 

1492 RT, MS, VUV, 
STD 

All 

Methylsuccinic acid 
2TMS 

C5H8O4 C11H24O4Si2 132.042 276.121 73, 147, 217 1317 RT, MS, VUV All forms of pine, bear 
grass, dung, manzanita 
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3-hydroxyacetophenone 
TMS 

C8H8O2 C11H16O2Si 136.052 208.092 193, 73, 208, 
43, 75 

1466 RI, MS, VUV All 

3-Hydroxybenzoic acid 
2 TMS 

C7H6O3 C13H22O3Si2 138.032 282.111 267, 223, 193, 
73, 282 

1558 RI, MS, VUV All 

4-Hydroxybenzoic acid 
2TMS 

C7H6O3 C13H22O3Si2 138.032 282.111 267, 223, 73, 
193, 268 

1622 RI, MS, VUV All 

1-4:3-6-Dianhydro-
alpha-d-glucopyranose 

TMS 

C6H8O4 C9H16O4Si 144.042 216.081 73, 129, 75, 
155, 170 

1338 RI, MS, VUV All 

Arabinonic acid, 1,4-
lactone 3TMS 

C5H8O5 C14H32O5Si3 148.037 364.156 73, 147, 117, 
75, 217 

1627 RI, MS, VUV All pine forms, bear grass, 
manzanita 

P-Coumaric alcohol 
2TMS 

C9H10O2 C15H26O2Si2 150.068 294.147 73, 205, 294 1625 RI, MS, VUV All forms of pine and 
juniper 

2, 4-
dihydroxyacetophenone 

2TMS 

C8H8O3 C14H24O3Si2 152.047 296.126 217, 73, 281, 
218, 75 

1688 RI, MS, VUV All forms of pine 

Vanillin TMS C8H8O3 C11H16O3Si 152.047 224.087 194, 193, 209, 
73, 195 

1529 RT, MS, VUV, 
STD 

All forms of pine, peat, 
juniper 

Arabinitol 5TMS C5H12O5 C20H52O5Si5 152.068 512.266 73, 217, 147, 
103, 205 

1713 RI, MS All pine forms except 
rotten log 

Protocatechoic acid 
3TMS 

C7H6O4 C16H30O4Si3 154.027 370.145 193, 73, 370, 
355, 311 

1812 RT, MS, VUV All forms of pine, peat, 
sage, juniper 

Syringol TMS C8H10O3 C11H18O3Si 154.063 226.103 196, 211, 181, 
69, 197 

1391 RT, MS, VUV, 
STD 

All 

4-nitrocatechol 2TMS C6H5NO4 C12H21NO4S
i2 

155.022 299.101 73, 284, 299, 
45, 74 

1738 RI, MS, VUV, 
STD 

All 

Nonanoic acid TMS C9H18O2 C12H26O2Si 158.131 230.170 69, 75, 131, 
73, 117 

1353 RT, MS, VUV, 
STD 

All 

1-8-
dihydroxynaphthalene 

2TMS 

C10H8O2 C16H24O2Si2 160.052 304.131 73, 304, 217, 
45, 74 

1815 RI, MS, VUV All 

Umbelliferone TMS C9H6O3 C12H14O3Si 162.032 234.071 219, 234, 73, 
220, 191 

1818 RT, MS, VUV All forms of pine, dung, 
manzanita, grasses, sage, 

juniper 
Deoxy-ribo-hexonic acid 

1-4-lactone 3 TMS 
C6H10O5 C15H34O5Si3 162.053 378.171 73, 147, 129, 

155, 103 
1764 RI, MS All 

Galactosan 3TMS C6H10O5 C15H34O5Si3 162.053 378.171 217, 73, 204, 
218, 147 

1654 RT, MS, VUV, 
STD 

All 
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Levoglucosan 3 TMS C6H10O5 C15H34O5Si3 162.053 378.171 73, 204, 217, 
147, 189 

1698 RT, MS, VUV, 
STD 

All 

Mannosan 3TMS C6H10O5 C15H34O5Si3 162.053 378.171 73, 217, 204, 
191, 147 

1676 RI, MS All forms of pine 

4-Coumaric acid 2TMS C9H8O3 C15H24O3Si2 164.047 308.126 293, 219, 73, 
249, 308 

1934 RI, MS, VUV All 

Eugenol TMS C10H12O2 C13H20O2Si 164.084 236.123 206, 221, 236, 
179, 73 

1464 RT, MS, VUV Engelmann spruce duff 

4-vinylveratrole C10H12O2  164.084  164, 149, 91, 
77, 121 

1358 RT, MS, VUV Duff 

Isoeugenol TMS C10H12O2 C13H20O2Si 164.084 236.123 206, 205, 236, 
207, 69 

1562 RI, MS, VUV All forms of pine, dung, 
grasses, juniper 

Acetovanillone TMS C9H10O3 C12H18O3Si 166.063 238.103 193, 223, 208, 
73, 238 

1612 RI, MS, VUV All 

Phloretic acid 2TMS C9H10O3 C15H26O3Si2 166.063 310.142 179, 73, 180, 
75, 45 

1806 RT, MS, VUV Bear grass, pine, manzanita 

3-(Methylthio)benzoic 
acid TMS 

C8H8O2S C11H16O2SSi 168.025 240.064 225, 181, 151, 
240, 75 

1640 RI, MS, VUV Rotten log 

Methyl 3,4-
dihydroxybenzoate 

2TMS 

C8H8O4 C14H24O4Si2 168.042 312.121 193, 73, 312, 
194, 45 

1714 RI, MS, VUV All forms of pine 

Vanillic acid 2TMS C8H8O4 C14H24O4Si2 168.042 312.121 297, 267, 223, 
253, 282 

1755 RT, MS, VUV, 
STD 

All 

1-acenaphthenone C12H8O  168.058  140, 168, 139, 
73, 89 

1665 RI, MS, VUV Pine, sage, juniper 

Homovanillyl alcohol 
2TMS 

C9H12O3 C15H28O3Si2 168.079 312.158 209, 73, 312, 
210, 179 

1702 RT, MS, VUV All 

Methylsyringol TMS C9H12O3 C12H20O3Si 168.079 240.118 210, 69, 211, 
225, 240 

1476 RT, MS, VUV All 

Methyl nitrocatechol 2 
TMS isomer 1 

C7H7NO4 C10H15NO4S
i 

169.038 241.077 73, 296, 45, 
313, 180 

1771 RI, MS, VUV All 

Methyl nitrocatechol 2 
TMS isomer 2 

C7H7NO4 C10H15NO4S
i 

169.038 241.077 73, 298, 75, 
45, 74 

1828 RI, MS, VUV All 

Gallic acid 4TMS C7H6O5 C19H38O5Si4 170.022 458.180 281, 73, 443, 
458, 179 

1947 RI, MS, VUV Manzanita 
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1,4-Dihydroxy-2,6-
dimethoxybenzene 

2TMS 

C8H10O4 C14H26O4Si2 170.058 314.137 284, 314, 73, 
299, 269 

1669 RI, MS, VUV All 

4-phenylphenol TMS C12H10O C15H18OSi 170.073 242.113 211, 227, 73, 
242, 310 

1771 RI, MS, VUV All 

Shikimic acid 4TMS C7H10O5 C19H42O5Si4 174.053 462.211 204, 73, 147, 
205, 206 

1803 RT, MS, VUV Pine and pine litter 

Esculetin 2 TMS C9H6O4 C15H22O4Si2 178.027 322.106 73, 322, 307, 
45 

2093 RT, MS, VUV Sage 

Coniferyl aldehyde TMS C10H10O3 C13H18O3Si 178.063 250.103 220, 219, 250, 
192, 73 

1839 RT, MS, VUV All 

Phenanthrene C14H10  178.078  178, 73, 176, 
152, 177 

1791 RT, MS, VUV, 
STD 

All 

9-fluorenone C13H8O  180.058  180, 152, 151, 
181, 150 

1745 RI, MS, VUV All 

Benzocinnoline C12H8N2  180.069  152, 180, 151, 
76, 150 

1913 RI, MS, VUV All 

Coniferyl alcohol 2TMS C10H12O3 C16H28O3Si2 180.079 324.158 219, 193, 73, 
309, 220 

1946 RI, MS, VUV Pine and juniper 

Homovanillic acid 
2TMS 

C9H10O4 C15H26O4Si2 182.058 326.137 73, 209, 179, 
267, 326 

1761 RI, MS, VUV All 

Syringaldehyde TMS C9H10O4 C12H18O4Si 182.058 254.097 73, 204, 217, 
224, 147 

1695 RT, MS, VUV, 
STD 

Pine and manzanita 

Dihydroconiferyl 
alcohol 2TMS 

C10H14O3 C16H30O3Si2 182.094 326.173 206, 205, 236, 
73, 326 

1811 RI, MS, VUV All 

6H-
Cyclobuta[jk]phenanthr

ene 

C15H10  190.078  190, 189, 95, 
191, 187 

1928 RI, MS, VUV Pine, shrubs, bear grass 

Scopoletin TMS C10H8O4 C13H16O4Si 192.042 264.082 234, 206, 264, 
73, 249 

2031 RT, MS, VUV Sage, rotten log, duff 

Quinic acid 5TMS C7H12O6 C22H52O6Si5 192.063 552.261 73, 345, 255, 
147, 69 

1851 RT, MS, VUV Pine, manzanita, sage 

9-methylanthracene C15H12  192.094  192, 191, 189, 
190, 165 

1936 RI, MS, VUV All 

Methylanthracene 
isomer 

C15H12  192.094  192, 191, 189, 
190, 193 

1906 RI, MS, VUV All forms of pine, dung, 
bear grass, sage 

1-methylanthracene C15H12  192.094  192, 191, 189, 
190, 193 

1912 RI, MS, VUV All 
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Methyl caffeate 2TMS C10H10O4 C16H26O4Si2 194.058 338.137 73, 323, 249, 
308, 338 

2087 RI, MS, VUV All forms of pine, ground, 
grasses, juniper 

Pinitol 5TMS C7H14O6 C22H54O6Si5 194.079 554.277 73, 217, 247, 
147, 159 

1788 RT, MS, VUV, 
STD 

Pine and pine litter 

Naphthalic anhydride C12H6O3  198.032  154, 126, 198, 
63, 50 

2038 RI, MS, VUV Pine and juniper 

D-Arabino Hexonic acid 
3-deoxy-2,5,6-tris-O-

(TMS)-lactone 

C9H10O5 C18H34O5Si3 198.053 414.171 73, 147, 129, 
103, 75 

1783 RI, MS All 

Syringic acid 2TMS C9H10O5 C15H26O5Si2 198.053 342.132 73, 75, 312, 
159, 297 

1890 RT, MS, VUV, 
STD 

All forms of pine, ground, 
manzanita, juniper 

β-Carboline, 7-hydroxy-
1-methyl TMS 

C12H10ON
2 

C15H18N2OS
i 

198.079 270.119 255, 270, 73, 
240, 75 

1922 RT, MS, VUV All forms of pine, juniper 

Vanillyl glycol 3TMS C10H14O4 C19H38O4Si3 198.089 414.208 73, 147, 117, 
205, 209 

1955 RT, MS, VUV All forms of pine and 
juniper 

Fluoranthene C16H10  202.078  202, 203, 200, 
201, 101 

2077 RT, MS, VUV, 
STD 

All 

Pyrene C16H10  202.078  202, 200, 203, 
201, 101 

2132 RT, MS, VUV, 
STD 

All 

Acephenanthrene C16H12  204.094  202, 200, 203, 
201, 101 

2101 RT, MS, VUV All 

Pimanthrene C16H14  206.110  206, 191, 204, 
205, 189 

2058 RT, MS, VUV All 

Anthraquinone C14H8O2  208.052  208, 152, 180, 
76, 151 

1980 RT, MS, VUV, 
STD 

Sage, lodgepole pine forms 

Ethyl homovanillate 
TMS 

C11H19O4 C14H27O4Si 215.128 287.168 252, 179, 209, 
73, 282 

1771 RT, MS, VUV Pine litter, duff, rotten log, 
dung, and grasses 

Benzofluorene C17H12  216.094  216 2109 RT, MS, VUV All forms of pine and 
shrubs 

Octanoic acid TMS C8H16O2 C11H24O2Si 216.155 144.115 73, 75, 117, 
201, 131 

1255 RT, MS, VUV, 
STD 

All 

2, 3-5, 6-dibenzoxalene C16H10O  218.073  218, 73, 189, 
91, 219 

2191 RI, MS, VUV Lodgepole 

Benzo[b]naphtho[1,2-
d]furan 

C16H10O  218.073  218, 189, 219, 
204 

2135 RT, MS, VUV Pine, manzanita, sage, bear 
grass 

Benzo[kl]xanthene C16H10O  218.073  218, 202, 217, 
203, 219 

2203 RT, MS, VUV All pine forms 

Hydroxypyrene C16H10O C19H18OSi 218.073 290.113 218, 189, 73, 
219, 95 

2152 RT, MS, VUV Lodgepole pine 
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Vanillic acid isobutyl 
 ester TMS 

C12H16O4 C15H24O4Si 224.105 296.144 241, 256, 225, 
73, 242 

1861 RT, MS, VUV All forms of pine, peat, 
manzanita 

Cyclopenta[cd]pyrene C18H10  226.078  226, 224, 227, 
113, 225 

2468 RT, MS, VUV Pine, shrubs, bear grass 

9-Tetradecenoic acid 
TMS 

C14H26O2 C17H34O2Si 226.193 298.233 73, 75, 117, 
283, 129 

1836 RT, MS, VUV Bear grass, duff, pine 

Chrysene C18H12  228.094  228, 226, 229, 
114, 227 

2482 RT, MS, VUV, 
STD 

Pine, shrubs, bear grass 

Benzanthrone C17H10O  230.073  230, 202, 101, 
200 

2516 RT, MS, VUV Lodgepole, pine, and 
manzanita 

Β-Cyclocostunolide C15H20O2  232.146  217, 232, 91 1928 RT, VUV sage, juniper 
1-(10-Methylanthracen-

9-yl)ethanone 
C17H14O  234.104  219, 191, 189, 

234, 190 
2405 RT, MS, VUV All forms of pine 

Retene C18H18  234.141  219, 234, 204, 
203, 220 

2225 RT, MS, VUV, 
STD 

All 

Ethylhexyl benzoate C15H22O2  234.162  105, 70, 77, 
112, 83 

1707 RT, MS, VUV, 
STD 

All forms of pine and 
shrubs 

Heptadecane (C17) C17H36  240.282  57, 71, 43, 
131 

1698 RT, MS, VUV, 
STD 

Dung, peat, rice straw, and 
pine bark 

Confertin C15H20O3  248.141  248, 81, 119 2043 RT, MS, VUV Sage 
Benzo[a]pyrene C20H12  252.094  252, 250, 253, 

126, 113 
2886 RT, MS, VUV, 

STD 
Pine, sage, juniper 

Benzofluoranthene 
isomer 1 

C20H12  252.094  252, 253, 250, 
125, 126 

2792 RT, MS, VUV, 
STD 

Pine, sage, juniper, 
manzanita 

Benzofluoranthene 
isomer 2 

C20H12  252.094  252, 250, 253, 
73, 126 

2873 RT, MS, VUV, 
STD 

Pine, juniper 

11-Hexadecenoic acid 
TMS 

C16H30O2 C19H38O2Si 254.225 326.264 55, 69, 83, 41, 
96 

1938 RT, MS, VUV All 

Palmitic acid TMS C16H32O2 C19H40O2Si 256.240 328.280 117, 73, 313, 
75, 129 

2042 RT, MS, VUV, 
STD 

All 

Nonadecane (C19) C19H40  268.313  57, 71, 43, 
131 

1897 RT, MS, VUV, 
STD 

All 

Heptadecanoic acid 
TMS 

C17H34O2 C20H42O2Si 270.256 342.295 73, 117, 75, 
129, 327 

2112 RT, MS, VUV, 
STD 

All forms of pine, dung, 
peat, and bear grass 

Methyl 13-
methylpentadecanoate 

C17H34O2  270.256  74, 87, 270 1922 RT, VUV Pine, ground, and grass 

Arbutin 4TMS C12H16O7 C24H48O7Si4 272.090 560.248 73, 182, 254, 
129, 103 

2563 RT, MS Manzanita 
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Divanillyl 2TMS C16H18O4 C22H34O4Si2 274.12050
9 

418.200 209, 73, 210, 
179, 211 

2468 RT, MS, VUV All forms of pine, dung, 
juniper 

Dibutyl phthalate C16H22O4  278.152  149, 57 1857 MS, VUV All 
Linoelaidic acid TMS C18H32O2 C21H40O2Si 280.240 352.280 75, 73, 67, 81, 

95 
2206 RT, MS, VUV All 

Oleic acid TMS C18H34O2 C21H42O2Si 282.256 354.295 73, 75, 117, 
129, 55 

2220 RT, MS, VUV All 

Icosane (C20) C20H42  282.329  57, 131, 71, 
85 

1998 RT, MS, VUV, 
STD 

All 

Dehydroabietal C20H28O  284.214  159, 269, 173, 
209, 241 

2278 RT, MS, VUV All forms of pine 

Stearic acid TMS C18H36O2 C21H44O2Si 284.272 356.311 117, 73, 75, 
341, 129 

2238 RT, MS, VUV, 
STD 

All 

Isopimaral C20H30O  286.230  187, 131, 105, 
91, 145 

2241 RT, MS, VUV Pine and pine litter 

Henicosane (C21) C21H44  296.344  57, 131, 71, 
43 

2100 RT, MS, VUV, 
STD 

All 

18-Methyl-nonadecanol 
TMS 

C20H42O C23H50OSi 298.324 370.363 75, 355, 97, 
73, 69 

2348 RI, MS, VUV All forms of pine, grass, 
sage 

Dehydroabietic acid 
TMS 

C20H28O2 C23H36O2Si 300.209 372.248 239, 240, 73, 
173, 357 

2386 RT, MS, VUV All 

Abietic acid TMS C20H30O2 C23H38O2Si 302.225 374.264 256, 241, 185, 
213, 73 

2424 RT, MS, VUV, 
STD 

Pine and bear grass 

Isopimaric Acid TMS C20H30O2 C23H38O2Si 302.225 374.264 241, 73, 242, 
359, 105 

2354 RT, MS, VUV, 
STD 

All forms of pine 

Isopimaric acid TMS 
isomer 

C20H30O2 C23H38O2Si 302.225 374.264 241, 256, 73, 
257, 242 

2342 RT, MS, VUV, 
STD 

All forms of pine and bear 
grass 

Pimaric acid TMS C20H30O2 C23H38O2Si 302.225 374.264 121, 73, 120, 
257, 91 

2307 RT, MS, VUV All forms of pine and bear 
grass 

Sandaracopimaric acid 
TMS 

C20H30O2 C23H38O2Si 302.225 374.264 73, 121, 120, 
119, 81 

2323 RT, MS, VUV All forms of pine and 
juniper 

Docosane (C22) C22H46  310.360  57, 71, 43, 
131 

2199 RT, MS, VUV, 
STD 

Pine and grass 

Hexadecanoic acid, 
3,7,11,15-tetramethyl 

TMS 

C20H40O2 C23H48O2Si 312.303 384.342 117, 73, 75, 
369, 129 

2438 RT, MS, VUV All 

7-Oxo-dehydroabietic 
acid TMS 

C20H26O3 C23H34O3Si 314.188 386.228 253, 268, 73, 
187, 386 

2598 RI, MS, VUV Pine and bear grass 
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Tricosane (C23) C23H48  324.376  57, 71, 43, 85 2299 RT, MS, VUV, 
STD 

All 

7-Oxodehydroabietic 
acid methyl ester 

C21H28O3  328.204  253, 254, 187, 
211, 328 

2585 RI, MS, VUV All forms of pine 

Tetracosane (C24) C24H50  338.391  57, 97, 83, 55 2393 RT, MS, VUV, 
STD 

All 

3,4-
divanillyltetrahydrofura

n 2TMS 

C20H24O5 C26H40O5Si2 344.162 488.241 209, 210, 73, 
179, 488 

2981 RT, MS, VUV All 

Pentacosene C25H50  350.391  83, 57, 97, 43 2494 RT, VUV Ground, manzanita, bear 
grass 

Pentacosane (C25) C25H52  352.407  57, 71, 131, 
85 

2501 RT, MS, VUV, 
STD 

All 

1-tetracosanol (C24 
Alcohol) 

C24H50O C27H58OSi 354.386 426.426 75, 411, 97, 
57, 412 

2743 RT, MS, VUV, 
STD 

All 

Matairesinol 2TMS C20H22O6 C26H38O6Si2 358.142 502.221 209, 73, 179, 
210, 502 

3160 RT, MS, VUV Pine, pine litter, and 
juniper 

Hexacosene C26H52  364.407  57, 69, 97, 
111, 83 

2595 RT, MS, VUV, 
STD 

Ground, manzanita, bear 
grass 

Hexacosane (C26) C26H54  366.423  131, 57, 83, 
55 

2595 RT, MS, VUV, 
STD 

Pine, ground, and grass 

Heptacosane (C27) C27H56  380.438  57, 71, 85, 69, 
43 

2701 RT, MS, VUV, 
STD 

All 

Stigmasta-3,5 diene C29H48  396.376  147, 81, 145, 
105, 91 

3106 RT, MS, VUV All 

Nonacosane (C29) C29H60  408.470  57, 71, 85, 43, 
69 

2901 RT, MS, VUV, 
STD 

All 

β-sitosterol TMS C29H50O C32H58OSi 414.386 486.426 129, 73, 75, 
95, 121 

3347 RT, MS, VUV, 
STD 

All 

10-nonacosanol TMS C29H60O C32H68OSi 424.464 496.504 229, 73, 75, 
369, 83 

3062 RT, MS, VUV, 
STD 

All forms of pine, juniper 

Tocopherol TMS C29H50O2 C32H58O2Si 430.381 502.421 237, 73, 236, 
502, 238 

3138 RT, MS, VUV All 

Triacontane (C30) C30H62  436.501  57, 71, 85, 43 3001 RT, MS, VUV, 
STD 

All 

Hentriacontane (C31) C31H64  464.532  57, 71, 85, 69, 
43 

3102 RT, MS, VUV, 
STD 

All 

Dotriacontane (C32) C32H66  492.563  57, 71, 85, 
131 

3202 RT, MS, VUV, 
STD 

All 
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Tritriacontane (C33) C33H68  520.595  57, 71, 69, 43, 
85 

3302 RT, MS, VUV, 
STD 

All 

Tetratriacontane (C34) C34H70  548.626  57, 71, 85, 
131 

3399 RT, MS, VUV, 
STD 

All 

Pentatriacontane (C35) C35H72  576.657  71, 57, 85, 
131 

3500 RT, MS, VUV, 
STD 

All 
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3. Conversion of instrument response to mass loadings and emission factors: 

Internal standard was injected onto each sample filter prior to analysis on the TD-
GC×GC-EI/VUV-HRToFMS. This was done to correct for matrix effects and slight changes in 
instrument performance. The internal standard mixture consisted of relevant biomass burning 
deuterated compounds (see next section). The total volume of each chromatographic peak was 
integrated and normalized to the nearest internal standard peak volume. The normalized peak 
volume was then converted to mass loading by finding the nearest standard compound of the 
same compound class in first and second dimension and using its accompanying mass loadings 
calibration curve (see next section for more details). In other words, compounds classified as 
sugars were converted to mass loadings based upon the calibration of the nearest sugar standard. 
Unknown compounds were matched to the nearest standard compound regardless of chemical 
classification.  

Mass loading calibration curves were determined by measuring the instrument’s response 
to varying amounts of 99 standard compounds typically found in biomass burning organic 
aerosol particles. We estimate the systematic uncertainty in the mass loadings for the unknown 
compounds at a factor of 2. Unidentified but classified compounds exhibited lower uncertainty 
due to similarities in instrument response to standards within the same family. To illustrate this 
reduction of uncertainty, we examine compounds with a RI of in the range of 1800-1900. 
Compounds that elute in this region include sugars, PAHs, aliphatics, and organic nitrogen. Their 
associated slopes from their mass loading calibration curves and compound family are provided 
in Table S2. Slopes within compound families are more similar than between families. For 
example, sugars exhibit slopes on average of 0.19 (not all shown in Table S2) whereas aliphatics 
have slopes of 1.1. An unclassified sample compound that elutes near myristic acid and galactose 
could be converted to mass loadings using either the slopes of myristic acid (0.43) or galactose 
(0.004). Depending which is chosen, the estimated mass loading of this unclassified compounds 
could range over three orders of magnitude. However, if this sample compound were classified 
as a sugar, then the estimated mass loadings would be significantly higher and more in-line with 
the how typical sugars respond in the instrument. Our observations using various standard 
compounds indicate this calibration technique primarily lowers the uncertainty of more polar 
compounds to ±~30%.   

Table S2 Example mass loading calibrations slopes for compounds in the RI=1800 range. 
Compound 

Name 
1D RI 2D retention 

time (s) 
Mass Calibration 

Slopes  
Compound 

Family 
Octadecane (C18) 1831 0.260 1.70 Aliphatic 

Mannose 1831 0.310 0.19 Sugar 
Anthracene 1836 0.680 1.82 PAHs 

Pinitol 1856 0.330 0.37 Sugar 

5-Nitrovanillin  1866 1.350 0.67 Organic 
nitrogen 

Myristic Acid 
(C14 acid) 

1879 0.380 0.43 Aliphatic 

Galactose 1885 0.320 0.004 Sugar 
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Sampled compounds that exactly matched a standard compound have a lower uncertainty 
of ~±10% that is primarily due to instrument variation. Since the same data inversion factor was 
applied to the same observed compound across all samples, these systematic uncertainties do not 
affect the trends observed in this study but may affect the mass fractions each compound 
contributes to the total observed mass from a burn.  

The background-subtracted compound mass loading was then converted to emission 
factors by first normalizing to the background-corrected CO2 mass sampled. CO2 concentration 
(by volume) was measured in real-time by the open-path Fourier transform infrared spectroscopy 
(OP-FTIR). Details of this measurement can be found in Selimovic et al. (2018). The mass of 
CO2 that pass through a filter was calculated by first converting the CO2 volume concentration 
into mass concentration. CO2 mass concentration was then numerically integrated over the filter 
sampling time then multiplied by the total volumetric flow through the filter. The normalized 
organic compound mass loadings were converted to emission factors, EFcompound, via the fire-
integrated EFCO2 following the formula below (units are given in parentheses). 

𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 (𝑐𝑐𝑛𝑛)

∆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶2 (𝑛𝑛)
× 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶2 (𝑛𝑛/𝑘𝑘𝑛𝑛 𝑐𝑐𝑑𝑑𝑑𝑑 𝑜𝑜𝑐𝑐𝑓𝑓𝑓𝑓 𝑏𝑏𝑐𝑐𝑑𝑑𝑐𝑐𝑓𝑓𝑐𝑐) 

The Δ indicate change over background. EFsCO2 for each burn during FIREX Fire Lab campaign 
are also presented Selimovic et al. (2018) and were determined by the carbon mass balance 
method (Ward and Radke, 1993; Yokelson et al., 1996). The carbon mass was summed over the 
gaseous species detected by the OP-FTIR, with CO2, CO, and CH4 accounting for 97-99% of the 
total emitted carbon. Including the carbon mass of the I/SVOCs would only slightly decrease the 
EFs reported here and thus their contributions to the carbon mass balance were assumed to be 
negligible.  

 EFs for all observed compounds are provided in the open access FIREX data archive (see 
Data Sets of the main paper). Figure 2 illustrates the EFs for the observed compounds from a 
lodgepole pine burn. The marker sizes approximately scale with EFs. However, corrections were 
made to the floor and ceiling limits of the marker sizes. This was done to prevent some markers 
from dominating the entire area of the chromatogram and the minute points from fading from 
view. 

4. Internal/external standards and mass loading calibration curves: 

A mixture of deuterated internal standards was injected onto every filter prior to analysis. 
The mixture consisted of 34 compounds that are either found in biomass burning organic 
aerosols (BBOA) or have functional groups that closely resemble compounds in BBOA. A full 
list of internal standard compounds is given in Table S3. 

A more extensive mixture of standards was used to calibrate the mass loading sensitivity 
of the TD-GC×GC EI-HRToFMS directly after all the Fire Lab samples were run. This mixture 
of external standards contained 99 compounds that have been previously observed in biomass 
burning emissions. These compounds represent all the compound families as described in the 
main paper and are given in Table S4. Various mass loadings were injected onto separate blank 
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quartz fiber filters and analyzed with the TD-GC×GC EI-HRToFMS. The volume ratio between 
the total external standard peak and the nearest total internal standard peak were then correlated 
to the respective mass loading ratio. Example mass loading calibration curves are shown in 
Figure S3. In general, the linearity between mass loading and instrument response was good 
(R2>0.9) over a wide range of normalized mass loadings; this may not be true at extremely low 
and high mass loadings for some compounds. Measured levoglucosan mass loadings did exceed 
the upper limits of the calibration curve for some of the conifer burns; in these cases, the 
calibration curve was extrapolated and may lead to higher uncertainty in levoglucosan EFs. 
Furthermore, several PAH external standard compounds showed poor linearity because their 
peaks in the chromatogram co-eluted with the nearest internal standard peak at high mass 
loadings. These high mass loading points were not taken into account for the calibration curve. 
This assumption is valid as the volumes of the PAH peaks were not observed during the FSL 
experiments to be within this high mass loading range.  

 

Table S3 list of internal standards used on each sample 

Internal Standard Compounds 
d3-vanillin d4-4-methoxy-benzaldehyde 

d6-syringic Acid d8-anthraquinone 
d8- methylcatechol d4-phthalic acid 
d3- vanillic Acid d5-benzoic acid 

d4-3-nitrobenzoic Acid d5-C10 acid 
d5- 4-hydroxybenzaldehyde d12-C14 acid 

d9-1-nitropyrene d31-C16 acid 
d26-C12 alkane d35-C18 acid 
d28-C13 alkane d43-C22 acid 
d30-C14 alkane d7-cholesterol 
d34-C16 alkane d5-Cholestane 
d38-C18 alkane d5-3-hydroxy-1,5-pentanedioic acid 
d42-C20 alkane C6 diacid 
d46-C22 alkane d31-pentadecanol 
d50-C24 alkane 613C -glucose 
d54-C26 alkane 213C-pentaerythritol 
d58-C28 alkane d10-pyrene 
d62-C30 alkane d10-phenanthrene 
d66-C32 alkane d12-perylene 
d70-C34 alkane d12-chrysene 
d74-C36 alkane d14-dibenzanthracene 
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Table S4 List of external standards used to determine the mass loading calibration curve of the TD-GC×GC-EI-HRToFMS 

External Standard Compounds 
Cholesterol Retene C7 carboxylic acid C12 alkane 
Stigmasterol Naphthalene C8 carboxylic acid C13 alkane 
β-sitosterol Phenanthrene C9 carboxylic acid C14 alkane 
Ergosterol Pyrene C10 carboxylic acid C15 alkane 
α-Amyrin Acenaphthene C11 carboxylic acid C16 alkane 

Levoglucosan Acenaphthylene C12 carboxylic acid C17 alkane 

Levoglucosenone Anthracene C13 carboxylic acid Pentadecane, 2,6,10,14-
tetramethyl- 

Mannosan 1,2-Benzanthracene C14 carboxylic acid C18 alkane 

Galactosan Benzo(a)pyrene C15 carboxylic acid Hexadecane, 2,6,10,14-
tetramethyl- 

Guaiacol Benzo(b)fluoranthene C16 carboxylic acid C19 alkane 
Syringol (2,6-

Dimethoxyphenol) Benzo(g,h,i)perylene C17 carboxylic acid C20 alkane 

Syringic Acid Benzo(k)fluoranthene C18 carboxylic acid C21 alkane 
Syringaldehyde Chrysene C20 carboxylic acid C22 alkane 
Sinapinalehyde Dibenz(a,h)anthracene C22 carboxylic acid C23 alkane 

Vanillin Fluoranthene C23 carboxylic acid C24 alkane 
Vanillic acid Fluorene C24 carboxylic acid C25 alkane 

4-hydroxybenzoic acid Indeno(1,2,3-cd)pyrene C26 carboxylic acid C26 alkane 
p-Anisic acid (4-

methoxybenzoic acid) Maltol C28 carboxylic acid C27 alkane 

3,5-dimethoxyphenol 5-(Hydroxymethyl) furfural D-(+)-glucose C28 alkane 
Phthalic acid 4-Nitrocatechol D-(+)-mannose C29 alkane 
Abietic acid 5-Nitrovanillin L-(-)-mannose C30 alkane 

Isopimaric acid 2,4-Dinitrophenol D-(+)-galactose C31 alkane 
Resorcinol  D-Pinitol C32 alkane 

Hydroquinone  Pyrocatechol C33 alkane 
4-Methylcatechol   C34 alkane 
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Figure S3 Example mass loading calibration curves for cholesterol, levoglucosan, retene, and sinapinaldehyde. Each external 
standard compound is normalized to the nearest internal standard (IS) compound. Colors are coded based upon the broad 
compound family: cholesterol=sterol, levoglucosan=sugar, retene=PAH, and sinapinaldehyde=methoxyphenol 

5. Classifying unidentified compounds into chemical families: 

 The 1D RI and the 2D retention time of an unidentified compound were first examined to 
ballpark potential family choices. Larger molecules like sterols have lower vapor pressures, and 
thus higher RI, than sugars. Derivatized methoxyphenols are more polar than derivatized sugars 
but have similar vapor pressures; therefore, methoxyphenols elute later in the second dimension 
than sugars. After the possible families were narrowed down, the electron ionization (EI) mass 
spectrum of the unidentified compound was then analyzed for specific ions and patterns that 
signify particular functional groups. For example, derivatized sugars exhibit 204 and 217 m/z 
and PAHs show little fragmentation. Derivatized sugars also show significant fragmentation with 
vacuum ultra violet light (VUV) ionization, making them easier to distinguish from compounds 
with benzene rings in the VUV mass spectrum. Each of the ~3000 compounds, including 
identified compounds, were analyzed using this method and placed into a family. Example 
compounds for each category are given in Table S5. The bulk of the unidentified compounds 
could not be placed into a category and remain unknown. More work needs to be done to 
synthesize standards of a wider variety of compounds in order to better identify/classify the 
unknown compounds.  
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Table S5 List of chemical families and examples for each family (without derivatization)  

Family Name Example compound (underivatized) 
Non-cyclic 
aliphatic/oxygenated  

3,7,11,15-tetramethyl hexadecanoic acid 
Sugars 

 
Levoglucosan 

PAHs/methyl/oxygenated 

 
1-Methylanthracene 

Resin acids/diterpenoids 

 
Isopimaric acid 

Sterols/triterpenoids 

 
β-Sitosterol 

Organic nitrogen 

 
Pyroglutamic acid 

Aromatic oxygen 
heterocycles 

 
Scopoletin 

Oxygenated cyclic 
alkanes 

 
Arabino-1,4-lactone 

Methoxyphenols 

 
Syringol 
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Substituted phenols 

 
Methyl 3-4-dihydroxybenzoate 

Substituted benzoic acids 

 
Benzoic Acid 

 

6. Classified I/SVOC mass fractions averaged over fuel type 
The average mass fractions of total observed I/SVOCs for the chemical families across each 
fuel types (see Figure 3) are given in Table S5.  

Table S6 Mass fraction (in %) and standard deviation of each of the chemical families for the various fuel types. 

 Shrubs Grass Wood Coniferous 
Litter Conifers Peat Dung Coniferous 

Duff 
Woody 
Debris 

Unknown 50%, 5% 60%, 6% 50%, 14% 50%, 9% 60%, 13% 50% 50% 60%, 15% 88%, 1% 
Non-cyclic 

aliphatics/oxy 10%, 9% 8%, 2% 8%, 2% 7%, 2% 6%, 2% 26% 9% 9%, 2% 1%, 0% 

Sugars 10%, 3% 12%, 2% 20%, 8% 15%, 6% 20%, 10% 3% 14% 10%, 6% 5%, 1% 

PAH/methyl+oxy 1%, 1% 0%, 0% 1%, 1% 2%, 0% 1%, 0% 1% 0%, 2%, 0% 1%, 0% 
Resin acids 

/diterpenoids 0%, 0% 0%, 0% 0%, 0% 8%, 1% 3%, 2% 0% 0% 3%, 2% 0%, 0% 

Sterols, 
triterpenoids 1%, 0% 0%, 0% 0%, 0% 1%, 0% 0%, 0% 0% 1% 0%, 0% 0%, 0% 

Organic nitrogen 13%, 8% 12%, 1% 8%, 4% 14%, 1% 10%, 5% 15% 22% 11%, 6% 1%, 1% 
Oxy aromatic 
heterocycles 1%, 2% 1%, 0% 1%, 0% 0%, 0% 1%, 0% 0% 0% 0%, 1% 0%, 0% 

Oxy cyclics 0%, 0% 3%, 2% 0%, 0% 1%, 0% 1%, 1% 0% 1% 1%, 1% 0%, 0% 

Methoxyphenols 3%, 1% 3%, 2% 7%, 3% 3%, 0% 2%, 1% 4% 3% 4%, 1% 3%, 1% 
Substituted 

phenols 7%, 0% 1%, 0% 0%, 0% 1%, 0% 1%, 1% 1% 1% 1%, 0% 0%, 0% 

Substituted 
benzoic acids 1%, 1% 0%, 0% 0%, 0% 0%, 0% 0%, 0% 0% 0% 0%, 0% 0%, 0% 

Average MCE. 0.958 0.898 0.958 0.955 0.931 0.840 0.902 0.871 0.878 

 
7. EFs for families of compounds as a function of MCE: 

 Emission factors for each of the 12 families (including unknowns) were summed together 
in each fire-integrated sample. Figure S4 displays all of the family EFs as a function of modified 
combustion efficiency (MCE). This figure is an expansion of Figure 4 in the main paper. EFs for 
all chemical families exhibit a clear dependence on MCE, with smoldering burns producing 2-4 
orders of magnitude more I/SVOC emissions. Logarithmic fits of the form 
log(EF)=slope(MCE)+int were also applied to these observations with the fit parameters 
displayed on each of the panels.  
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Figure S4 Emission factors (EFs) of each of the 12 chemical families as a function of modified combustion efficiency (MCE). Each 
panel/color represents a different chemical family and the different symbols show the different fuel types. Dashed lines are of 
the log(EF)=slope(MCE)+int fits with the parameters provided in the panel. Note, peat (open pentagon) was not included in the 
fits except for non-cyclics aliphatic/oxy (red).  
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Table S7 Logarithmic fit parameters for each of the chemical families and total I/SVOCs 

Chemical Family Slope ± error Intercept ± error 
Total -11.44858 ± 1.87 11.58506 ± 1.74 

Unknown - 12.05974 ± 2.05 11.8919± 1.90 
Non-cyclic Aliphatic/Oxy -9.21952 ± 1.54 8.29706 ± 1.42 

Sugars -8.85359 ± 2.29 8.30773 ± 2.12 
PAH/methyl+oxy -14.63717± 2.07 12.40498± 1.91 

Resin Acids/diterpenoids -14.84408 ± 4.22 12.63297 ± 3.90 
Sterols/triterpenoids -9.42488 ± 1.93 7.23105 ± 1.79 

Organic Nitrogen -6.97334 ± 2.07 6.41579 ± 1.91 
Oxy Aromatic Heterocycles -8.46896 ± 2.33 6.50727 ± 2.15 

Oxygenated Cyclic -11.1686 ± 2.84 9.04829 ± 2.63 
Methoxyphenol -11.45675 ± 1.72 10.03962 ± 1.59 

Substituted Phenol -9.45183 ± 3.22 7.63392 ± 2.98 
Substituted Benzoic Acid -8.58551 ± 2.49 5.9437 ± 2.30 
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