
We are very grateful for the helpful comments of the referees, which we have used to 
improve the manuscript as described below. 
 
Please note: 
In the original text the CARDAMOM-DALEC modelling framework was referred to as 
CARDAMOM, however to avoid confusion about how this framework works it is now referred 
to as DALEC in the manuscript. Therefore, the model name has been changed to DALEC in 
the author comments and DALEC is used in the responses below. 
 
 
Anonymous Referee #1 
 
Reviewer comment: 
A main point of critique is a missing validation or at least evaluation of the inversion results 
and posterior fluxes. This is of course not an easy task but at least some basic evaluation 
tests should have been performed. This could be done by comparing modelled CO2 vertical 
profiles using the posterior fluxes against aircraft measurements or, if not available, ground-
based observations withheld from the inversion. Also, the resolution of the posterior fluxes 
might already be high enough to compare them directly with eddy covariance based 
observations. Such an evaluation is missing completely. It is therefore not clear how 
‘trustworthy’ the posterior fluxes are and, also, which one of the two inversions based on 
different priors performs better than the other. This is a crucial point currently missing in the 
manuscript and should be added before publication. 
 
Author response: 
The posterior fluxes have been used to model mole fractions at Weybourne. Table 5 (Table 
1 in response supplement PDF) includes the fit to the data of modelled mole fractions using 
prior and posterior fluxes for all 4 (DALEC, JULES, gross flux, net flux) inversions for the 
WAO site. Fig. S14 (Fig. 1 in response) shows the residual mole fractions for all 4 
inversions. Fit to the data is improved using the posterior vs prior fluxes. 
 
Change to manuscript: 
To test our posterior results against data that has not been included in the inversion, the 
posterior fluxes have been used to simulate mole fractions at Weybourne Atmospheric 
Observatory (see Fig. 1 for location in relation to the other sites and Table 1 for site 
information). The statistics of fit to the data are given in italics in Table 5 and show an 
improvement in R2 of 0.18 with the DALEC inversion and 0.13 with the JULES inversion, an 
improvement in RMSE of 1.09 ppm with the DALEC inversion and 0.75 ppm with the JULES 
inversion and an improvement in the mean bias of 0.64 ppm in the DALEC inversion and 
0.56 in the JULES inversion. These results show that the a posteriori fluxes improve the fit to 
the data at a measurement station not included in the inversion. The results are very similar 
between the two inversions at this site, but suggest that the DALEC inversion may perform 
slightly better, at least in this region of the UK. Figure S14 shows the residual mole fractions 
at Weybourne for each of the inversions carried out in this work. 
 
 
Reviewer comment: 
L 43: Are flux measurements really localized down to centimetres? Probably not. 
 
Author response: 
Agreed, changed to metres. 
 
Change to manuscript: 
However, they are relatively localised estimates (metres to hectares), which are challenging 
to scale up to national levels. 



 
 
Reviewer comment: 
L 46: What do you mean by ‘are driven by observational data to varying degree of detail’? 
 
Author response: 
Here we were trying to convey that different observation-based products may be assimilated 
into biosphere models at different temporal and spatial resolutions. Wording is changed to 
clarify. 
 
Change to manuscript: 
Such models describe processes to varying degrees of complexity, with poorly described 
errors and are driven by observational data at differing temporal and spatial resolutions; 
hence predictions of biogenic greenhouse gas (GHG) fluxes have poorly quantified biases 
and can vary significantly between models (Todd-Brown et al., 2013; Atkin et al., 2015). 
 
 
Reviewer comment: 
L 55/56: Indeed, inversions are a valuable tool, but they are also not free from errors. It 
would be good to mention here sources for uncertainties in inversions and put these into 
perspective. 
 
Author response: 
Added the text below 
 
Change to manuscript: 
However, errors in atmospheric transport, unknown uncertainties related to the prior fluxes 
and issues surrounding the under-determined nature of the problem are all limitations of this 
approach. 
 
 
Reviewer comment: 
L 62: This is of course not true: Using these measurements in an inversion framework is not 
an independent way of providing estimates GHG emissions because the inverse modelling 
system requires prior emission fields as an input. Hence it is not independent of bottom-up 
inventories. This sentence needs to be rephrased in the manuscript. 
 
Author response: 
Rephrased as 
 
Change to manuscript: 
To support this legislation, a continuous and automated measurement network has been 
established (Stanley et al., 2018; Stavert et al., 2018) with the goal of providing estimates of 
GHG emissions using methods that are complementary to those used to compile the UK’s 
bottom-up emissions inventory, reported annually to the UNFCCC. 
 
 
Reviewer comment: 
L 74: Why is it rarely the case that model uncertainties are well characterized? This is also 
related to the comment on L 55/56. 
 
Author response: 
Explanation has been added 
 
Change to manuscript: 



In practice, this is rarely the case because, for example, uncertainties related to the 
atmospheric transport model are poorly understood and uncertainties related to biospheric 
flux estimates from models are largely unknown. 
 
 
Reviewer comment: 
L 80/81: But using Gaussian PDFs is only a choice made by the user, there is no math- 
ematical need for Gaussian PDFs, one can use any PDF to describe prior knowledge. So 
why is that a problem here? 
 
Author response: 
In an analytical inversion there is a mathematical need for Gaussian PDFs and the majority 
of previous studies will use Gaussian PDFs. Very few existing set-ups can accommodate 
non- Gaussian PDFs. 
 
Change to manuscript: 
Furthermore, for reasons of mathematical and computational convenience, Gaussian 
probability density functions (PDFs) are commonly used to describe prior knowledge (e.g. 
Miller et al., 2014). 
 
 
Reviewer comment: 
L 83/84: Why is the size of the diurnal cycle a problem and how does it matter if you solve 
for monthly fluxes? 
 
Author response: 
Being able to simulate the diurnal cycle of the observations as closely as possible is very 
important if you want to make the most of high frequency data. Figure S2 (Fig. 2 in 
response) has been adapted in the revised manuscript and shows what the simulated mole 
fractions look like if monthly fluxes are used. They are much smaller in magnitude and 12 
hours out of phase with the data. Table S1 (Table 2 in response supplement PDF) shows an 
inversion result using monthly fluxes and it is not at all realistic. Therefore, not taking the 
diurnal cycle into account has a large impact on the inversion. 
 
Change to manuscript: 
The choice of 24-hour disaggregation balanced considerations of computational efficiency 
and simulation accuracy. For certain months and sites, we carried out a set of tests to 
determine how sensitive our simulated mole fractions and inversion results were, when 
footprints were disaggregated for the first 12 to 72 hours prior to each measurement (Figure 
S2; Table S1). Assuming that the 72-hour simulations were the most accurate, we found 
little degradation in performance by using only 48 or 24 hours disaggregation, when 
compared to the other uncertainties in the system (e.g. differences between fluxes derived 
using the 24, 48 and 72 hour simulations were smaller than the 90% confidence interval). 
However, when only 12 hours was used (or fully integrated footprints), the modelled diurnal 
cycle was out of phase with the observations.  
 
 
Reviewer comment: 
L 156/157: Shouldn’t this ‘surface-exchange’ height be dependent of actual meteorological 
conditions and vary for instance with boundary layer height or the strength of vertical 
mixing? 
 
Author response: 



Our team has tested various different schemes (e.g. different “surface heights” using with 
similar inversion frameworks in Manning et al., 2011 and Arnold et al., 2018), and results 
seem to be relatively insensitive to this choice. 
 
 
Reviewer comment: 
Sec 2.2.2: Have you done some sensitivity tests on how to handle the boundary conditions? 
It would be interesting to see how the results change if you don’t include the boundary 
conditions in the control vector. There is of course a trade off between getting the boundary 
conditions right and using as much of the observational information as possible to constrain 
the surface fluxes. In principle, the boundary conditions are nuisance variables, which 
obviously influence your results but are in themselves not very interesting. 
 
Author response: 
We have tested this by carrying out the DALEC inversion with boundary conditions that have 
been perturbed by +/- 1ppm a priori. The results are shown in Table 3 in the response 
supplement PDF and a summary of the test has been added to the text. 
 
Change to manuscript: 
A sensitivity test where 1ppm is added or taken away from the mole fractions at the domain 
edges indicates that in June a ±1ppm change translates to a 1-3% change in the inversion 
result and in December a ±1ppm change translates to a 7-11% change in the inversion 
result. These changes are substantially smaller than the posterior uncertainty. 
 
 
Reviewer comment: 
L 235 and Sections 2.3.2 and 2.3.3: The wording is maybe a bit misleading here. First you 
say, that ocean and anthropogenic fluxes are subtracted, and thus treated as perfectly 
known. Then you explain that these are prior fluxes. Usually a prior flux is a flux that gets 
updated through the inversion yielding a posterior flux. But you do not do that here. I suggest 
to reword Sections 2.3.2 and 2.3.3 and not use the word ‘prior’ for ocean and anthropogenic 
fluxes. Also, I wonder how well the ocean fluxes are really know in that area, especially if 
you take the Takahashi fluxes (representing open ocean fluxes) as an estimate of the UK 
coastal ocean fluxes! 
 
Author response: 
Changed wording around anthropogenic and ocean fluxes. The ocean component is small 
so the ocean fluxes do not have a significant impact on the results. 
 
Change to manuscript: 
Since the oceanic flux component is small, the comparatively low temporal and spatial 
resolution of these flux estimates does not significantly impact the inversion results. 
 
 
Reviewer comment: 
L 293-295: Does that mean that only MODIS LAI is assimilated? That also means that you 
are assimilating model output (since MODIS LAI is not a measured or even observed 
quantity). 
 
Author response: 
It means that MODIS LAI, a temporally and spatially explicit estimate of biomass and a 
spatially explicit estimate of soil carbon are assimilated. Yes, these are model outputs and 
the wording has been changed to clarify this. 
 
Change to manuscript: 



Observation-derived information used in the current analysis are satellite-based remotely 
sensed time series of Leaf Area Index (LAI) (MODIS; MOD15A2 LAI-8 day version 5, 
http://lpdacc.usgs.gov/), a prior estimate of above ground biomass (Thurner et al., 2014) and 
a prior estimate of soil organic matter (Hiederer and Köchy, 2012). 
 
 
Reviewer comment: 
L 303: It seems that both biosphere models use MODIS LAI data in some way. How 
independent are then the estimates of JULES and DALEC? 
 
Author response: 
There are two key differences between the models in terms of LAI. Firstly, DALEC uses 
temporally explicit estimates whereas JULES uses a climatology, which means that DALEC 
is able to capture the interannual variability. Secondly, DALEC assimilates MODIS LAI within 
a calibration process to simulate its own LAI. This means that DALEC can shift away from 
MODIS LAI estimates which, through combination with other data, the framework finds to be 
unlikely. Aside from these points, the models also have very different structures 
(physiological representation) and parameterisation (ecosystem traits), for example very 
different descriptions of the carbon assimilation and respiration mechanisms, so they would 
give different estimates of GPP for the same LAI anyway. We have reworded the description 
of DALEC and the paragraph about the differences between the models to clarify these 
points.  
 
Change to manuscript: 
[DALEC description] 
DALEC is a simplified terrestrial C-cycle model (Smallman et al., 2017). DALEC uses 
location specific ensembles of process parameters and initial conditions retrieved using the 
CARDAMOM model-data fusion approach (Bloom et al., 2016). CARDAMOM uses a 
Bayesian approach within a Metropolis-Hastings MCMC algorithm to compare model states 
and flux estimates against observational information to determine the likelihood of potential 
parameter sets guiding the parameterisation processes at pixel scale. DALEC simulates the 
ecosystem carbon balance, including uptake of CO2 via photosynthesis, CO2 loss via 
respiration, mortality and decomposition processes, and carbon flows between ecosystem 
pools (non-structural carbohydrates, foliage, fine roots, wood, fine litter, coarse woody debris 
and soil organic matter). GPP, or photosynthesis, is estimated using the aggregated canopy 
model (ACM; Williams et al., 1997) while autotrophic respiration is estimated as a fixed 
fraction of GPP. Canopy phenology is determined by a Growing Season Index (GSI) model 
as a function of temperature, day length and vapour pressur deficit (proxy for water stress). 
Mortality and decomposition processes follow first order kinetic equations (i.e. a daily 
fractional loss of the C stock in question). The decomposition parameters are modified 
based on an exponential temperature sensitivity parameter. The current version of DALEC 
used here does not include a representation of the water cycle; rather, water stress is 
parameterised through a sensitivity to high vapour pressure deficit as part of the GSI 
phenology model. Comprehensive descriptions of CARDAMOM can be found in Bloom et al. 
(2016) and DALEC in Smallman et al. (2017).  
 
DALEC estimates carbon fluxes at a weekly time step and 25 km × 25 km spatial resolution. 
The weekly time step information was downscaled to 2-hourly intervals, assuming that each 
day repeated throughout each week. Downscaling of GPP fluxes was assumed to be 
distributed through the daylight period based on intensity of incoming shortwave radiation. 
Respiration fluxes were downscaled across the full diurnal cycle assuming exponential 
temperature sensitivity (code for downscaling is available from the authors on request).  
 
Observation-derived information used in the current analysis are satellite-based remotely 
sensed time series of Leaf Area Index (LAI) (MODIS; MOD15A2 LAI-8 day version 5, 



http://lpdacc.usgs.gov/), a prior estimate of above ground biomass (Thurner et al., 2014) and 
a prior estimate of soil organic matter (Hiederer and Köchy, 2012). Meteorological drivers 
were taken from ERA-Interim reanalysis. Ecosystem disturbance due to forest clearances 
were imposed using Global Forest Watch information (Hansen et al., 2013). CARDAMOM-
DALEC differs from typical land surface models in using these data to generate a 
probabalistic model parameterisations and initial conditions estimates for each pixel, with no 
a priori assumptions about plant functional types, nor steady states. 
 
[Description of model differences] 
In order to understand some of these seasonal differences it is useful to compare the 
processes taking place in each model. Sections 2.3.1 and 2.3.2 provide detailed descriptions 
of each model and we give an overview of the main differences here. The DALEC explicitly 
simulates the soil and litter stocks, growth and turnover processes. LAI is estimated by 
DALEC at a weekly time step; DALEC was calibrated using MODIS LAI estimates at the 
correct time and location of the analysis, explained in Sect. 2.3.1. In the JULES system, soil 
and litter carbon stocks are fixed values for each grid cell, calibrated from 1990-2000, and a 
fixed climatology of MODIS LAI and canopy height is used. Therefore, DALEC has 
interannual variability in LAI and soil carbon stocks and can adjust the parameters to find the 
most likely estimates in combination with other data, whereas these parameters remain 
constant in JULES. This is potentially advantageous for DALEC, although the use of a 
climatology in JULES means that noise in the MODIS LAI estimates will be averaged out. 
Since, LAI and soil and litter carbon stocks are fixed in JULES, variability in TER and GPP 
fluxes are governed by meteorology, primarily temperature but also significant signals from 
photosynthetically active radiation and precipitation via the soil moisture. Meteorology drives 
the JULES model at a 2-hourly timestep as opposed to a weekly time-step in DALEC. 
Therefore, in the 2-hourly DALEC product used here, the diurnal range is not explicitly 
simulated and is the result of a downscaling process from a weekly resolution. This 
downscaling is done based on light and temperature curves as explained in Sect. 2.3.1. In 
DALEC, the autotrophic respiration is parameterised as a fixed fraction of the GPP for a 
given site but varies between sites, roughly ranging from 0.3 to 0.7. In JULES, the 
autotrophic respiration is the sum of plant maintenance and growth respiration terms, which 
are calculated separately as process based functions of the GPP, the maximum rate of 
carboxylation and leaf nitrogen content (Clark et al., 2011). Typically, the autotrophic 
respiration in JULES is roughly 0.1-0.25 of the GPP. Therefore, there are some large 
differences between the model structures and parameterisations, particularly in how the 
respiration fluxes are simulated. This could be leading to too small a diurnal range in DALEC 
TER and too large a diurnal range in JULES TER. 
 
 
Reviewer comment: 
L 364: How did you determine the length of the burn-in period and does the number of 
iterations include the burn-in period? 
 
Author response: 
The number of iterations does not include the burn-in period. This has been clarified in the 
text. The length of the burn-in was determined by visual inspection of the chains and a 
conservatively large estimate was used to ensure that it was sufficient. 
 
Change to manuscript: 
The algorithm had a burn-in period of 5×10^4 iterations and was then run for an additional 
2×10^5 iterations to appropriately explore the posterior distribution.  
 
 
Reviewer comment: 



Sec 2.4.3 and Eq (7): What is x and y here? How many basis functions do you have in total 
and how does the Jacobian look like? Maybe you can add an equation for the Jacobian: H= 
del .../ del ... 
 
Author response: 
X and y have been described already in Eq. 3. There are 19 spatial basis functions, this has 
been clarified in the text. Parts of Section 2.4.3 about the Jacobian matrix have been 
reworded to clarify how the Jacobian is set up. 
 
Change to manuscript: 
A scaling factor is solved in the inversion, scaling GPP and TER within the 4 outer regions 
and within maps of five or six PFTs in the sub-domain: broadleaf tree, needleleaf tree, C3 
grasses, C4 grasses, shrubland and, in the case of TER, bare soil. Therefore, there are 19 
spatial basis functions. 
 
H has dimensions m (number of data points) by n (number of parameters). 
 
To create this linear model, we multiplied the footprints by the prior GPP and TER fluxes 
separately, then multiplied these by the fractional map of basis functions (described in Sect. 
2.4.2) and summed over the domain. The boundary conditions were broken down by four 
further basis functions for each edge of the domain as explained in Sect. 2.2.2. The 
parameters vector, x, consisted of a set of scaling factors that multiplied the fluxes or 
boundary conditions. Multiplying the sensitivity matrix by the prior estimate of x, a vector of 
ones, yields the prior modelled mole fraction time-series at a site. 
 
 
Reviewer comment: 
L 393: The word ‘tested’ is not correct here, ‘applied’ would fit better. In any case it would be 
good to add a few sentences on testing you set up in e.g. an identical twin experiment. 
 
Author response: 
We propose not to change the wording. We feel that the presented synthetic tests and 
agreement between two inversions shows sufficient evidence that our system performs well. 
Furthermore, many more synthetic tests have been carried out, which are too numerous to 
show here, but will be citable by the time of publication. 
 
 
Reviewer comment: 
Section 3.1: This goes back to my main comment on evaluating the inversions. Can you say 
which result is more realistic? 
 
Author response: 
From the validation study, DALEC performs marginally better than JULES but not 
significantly, therefore it is difficult to say which is best. Some suggestion of this has been 
added to Section 3.4:  
 
Change to manuscript: 
[About the fits to data included in the inversion] 
Overall, the fits are relatively similar between the DALEC and JULES inversions implying 
that the two inversions perform similarly well. 
 
[About the fits to the validation data set] 
Again, the results are very similar between the two inversions but suggest that the DALEC 
inversion may perform slightly better, at least in this region of the UK. 
 



 
Reviewer comment: 
L 414: How can soil and litter carbon stocks be fixed in JULES? I wonder a model with fixed 
carbon stocks can provide decent estimates of the actual respiration fluxes. 
 
Author response: 
The main driver of temporal variability in soil respiration in JULES is the soil temperature 
given the Q10 and the second largest driver is soil moisture. It is true that an element of 
temporal variability is lost using a fixed soil carbon. However, this would be the second or 
third most important driver of temporal variability. Also, there is a lack of such observations 
of this behaviour (e.g. changes in soil carbon stocks over time driving changes in soil 
respiration), hence using a fixed map, which gives a reasonable spatial distribution, was the 
preferred option here. 
 
 
Reviewer comment: 
L 480: Do you mean ‘underestimating’ the net summer flux compared to the true flux? And if 
so, how do you know the true flux? 
 
Author response: 
We meant compared to the posterior flux. 
 
Change to manuscript: 
Generally, the models underestimate the net summer flux compared to the posterior flux (to 
the greatest extent in 2014), although the summer estimate from the JULES inversion in 
2013 is not statistically different from the prior. 
 
 
Reviewer comment: 
L 516: Do you mean here the posterior fluxes from the inversions or the prior fluxes from the 
two different models? Maybe stick to a common notation/terminology for the fluxes, e.g. prior 
fluxes and posterior fluxes throughout the manuscript and not refer to them just by model 
name. 
 
Author response: 
We meant posterior fluxes from the inversions. The sentence has been rewritten. 
 
Change to manuscript: 
However, the net sink in the JULES inversion is larger than the DALEC inversion in 
Scotland, south Wales, Northern Ireland and south-west England. 
 
 
Reviewer comment: 
Sec 3.4: This section presents some posterior diagnostics of the inversions and presents a 
first step towards an evaluation of the inversions. What do the different fits to the data mean 
for the inversions and posterior fluxes? 
 
Author response: 
Added more detail to Section 3.4 
 
Change to manuscript: 
Agreement between the data and the posterior simulated mole fractions at the measurement 
sites used to constrain the inversion is greatly improved compared to prior simulated mole 
fractions, with R2 values increasing by a minimum of 0.24 and up to 0.5 (to give values 
ranging between 0.53 and 0.71) and root mean square error (RMSE) decreasing by at least 



1.35 ppm and up to 2.6 ppm (to give values ranging between 1.26 ppm and 2.71 ppm). 
Table 5 shows all statistics for the prior and posterior mole fractions compared to the 
observations of atmospheric CO2 concentrations. Overall, the fits are relatively similar 
between the DALEC and JULES inversions, implying that the two inversions perform 
similarly well by these metrics. In terms of R2, the best fit to the data is observed at 
Heathfield in the DALEC inversion and Angus in the JULES inversion. In terms of RMSE, the 
best fit to the data is observed at Angus in the DALEC inversion and Mace Head in the 
JULES inversion. The smallest posterior mean bias is observed at Angus in the DALEC 
inversion and Ridge Hill in the JULES inversion. Therefore, there are some small spatial 
differences in how well each of the inversions is able to fit the data but no clear indication of 
which areas of posterior flux might be subject to the largest improvement in either inversion. 
Figures S12 and S13 show the residual mole fractions in 2014 and indicate that residuals 
are somewhat larger during the summer than the winter 
 
 
Reviewer comment: 
L 588-590: Agricultural activities should somehow (implicitly) be accounted for by the 
biosphere models through the use of MODIS LAI, which should capture events such as 
harvest in the LAI. 
 
Author response: 
There are a couple of reasons why MODIS LAI is not able to capture events such as 
harvest. 
1) MODIS LAI uses constant reflectance fractions so even though crops will have a different 
reflectance fraction to forest, for example, the fact that surface reflectance of crops change 
dramatically with senescence and post-harvest litter on the soil surface is not accounted for. 
This will partially mean that there will be errors introduced into MODIS’s LAI estimates for 
crops.  
2) Even with the correct LAI, crops are different from other ecosystems in terms of their C 
flux due to the removal of biomass which would otherwise decompose. This is in addition to 
harvest itself introducing litter into the system, which decomposes at a different time than it 
would if it was “naturally” occurring. In neither DALEC or JULES was a model structure 
which allows for C redistribution within the ecosystem / or harvest removal processes 
represented which means that the models cannot reproduce the associated fluxes. 
This is therefore another area where performing an inversion can help to resolve these 
features that are hard to identify with MODIS LAI. 
 
 
Reviewer comment: 
L 622-626: Again, this hypothesis means that you trust your inversion results but it is not 
clear on which basis you trust the inversions. This hypothesis should be supported by a 
more substantial evaluation of the inversions. 
 
Author response: 
Addressed in Anonymous Referee #1’s first comment. 
 
 
 
Anonymous Referee #3 
 
Reviewer comment: 
On p.6, the authors assess the impact of the timespan for which footprints are 
disaggregated, and they conclude that the effect of going from 24h to 72h of time- 
disaggregation is negligible. However, I do not find the provided evidence for this statement 
very convincing. Indeed, the mole fractions calculated at Ridge Hill coincide nicely for 24h, 



48h and 72h, but is this result representative for the entire UK? And how do the results 
compare to a simulation without time-disaggregation? The expected range of net annual 
biospheric fluxes has shifted significantly between the simulations with 24h of aggregation 
and with 72h of disaggregation, compared to the prior. It would be helpful if the results for no 
and for 48h of time- disaggregated footprints are included in table S1 as well. In addition, the 
uncertainty of the obtained net flux seems to be unaffected by the timespan of the 
disaggregated footprint. Can you comment on this? 
 
Author response: 
Figure S2 (Fig. 2 in response) has now been replotted, showing the results for no time-
disaggregation using monthly fluxes, 6 hours back and 12 hours back, as well as the original 
24, 48 and 72 hours. Fig. S2 (Fig. 2 in response) now also shows the modelled mole 
fractions at Tacolneston, showing the same result, indicating that it is representative of 
multiple stations in the UK. Table S1 (Table 2 in response supplement PDF) now includes 
results with no time disaggregation, along with disaggregated footprints going 12, 24, 48 and 
72 hours back. Although there are differences between 24, 48 and 72 hours back, these are 
not statistically significant (within the 90%ile range). However, for 12 hours or inversions 
using the integrated footprints, the inversions are statistically different from the time-
disaggregated results. Compared to the seasonal cycle or the differences between the 
JULES and DALEC inversions in Fig. 5, the differences between 24, 48 and 72 are small. 
The uncertainty reduction will primarily depend on the magnitude of the sensitivity (in 
addition to the number of measurements and the measurement/model uncertainty). Since 
we examine the net flux here, it is consistent that time-integrated footprint and the time-
disaggregated footprints lead to similar uncertainty reduction in the net flux. 
 
As an aside, the inversion result for the 72 hours back test has changed slightly. In the 
previous version, we carried out the 72 hours back inversion using data that had the 
anthropogenic and ocean forward modelled using 72 hours back footprints. However, we 
have now changed this for consistency, so all of these tests use data with fixed components 
removed using 24 hours back footprints.  
 
Change to manuscript: 
The choice of 24-hour disaggregation balanced considerations of computational efficiency 
and simulation accuracy. For certain months and sites, we carried out a set of tests to 
determine how sensitive our simulated mole fractions and inversion results were, when 
footprints were disaggregated for the first 12 to 72 hours prior to each measurement (Figure 
S2; Table S1). Assuming that the 72-hour simulations were the most accurate, we found 
little degradation in performance by using only 48 or 24 hours disaggregation, when 
compared to the other uncertainties in the system (e.g. differences between fluxes derived 
using the 24, 48 and 72 hour simulations were smaller than the 90% confidence interval). 
However, when only 12 hours was used (or fully integrated footprints), the modelled diurnal 
cycle was out of phase with the observations.  
 
 
Reviewer comment: 
On p.12 the basis functions for the inversion are shortly discussed. This part could be made 
more clear by including a figure showing the clustering of the scaling factors. 
 
Author response: 
We have added a figure (Fig. S6 – Fig. 3 in response) showing the spatial basis functions 
used in the inversion (based on PFTs). We hope this clarifies this discussion. 
 
Change to manuscript: 



Within the West-Central Europe area (the hatched region in Fig. S1), a map of the fraction of 
different plant functional types (PFTs) in each grid cell has been used to further break down 
the region (Fig. S6). 
 
 
Reviewer comment: 
The inversion framework allows to scale the prior estimates for respiration and GPP 
separately. In a synthetic test it is shown that this approach indeed allows to compensate for 
biases in either respiration or GPP, which is obviously not possible with the NEE inversion. 
To strengthen the point of the superior behavior of the TER+GPP inversion over the NEE 
inversion, it would be nice to instead include a synthetic test with a truth that less obviously 
favors one approach over the other, e.g. by using a combination of the JULES and DALEC 
fluxes as truth. 
 
Author response: 
To address the reviewer’s comment, the synthetic test in Fig. S5 (Fig. 4 in response) has 
been changed to use synthetic data created using the DALEC biosphere fluxes, and the 
NAME model, while JULES is used for the prior fluxes.  
 
Change to manuscript: 
To demonstrate this, we have carried out a synthetic test (Fig. S5) in which we have 
investigated the ability of our inversion system to solve for a “true” flux, created using the 
DALEC prior fluxes and NAME simulations, in an inversion that used the JULES fluxes as 
the prior. Figure S5(a) shows that monthly posterior fluxes for the inversion where GPP and 
TER are separated agree with the “true” flux within estimated uncertainties in 16 out of 24 
months. In contrast, whilst the posterior fluxes for the inversion where NEE is scaled has 
changed significantly from the prior, it is not in agreement with the “true” flux except in July 
2013 and August and September 2014. The posterior diurnal cycles of GPP, TER and NEE, 
which are shown as an average for June 2014 in Fig. S5(b) and Fig. S5(c), highlight the 
differences in diurnal cycle between the two models. The inversion that can adjust the two 
sources separately leads to higher night-time fluxes, which are closer to the "true" flux than 
the prior. On the other hand, the inversion where NEE is scaled can only stretch or shrink 
the diurnal cycle in one direction, increasing both the daytime sink and night-time source, or 
decreasing them, together. In this case, they have decreased, which does bring the net June 
2014 flux in Fig. S5(a) closer to the "true" June 2014 flux but cannot go far enough to 
reconcile the monthly fluxes. 
 
 
Reviewer comment: 
A different anthropogenic flux map (EDGAR) is used outside the UK. Are these fluxes in 
agreement with the NAEI fluxes for the UK? 
 
Author response: 
The fluxes are not in agreement (NAEI is 482 Tg/yr over the UK in 2013, 439 Tg/y in 2014, 
whilst EDGAR is 540 Tg/yr over UK in both years as we use the 2010 values throughout the 
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Abstract. We present a method to derive atmospheric-observation-based estimates of carbon dioxide (CO2) fluxes at the 20 
national scale, demonstrated using data from a network of surface tall tower sites across the UK and Ireland over the period 
2013-2014. The inversion is carried out using simulations from a Lagrangian chemical transport model and an innovative 

hierarchical Bayesian Markov chain Monte Carlo (MCMC) framework, which addresses some of the traditional problems 
faced by inverse modelling studies, such as subjectivity in the specification of model and prior uncertainties. Biospheric fluxes 
related to gross primary productivity and terrestrial ecosystem respiration are solved separately in the inversion and then 25 
combined a posteriori to determine net ecosystem exchange of CO2. Two different models, DALEC and JULES, provide prior 

estimates for these fluxes. We carry out separate inversions to assess the impact of these different priors on the posterior flux 
estimates and evaluate the differences between the prior and posterior estimates in terms of missing model components.  The 
Numerical Atmospheric dispersion Modelling Environment (NAME) is used to relate fluxes to the measurements taken across 
the regional network. Posterior CO2 estimates from the two inversions agree within estimated uncertainties, despite large 30 
differences in the prior fluxes from the different models. With our method, averaging results from 2013 and 2014, we find a 

total annual net biospheric flux for the UK of – 8 ± 79 Tg CO2 yr-1 (DALEC prior) and – 64 ± 85 Tg CO2 yr-1 (JULES prior), 

where negative values represent an uptake of CO2. These biospheric CO2 estimates show that annual UK biospheric sources 
and sinks are roughly in balance. These annual mean estimates consistently indicate a greater net release of CO2 than the prior 
estimates, which show much more pronounced uptake in summer months. 35 
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1 Introduction 

There are significant uncertainties in the magnitude and spatiotemporal distribution of global carbon dioxide (CO2) fluxes to 
and from the atmosphere, particularly those due to terrestrial ecosystems (Le Quéré et al., 2018). Reliable methods for 

quantifying carbon budgets at policy relevant scales (i.e. national or sub-national) will be important to accurately and 65 
transparently evaluate each country’s progress towards achieving their Nationally Determined Contributions (NDCs) made 
following the Paris Agreement (UNFCCC, 2015). 
 

Regional terrestrial carbon fluxes can be estimated using a range of observational, computational and inventory-based methods. 
These include “bottom-up” approaches such as the up-scaling of direct flux measurements made using eddy covariance or 70 
chamber systems (Baldocchi and Wilson, 2001) and models of atmosphere-biosphere CO2 exchange. Flux measurements are 
important for understanding the small-scale processes responsible for carbon fluxes. However, they are relatively localised 
estimates (metres to hectares), which are challenging to scale up to national levels. Biosphere models and land surface models 

(LSMs) can be used to estimate carbon fluxes using coupled representations of biogeophysical and biogeochemical processes, 
driven by observations of meteorology and ecosystem parameters (Potter, 1999; Clark et al., 2011; Bloom et al., 2016). Such 75 
models describe processes to varying degrees of complexity, with poorly described errors and are driven by observational data 
at differing temporal and spatial resolutions; hence predictions of biogenic greenhouse gas (GHG) fluxes have poorly 
quantified biases and can vary significantly between models (Todd-Brown et al., 2013; Atkin et al., 2015). 

 
Atmospheric inverse modelling is a “top-down” approach that provides an alternative to the bottom-up approaches. Inversions 80 
have been used to indirectly estimate country-scale (e.g. Matross et al., 2006; Schuh et al., 2010; Meesters et al., 2012) and 
continental (e.g. Gerbig et al., 2003; Peters et al., 2010; Rivier et al., 2010) biospheric CO2 budgets using atmospheric mole 

fraction observations, where the contribution of anthropogenic fluxes to the observations has been removed. In this approach, 
a model of atmospheric transport relates spatiotemporally resolved surface fluxes of biospheric CO2 to atmospheric 
measurements of CO2 mole fractions. Biospheric fluxes derived from bottom-up approaches are often used as prior estimates 85 
in the inversion. Since atmospheric observations are sensitive to fluxes spanning tens to hundreds of kilometres (Gerbig et al., 
2009), inverse methods are a valuable tool for examining national fluxes and evaluating estimates of surface exchange of CO2 

at larger spatial scales. However, errors in atmospheric transport, unknown uncertainties related to the prior fluxes and issues 
surrounding the under-determined nature of the problem are all limitations of this approach.  
 90 
The United Kingdom (UK) government has set legally binding targets to curb greenhouse gas (GHG) emissions in an attempt 
to prevent dangerous levels of climate change. The Climate Change Act 2008 (The UK government, 2008) commits the UK 

to 80% cuts in GHG emissions, from 1990 levels, by 2050. To support this legislation, a continuous and automated 
measurement network has been established (Stanley et al., 2018; Stavert et al., 2018) with the goal of providing estimates of 
GHG emissions using methods that are complementary to those used to compile the UK’s bottom-up emissions inventory, 95 
reported annually to the United Nations Framework Convention on Climate Change (UNFCCC). Previous studies have used 
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data from the UK Deriving Emissions related to Climate Change (UK-DECC) network to infer emissions of methane, nitrous 
oxide and HFC-134a from the UK (Manning et al., 2011; Ganesan et al., 2015; Say et al., 2016). These studies found varying 

levels of agreement with bottom-up inventory methods, where estimates of GHG emissions are made using reported statistics 115 
from various sectors (e.g. road transport, power generation, etc.). Here we use the DECC network and two additional sites 
from the Greenhouse gAs Uk and Global Emissions (GAUGE) programme (Palmer et al., 2018) to estimate biospheric fluxes 
of CO2. Whilst anthropogenic emissions, which are the remit of the UK inventory, are not estimated in this study, these 
biosphere estimates represent the first step towards a framework for estimating the complete UK CO2 budget. 

 120 
Atmospheric inverse modelling of GHGs using Bayesian methods presents some known challenges. Robust uncertainty 
quantification in Bayesian frameworks can be difficult as they require that uncertainties in the prior flux estimate, and 
uncertainties in the atmospheric transport model’s ability to simulate the data, are well characterised. In practice, this is rarely 
the case because, for example, uncertainties related to the atmospheric transport model are poorly understood and uncertainties 

related to biospheric flux estimates from models are largely unknown. Various studies have investigated the use of data-driven 125 
uncertainty estimation (Michalak, 2004; Berchet et al., 2013; Ganesan et al., 2014; Kountouris et al., 2018b). Inversions are 
also known to suffer from “aggregation errors”. One type of aggregation error arises from the way in which areas of the flux 
domain are grouped together to decrease the number of unknowns, because usually there are not sufficient data to solve for 

fluxes in each model grid cell (Kaminski et al., 2001). Furthermore, for reasons of mathematical and computational 
convenience, Gaussian probability density functions (PDFs) are commonly used to describe prior knowledge (e.g. Miller et 130 
al., 2014). However, Gaussian assumptions can lead to unphysical solutions in the case of atmospheric GHG emissions or 
uptake processes, as they permit both positive and negative solutions. 
 

CO2 presents further complications over other GHGs in that atmosphere-biosphere CO2 exchange has a diurnal flux cycle that 
is significantly larger than the net flux, and has strong, spatially varying surface sources and sinks. Gerbig et al. (2003) was 135 
one of the first to develop an analysis framework for regional scale CO2 flux inversions. The study sets out the need to explicitly 
simulate the diurnal cycle of biospheric fluxes and highlights the importance of high spatial and temporal resolution data when 
addressing the unique problems of representation and aggregation errors caused by the highly varying nature of CO2 fluxes in 

both space and time. Inverse modelling studies of CO2 flux typically assume that anthropogenic fluxes are “fixed” in the 
inversion (e.g. Meesters et al., 2012; Kountouris et al., 2018a). This is based on the assumption that uncertainties in 140 
anthropogenic fluxes are low compared to those of the biospheric fluxes. However, it has been suggested that this may not 
necessarily be the case (Peylin et al., 2011). 

 
Here we outline a framework for evaluating the net biospheric CO2 exchange (net ecosystem exchange, NEE)  from a small to 
medium sized country (the UK covers an area of around 250,000 km2) using the high-resolution regional, Lagrangian transport 145 
model, the Numerical Atmospheric dispersion Modelling Environment (NAME, Jones et al., 2006). To address many of the 
problems outlined above, we use an adapted form of a hierarchical Bayesian, trans-dimensional Markov chain Monte Carlo 
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(MCMC) inversion (Rigby et al., 2011; Ganesan et al., 2014; Lunt et al., 2016). In the hierarchical Bayesian framework 
presented in Ganesan et al. (2014), “hyperparameters” that define the prior flux and model-data “mismatch” uncertainty PDFs 

are included in the inversion, which is solved using a Metropolis-Hastings MCMC algorithm (e.g. Rigby et al., 2011). This 
hierarchical approach has been shown to lead to more robust posterior uncertainty quantification in Bayesian frameworks 160 
where prior uncertainties are not well characterised (Ganesan et al., 2014). Lunt et al. (2016) built on this method, developing 
a “trans-dimensional” framework that accounted for the uncertainty in the definition of basis functions (the way in which flux 
grid cells are aggregated), and allowed this to propagate through to the posterior estimate. 

 
Gross primary productivity (GPP) and terrestrial ecosystem respiration (TER) estimates from the Joint UK Land Environment 165 
Simulator (JULES) and Data Assimilation Linked Ecosystem Carbon (DALEC) models are used as prior flux constraints. 
JULES is a state-of-the-art physically based, process driven model that estimates the energy, water and carbon fluxes at the 
land-atmosphere boundary and uses a variety of observation-derived products describing physical parameters as inputs (Best 

et al., 2011; Clark et al., 2011). DALEC, on the other hand, is a simplified terrestrial C-cycle model which is calibrated 
independently at each location retrieving both process parameters and initial conditions using the CARbon DAta MOdel 170 
fraMework (CARDAMOM) model-data fusion system. CARDAMOM ingests satellite based remotely sensed estimates of the 
state of terrestrial ecosystems (Bloom and Williams, 2015; Bloom et al., 2016; Smallman et al., 2017). 

 
Below, we first describe our approach for modelling biospheric CO2 fluxes, including several novel aspects compared to 
previous work in this area. We then investigate the impact of using two different models that simulate biospheric fluxes  175 
(JULES and DALEC) within our proposed inverse framework and discuss the discrepancies between the prior and posterior 
flux estimates. 

2 Method 

The main components of a regional atmospheric inverse modelling framework are the atmospheric CO2 mole fraction data 
itself, a model of atmospheric transport including a set of boundary conditions at the edge of the regional domain and some 180 
initial information or “first guess” of regional CO2 fluxes. These components are combined in an inversion set-up with a 
mechanism for dealing with uncertainties in the inputs. To make the problem computationally manageable, the regional domain 

is often decomposed into a number of basis functions, describing a spatial grouping of grid cells within which fluxes are scaled 
up or down. The selection of these basis functions constitutes a further key element of the atmospheric inverse problem.  

2.1 Site location and measurements 185 

This study focuses on the years 2013 and 2014. During this period, atmospheric CO2 mole fractions were continuously 
measured at six sites across the UK and Republic of Ireland (see Table 1 for site information and Fig. 1 for the location of the 

sites). Four of these sites originally formed the UK-DECC network and are described in Stanley et al. (2018), whilst two were 
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developed under the GAUGE programme and are described in Stavert et al. (2018). The site at Mace Head, Republic of Ireland, 
is a coastal, 10 m above ground level (a.g.l.), station situated primarily to measure concentrations of background air arriving 

at the site from the Atlantic Ocean. The Laboratoire des Sciences du Climat et de l’Environnement (LSCE) is responsible for 200 
making CO2 measurements at this site from a 23 m.a.g.l. inlet (see Vardag et al., 2014 for a full site description). All of the 
UK sites are tall-tower stations (with inlets ranging from 42 to 248 m.a.g.l), designed to measure elevated greenhouse gas mole 
fractions as air is transported over the surface in the UK and Europe. 
 

Continuous CO2 measurements are made at all stations using cavity ring-down spectrometers (CRDS: Picarro G2301 or 205 
G2401). CRDS data are corrected for daily linear instrumental drift using standard gases and for instrumental non-linearity 
using calibration gases, spanning a range of above and below ambient mole fractions, on a monthly basis (Stanley et al., 2018). 
Calibration and standard gases are of natural composition and calibrated at the GasLab Max Planck Institute for 
Biogeochemistry, Jena, or the World Calibration Centre for CO2 at Empa, linking them to the World Meteorological 

Organisation (WMO) X2007 scale (Stanley et al., 2018; Stavert et al., 2018). At sites with multiple inlets, measurements are 210 
taken for the same length of time at each inlet, each hour. This means that measurements at each height at Bilsdale and 
Tacolneston (with 3 inlets) are taken continuously for roughly 20 minutes every hour, and at Heathfield and Ridge Hill (with 
2 inlets) measurements are taken continuously for roughly 30 minutes at each inlet every hour. For the purposes of the inverse 

modelling carried out in this study, the continuous CRDS data are used from the highest inlets and averaged to a 2-hour time 
resolution. Further information about the instruments, measurement protocol and uncertainty estimates can be found in Stanley 215 
et al. (2018) and Stavert et al., (2018). 

2.2 Atmospheric transport model 

In this work we use a Lagrangian particle dispersion model (LPDM), NAME, which tracks thousands of particles back in time 

from observation locations. The model determines the locations where air masses interacted with the surface, and therefore 
where surface CO2 sources and sinks could contribute to a CO2 concentration measurement. The model provides a gridded 220 
sensitivity of each mole fraction observation to the potential flux from each grid cell and this is often referred to as the 
“footprint” of a particular observation (for further details, see e.g. Manning et al., 2011). 
 

At each two-hourly measurement time step, the model releases 20,000 particles, which are tracked back in time for 30 days, 
so that by the end of this period the majority of particles will have left the model domain (Fig. S1). Since most CO2 flux to the 225 
atmosphere occurs at the surface, we record the instances where the particles are in the lowest 40m of the atmosphere and 
assume that this represents the sensitivity of observed mole fractions to surface fluxes in the inversion domain. The domain 
used to calculate atmospheric transport covers most of Europe, the east coast of North and Central America and North Africa 

(-97.9˚ – 39.38˚ longitude and 10.729˚ – 79.057˚ latitude). The spatial resolution of the meteorological analysis dataset used 
to drive the model, from the Met Office Unified Model (Cullen, 1993), was 0.233˚ by 0.352˚ (roughly 25 by 25 km over the 230 
UK). 
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 235 
In many previous inverse modelling studies using LPDMs (e.g. Manning et al., 2011; Thompson and Stohl, 2014; Steinkamp 

et al., 2017) the footprint is assumed to be equal to the integrated air history over the duration of the simulation (e.g. 30 days, 
as in Fig. 1). Based on the assumption that fluxes have not changed substantially during the 30-day period, the integrated 
footprint can be multiplied by the prior flux and summed over all the grid cells in the domain to create a time series of modelled 
mole fractions at each measurement site. However, many CO2 inverse modelling studies using other LPDMs have 240 
disaggregated footprints back in time, capturing changes in surface sensitivity on timescales shorter than the duration of the 

simulation, thereby attempting to account for diurnal variation in CO2 fluxes (Denning et al., 1996; Gerbig et al., 2003; Gourdji 
et al., 2010). Thus far, a disaggregation such as this has not been used in NAME simulations, so we describe our method here. 
 
In our simulations, we determined the footprint for 2-hourly average periods back in time for the first 24 hours before the 245 
observation, and then replaced the first 24 hours of integrated sensitivities with these time-disaggregated footprints. Mole 

fractions were simulated by multiplying these footprints by biospheric flux estimates for the corresponding time, so that the 
variability in the source or sink of CO2 was represented in the modelled observations. This is demonstrated in Eq. 1, which 

yields the modelled mole fraction, )*, for one 2-hourly measurement time step, +, at one measurement site.   

 250 

)* = 	∑ ∑ /0*12,4 × 6*12,47
489

:;
289 +	∑ /0=>?@27A>=B

7
489 	×	6?C7*DB (1) 

 

Here i denotes the number of 2-hour periods back in time before the particle release at time +; E represents the grid cell where 

F is the maximum number of grid cells; /0*12,4 is one grid cell of the two-dimensional time-disaggregated footprint for that 

time; 6*12,4  is one grid cell of the two-dimensional, two-hourly flux field corresponding to the time the particles were 255 

interacting with the surface; /0=>?@27A>=	is the remaining 29 day footprint and 6?C7*D is the monthly average flux. The choice 

of 24-hour disaggregation balanced considerations of computational efficiency and simulation accuracy. For certain months 
and sites we carried out a set of tests to determine how sensitive our simulated mole fractions and inversion results were when 
footprints were disaggregated for the first 12 to 72 hours prior to each measurement (Figure S2; Table S1). Assuming that the 

72-hour simulations were the most accurate, we found little degradation in performance by using only 48 or 24 hours 260 
disaggregation, when compared to the other uncertainties in the system (e.g. differences between fluxes derived using the 24, 
48 and 72 hour simulations were smaller than the 90% confidence interval). However, when only 12 hours was used (or fully 
integrated footprints), the modelled diurnal cycle was out of phase with the observations. 

2.2.1 Data selection and model uncertainty 

LPDMs are known to perform poorly under certain meteorological conditions. In particular, it is often assumed that model-265 
data mismatch should be smallest during periods when the boundary layer is relatively well mixed. A common approach is to 
only include daytime data in the inversion (e.g. Meesters et al., 2012; Steinkamp et al., 2017; Kountouris et al., 2018a) or 
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separate morning and afternoon averages (e.g. Matross et al., 2006). To make use of as much high frequency measurement 
information as possible, we use a filter based on two metrics to remove times of high atmospheric stability and/or stagnant 

conditions. The first metric is based on calculating the ratio of the NAME footprint magnitude in the 25 grid boxes in the 
immediate vicinity of the measurement station to the total for all of the grid boxes in the domain. A high ratio indicates times 
when a significant fraction of air influencing the observation point originates from very local sources, which may not be 290 
resolved by the model (Lunt et al., 2016). The second metric is based on the modelled lapse rate at each site, which is a measure 
of atmospheric stability. A high lapse rate suggests very stable conditions, which would be conducive for significant local 

influence. Thresholds for each of these criteria were chosen to preserve as much data as possible, whilst retaining only points 
that the model was (somewhat subjectively) found to resolve well. In practice, the filter retained many more daytime than night 
time points (see Fig. S3 for an analysis of the data removed in 2014) and inversion results were mostly similar to when only 295 
daytime data were used, however differences were seen in some months when stagnant conditions occurred for several daytime 
periods (Fig. S4).  

 
Model uncertainty (or model-data mismatch) has a measurement uncertainty component and a component that takes into 
account the ability of the model to represent real atmospheric conditions. The measurement uncertainty was assumed to be 300 
equal to the standard deviation of the measurements over the 2-hour period to give an estimate of measurement repeatability 

and a measure of the sub-model-timescale variability in the observations. The 2-hourly measurement uncertainty was then 
averaged over the month to ensure that measurements of high concentrations were not de-weighted, as they are more likely to 
have greater variability and therefore a larger standard deviation. Monthly average measurement uncertainty is around 0.9 
ppm. The measurement uncertainty is combined with a range of prior values for model uncertainty (as this is a poorly 305 
constrained quantity) and together the model-measurement uncertainty is one of the hyper-parameters solved in the inversion 

(further explained in Sect. 2.4.1). 
 

2.2.2 Boundary conditions 

The footprints from the LPDM only take into consideration the influence on the observations of sources intercepted within the 310 
model domain. Therefore, an estimate of the mole fraction at the boundary must be made and incorporated into the simulated 

mole fractions. To estimate spatial and temporal gradients in these boundary conditions we use the global Eulerian Model for 
OZone And Related chemical Tracers (MOZART, Emmons et al., 2010). The model was run using GEOS-5 meteorology 
(Rienecker et al., 2011) and global biospheric fluxes from the NASA-CASA biosphere model (Potter, 1999), global ocean 
fluxes from Takahashi et al. (2009) and global anthropogenic fluxes from the Emission Database for Global Atmospheric 315 
Research (EDGAR, EC-JRC/PBL, 2011). When particles leave the NAME model domain, we record the time and location of 

the exit point. We then use MOZART to find the concentration of CO2 at these locations to serve as prior boundary conditions. 
The global MOZART initial mole fraction field for January 2014 was scaled before commencing the 2014 MOZART run to 
match the surface South Pole value to the mean NOAA January 2014 flask value (Dlugokencky et al., 2018). This scaling 
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factor was also applied to any pre-January 2014 MOZART output to prevent any discontinuities in the boundary mole fraction 
fields. The mole fraction at each domain edge (N, E, S, W) is then scaled up or down during the inversion to account for 

uncertainties in the MOZART boundary conditions (Lunt et al., 2016). A sensitivity test where 1ppm is added or taken away 325 

from the mole fractions at the domain edges indicates that in June a ±1ppm change translates to a 1-3% change in the inversion 

result and in December a ±1ppm change translates to a 7-11% change in the inversion result. These changes are substantially 

smaller than the posterior uncertainty. 

 

2.3 Prior information 330 

In this work, we used model analyses to provide prior information about biospheric fluxes. Two models (DALEC and JULES) 
were used to assess how much influence the choice of biospheric prior has on the outcome of the inversion. The NAME model 
was used to simulate the contribution of anthropogenic and oceanic fluxes to the data, and this contribution was removed from 

the observations prior to the inversion. The fluxes used for this calculation are described below. The spatial and temporal 
resolution of the prior information and fixed fluxes are summarised in Table 2 and emissions from each source over the UK 335 
are shown in Figure 2. 
 
In a synthetic data study in which biospheric CO2 was inferred, Tolk et al., (2011) found that separately solving for positive 

fluxes (autotrophic and heterotrophic respiration combined, TER) and negative fluxes (GPP) in atmospheric inversions 
provided a better fit to the atmospheric mole fraction data than inversions that scaled NEE only. Equation 2 describes the 340 
relationship between these three variables: 
 

GHH = IHJ − LMM (2) 

 
This separation has been applied in various studies demonstrating model set-ups with synthetic data, for example: geostatistical 345 
approaches (Göckede et al., 2010), ensemble Kalman filter methods (Zupanski et al., 2007; Lokupitiya et al., 2008) and 
Bayesian methods (Schuh et al., 2009). However, this separation is not routinely used in CO2 inversions, as there are only a 

limited number of real data studies where it has been implemented (e.g. Gerbig et al., 2003; Matross et al., 2006; Schuh et al., 
2010; Meesters et al., 2012).   
 350 
In this inversion, we separately solved for TER and GPP, and then combined them a posteriori to determine NEE. Similarly to 
the studies cited above, we find closer agreement with the data than if NEE were scaled directly. Furthermore, we note that, if 

only one factor is used to scale both TER and GPP, it is impossible for the inversion to respond to a prior that has, for example, 
too strong a sink but a source of the correct magnitude. To demonstrate this, we have carried out a synthetic test (Fig. S5) in 
which we have investigated the ability of our inversion system to solve for a “true” flux, created using the DALEC prior fluxes 355 
and NAME simulations, in an inversion that used the JULES fluxes as the prior. Figure S5(a) shows that monthly posterior 
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fluxes for the inversion where GPP and TER are separated agree with the “true” flux within estimated uncertainties in 16 out 
of 24 months. In contrast, whilst the posterior fluxes for the inversion where NEE is scaled has changed significantly from the 

prior, it is not in agreement with the “true” flux except in July 2013 and August and September 2014. The posterior diurnal 370 
cycles of GPP, TER and NEE, which are shown as an average for June 2014 in Fig. S5(b) and Fig. S5(c), highlight the 
differences in diurnal cycle between the two models. The inversion that can adjust the two sources separately leads to higher 
night-time fluxes, which are closer to the "true" flux than the prior. On the other hand, the inversion where NEE is scaled can 
only stretch or shrink the diurnal cycle in one direction, increasing both the daytime sink and night-time source, or decreasing 

them, together. In this case, they have decreased, which does bring the net June 2014 flux in Fig. S5(a) closer to the "true" 375 
June 2014 flux but cannot go far enough to reconcile these monthly fluxes. 
 
Given the results of our synthetic test, separating GPP and TER in the inversion appears to be an important improvement on 
scaling NEE directly and it is what we have implemented here. However, in addition to the main inversions presented in this 

paper, where GPP and TER are separated, we have carried out two further inversions for JULES and DALEC where only NEE 380 
is scaled. The results of these additional inversions are discussed in Sect. 4.1. 

2.3.1 DALEC biospheric fluxes 

DALEC is a simplified terrestrial C-cycle model (Smallman et al., 2017) that uses location specific ensembles of process 
parameters and initial conditions retrieved using the CARDAMOM model-data fusion approach (Bloom et al., 2016). 

CARDAMOM uses a Bayesian approach within a Metropolis-Hastings MCMC algorithm to compare model states and flux 385 
estimates against observational information to determine the likelihood of potential parameter sets guiding the parameterisation 
processes at pixel scale. DALEC simulates the ecosystem carbon balance, including uptake of CO2 via photosynthesis, CO2 
loss via respiration, mortality and decomposition processes, and carbon flows between ecosystem pools (non-structural 

carbohydrates, foliage, fine roots, wood, fine litter, coarse woody debris and soil organic matter). GPP, or photosynthesis, is 
estimated using the aggregated canopy model (ACM; Williams et al., 1997) while autotrophic respiration is estimated as a 390 
fixed fraction of GPP. Canopy phenology is determined by a Growing Season Index (GSI) model as a function of temperature, 
day length and vapour pressur deficit (proxy for water stress). Mortality and decomposition processes follow first order kinetic 
equations (i.e. a daily fractional loss of the C stock in question). The decomposition parameters are modified based on an 

exponential temperature sensitivity parameter. The current version of DALEC used here does not include a representation of 
the water cycle; rather, water stress is parameterised through a sensitivity to high vapour pressure deficit as part of the GSI 395 
phenology model. Comprehensive descriptions of CARDAMOM can be found in Bloom et al. (2016) and DALEC in 
Smallman et al. (2017).  
 
DALEC estimates carbon fluxes at a weekly time step and 25 km × 25 km spatial resolution. The weekly time step information 

was downscaled to 2-hourly intervals, assuming that each day repeated throughout each week. Downscaling of GPP fluxes 400 
was assumed to be distributed through the daylight period based on intensity of incoming shortwave radiation. Respiration 
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fluxes were downscaled across the full diurnal cycle assuming exponential temperature sensitivity (code for downscaling is 450 
available from the authors on request).  

 
Observation-derived information used in the current analysis are satellite-based remotely sensed time series of Leaf Area Index 
(LAI) (MODIS; MOD15A2 LAI-8 day version 5, http://lpdacc.usgs.gov/), a prior estimate of above ground biomass (Thurner 
et al., 2014) and a prior estimate of soil organic matter (Hiederer and Köchy, 2012). Meteorological drivers were taken from 455 
ERA-Interim reanalysis. Ecosystem disturbance due to forest clearances were imposed using Global Forest Watch information 

(Hansen et al., 2013). CARDAMOM-DALEC differs from typical land surface models in using these data to generate 
probabalistic model parameterisations and initial conditions estimates for each pixel, with no a priori assumptions about plant 
functional types, nor steady states. 

2.3.2 JULES biospheric fluxes 460 

JULES is a process driven Land Surface Model (LSM) that estimates the energy, water and carbon fluxes at the land-

atmosphere boundary (Best et al., 2011; Clark et al., 2011). We used JULES version 4.6 driven with the WATCH Forcing 
Data methodology applied to Era-Interim reanalysis data (WFDEI) meteorology (Weedon et al., 2014) which were interpolated 

to a 0.25° × 0.25° grid (Schellekens et al., 2017). We prescribed the land cover for 9 surface types and the vegetation phenology 

for 5 plant functional types (PFTs) using MODIS monthly LAI climatology and fixed MODIS land cover and canopy height 465 

data (Berry, et al., 2009). The soil thermal and hydrology physics are described using the JULES implementation of the Brooks 
and Corey formulation (Marthews et al., 2015) with the soil properties sourced from the Harmonised World Soil Database 
(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009). Soil carbon was calculated as the equilibrium balance between litter-fall and soil 
respiration for the period 1990-2000 using the formulation of (Mariscal, 2015). The full JULES configuration and science 
options are available for download from the Met Office science repository (https://code.metoffice.gov.uk/trac/roses-470 

u/browser/a/x/0/9/1/trunk?rev=75249). 

2.3.3 Anthropogenic fluxes 

Estimates of fluxes due to anthropogenic activity within the UK were obtained from the National Atmospheric Emissions 
Inventory (NAEI, http://naei.beis.gov.uk). The NAEI provides a yearly estimate of emissions, which we have disaggregated 
into a 2-hourly product, based on temporal patterns in activity data, varying on diurnal, weekly and seasonal scales. The 475 

inventory emissions were disaggregated according to the UNECE/CORINAIR Selected Nomenclature for sources of Air 
Pollution (SNAP) sectors (UNECE/EMEP, 2001). Figure 2(d) shows the seasonal and diurnal cycle for this inventory, summed 
over the UK, for 2014. Outside the UK, anthropogenic emissions come from EDGAR v4.2 FT2010 inventory data for 2010 
(EC-JRC/PBL, 2011). This is a fixed 2D map that is used throughout the inversion period. Within the UK, the NAEI and 
EDGAR fluxes differ by around 15% (540 Tg yr-1 for EDGAR, 460 Tg yr-1 for NAEI). We do not find that our derived UK 480 

fluxes are significantly affected by perturbations of this magnitude applied to anthropogenic emissions outside the UK. 
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2.3.4 Ocean fluxes 

Ocean flux estimates are from Takahashi et al. (2009). They are based on a climatology of surface ocean pCO2 constructed 490 
using measurements taken between 1970 and 2008. The monthly UK coastal ocean flux (defined as the UK’s exclusive 

economic zone) from this product is plotted in Fig. 2(e). Since the oceanic flux component is small, the comparatively low 
temporal and spatial resolution of these flux estimates does not significantly impact the inversion results. 

2.4 Inverse method 

2.4.1 Hierarchical Bayesian trans-dimensional inversion 495 

Like many atmospheric inverse methods, our framework is based on traditional Bayesian statistics, given by Eq. 3: 

 

N(P|R) = 	
T(R|P)T(P)

T(R)
  (3) 

 

where R is a vector containing the observations and P is a vector of the parameters to be estimated (such as the flux and 500 

boundary condition scaling). The traditional Bayesian approach requires that decisions about the form of the prior PDF, N(P), 

and likelihood function, N(R|P), are made a priori. These pre-defined decisions have the potential to strongly influence the 

form of the posterior PDF in an inversion (Ganesan et al., 2014). Instead, we introduce a second “level” to the traditional Bayes 
equation, to account for the fact that initial parameter uncertainty estimates are themselves uncertain. This is known as a 
“hierarchical” Bayes framework where additional parameters, known as hyper-parameters, are used to describe the 505 
uncertainties in the prior and the model.  

 

Alongside the additional hyper-parameters U, we also introduce an additional term, V, that describes the size of the inversion 

grid, following the trans-dimensional inversion approach described in Lunt et al. (2016). In this approach, the number of basis 

functions to be solved is not fixed a priori and hence P has an unknown length. The number of unknowns is itself a parameter 510 

to be solved for in the inversion, with the uncertainty in this term propagating through to the posterior parameter estimates, 
more fully accounting for the uncertainties that are only tacitly implied within a traditional Bayesian approach. The full trans-
dimensional hierarchical Bayesian equation that is solved in our inversion thus becomes:  
 

N(P, U, V|R) ∝ 	N(R|P, U, V)N(P|U, V)N(V)N(U)  (4) 515 

 

where θ is a set of hyper-parameters describing the uncertainty on P (XY ), the model-measurement error (XZ ), and the 

correlation timescale in the model-measurement covariance matrix ([). These hyper-parameters are summarised in Table 3 

along with the prior PDFs used to describe them in this inversion set-up. 

 520 

Deleted: 3

Deleted: Prior ocean

Deleted: simply 

Deleted: grid cells closest to the UK, up to a maximum distance of 
500km…525 

Deleted: Bayesian 

Deleted: Lunt et al. (2016)

Deleted: parameters estimate

Deleted: which

Deleted: 2530 



 

12 
 

In this study, we have adapted the trans-dimensional method to keep a fixed set of regional basis functions (described in Sect. 
2.4.3) but allow the inversions to have a variable time rather than space dimension. We perform our inversion calculations 

over one month at a time, but with the trans-dimensional case in time we find multiple scaling factors for each fixed region 

over the course of the inversion, down to a minimum daily resolution. Therefore, in this case V in Eq. 4 is more specifically 

the unknown number of time periods resolved in the inversion, which is important because CO2 fluxes vary strongly in time 535 
and have high uncertainty in their temporal variation. 
 

In general, there is no analytical solution to our hierarchical Bayesian equation, so we approximate the posterior solution using 
a reversible jump Metropolis-Hastings MCMC algorithm (Metropolis et al., 1953; Green, 1995; Tarantola, 2005; Lunt et al., 
2016). The algorithm explores the possible values for each parameter by making a new proposal for a parameter value at each 540 
step of a “chain” of possible values. Proposals are accepted or rejected based on a comparison between the “current” and 

“proposed” state’s fit to the data (likelihood ratio), deviation from the prior PDF (prior ratio), and a term governing the 
probability of generating the proposed state versus the reverse proposal (proposal ratio).  More favourable parameter values or 
model states are always accepted; however, less favourable parameter values or model states can be randomly accepted in 

order to fully explore the full posterior PDF. The algorithm had a burn-in period of 5 × 10^ iterations and was then run for an 545 

additional 2 × 10` iterations to appropriately explore the posterior distribution. At the end of the algorithm a chain of all 

accepted parameter values is stored (if a proposal is rejected the chain will spend longer at the previously accepted value). A 
histogram of this chain describes a posterior PDF for each parameter so that statistics such as the mean, median and standard 
deviation can be calculated. The trace of each chain was examined qualitatively to ensure that the algorithm had been run for 
a sufficient number of iterations to converge on a result. 550 

2.4.2 Basis functions 

Our domain is split into five spatial regions separating West-Central Europe from North-East, South-East, South-West and 
North-West regions, shown in Fig. S1. Within the West-Central Europe area (the hatched region in Fig. S1), a map of the 
fraction of different plant functional types (PFTs) in each grid cell has been used to further break down the region (Fig. S6). 
This is the same PFT map used in the JULES biospheric simulation (see Sect. 2.3.2). A scaling factor is solved in the inversion, 555 
scaling GPP and TER within the 4 outer regions and within maps of five or six PFTs in the sub-domain: broadleaf tree, 

needleleaf tree, C3 grasses, C4 grasses, shrubland and, in the case of TER, bare soil. Therefore there are 19 spatial basis 
functions in total. 

2.4.3 Definition of Jacobian matrix 

Footprints from NAME, prior fluxes, boundary conditions and basis functions are all combined into a matrix of partial 560 
derivatives, alternatively described as a “Jacobian” or “sensitivity” matrix, that describes the change in mole fraction with 

respect to a change in each of the input parameters. This is the “model” in the inversion set-up, denoted a in the description 
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of the linear forward model (Eq. 7), where b is the mismatch between modelled “observations” and what has actually been 

measured in the atmosphere. a has dimensions m (number of data points) by n (number of parameters). 

 570 

R = aP + 	b  (7) 

 
To create this linear model, we multiplied the footprints by the prior GPP and TER fluxes separately, then multiplied these by 

the fractional map of basis functions (described in Sect. 2.4.2) and summed over the domain. The boundary conditions were 

broken down by four further basis functions for each edge of the domain as explained in Sect. 2.2.2. The parameters vector, P, 575 

consisted of a set of scaling factors that multiplied the fluxes or boundary conditions. Multiplying the sensitivity matrix by the 

prior estimate of P, a vector of ones, yields the prior modelled mole fraction time-series at a site. Therefore, during our 

inversion, we are updating this vector of ones as a scaling factor, to scale up or down emissions for each PFT and biospheric 
component to better agree with the data. Whilst in theory we have posterior information about the gross GPP and TER 
biospheric components separately, we combine this into a net ecosystem exchange (NEE) flux estimate, as we believe this to 580 
be more robust (Tolk et al., 2011). Therefore, throughout this paper we discuss posterior NEE estimates, however the results 
of the separate sources can be found in the supplement in Fig. S7-S9. 

3 Results 

We have applied our CO2 inversion set-up to UK biospheric CO2 flux estimation using output from two different models of 
biospheric flux as a prior constraint in two inversions. We first describe differences between the output from the two prior 585 
models, then present the UK flux estimates found with this method, along with the spatial distribution of posterior fluxes. 

3.1 Differences between DALEC and JULES 

The CO2 fluxes from DALEC and JULES differ both temporally and spatially. Figure 2 (a-c) shows UK fluxes of GPP, TER 
and NEE from the two models. Most notable differences are seen in TER where JULES has a large diurnal range whereas 
DALEC has a small diurnal range. Averaged to monthly resolution, the fluxes are relatively similar although DALEC has a 590 
higher TER flux from July to October. Diurnal ranges for GPP are more similar in magnitude, however JULES exhibits a 
stronger sink in spring with maximum uptake in June. DALEC has maximum uptake in July and exhibits a stronger sink in 

autumn. Combining these two fluxes, we can see that the profile of NEE for both models is quite different. The daily maximum 
source from JULES remains relatively constant throughout the year, whereas the daily maximum source in DALEC follows a 
similar seasonal cycle to the daily maximum sink (albeit with a smaller magnitude). Monthly net fluxes are similar between 595 
both models for much of the year although JULES has stronger uptake between March and June. 
 

In order to understand some of these seasonal differences it is useful to compare the processes taking place in each model. 
Sections 2.3.1 and 2.3.2 provide detailed descriptions of each model and we give an overview of the main differences here. 
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DALEC explicitly simulates the soil and litter stocks, growth and turnover processes. LAI is estimated by DALEC at a weekly 
time step; DALEC was calibrated using MODIS LAI estimates at the correct time and location of the analysis, explained in 

Sect. 2.3.1. In the JULES system, soil and litter carbon stocks are fixed values for each grid cell, calibrated from 1990-2000, 615 
and a fixed climatology of MODIS LAI and canopy height is used. Therefore, DALEC has interannual variability in LAI and 
soil carbon stocks and can adjust the parameters to find the most likely estimates in combination with other data, whereas these 
parameters remain constant in JULES. This is potentially advantageous for DALEC, although the use of a climatology in 
JULES means that noise in the MODIS LAI estimates will be averaged out. Since, LAI and soil and litter carbon stocks are 

fixed in JULES, variability in TER and GPP fluxes are governed by meteorology, primarily temperature but also significant 620 
signals from photosynthetically active radiation and precipitation via the soil moisture. Meteorology drives the JULES model 
at a 2-hourly timestep as opposed to a weekly time-step in DALEC. Therefore, in the 2-hourly DALEC product used here, the 
diurnal range is not explicitly simulated and is the result of a downscaling process from a weekly resolution. This downscaling 
is done based on light and temperature curves as explained in Sect. 2.3.1. In DALEC, the autotrophic respiration is 

parameterised as a fixed fraction of the GPP for a given site but varies between sites, roughly ranging from 0.3 to 0.7. In 625 
JULES, the autotrophic respiration is the sum of plant maintenance and growth respiration terms, which are calculated 
separately as process based functions of the GPP, the maximum rate of carboxylation and leaf nitrogen content (Clark et al., 
2011). Typically, the autotrophic respiration in JULES is roughly 0.1-0.25 of the GPP. Therefore, there are some large 

differences between the model structures and parameterisations, particularly in how the respiration fluxes are simulated. This 
could be leading to too small a diurnal range in DALEC TER and too large a diurnal range in JULES TER. 630 
 
Figures 3 and 4 show spatial maps of GPP, TER and NEE from both models averaged over winter (December, January, 
February) and summer (June, July, August) months. The pattern of TER is similar for both models, however JULES always 

has a stronger source over Northern Ireland and DALEC has a stronger source in east England. In winter there are only small 
spatial variations in DALEC GPP fluxes, whereas JULES has its largest uptake in south-west England and Wales. In summer, 635 
the models are roughly in agreement in the size of the sink in Wales and the majority of England, however JULES has a 
stronger sink in Scotland and Northern Ireland and DALEC has a stronger sink in central and south-east England. The 
differences between the models in GPP and TER lead to fairly different winter NEE flux maps. DALEC is a net source 

everywhere in winter, with areas of strongest net source in southern Scotland, east and central England. JULES is a small net 
winter sink in Northern Ireland, Wales, and south and central England. Summer NEE fluxes are similar between the models, 640 
although JULES has a stronger net sink in Scotland and Northern Ireland.  

3.2 Posterior net UK biospheric CO2 flux 2013-2014 

We have derived estimates for annual NEE from the UK using CO2 flux output from the two different models of biospheric 

flux as prior information (Fig. 5 – orange and blue bars for DALEC and JULES respectively): – 13±de
f9 Tg CO2 yr-1 (DALEC 

prior) and – 76±f9
f: Tg CO2 yr-1 (JULES prior) in 2013 and – 2±gd

e9 Tg CO2 yr-1 (DALEC) and – 51±ed
d9 Tg CO2 yr-1 (JULES) 645 

in 2014. These annual net flux estimates from both models agree within the estimated uncertainties and mean values are higher 
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than their respective priors in both cases. The uncertainties straddle the zero net flux line implying that the UK is roughly in 
balance between sources and sinks of biospheric CO2. However, according to the inversion using JULES, a net biospheric 

source is less likely than in the inversion using DALEC. When added to the anthropogenic and ocean fluxes that remained 
fixed during the inversion we produce the following estimates for annual total net CO2 release from the UK (Fig. 5 – yellow 

and green bars for DALEC and JULES respectively): 448	±	def9 Tg CO2 yr-1 (DALEC prior) and 386	±	f9f: Tg CO2 yr-1 (JULES 675 

prior) in 2013 and 418	±	gde9 Tg CO2 yr-1 (DALEC prior) and 369	±	edd9 Tg CO2 yr-1 (JULES prior) in 2014. While we are 

assuming that anthropogenic and ocean fluxes are perfectly known, the uncertainties on these fluxes are comparatively small 

(Peylin et al., 2011). When the anthropogenic source was varied by ±	10% , a conservatively large estimate of these 

uncertainties, we find posterior biospheric flux estimates using the DALEC prior that still suggest a balanced biosphere, and 
posterior flux estimates using the JULES prior that suggest a small net sink at the lowest end of the possibilities explored here 680 
(see Fig. S10). All mean annual posterior estimates, regardless of the anthropogenic source used, suggest the prior net 

biospheric flux is underestimated, i.e. posterior biospheric uptake of CO2 is smaller than predicted by the models. However, 
this is less statistically significant with the 2013 inversion using the DALEC prior. 
 
The monthly posterior UK estimates using both models (Fig. 5) mostly agree well with each other within the uncertainties, 685 
however they are both notably different from the prior estimates, especially in 2014. The posterior total UK flux estimate, 

achieved by adding the posterior NEE fluxes to anthropogenic and coastal ocean fluxes, shows that, according to the DALEC 
inversion, the UK may not be a net sink of CO2 at any time of year in 2013 and 2014. However, the JULES inversion suggests 
the UK is a net sink of CO2 in June of both years.  
 690 
Posterior seasonal cycle amplitudes are generally smaller than the prior amplitudes, except in the DALEC inversion in 2014. 

Table 4 gives the posterior maximum and minimum values of NEE, leading to seasonal cycle amplitudes of 469 Tg CO2 yr-1 
and 578 Tg CO2 yr-1 for 2013 and 633 Tg CO2 yr-1  and 737 Tg CO2 yr-1 for 2014, for the DALEC and JULES inversions 
respectively. These values are 90% and 76% of the prior amplitudes in 2013 and 123% and 85% of the prior amplitudes in 
2014.  695 

 
The largest differences between the prior and posterior are seen in spring and summer for both models. Posterior UK NEE 
estimates from the DALEC inversion are in agreement with the prior for 11 months: during the first half of 2013, in the majority 
of winter months (December, January, February) and in June 2014. When the DALEC inversion posterior UK NEE estimates 

are not in agreement with the prior, they are usually larger, with a maximum difference in 2013 of 235	±f:
f; Tg CO2 yr-1 in 700 

August and a maximum difference in 2014 of 551	±d^
d9 Tg CO2 yr-1 in July, although in spring (March, April, May) 2014 they 

tend to be smaller than the prior, with a maximum difference of −194	±g9
g^ Tg CO2 yr-1 in April. Posterior UK NEE from the 

JULES inversion agrees with the prior for nine months during the two-year period, the majority of which are between 
November and February. Otherwise, the posterior estimate from the JULES inversion is larger than the prior with a maximum 

difference in 2013 of 318±e:
e9 Tg CO2 yr-1 in April and a maximum difference in 2014 of 407	±e;

eg Tg CO2 yr-1 in July. 705 
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Looking at the spring and summer differences more closely, we find that the JULES model has a systematically lower net 

spring flux than the posterior, and the DALEC model is either in agreement with or higher than the posterior estimate of the 
net spring flux. Generally, the models underestimate the net summer flux compared to the posterior flux (to the greatest extent 
in 2014), although the summer estimate from the JULES inversion in 2013 is not statistically different from the prior. The 725 

average spring difference between the posterior and the prior for the DALEC inversion is −2	±dd
df Tg CO2 yr-1 in 2013 and 

−133	±gi
ge Tg CO2 yr-1 in 2014, whereas for the JULES inversion it is 219	 ± 87 Tg CO2 yr-1 in 2013 and 164	±g`

ge Tg CO2 

yr-1 in 2014. The average summer difference for the DALEC inversion is 135	±:9d::: Tg CO2 yr-1 in 2013 and 263	±di
d; Tg CO2 

yr-1 in 2014, whereas for the JULES inversion it is 94	±:9e:9^ Tg CO2 yr-1 in 2013 and 312	 ± 85 Tg CO2 yr-1 in 2014. The prior 

sink in June as estimated by the JULES model is nearly twice that of DALEC and posterior estimates tend to agree with the 730 
DALEC prior in this month. 
 
Figure S9(c) shows the daily minimum and maximum in the posterior net biospheric estimates for 2014. It is worth bearing in 

mind at this point that while the temporal resolution of the inversion is flexible, it can go down to a minimum resolution of 
one day (as explained in Sect. 2.4.1). Therefore, the diurnal profile of TER and GPP for each model is imposed, however it 735 
can be scaled up or down from day to day. Fig. S11 shows that the inversion typically scaled the fluxes within 4 or 5 temporal 
regions per month, although for some parameters in some months scaling factors were found up to roughly a daily resolution. 
For both inversions, the posterior NEE flux has a similar profile. Compared to Fig. 2(c) the inversion tends to a seasonal cycle 

in daily maximum uptake that resembles that of the JULES model prior, with a turning point in maximum uptake occurring 
abruptly between June and July, a steep gradient in spring and a shallow gradient in autumn. On the other hand, the seasonal 740 
cycle in daily maximum source resembles that of the DALEC model prior, which has a stronger seasonal variation compared 
to that of the JULES model prior, albeit with a larger amplitude. This would suggest that the underestimation in net spring flux 
seen in the JULES prior is generally due to the model underestimating the spring source, rather than overestimating the spring 

sink. It also suggests that the overestimation in net summer flux in the DALEC prior is possibly a combination of the model 
overestimating the summer sink and underestimating the summer source. The overestimation in the net summer flux in JULES 745 
is more likely to be due to an underestimation of the summer source. However, as diurnal fluxes vary on a scale nearly an 
order of magnitude larger than that of the monthly fluxes, it is clear that any relatively small changes in the maximum source 

or sink will have a relatively large effect on the daily net flux. Therefore, the monthly net flux is the more robust result here 
and we are not able to confidently draw conclusions from the sub-monthly results. 

3.3 Posterior spatial distribution of biospheric fluxes 750 

Figure 6 shows mean posterior net biospheric fluxes (NEE) for winter 2013 and summer 2014 from both the DALEC and 
JULES inversions. In winter 2013, posterior NEE fluxes from the DALEC inversion are fairly heterogeneous and are largest 

over south-west Scotland and east and central England. This posterior spatial distribution is roughly similar to the prior. From 
the inversion using JULES prior fluxes, the posterior net biospheric flux is much smoother than it is for the inversion using 
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DALEC. It is largest in north-west England and almost zero in east England. The whole of south/central England, Wales, and 
Northern Ireland have increased posterior winter fluxes compared to the prior, turning these areas from a net sink in the prior 

to a net source in the posterior. 
 770 
In summer 2014, NEE fluxes from the two inversions display many similarities, with areas of net source in east, central 
(extending further south in the JULES inversion) and north-west England and areas of net sink elsewhere. However, the net 
sink in the JULES inversion is larger than the DALEC inversion in Scotland, south Wales, Northern Ireland and south-west 

England. This differs from the prior flux maps, which have only very small areas of small net uptake in central England in 
DALEC and in east England in JULES. Both the DALEC and JULES posterior fluxes generally display reduced uptake 775 
compared to the prior, except in north Wales.    

3.4 Model-data comparison 

Agreement between the data and the posterior simulated mole fractions at the measurement sites used to constrain the inversion 

is greatly improved compared to prior simulated mole fractions, with R2 values increasing by a minimum of 0.24 and up to 0.5 
(to give values ranging between 0.53 and 0.71) and root mean square error (RMSE) decreasing by at least 1.35 ppm and up to 780 
2.6 ppm (to give values ranging between 1.26 ppm and 2.71 ppm). Table 5 shows all statistics for the prior and posterior mole 
fractions compared to the observations of atmospheric CO2 concentrations. Overall, the fits are relatively similar between the 
DALEC and JULES inversions, implying that the two inversions perform similarly well by these metrics. In terms of R2, the 

best fit to the data is observed at Heathfield in the DALEC inversion and Angus in the JULES inversion. In terms of RMSE, 
the best fit to the data is observed at Angus in the DALEC inversion and Mace Head in the JULES inversion. The smallest 785 
posterior mean bias is observed at Angus in the DALEC inversion and Ridge Hill in the JULES inversion. Therefore, there are 
some small spatial differences in how well each of the inversions is able to fit the data but no clear indication of which areas 

of posterior flux might be subject to the largest improvement in either inversion. Figures S12 and S13 show the residual mole 
fractions in 2014 and indicate that residuals are somewhat larger during the summer than the winter. 
 790 
To test our posterior results against data that has not been included in the inversion, the posterior fluxes have been used to 
simulate mole fractions at Weybourne Atmospheric Observatory (see Fig. 1 for location in relation to the other sites and Table 

1 for site information). The statistics of fit to the data are given in italics in Table 5 and show an improvement in R2 of 0.18 
with the DALEC inversion and 0.13 with the JULES inversion, an improvement in RMSE of 1.09 ppm with the DALEC 
inversion and 0.75 ppm with the JULES inversion and an improvement in the mean bias of 0.64 ppm in the DALEC inversion 795 
and 0.56 in the JULES inversion. These results show that the a posteriori fluxes improve the fit to the data at a measurement 
station not included in the inversion. The results are very similar between the two inversions at this site, but suggest that the 

DALEC inversion may perform slightly better, at least in this region of the UK. Figure S14 shows the residual mole fractions 
at Weybourne for each of the inversions carried out in this work. 
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4 Discussion 

4.1 Inversion performance 

Solving for both TER and GPP separately allows the JULES-prior and DALEC-prior inversions to converge to a similar 825 

posterior solution. Using two very different prior NEE flux estimates, we produce two similar posterior NEE flux estimates 
that have a similar seasonal amplitude, and agree on the majority of monthly and all annual fluxes within the estimated 
uncertainties. This indicates that our posterior estimates are driven by the data rather than determined by the prior. However, 
when we carry out the same inversion but scale NEE (Fig. S15) we find the two posterior flux estimates do not converge on a 
common result. The posterior seasonal cycles remain relatively unchanged compared to the prior and annual net biospheric 830 

flux estimates tend to be similar to, or larger than, the prior. These annual net biospheric flux estimates are therefore 3 – 39 
times smaller than the inversion that separates GPP and TER, meaning the posterior estimates from the two types of inversions 
do not overlap, even within estimated uncertainties. Evaluating the statistics of how well the NEE inversions fit the data (Table 
5), we find they do not perform as well as the separate GPP and TER inversion, both at the sites included in the inversion and 

at the validation site, WAO. However, this is to be expected to some degree, because separating the two sources gives the 835 
inversion more degrees of freedom to fit the data. 
 
As recommended by Tolk et al. (2011), we are only hoping to achieve an improved estimate for the net fluxes here rather than 
the gross GPP and TER fluxes themselves. The posterior gross fluxes are included in the supplement (Fig. S7-S9) but due to 

the correlation between the spatial and temporal distribution of GPP and TER they have not been presented in the main text. 840 
This can be seen in summer and winter flux maps (Fig. S7 and S8) and in the posterior annual flux estimates in Fig. S9(d), in 
particular where JULES TER and GPP show similarly large differences from the prior. This could also be a result of the 
imposed diurnal cycle, as it would appear the posterior TER flux in the JULES inversion is tending to a higher daily minimum, 
matching that of the DALEC prior, and may ultimately be trying to move towards a smaller diurnal variation in TER. However, 

because the whole diurnal cycle must be scaled, the daily maximum TER must also increase and may mean the GPP must 845 
increase, causing increased uptake, to compensate for the increased source from TER. Allowing flexibility on sub-daily 
timescales may lead to similar estimates of GPP and TER between the two inversions with different priors. However, questions 
remain over whether there is enough temporal information for this to be the case. 

 
The fact that common monthly and annual posterior net biospheric flux estimates are reached when the prior biospheric fluxes 850 
are spatially and temporally different would suggest that the choice of prior is not necessarily a major factor in guiding the 
inversion result for our network, when GPP and TER are scaled separately. In this respect, it is also particularly encouraging 
that the seasonal cycles in the posterior diurnal range are similar for both inversions (Fig. S9(c)). 

Deleted: CARDAMOM

Deleted: results855 

Deleted: S12

Deleted: S3

Deleted: S6-S8

Deleted: S5

Deleted: S6860 
Deleted: S8

Deleted: CARDAMOM

Deleted: S8



 

19 
 

4.2 Differences between prior and posterior NEE estimates 

The posterior seasonal cycle in both inversions differs significantly from the prior. This implies that the biospheric models 865 
used to obtain prior GPP and TER fluxes are either over- or under-estimating the strength of some processes, or they are 

omitting some processes altogether. The largest differences between the posterior solution and the prior model output are seen 
in spring and summer. In Sect. 3.2 we have shown that spring differences arise from an overestimation of the net spring uptake 
of CO2 in the JULES model and a correct/underestimation of the net spring uptake in DALEC. However, in summer 
(particularly in 2014), the posterior net UK fluxes are higher than both priors in July and August.  870 

 
One process that occurs during the months July and August is crop harvest. Harvest is not directly resolved in either of the 
models of the biosphere used in this work, thereby providing a possible explanation for the differences between the posterior 
and prior in these months. Harvest typically occurs between July and September and arable agricultural land covered 26% of 
the UK in 2013 and 2014 (DEFRA, 2014, 2015), so there is potential for unaccounted activity in this area to cause large 875 

changes to net CO2 fluxes. The areas of net source in summer (shown in Fig. 6) do also coincide with areas of large-scale 
agriculture (e.g. east and central England). Crop harvest potentially changes the biosphere in the following ways: firstly, crops 
mature en masse, leading to an abrupt loss of productivity. Secondly, during harvest there is an abrupt removal of biomass and 
input of harvest residues on the field. This increases litter input that is readily available for decomposition, increasing 
heterotrophic respiration. Thirdly, when the field is ploughed the soil is disturbed, which can increase heterotrophic respiration. 880 

Finally, when the crop is no longer covering the soil surface this layer can become drier and the energy balance is altered. In 
Smallman et al. (2014), the reduction in atmospheric CO2 concentration due to crop uptake is reported for 2006 to 2008 and 
an abrupt increase in atmospheric CO2 can be seen between June (peak source) and August, where CO2 uptake from crops is 
halted as a result of harvest. Harvest may explain the abrupt shift from net sink to net zero / net source observed between July 

and August in DALEC in 2013 and June and July in both models in 2014. The earlier time in 2014 does coincide with a year 885 
of early harvest (DEFRA, 2015) although this may well be fortuitous. Later in the summer, there may be some plant regrowth 
in ploughed fields leading to increased GPP. This would be consistent with the shallower gradient observed in net biospheric 
fluxes between September and October 2013 in the DALEC posterior estimate, between August and September 2014 in the 
JULES posterior estimate and the decrease in net flux observed between July and September 2014 in the DALEC posterior 

estimate. 890 
 
If agricultural activity is the source of the July, August, September difference between prior and posterior UK NEE estimates, 
then it could amount to emissions of 4 – 10 % of currently reported annual anthropogenic emissions in 2013 and 17 – 19 % in 
2014. However, other explanations for this difference could be large uncertainties in the seasonal disaggregation of 

anthropogenic fluxes, uncertainties in the transport model, or a combination of over and under-estimation of other biospheric 895 
processes. 
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4.3 Implications for UK CO2 emissions estimates 

The results of UK biospheric CO2 fluxes using our set-up suggest the UK biosphere is roughly in balance, whereas prior 910 
estimates from models of the biosphere estimate a net sink. Even when we assume an uncertainty on our anthropogenic fluxes 

of 10% (a conservative estimate), inversions using both models still give mean posterior estimates that are larger than their 
respective priors (see Fig. S10). Therefore, when using models of the biosphere to contribute to inventory estimates of CO2 
emissions, care must be taken to attribute sufficient uncertainties to model estimates, otherwise the amount of CO2 taken up 
by the biosphere on an annual basis may be overestimated. Methods such as the one described in this paper could provide an 915 

important constraint on the UK’s biospheric CO2 fluxes as carbon sequestration processes, such as reforestation, and other 
land use change activities are increasingly used as policy solutions to contribute to carbon targets. 

5 Conclusion  

We have developed a framework for estimating net biospheric CO2 fluxes in the UK that takes advantage of recent innovation 
in atmospheric inverse modelling and a relatively dense regional network of measurement sites. Two inversions are carried 920 

out using prior flux estimates from two different models of the biosphere, DALEC and JULES. Fluxes of GPP and TER are 
scaled separately in the inversions. Despite significant differences in prior biospheric fluxes, we find consistent monthly and 
annual posterior flux estimates, suggesting that in this study the choice of model to provide biospheric CO2 flux priors in the 
inversion is not a major factor in guiding the inversion result with our framework and network. However, given the 
hypothesised importance of missing process representation from both models, e.g. agriculture, an improved model may result 925 

in an improved analysis, reducing uncertainties and biases highlighted in this study. 
 
Similarly to Tolk et al. (2011), we find that the NEE is more robustly derived if GPP and TER are solved separately, and then 
combined a posteriori. Our results suggest that inversions that scale only NEE could be underestimating net CO2 fluxes, as we 
find posterior estimates 3 – 39 times smaller than those obtained using an inversion where GPP and TER are separated. 930 

 

We find that the UK biosphere is roughly in balance, with annual net fluxes (averaged over the study period) of – 8 ± 79 Tg 

CO2 yr-1 and – 64 ± 85 Tg CO2 yr-1 according to the DALEC and JULES inversions respectively. These mean annual fluxes 

are systematically higher than their respective priors, implying that net biospheric fluxes are underestimated in the models of 

the biosphere used in this study. The posterior seasonal cycles from both inversions differ significantly from the prior seasonal 935 
cycles and generally have a reduced amplitude of 90% and 76% of the prior amplitude in 2013 according to the DALEC and 
JULES inversions respectively, and 85% of the prior amplitude in 2014 according to the JULES inversion, however the 
posterior seasonal cycle amplitude from the DALEC inversion in 2014 was increased by 122%. Our results suggest an 

overestimated net spring flux in the JULES model and an overestimation of the net summer flux in both models of the 
biosphere. We propose that the difference seen between the prior and posterior flux estimates in summer and early autumn 940 
could be a result of the disturbance caused by crop harvest, leading to abrupt reduction in plant CO2 uptake and increase in 
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respiration sources, as it is not taken into account in either model. However, this hypothesis is just one of a combination of 
uncertain factors that could lead to the differences seen, so further work would be needed to investigate the importance of crop 

harvest in UK CO2 emissions. 
 
The method developed and described here represents a first step towards looking at the UK biospheric CO2 budget with a 955 
hierarchical Bayesian trans-dimensional MCMC inverse modelling framework. Further work is required to robustly constrain 
biospheric CO2 fluxes, through comparison with other model set-ups. 

6 Code availability 

Hierarchical Bayesian trans-dimensional MCMC code is available on request from Matthew Rigby (matt.rigby@bristol.ac.uk). 
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Table 1: Measurement site information. The location of sites is also shown in Fig. 1. *Weybourne data is used for validation of the results 
only and is not included in the inversions. LSCE – Laboratoire des Sciences du Climat et de l’Environnement, DECC – Deriving Emissions 
related to Climate Change, GAUGE – Greenhouse gAs Uk and Global Emissions, UEA – University of East Anglia. 

Site Site code Location Inlet Height 

(m above ground level) 

Network 

Mace Head MHD 53.327 °N, 9.904 °W  24 LSCE 
Ridge Hill RGL 51.998 °N, 2.540 °W 90 DECC 
Tacolneston TAC 52.518 °N, 1.139 °E  185 DECC 

Heathfield HFD 50.977 °N, 0.231 °E 100 GAUGE 
Bilsdale BSD 54.359 °N, 1.150 °W  248 GAUGE 
Angus TTA 56.555 °N, 2.986 °W 222 DECC 
*Weybourne WAO 52.950 °N, 1.122 °E 10 UEA 

 1200 

 
 
Table 2: Specifications for different prior and fixed fluxes. 

 Spatial Resolution Temporal Resolution 

Biogenic fluxes   
JULES 0.25˚ x 0.25˚ 2-hourly 
DALEC 25 km x 25 km (1˚ x 1˚ outside the UK) 2-hourly 

Anthropogenic fluxes   

NAEI (UK) 1 km x 1 km 2-hourly  
EDGAR (outside UK) 0.1˚ x 0.1˚ Yearly (using 2010) 

Ocean fluxes 4˚ x 5˚ Monthly (climatology) 
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Table 3: Probability density functions (PDFs) for parameter and hyper-parameter scaling factors. Mean and standard deviation in fourth and 
fifth columns relate to lognormal PDFs, lower bound and upper bound relate to uniform PDFs. 

Parameter  PDF Mean / 
lower bound 

Standard deviation / 
upper bound 

Prior uncertainty     

GPP jkll Lognormal 1 1 

 XYkll Uniform 0.1 1.5 

TER jmno Lognormal 1 1 

 XYmno Uniform 0.1 1.5 

Boundary conditions jpq Lognormal 1 1 

 XYpq Uniform 0.01 0.05 

Model-measurement representation uncertainty   
Standard deviation XZ Uniform 0.9 ppm 45 ppm 

Correlation timescale [ Uniform 1 hour 120 hours 
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Table 4: Posterior UK estimates for the maximum net biospheric source and sink (values also shown in Fig. 5). The month in brackets 
indicates the month in which the maximum source/sink occurred. 1230 

 
 Year Max. sink (Tg CO2 yr-1) Max. source (Tg CO2 yr-1) 

DALEC 2013 −298	±	:ig:^9       (June) 171	±	egf^         (January) 

 2014 −360	 ±	ddde        (June) 273	±	gig`         (November) 

JULES 2013 −456	±	f:f9         (June) 122	±	eddi         (December) 

 2014 −542	±	:99fe        (June) 195	±	e9g`         (October) 
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Table 5: Prior and posterior fit to data statistics for the inversion period 2013-2014. R2 and RMSE are calculated monthly and averaged over 
this period. Values in brackets are the posterior fit statistics for the corresponding net flux inversions. *Weybourne data (from February to 
December 2013) is used for validation of the results only and is not included in the inversions. 

DALEC inversion 
     

Measurement site Prior R2 Posterior R2 Prior RMSE Posterior RMSE Prior mean bias Posterior mean bias 

Mace Head 0.20 0.59 2.88 1.53 -1.19 0.55 
  (0.54)  (1.62)  (0.38) 
Ridge Hill 0.26 0.67 3.82 2.09 -1.27 -0.10 
  (0.61)  (2.30)  (-0.05) 

Tacolneston 0.22 0.61 3.92 2.20 -1.63 -0.25 
  (0.56)  (2.44)  (-0.28) 
Heathfield 0.21 0.71 4.07 1.88 -1.99 0.11 
  (0.58)  (2.31)  (0.21) 
Bilsdale 0.20 0.60 4.62 2.02 -3.68 -0.52 
  (0.55)  (2.23)  (-0.58) 

Angus 0.35 0.67 3.09 1.28 -2.35 -0.01 

 
 (0.63)  (1.41)  (0.00) 

*Weybourne 0.13 0.31 6.17 5.08 2.89 2.25 

  (0.28)  (5.32)  (2.37) 

JULES inversion 
     

Measurement site Prior R2 Posterior R2 Prior RMSE Posterior RMSE Prior mean bias Posterior mean bias 

Mace Head 0.29 0.66 2.84 1.26 -1.33 0.16 
  (0.56)  (1.44)  (-0.01) 
Ridge Hill 0.33 0.67 3.86 2.14 -1.14 -0.21 
  (0.59)  (2.41)  (-0.05) 
Tacolneston 0.24 0.53 4.06 2.71 -1.84 -0.89 
  (0.52)  (2.70)  (-0.74) 
Heathfield 0.28 0.66 4.07 2.14 -2.43 -0.25 
  (0.57)  (2.38)  (-0.23) 
Bilsdale 0.33 0.61 4.53 2.10 -3.60 -0.96 
  (0.62)  (2.19)  (-0.82) 

Angus 0.43 0.67 2.85 1.39 -1.78 0.43 

 
 (0.62)  (1.55)  (0.48) 
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*Weybourne 0.16 0.29 5.85 5.10 2.63 2.07 

  (0.23)  (5.49)  (2.56) 
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 1270 

Figure 1: Mean annual NAME footprint for 2014, for each of the six sites. MHD: Mace Head; RGL: Ridge Hill; HFD: Heathfield; TAC:  
Tacolneston; BSD: Bilsdale; TTA: Angus. WAO shows the location of the Weybourne Atmospheric Observatory, where data has been used 
to validate the results but has not been included in the inversion (the mean footprint from this station is not plotted). Formatted: Font: Bold
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Figure 2: Prior UK fluxes in 2014. (a-c) Comparison of JULES (blue) and DALEC (orange) monthly fluxes and minimum and maximum 1275 
daily values for TER, GPP and NEE respectively. (d) Monthly anthropogenic fluxes and minimum and maximum daily values from the 
NAEI inventory within the UK. (e) Monthly coastal ocean net fluxes from the Takahashi et al. (2009) ocean CO2 flux product. 

 

Deleted: ¶
¶1280 

¶
Figure 2: Prior UK fluxes in 2014. (a-c) Comparison of JULES 
(blue) and CARDAMOM (orange) monthly fluxes and minimum and 
maximum daily values for TER, GPP and NEE respectively. (d) 
Monthly anthropogenic fluxes and minimum and maximum daily 1285 
values from the NAEI inventory within the UK. (e) Monthly coastal 
ocean net fluxes from the Takahashi et al. (2009) ocean CO2 flux 
product.¶
¶ ... [2]



 

34 
 

 1290 
Figure 3: Average prior flux maps for winter 2013 (December 2013, January – February 2014). (a) TER from DALEC; (b) TER from 
JULES; (c) the difference between DALEC and JULES TER; (d) GPP from DALEC; (e) GPP from JULES; (f) the difference between 
DALEC and JULES GPP; (g) NEE from DALEC; (h) NEE from JULES; (i) the difference between DALEC and JULES NEE. 

 

Deleted: CARDAMOM1295 
Deleted: CARDAMOM

Deleted: CARDAMOM

Deleted: CARDAMOM

Deleted: CARDAMOM

Deleted: CARDAMOM1300 



 

35 
 

 
Figure 4: Prior average flux maps for summer 2014 (June – August 2014). (a) TER from DALEC; (b) TER from JULES; (c) the difference 
between DALEC and JULES TER; (d) GPP from DALEC; (e) GPP from JULES; (f) the difference between DALEC and JULES GPP; (g) 
NEE from DALEC; (h) NEE from JULES; (i) the difference between DALEC and JULES NEE. 
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Figure 5: Posterior monthly net UK CO2 flux (positive is emission to atmosphere). Orange and blue monthly fluxes are posterior net 1320 
biospheric (NEE) fluxes for DALEC and JULES respectively. Prior biosphere fluxes from DALEC and JULES are shown in dashed orange 
and blue lines respectively. The fixed anthropogenic and ocean fluxes are denoted by the dark grey dashed line. Yellow and green monthly 
fluxes are the sum of the posterior NEE fluxes and the fixed anthropogenic and ocean fluxes. Shading represents 5th – 95th percentile. The 
bar charts represent annual net UK CO2 flux for 2013 (left) and 2014 (right). Hashed bars denote prior annual fluxes, solid bars denote 
posterior annual fluxes. The bar colours correspond to the line colours: left hand bars for each model are NEE fluxes, right hand bars for 1325 
each model are total fluxes (NEE + fixed sources). Uncertainty bars represent 5th – 95th percentile. DA – DALEC. JU – JULES. 
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Figure 6: Posterior net biospheric (NEE) flux maps averaged over winter 2013 (December 2013, January – February 2014) and summer 
2014 (June – August 2014). (a) Winter NEE flux from DALEC inversion. (b) Winter NEE flux from JULES inversion. (c) Difference 
between winter NEE flux from DALEC (DA) and JULES (JU) inversions. (d) Summer NEE flux from DALEC inversion. (e) Summer NEE 1335 
flux from JULES inversion. (f) Difference between summer NEE flux from DALEC (DA) and JULES (JU) inversions. 
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Supplementary Figures and Tables: 1345 
 

 
Table S1: Annual UK net biospheric flux for June 2014 as estimated with an inversion using footprints disaggregated for 12, 24, 48 and 72 
hours back in time, as well as an inversion using integrated footprints combined with monthly fluxes. DALEC NEE was used as the prior 
flux in this test. 1350 

Prior – 	rss 

Posterior  

Integrated footprints tu±vwxvwr 

12-hour back footprints −ywt±zszs 

24-hour back footprints −rsx	±zzzt 

48-hour back footprints  −	rzy±zxuy 

72-hour back footprints −{vy	±vwvvvw 
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Figure S1: The domain used to calculate NAME footprints. The four edge boxes correspond to four basis functions. The hatched box is the 1390 
main area of focus for this study and basis functions in this area are based on a fractional map of 6–7 different PFTs (Fig. S6).  Deleted: .
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Figure S2: Forward modelled mole fractions at Ridge Hill and Tacolneston for part of June 2014 using DALEC NEE fluxes and NAME 
footprints that are disaggregated back in time for 6, 12, 24, 48 and 72 hours, as well as using integrated footprints with monthly fluxes. 1395 
Anthropogenic and ocean fluxes have been forward modelled and removed from the data. Shading on the data represents ±	v|. 
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 1400 
Figure S3: Data filtered out in 2014 using the “local-lapse” filter. Left hand bar charts for each site show the average percentage of data 
removed for each 2-hour period in the day. Right hand bar charts for each site show the number of data points used in the inversion for each 
month (orange bars) and the number of data points removed prior to the inversion for each month (blue bars).  
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Figure S4: A comparison of the results of three different inversions for 2014 using DALEC prior GPP and TER fluxes and three differently 1410 
filtered data sets. Local-lapse: the filter used on the final results, a combination of localness and vertical temperature profile metrics. Local-
lapse 10am – 4pm: data is filtered with the “local-lapse” filter and then only times between 10am and 4pm are selected. 10am – 4pm: all 
data between 10am and 4pm is used. Shading represents 5th – 95th percentile. 
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Figure S5: Synthetic test results. Synthetic data was produced using DALEC biospheric fluxes and NAME simulations– the “true” flux. 
Prior fluxes are provided by JULES. The “NEE inversion” only scales NEE in the inversion. The “GPP+TER inversion” scales GPP and 
TER separately in the inversion. NEE prior PDF (P}~~) has Gaussian uncertainty distribution and its standard deviation hyper-parameter 1430 
(|P}~~) has a uniform distribution with a range reflecting an absolute uncertainty of approximately 40–400 Tg (see Table 3 for the comparable 
set-up for the separate GPP and TER inversion). (a) shows prior and posterior monthly flux estimates for the UK in 2014 compared to the 
“true” flux. Shading represents the 5th – 95th percentiles. (b) shows average diurnal cycle in  June 2014 for prior and posterior NEE in both  
inversions, as well as the “true” NEE. (c) shows average diurnal cycle in  June 2014 for prior and posterior GPP and TER in the “GPP+TER” 
inversion, as well as the “true” GPP.  1435 
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Figure S6: Maps of plant functional type (PFT) fraction for each of the 6 PFTs used as spatial basis functions within the sub-domain. Note 1455 
the scale is logarithmic. 
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 1465 
Figure S7: Posterior TER and GPP flux maps averaged over winter 2013 (December 2013, January – February 2014). (a) Winter TER flux 
from DALEC inversion. (b) Winter TER flux from JULES inversion. (c) Winter GPP flux from DALEC inversion. (d) Winter TER flux 
from JULES inversion. 

 

 1470 
Figure S8: Posterior TER and GPP flux maps averaged over summer 2014 (June – August 2014). (a) Summer TER flux from DALEC 
inversion. (b) Summer TER flux from JULES inversion. (c) Summer GPP flux from DALEC inversion. (d) Summer GPP flux from JULES 
inversion. 
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 1480 

 
Figure S9: Posterior UK fluxes in 2014. (a-c) Comparison of monthly fluxes and minimum and maximum daily values for TER, GPP and 
NEE respectively resulting from JULES inversion (blue) and DALEC inversion (orange). (d) Annual CO2 fluxes for TER, GPP and NEE 
for 2013 and 2014 from DALEC and JULES inversions. Dark bars denote prior annual fluxes, light bars denote posterior annual fluxes. 
Uncertainty bars represent 5th – 95th percentile. 1485 
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Figure S10: Annual UK NEE flux estimates from DALEC and JULES inversions for 2013 and 2014. Left bars are prior NEE estimates, 
right bars are posterior NEE estimates. Dashed bars on the posterior estimates represent annual NEE fluxes for inversions that use fixed 
anthropogenic fluxes multiplied by ±	vw%. Uncertainty bars represent 5th – 95th percentile. Solid uncertainty bars on posterior estimates are 
the uncertainty on the inversions using normal anthropogenic fluxes. Whiskers on the posterior estimates are the uncertainty on the inversions 1495 
using anthropogenic fluxes multiplied by ±	vw%. 
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Figure S11: Mean and maximum number of temporal regions each month, taken across the number of algorithm iterations, for each source 
and spatial region. 
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Figure S12: Left: Residual mole fractions for prior and posterior modelled CO2 concentrations in 2014 using DALEC prior biospheric 
fluxes. Right: Histogram of prior residuals (orange) and posterior residuals (blue). The mean of the histogram represents the mean bias. 1595 
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 1600 
Figure S13: Left: Residual mole fractions for prior and posterior modelled CO2 concentrations in 2014 using JULES prior biospheric fluxes. 
Right: Histogram of prior residuals (orange) and posterior residuals (blue). The mean of the histogram represents the mean bias. 
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Figure S14: Left: Residual mole fractions for modelled CO2 concentrations at Weybourne in 2013 using prior DALEC and JULES fluxes, 1605 
and posterior DALEC and JULES fluxes from both the gross (scaling GPP and TER separately) and net (scaling just NEE) flux inversions. 
Weybourne data was not included in the inversions. Right: Histogram of residuals. The mean of the histogram represents the mean bias. 
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Figure S15: Posterior monthly net UK CO2 flux (+ve is emission to atmosphere) for the inversion that scales only NEE rather than GPP and 1610 
TER separately. Orange and blue monthly fluxes are posterior net biospheric (NEE) fluxes for DALEC and JULES respectively. Prior 
biosphere fluxes from DALEC and JULES are shown in dashed orange and blue lines respectively. Shading represents 5th – 95th percentile. 
The bar charts represent annual net UK CO2 flux for 2013 (left) and 2014 (right). Hashed bars denote prior annual fluxes, solid bars denote 
posterior annual fluxes. The bar colours correspond to the line colours: left hand bars for each model are NEE fluxes, right hand bars for 
each model are total fluxes (NEE + fixed sources). Uncertainty bars represent 5th – 95th percentile. DA – DALEC. JU – JULES. NEE prior 1615 
PDF (P}~~) has Gaussian uncertainty distribution and its standard deviation hyper-parameter (|P}~~) has a uniform distribution with a range 
reflecting an absolute uncertainty of approximately 40–400 Tg (see Table 3 for the comparable set-up for the separate GPP and TER 
inversion). 
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