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Abstract. In order to identify and quantify key-species associated with non-exhaust emissions and exhaust 12 

vehicular emissions, a large comprehensive dataset of particulate species has been obtained thanks to simultaneous 13 

near-road and urban background measurements coupled with detailed traffic counts and chassis dynamometer 14 

measurements of exhaust emissions of a few in-use vehicles well-represented in the French fleet. Elemental 15 

Carbon, brake-wear metals (Cu, Fe, Sb, Sn, Mn), n-alkanes (C19-C26), light molecular weight PAHs (Pyrene, 16 

Fluoranthene, Anthracene) and two hopanes (17α21βNorhopane and 17α21βhopane) are strongly associated with 17 

the road traffic. Traffic-fleet emission factors have been determined for all of them and are consistent with most 18 

recent published equivalent data. When possible, light-duty and heavy-duty duty traffic emission factors are also 19 

determined. In absence of significant non-combustion emissions, light-duty traffic emissions are in good 20 

agreement with emissions from chassis dynamometer measurements. Since recent measurements in Europe 21 

including those from this study are consistent, ratios involving copper (Cu/Fe and Cu/Sn) could be used as brake-22 

wear emissions tracers as long as brakes with Cu remain in use.  Near the Grenoble ring road, where the traffic 23 

was largely dominated by diesel vehicles in 2011 (70 %), the OC/EC ratio estimated for traffic emissions was 24 

around 0.4. Although the use of quantitative data for source apportionment studies is not straightforward for the 25 

identified organic molecular markers, their presence seems to well-characterized fresh traffic emissions. 26 

1 Introduction 27 

Traffic is a major source of particulate matter in urban environments through both exhaust and non-exhaust 28 

emissions. Thanks to stringent regulations, vehicles with more efficient catalytic converters and diesel particle 29 

filters have been progressively introduced into the European fleet. As a consequence particulate exhaust emissions 30 

have strongly decreased and non-exhaust particulate emissions (particles resuspended by moving traffic and those 31 

from the wear of brakes, tyres, road surface…) will contribute to the major part of particulate vehicular emissions 32 

in the near future (Amato et al., 2014). Current research estimates that non-exhaust emissions already substantially 33 

contribute to traffic emissions, with differences between sites due to local meteorology, local emissions, or traffic 34 

characteristics (e.g. Omstedt et al., 2005; Thorpe and Harrison, 2007; Bukowiecki et al., 2010; Lawrence et al., 35 

2016). Even with electric vehicles, traffic will continue to be a source of PM through non-exhaust emissions (Pant 36 

and Harrison, 2013; Timmers and Achten, 2016). 37 
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Also, knowledge on the deleterious impacts of PM from vehicular emissions on human health is increasing. There 1 

is now strong evidence that traffic-related PM is responsible for adverse health effects due to the health effect of 2 

both carbonaceous material from exhaust emissions and redox-active metals in traffic-generated dust including 3 

road, brake and tyre wear (Kukutschová et al., 2009; Cassee et al., 2013; Amato et al., 2014 and references wherein; 4 

Pardo et al., 2015; Poprac et al., 2017). Recently, on the one hand, Shirmohammadi et al. (2017) and Weber et al., 5 

(2018) have shown the important role of non-tailpipe emissions to the oxidative potential of particulate matter 6 

species identified as tracers of vehicle abrasion; and on the other hand, the health impacts of coarse particles is 7 

now better documented (Beelen et al., 2014; Cheng et al., 2015; Malig et al., 2013). Therefore, a better knowledge 8 

on vehicular emissions is required to better understand their contribution to urban atmospheric PM10 concentration 9 

levels and related health effects. 10 

Chassis dynamometer measurements allow the determination of exhaust vehicular emissions under controlled 11 

testing conditions but, because of high costs, these tests often include small sets of vehicles that cannot be 12 

representative of large variation in engine type, age and maintenance history of vehicles. They also do not represent 13 

the variability of driving types in various environments. All of these are parameters that strongly influence real-14 

world vehicular emissions. Additionally, these tests cannot simulate accurately the effect of dilution on particle 15 

equilibrium in the road atmosphere (Kim et al., 2016), the possible rapid aging effects (e.g. Platt et al., 2017), and 16 

non-tailpipe emissions (e.g. Thorpe and Harrison, 2008). For all these reasons, it is thought that more realistic 17 

estimates of vehicle emissions are determined from air quality measurements in the near-road atmosphere (Phuleria 18 

et al., 2017), including car-chasing, tunnel or roadside measurements (Pant and Harrison, 2013 and references 19 

therein; Jezek et al., 2015). 20 

In this study, a large comprehensive dataset on the chemical composition of PM10 from exhaust and non-exhaust 21 

emissions has been obtained thanks to two complementary campaigns: 1) simultaneous near-road and urban 22 

background measurements coupled with detailed traffic counts for the estimation of real-world vehicular emissions 23 

including non-exhaust emissions and, 2) chassis dynamometer measurements of exhaust emissions of a few in-use 24 

vehicles well-represented in the French fleet for the identification of key species in exhaust emissions. This study 25 

focuses on PM10 in order to take into account for the entire breathable fraction of non-exhaust particulate emissions, 26 

a large part of which are coarse particles (Thorpe and Harrison, 2008; Grigoratos and Martini, 2014). Possible 27 

particulate tracers of exhaust and non-exhaust vehicle emissions are examined and quantified. Emission factors 28 

and when possible, typical ratios, are derived from these data. 29 

2 Methodology 30 

2.1 Chassis dynamometer measurements 31 

Vehicles were operated on a chassis dynamometer, and exhaust emissions were measured using a sampling train 32 

including a Constant Volume Sampling (CVS) system in which emissions are diluted with filtered air and sampled 33 

using quartz filters and polyurethane foams (PUF).  34 

2.1.1 Vehicle types and driving cycles 35 

Five vehicles representative of the most frequent vehicle classes in the French fleet in circulation were selected 36 

(Euro 3 Diesel, Euro 4 diesel, Euro 4 diesel retrofitted with particle filter, Euro 2 petrol, Euro 4 petrol). They were 37 

in-use private cars since rental vehicle may not be representative of the national fleet (low mileage). All vehicles 38 
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were operated using commercial diesel and petrol fuels. Selection criteria and characteristics of tested vehicles are 1 

described in the Supplementary Information (SI).  2 

Driving cycles designed to be representative of real driving conditions in Europe are performed in this study 3 

(André, 2004). The ARTEMIS urban cycle represents driving conditions in urban areas (repeated acceleration and 4 

vehicle speed below 40 km/h), while the ARTEMIS rural-road cycle represents driving conditions on main roads 5 

in suburban and rural areas outside cities (flowing traffic conditions). These cycles represent most driving 6 

conditions encountered on the RN87/E712 highway, where the road side experiments took place, during congested 7 

and flowing traffic conditions, respectively. Since urban journeys include cold vehicles, the influence of the cold 8 

start on urban emissions has been systematically tested.  9 

2.1.2 Exhaust sampling 10 

Vehicles were operated on a chassis dynamometer using a CVS system to dilute exhaust emissions with filtered 11 

ambient air. The filtration system included four filters and a cartridge in series: a M6-F7-F9, M5, F7 EN-779-2012 12 

filters; a HEPA H13 EN1822-2009 filter; and a cylindrical cartridge of charcoal scrubber.  13 

Regulated emissions were determined with continuous monitors for CO, CO2, NOx, and total hydrocarbons 14 

(HORIBA system). Particulate matter (PM) and volatile organic compounds (VOC) were sampled out from the 15 

dilution tunnel with a servo-controlled system designed by Serv’Instrument for this study. Two driving cycles in 16 

series were performed in order to collect enough matter for molecular speciation. PM was collected on quartz 17 

filters (TissuquartzTM, diameter 47 mm), at flow rates depending on both emission levels of the vehicles being 18 

tested and the types of analyses (from 5 to 50 L.min-1 for EC/OC measurements and from 30 to 50 L.min-1 for 19 

organic molecular speciation). Dilution factors ranged from about 15 to 40. Conditions of vehicle tests are detailed 20 

in the supplemental section (Table I-2). Filter face velocities for chassis dynamometer samplings dedicated to 21 

organic speciation were similar or close to the one of atmospheric near-road measurements, while, because of very 22 

high concentration levels, lower sample flow rates are used for PM samplings dedicated to EC and OC 23 

measurements in the exhaust of diesel vehicles non-retrofitted with Particulate Filter (Euro 3 and Euro 4 diesel 24 

vehicles). These very low filter velocities may influence the adsorption of organic vapours by the Quartz filter 25 

(McDow and Huntzicker, 1990; Turpin et al., 2000 ; Vecchi et al., 2009), while EC would not be affected by filter 26 

face velocity (Vecchi et al., 2009). Quartz filters were pre-baked at 500°C for 8h before being used. Samples were 27 

stored at -18°C in aluminum foil and sealed in polyethylene bags until analyses. 28 

Analysis of test blank filters (collected following the same procedure as vehicle test filters including driving cycle 29 

durations with filtered air) showed contaminations from the CVS system. It was obvious that some organic 30 

compounds measured in test blanks result from the desorption of semi-volatile organics deposited into the CVS, 31 

that is favoured by cleaner air. Since blank levels decreased in time with passing air dilution through the system, 32 

our procedure included such a step maintained for a duration corresponding to at least two driving cycles before 33 

each vehicle test. Test blanks are used to correct measurements. 34 

2.2 Near-road and urban background measurements 35 

The joint PM-DRIVE (PM-Direct and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and 36 

mOdelling traffic Congestion and POllution) field campaign took place from September 9th to 23rd, 2011. It 37 
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included meteorology and traffic measurements, near-road/urban background PM10 sampling (this study) and near-1 

road on-line measurements (discussed in DeWitt et al., 2015). 2 

2.2.1 Description of traffic and urban background sites 3 

The Grenoble conurbation is a large city with about 700,000 inhabitants. It is located in the southeast of France in 4 

the French Alps and is surrounded by three mountain ranges (Vercors, Chartreuse, and Belledone). The traffic site 5 

was located (45.150641 N, 5.726028 E) about 15 m away from the southern part of the Grenoble ring road (the 6 

RN87/E712 highway with 2×2 lanes) (26 m from the roadway central axis). Total traffic flow for the 4 lanes was 7 

on average 95,000 and 65,000 vehicles a day on workday and weekend, respectively, with frequent congestion 8 

during extended commuting hours. Stop-and-go traffic in both directions generates large braking activity at that 9 

time. This sampling site was highly equipped during the joint PM-DRIVE / MOCOPO field campaign. 10 

Simultaneous measurements took place at an urban background site (Les Fresnes) which is located about 2 km 11 

away from the traffic site, on the rooftop of a school. This site belongs to the regional air pollution network 12 

managed by Atmo Auvergne-Rhône-Alpes (http://www.atmo-auvergnerhonealpes.fr/). The locations of both sites 13 

are presented on Figure 1. 14 

2.2.2 Aerosol and gas measurements 15 

On both traffic and urban background sites, PM10 HiVol (DA80, 30 m3 h-1) samplers collected PM10 on quartz 16 

fibre filters (TissuquartzTM, diameter 150 mm) with a time resolution of 4 hours. Filters were preheated at 500 °C 17 

during 3 h. After sampling, filters were individually placed in aluminum foil, sealed in polyethylene bags and 18 

stored at −18 °C until analysis. In addition, both sites were equipped with NOx (NO and NO2) and CO monitors. 19 

PM10 and PM2.5 mass concentrations were also continuously measured using 8500C series TEOM-FDMS (Filter 20 

Dynamics Measurement System and Tapered Element Oscillating Microbalance mass sensor housed in a single-21 

cabinet compact enclosure). 22 

2.2.3 Traffic measurements 23 

Traffic counters (double electromagnetic loops) were installed in order to identify the passing of all vehicles, the 24 

length of their chassis and their speeds,  the determination of the 2 vehicle classes used in this study (light-duty 25 

and heavy-duty vehicles), and the identification of periods of stop-and-go or flowing traffic. Vehicle mean speeds 26 

are computed as the harmonic mean speed of the cars passing over the detector (flow speed i.e. the spatial mean 27 

speed) (Hall, 2001). 28 

Traffic cameras mounted on a roadway gantry were also used to monitor traffic at the measurement site. They 29 

were used to capture the license plate numbers of passing vehicles. Plate numbers were later used to classify 30 

vehicular traffic into different categories: EURO standards and fuel type (diesel or petrol). The traffic of the 31 

highway is detailed elsewhere (DeWitt et al., 2015; Fallah Shorshani et al., 2015). On weekdays, the average 32 

hourly traffic included 2,850 diesel vehicles (including about 200 heavy-duty vehicles) and 1,025 petrol vehicles.  33 

The harmonic vehicle mean speed was about 80 km/h and ranged from 52 to 94 km/h (note that the RN87 highway 34 

has a speed limit of 90 km/h). A sample is considered affected by congested traffic above a threshold of more 35 
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22,000 vehicles during the 4-h sampling periods (corresponding to vehicle speed below 70 km/h) (see SI file). 1 

However, braking may occur below this threshold for congestion. 2 

The vehicle fleet was close to the national one for the year 2011, with 72% diesel vehicles, and EURO 3 and 4 3 

vehicles representing most of the vehicles (30 and 36% respectively). Virtually all heavy-duty vehicles are diesel.  4 

2.2.4 Meteorological measurements 5 

A Young meteorological station was installed at the traffic site to capture wind speed and direction, while relative 6 

humidity, and temperature data and rain data are obtained from two stations located in Grenoble conurbation (see 7 

SI file section IV). 8 

The wind speed was low during the field campaign (on average 0.98 m/s, ranging from 0.50 to 2.5 m/s). The 9 

temperature was warm (on average 17.6°C, peaked to 27°C) and was higher before the first rain event (on Sunday 10 

17/09/11) with average temperatures of 21°C and 15°C, respectively, before and after the rain event. Two rain 11 

events occurred during the campaign, the first one from the morning of 17/09/11 to the night of 18/09/11 night (34 12 

mm of rain) and the second one from the night of 18/09 to 19/09/11 afternoon (12.7 mm). They corresponded to 13 

summer storms. 14 

2.3 Chemical analyses 15 

The measurements of carbonaceous material (EC and OC) in PM samples were performed using the Thermo-16 

Optical Transmission (TOT) method on a Sunset Lab analyser (Jaffrezo et al., 2005; Aymoz et al., 2006) following 17 

the EUSAAR2 temperature protocol (Cavalli et al., 2010). Ionic species were analyzed with Ionic Chromatography 18 

(IC) following a well-established method (Jaffrezo et al., 1998; Waked et al., 2014). Metals were analyzed using 19 

Inductively Coupled Plasma Spectrometry (ICP-MS) (Waked et al., 2014). The chemical speciation of organic 20 

particles are performed by Gas Chromatography–Mass Spectrometry (GC-MS), except PAHs that were measured 21 

by liquid chromatography (HPLC) using a fluorescence detector (Piot, 2011; Golly et al., 2015). 22 

Hence, a large number of particulate chemical species have been measured in the filter samples simultaneously 23 

collected at the traffic and urban background sites, including EC, OC, 9 major ions (Cl-, NO3
-, SO4

2-, oxalate, Na+, 24 

NH4
+, K+, Mg2+, Ca2+), 33 metals and trace elements (Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, 25 

Mn, Mo, Na, Ni, Pb, Pd, Pt, Rb, Sb, Sc, Se, Sn, Sr, Ti, Tl, V, Zn, Zr), 3 sugars (galactosan, mannosan, 26 

levoglucosan), 15 PAHs (phenanthrene, anthracene, fluoranthene, pyrene, retene, benzo(a)anthracene, chrysene, 27 

benzo(e)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, benzo(ghi)perylene, 28 

dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, coronene), 30 n-alkanes (from C10 to C40), 2 branched alkanes 29 

(pristane and phytane) and 10 hopanes (trisnorneohopane, 17α-trisnorneohopane, 17α,21β-norhopane, 17α21β-30 

hopane, 17α,21β,-22S-homohopane, 17α,21β,-22R-homohopane, 17α,21β,-22R-bishomohopane, 17α,21β,-22S-31 

bishomohopane, 17α,21β,-22S-trishomohopane, 17α,21β,-22R-trishomohopane).  32 

The same array of chemical species were also quantified in the filter samples from the chassis dynamometer 33 

experiments. 34 

2.4 Data analysis 35 
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A series of multivariate data analysis tools have been used in order to define which species are related to traffic, 1 

to identify influential parameters, and to quantify their respective influences. Thanks to simultaneous 2 

measurements at near-traffic and background sites, local increments in concentration at the traffic site have been 3 

calculated as the difference between near-traffic and urban background concentrations. Sign and Rank Signed-4 

Wilcoxon tests have been used to estimate if concentrations measured at the near-traffic site are significantly higher 5 

than concentrations measured at the urban background site and can possibly be ascribed to local traffic emissions. 6 

As a complementary indication of relation to traffic, Spearman correlations with traffic data (total traffic, light-7 

duty traffic, heavy-duty traffic), with NOx (as an indicator of traffic emissions) and with EC (as an indicator of 8 

diesel traffic emissions) (Morawska and Zhang, 2002; Reche et al., 2011) have also been examined. Results for 9 

species for which concentrations are significantly higher at the near-traffic site (then including both positive 10 

increments and p-values below 0.05 from Sign and Signed Wilcoxon tests) are presented in Tables 1a and 1b. 11 

Increments in concentrations for all species strongly associated with traffic are transformed into emissions 12 

according to a well-established procedure (e.g. Pant and Harrison, 2013; Charron and Harrison, 2005; details in 13 

the SI section V). This method enables the calculation of average emission factors for the mixed traffic fleet of the 14 

RN87 highway assuming that (1) increments in concentration (near-traffic site minus urban traffic site) are from 15 

local traffic, (2) emissions of NOx are known and estimated from emission inventories (COPCETE that uses 16 

emission functions from European COPERT4 averaged for fleet composition and speed) and detailed traffic counts 17 

and (3) atmospheric dilution affects similarly all pollutants. Average emission factors (EFs) are expressed in 18 

mg.veh-1.km-1 or µg.veh-1.km-1 (Tables 2a,b,c,d). Since it is thought that nearby industrial activities influence the 19 

concentrations of Ti, Cr, Fe and Mn in the morning, these data are excluded from the calculations. Standard 20 

multiple Linear Regression analyses (SPSS software) are performed between computed average emission data and 21 

light-duty and heavy-duty vehicle counts. The coefficients of the regressions represent average EFs for local 22 

heavy-duty and light duty traffics (Table 3). The constants represent the parts not related to local traffic. They are 23 

all not significant (p-values above 0.4 for metals and organics, p-value of 0.061 for EC) confirming the above 24 

assumption that mostly local traffic contributes to local increments in concentration. Results from Multiple Linear 25 

Regressions are not available for all species strongly related to traffic since its use requires normally-distributed 26 

data and the model must be validated through residues analyses. 27 

3 Results 28 

Average concentrations measured at the traffic site are presented in the SI (section II). Four-hour PM10 29 

concentrations ranged from 4.9 to 45.1 µg.m-3 (on average 24.1 µg.m-3) and was strongly dominated by EC (on 30 

average 5.9 µg.m-3) and OC (on average 5.4 µg.m-3). At this site in the vicinity of traffic dominated by diesel 31 

vehicles, EC and OC concentrations were of similar magnitude. EC concentrations peaked at commuting time in 32 

the early morning and at the end of the afternoon, and follows quite well the evolution of traffic; the temporal 33 

evolution of OC is closer to that of sulphate with somewhat stronger variability following those of traffic. The 34 

other major constituents of PM10 were sulphate (on average 1.2 µg.m-3), iron (on average 1.0 µg.m-3) and calcium 35 

(on average 0.8 µg.m-3). Strong showers during the weekend in the middle of the two-week campaign led to PM10 36 

concentrations below 10 µg/m3during a few hours (see Figure 3 and SI VII for individual particulate species).  37 

3.1 Identification of species related to local on-road traffic 38 
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Tables 1a and 1b present species for which concentrations are significantly higher at the near-traffic site and 1 

assumed from local emissions and Figure X present median concentrations measured at both sites. These species 2 

could be distributed into two main groups according to both the significance of the contribution of traffic to 3 

atmospheric levels and the strength of relations with traffic indicators (traffic counts, NOx and EC concentrations).  4 

3.1.1 Species strongly associated with local traffic   5 

Cu, Fe, Mn, Sb, Sn have concentrations strongly correlated with traffic indicators (Table 1a). Their local 6 

increments in concentration due to traffic range from 54% to 84%. The concentrations of these species are linearly 7 

related to each other with near-zero intercepts (Figure 4) confirming that they come from the same source. 8 

Similarly to this study, Amato et al. (2011a) and Harrison et al. (2012) measured strong increments for Fe, Cu, Sb 9 

and Sn concentrations at traffic sites with strong correlations between them. Here, Cu, Fe and Sn are the metals 10 

that are the most closely related (Pearson r2 ≥ 0.8), while relationships with Mn and Sb are more scattered (Pearson 11 

r2 < 0.5) and more closely related to the heavy-duty traffic (Table 1a).  12 

Cr and Ti are also species significantly correlated to traffic indicators but to a lower extent than Cu, Fe, Mn, Sb 13 

and Sn. Cr (Boogaard et al., 2011 ; Amato et al., 2011a) and Ti (Amato et al., 2011a) also showed higher 14 

atmospheric concentrations at street locations than at urban background sites in previous studies. Cr and Ti show 15 

a behaviour different from that of other elements coming from brake wear. They present sharp peaks in the 16 

morning, poorer correlations with copper, and significant correlations with Al (Figure 4 and Table 1a). When the 17 

very high morning concentrations are removed (mornings of workdays), their temporal variations are much closer 18 

to the ones of metals from brake wear emissions. This suggests that another source influenced Cr and Ti 19 

concentrations near the traffic site in the morning, possibly nearby metalworking activities. Similarly, while 20 

morning peaks are less obvious in the temporal variations, the exclusion of morning data for Fe and Mn improves 21 

their correlations with Cu (Figure 4).  22 

Many of these species are metals that are known to arise from brake wear emissions (Thorpe and Harrison, 2008; 23 

Pant and Harrison, 2013; Grigoratos and Martini, 2014, 2015). Indeed, Fe could come from the lining (steel or 24 

iron powder) in semi-metallic brake, from fibres as steel, or cast iron rotor wear for low metallic brake. Cu is a 25 

high-temperature lubricant present in linings and it is also included in fibres as brass to increase braking 26 

performance. Sb is an element of brake lining both in filler as antimony sulphate and in lubricant as antimony 27 

trisulphide. Chromium oxides are elements of the filler of brake linings used for their thermal properties, and 28 

potassium titanate fibers are present as a strengthener in organic linings (Sanders et al., 2003; Grigoratos and 29 

Martini, 2014 and references therein). Cr could also come from lubricant oil combustion (Pulles et al., 2012). 30 

Only three light molecular weight PAHs (An, Fla, Pyr) are strongly associated with traffic indicators even though 31 

only the particulate phase is determined (Table 1b). It is well-established that light molecular weight PAHs are 32 

emitted by diesel vehicles, while higher molecular weight PAHs are rather associated with petrol vehicle emissions 33 

(Zielinska et al., 2004; Phuleria et al., 2006 and 2007; Pant and Harrison, 2013). Not surprisingly, in this site 34 

dominated by diesel vehicles, high molecular weight PAHs (from 5 rings) are more significantly correlated with 35 

levoglucosan, suggesting a closest relation to biomass burning emissions than to on-road petrol vehicles. 36 

Proportional concentrations of An, Pyr, and Fla suggest that they mainly come from the same source, likely diesel 37 

exhaust emissions (Figures 3 and 4). Specifically, Pyr and Fla show high increments in concentration (as an 38 

indication of the low contribution of the urban background compared to strong traffic contribution, and/or rapid 39 
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photochemical degradation) and strong linear relationship without any significant intercept (as an indication of 1 

common origin). Concentrations of An have more variability and larger contribution from the urban background. 2 

The n-alkanes C19 to C26 and two hopanes (17α21βnorhopane and 17α21βhopane) are species that are not 3 

significantly, or only weakly, correlated to total traffic. However, they are significantly correlated with NOx and 4 

EC and some of them with heavy-duty traffic. The n-alkanes between C18 and C25 are the predominant ones in 5 

vehicle exhaust and correspond to the high boiling point components in diesel fuels (Alves et al., 2016). Hopanes 6 

are known to arise from unburnt lubricating oil emissions (Rogge et al. 1993a; Zielinska et al., 2004), and 7 

17α21nNorhopane is considered as a tracer for lubricating oil (Kleeman et al., 2008). While n-alkanes have been 8 

measured in the exhaust of test diesel vehicles in our study (Table 4), hopanes and steranes were below the 9 

quantification limit for all selected vehicles. It was assumed that the tested vehicles (passenger cars, none of them 10 

was a super-emitting vehicle) did not emit enough unburnt oil for the proper quantification of hopanes. At the 11 

sampling site, the temporal variations of the concentrations of these species show higher values on the second 12 

week of the field campaign than on the first one. This observation can be explained by much larger heavy-duty 13 

traffic during this period (almost twice the traffic of the first week). 14 

3.1.2 Other species  15 

This second group corresponds to species with local increments below 50% and no significant, or only weak, 16 

correlations with traffic indicators. It is highly heterogeneous since it includes OC, NO3
-, Na+, Ca2+, Mg2+, Ba, Co, 17 

Phenanthrene (Phe), Benzo(a)Anthracene (BaA) and some n-alkanes (C18, and from C27 to C33). Most of species 18 

from this group are obviously emitted by the traffic but they seem to be less specific than species from the first 19 

group since other sources can largely contribute to their emission levels. 20 

Not surprisingly NO3
- is not significantly related to primary traffic indicators. However its concentrations are 21 

significantly higher at the traffic site (p<0.001, and median increment of 28%). Additionally, the temporal pattern 22 

of NO3
- is different from that of indicators of regional origin (for example SO4

2-, SI section VII). Amato et al. 23 

(2011a) found similar contributions of traffic to NO3
- concentrations at two traffic sites in Barcelona (34% and 24 

25% respectively). They assumed that NH4NO3 is quickly formed in the road plume enriched in NH3 emitted by 25 

vehicles.  Indeed, the important introduction of vehicles equipped with DeNOx technology such as 3-way catalysts 26 

or selective catalytic reduction systems have led to recent increasing vehicular NH3 emissions (Kean et al., 2009; 27 

Suarez-Bertoa and Astorga, 2016) responsible for significant changes in the chemistry of the atmosphere in 28 

roadside areas. 29 

OC concentrations are significantly higher at the traffic site (p<0.001; increment of 23%), and are weakly but 30 

significantly correlated with traffic indicators. Amato et al., (2011a) found slightly higher increments of 34% and 31 

41% for OC at their 2 traffic sites. Deconvolution of sources from simultaneous PM1 AMS measurements 32 

concluded that about 20% of the total PM1 organic mass could be attributed to vehicular emissions (DeWitt et al., 33 

2015). Additionally, the temporal pattern of OC concentrations clearly shows a dominant regional contribution 34 

(Figure 3 and SI section VII). All these results agree that in summer time, the majority of OC is of regional origin, 35 

despite a clear influence of traffic. 36 

Na+, Ca2+, Mg2+ and Sr concentrations are also significantly higher at the traffic site (p<0.05, increments from 33% 37 

to 43%, except for Sr for which urban background concentrations are most of the time below detection limit). 38 

When three high concentrations for Mg2+ concentrations and one for Sr concentration are excluded (all probably 39 
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not related to traffic), both present temporal variations close that of calcium (Figure 3). All are at least significantly 1 

correlated to the heavy-duty traffic (p<0.05). Since Ca2+, Mg2+ and Sr are strongly affected by rain events (assumed 2 

to influence the silt loading of the road), their incremental concentrations are believed to be from resuspended 3 

dust, as concluded in other studies (e.g. Lough et al., 2005, Amato al., 2011a). 4 

Ba and Co concentrations are significantly higher at the traffic site (p<0.05, increments of 37% and 36% 5 

respectively). Ba concentrations present a temporal behaviour close to the ones of Cu, Fe, Sn and Mn and, 6 

accordingly, is known as an element of the filler of brake linings. Higher Ba atmospheric concentrations at street 7 

locations than at urban background sites have also been observed in previous studies (Harrison et al., 2012). On 8 

the contrary, Co concentrations do not show any correlation with traffic indicators and are correlated with tracers 9 

of regional origin (Table 1a). Co is sometimes measured in brake pads (e.g. Hulskotte et al., 2014); and Amato et 10 

al. (2011) found similar increments for Co at their traffic sites (respectively 33% and 47%). All of these suggest 11 

that a possible contribution of brake wear to Co concentrations cannot be excluded, despite the lack of correlation 12 

with traffic indicators.  13 

The concentrations of Phe, BaA, C18 and C27-C33 alkanes are significantly higher at the traffic site and some of 14 

them are significantly correlated with NOx and EC. Accordingly these species were detected in the exhaust 15 

emissions of diesel vehicles sampled from our chassis dynamometer experiments. However most of them are also 16 

significantly correlated with levoglucosan measured at the traffic site, particularly BaA. Indeed the temporal 17 

pattern of BaA shows similarities with both the one of Pyr (strongly related to traffic, see below) and levoglugosan 18 

(tracer of biomass burning peaking in the evening) (Figure 3). It is therefore believed that most of them are largely 19 

emitted by biomass burning and are not specific of road traffic emissions. 20 

3.2 Quantification of traffic fleet emissions for species associated with traffic  21 

Average emission factors (EFs) are presented in Tables 2a,b,c,d. Most EFs show large standard deviations. This 22 

variability reflects the presence of vehicles with various emission levels (diesel/petrol; different standards and 23 

engine load; cold start/hot vehicles; presence of a few high emitting vehicles). It could also be related to the 24 

variability of the vehicle fleet (on-average 5% heavy vehicles but ranging from 0.3% to 12%) and to the various 25 

traffic conditions (from fluid with speeds up to 90 km/h to congested with stop-and-go traffic).  26 

Table 3 presents average EFs for heavy-duty and light duty traffics, their standard deviations and confidence 27 

intervals at 95%. 28 

3.2.1 EC/OC emissions 29 

The traffic-fleet EF for EC determined in this study (39 mg.veh-1.km-1) is slightly higher than the ones determined 30 

in tunnel studies in Austria, China, California, and near a heavily-trafficked highway in Switzerland (about 21 31 

mg.veh-1.km-1 for Handler et al., 2008; Hueglin et al., 2006; Cui et al., 2016; and 31 mg.veh-1.km-1 for Gillies et 32 

al., 2001), while it is similar to the one of a tunnel study in Portugal (39 mg.veh-1.km-1) (Alves et al., 2015). 33 

Conversely, the traffic-fleet EFs for OC in Austria and China (about 19 mg.veh-1.km-1) are similar to ours, while 34 

the ones for urban tunnels in Portugal (Alves et al., 2015) and U.S. (Gillies et al., 2001) are higher (39 mg.veh-35 
1.km-1 and 25 mg.veh-1.km-1 respectively). Different traffic fleet and traffic conditions may explain these small 36 

divergences. Part of the differences may also be due to the different measurement techniques used for the 37 

distinction between EC and OC. 38 
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The average light-duty traffic-fleet EF for EC is in excellent agreement with the EFs of Euro 3 and Euro 4 diesel 1 

vehicles obtained from chassis dynamometer measurements in our study for which the highest EFs were clearly 2 

observed when vehicles are cold (Figure 5a). Indeed, these two types of vehicles represented the largest proportion 3 

of passenger’s cars on the RN87 freeway in 2011 (Fallah Shorshani et al., 2015), as well as in the French national 4 

fleet. Similarly to results for diesel vehicles tested by Fujita et al. (2007) and Lough et al. (2007), EC has the 5 

highest emission factor in diesel exhaust. It also could be noted that the heavy-duty traffic-fleet EF for EC is about 6 

5-times higher than the one determined for light-duty traffic. 7 

The emissions of OC could not be discriminated between light-duty and heavy-duty traffic (coefficients not 8 

significantly different from zero). However, it can be observed that the traffic-fleet EF for OC is larger than could 9 

be expected from exhaust measurement of test vehicles (Table 4, Figure 5b). Note that traffic-fleet EFs for OC 10 

from other studies (Handler et al., 2008; Alves et al., 2015, Cui et al., 2016; He et al., 2008) are at least as high as 11 

ours, and the EFs for exhaust OC from Cheung et al. (2010) for Euro 4 diesel vehicles (with and without Diesel 12 

Particulate Filter) is similar to ours. There are many likely explanations for the traffic-fleet EF for OC being higher 13 

than expected: proportionally larger contribution of the heavy-duty traffic to OC than to the EC; contribution of 14 

non-exhaust emissions to the OC (e.g. tyres wear); contribution of high emitting vehicles; and rapid formation of 15 

secondary OC in the roadside atmosphere. Further studies are required to assess the respective importance of these 16 

processes. In particular, a better knowledge of particle size distribution of OC emitted by traffic might be useful. 17 

Average OC/EC ratios on increments in concentrations and emissions are respectively 0.33 and 0.44 (Table 5) that 18 

is in excellent agreement with observations in a roadway tunnel in Lisbon and with roadside enrichment of OC/EC 19 

in Birmingham, U.K. (Pio et al., 2011; Alves et al., 2016). Pio et al. concluded that OC/EC ratios of 0.3-0.4 20 

characterizes vehicle fuel combustion at their sites and similar conclusions could be made for Grenoble. However, 21 

the OC/EC ratio is expected to depend on vehicle fleet. Indeed, in the exhaust of test diesel vehicles without particle 22 

filters (Table 4), OC/EC ratios are lower than 0.4, while they are respectively 6.1 and 1.7 in the exhaust of Euro 2 23 

petrol vehicle (urban cold cycle) and Euro 4 petrol vehicle (road cycle) (no average OC/EC ratios has been 24 

determined for petrol vehicles because of many measurements below detection limit). Other recent chassis 25 

dynamometer measurements (Lough et al., 2007) showed that most OC/EC ratios are above 2 for petrol vehicles 26 

(except for two smoker vehicles) and below 0.5 for diesel vehicles (except idling conditions), with even lower 27 

ratios for older and heavier diesel vehicles. Because in 2011, diesel vehicles represented about 70% of total 28 

vehicles on the RN87 highway, the OC/EC ratio found in this study is lower than the ones of many other studies. 29 

For examples, OC/EC ratios from EFs or increments in concentrations were 0.90±0.21 in a tunnel in Austria 30 

(Handler et al., 2008); on average 0.52 for a traffic fleet with 40% diesel vehicles in Spain (Amato et al., 2011a) 31 

and 0.5 in Marseille where petrol two-wheelers are much more numerous (El Haddad et al., 2009). However, since 32 

the OC/EC ratio in the exhaust of the diesel vehicle equipped with particle filter was higher (0.7) possibly due to 33 

the more efficient trapping of EC than OC by the particle filter, one can expect that in the future the OC/EC ratio 34 

reflecting vehicle fuel combustion would increase with the progressive introduction of vehicles equipped with PF. 35 

3.2.2 Metals from brake wear emissions 36 

Fe presents by far the third highest traffic emission rate after those of EC and OC (6.7 mg.veh-1.km-1, Tables 2). 37 

Cu also shows a high emission factor from traffic (300 µg. veh-1.km-1 respectively). Similarly, major contributions 38 

of Fe and Cu to PM10 vehicular emissions were found in other locations (e.g. Kam et al., 2012; Harrison et al., 39 
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2012). The analysis of brake wear debris (Apeagyei et al., 2011 ; Sanders et al., 2003 ; Kukutschová et al., 2009 ; 1 

Hulskotte et al., 2014) and brake material (Gigoratos and Martin, 2015; Hulskotte et al., 2014) confirmed that Fe 2 

is the major element of brakes and that Cu is another important element. Indeed, maximum contents of 60% by 3 

mass for Fe (Gigoratos and Martin, 2015) and of 15% for Cu (Denier van der Gon et al., 2007) have been reported 4 

for brake lining materials. Fe, Cu, Zn, Sn would represent about 80-90% of metals presents in brake pads and Fe 5 

95% of metals in brake discs (Hulskotte et al., 2014)  6 

Our results can be compared with other European traffic EFs determined for PM10 species measured in roadside 7 

environments or tunnels, and with data derived from average brake wear composition (details in SI, section VIII). 8 

Most PM10-EFs are consistent with other roadside traffic fleet emissions (Johansson et al., 2009; Bukowiecki et 9 

al., 2009) and with data corresponding to braking emissions of 8 mg.veh-1.km-1 (Hulskotte et al. 2014), but larger 10 

than the estimations aimed to quantify brake wear only (Bukowiecki et al., 2009). Our traffic-fleet EF for Sb is 11 

much lower than similar EFs determined in other studies, while Ba emissions show large variability from a study 12 

to another. EFs related to brake wear component emissions are lower in tunnel environments (Handler et al., 2008; 13 

Alves et al., 2015), except for the oldest study (Gillies et al., 2001). This could be explained by less stop and go 14 

traffic in such environments. Indeed, interestingly, many EFs determined by Handler et al. (2008) are about half 15 

the ones found in this study. Even though this proportionality is not found for Ba, Sb and Ti, this supports that 16 

brake wear metal EFs are strongly related with braking strength. The low Sb emissions of our study may possibly 17 

be related to the introduction of Sb-free brake pads (von Uexküll et al., 2005; Apeagyei et al., 2011). 18 

EFs for brake wear metals (Cu, Fe, Sb and Sn) are 8 to 13 times higher for the heavy-duty traffic than for the light-19 

duty traffic (Table 3). The estimations from Bukowiecki et al. (2009) for brake wear only are much lower than 20 

ours but somewhat proportional (factors 4.6 to 6.8 for light-duty EFs and from 4.3 to 8.5 for the heavy-duty traffic 21 

– Sb excluded). This consistence between brake profiles suggests that brake compositions would be similar in 22 

different European countries. Traffic-fleet light-duty EFs for brake wear metals are much higher than the ones 23 

from chassis dynamometer exhaust measurements (this study: Table 4; Cheung et al., 2010), confirming the 24 

dominant contribution of braking for these elements.  25 

The sum of traffic-fleet EFs for metals related to brake wear (Ba, Cr, Cu, Fe, Mn, Sb, Sn, Ti - Table 2b) leads to a 26 

total of 7.3 mg/km that should be lower than the real emission factors for brake wear dusts since it only includes 27 

metals, and does not take into account of carbonaceous material and other unquantified compounds of brakes (S, 28 

Zn, Al, and Si, for the most important ones). Hulskotte et al. (2014) determined a brake profile from the analysis 29 

of 65 brake pads and 15 brake discs from 8 very common car brands in Europe. The consistence between with 30 

their data and ours suggests that brakes spent in France are quite similar to the ones spent in The Netherlands. 31 

Then, their average brake profile data are used to estimate the average emission factor for brake wear assuming 32 

that the total proportion of metals is kept, and, according to Hulskotte et al., that 70% of the wear arise from the 33 

disc. This latter assumption is supported by other researches (Sander et al., 2003; Varrica et al., 2013), even though 34 

the generation mechanisms of brake wear particles have not been fully understood yet (Grigoratos and Martini, 35 

2014). Since exhaust emissions (chassis dynamometer measurements or EFs from COPCETE inventory when 36 

available) represent less than 5% of total emissions for Cr, Cu, Fe, Mn, Sb, Sn, and Ti, traffic-fleet EFs for these 37 

elements are assumed to be entirely due to the emissions of brake wear dusts. So by adding to the sum of traffic-38 

fleet EFs for metals related to brake wear the portion that corresponds to the elements and compounds not 39 

quantified in this study (C, S, Zn, Al, Si, Zr, Mo, V, Ni, Bi, W, P, Pb, Co), the rough estimation of 9.2 mg/km for 40 
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emissions related to brake wear is got for the RN87 highway traffic. This estimation includes particles directly 1 

emitted during braking and those resuspended, and emissions from light and heavy-duty traffic. It should be 2 

highlighted that this EF for brake wear emissions is almost twice the particle emission standards for the exhausts 3 

of the most recent vehicles (Euro 5 and Euro 6 vehicles, 5 mg/km). 4 

According to inventories atmospheric copper is largely from brake wear. Indeed brake wear represents 50-75% of 5 

European Cu emissions (Denier Van der Gon et al., 2007) and 64% of French Cu emissions (CITEPA, 2018). 6 

Since Sb is another well-known constituent of brake with very few other atmospheric sources, Cu/Sb ratio was 7 

often considered as a candidate to trace brake wear emissions (Gietl et al., 2010; Pant and Harrison, 2013). Pant 8 

and Harrison (2013) reviewed Cu/Sb ratios in brake wear particles and found ratios from 1.3 to 9.1 that strongly 9 

depend on the PM size fraction. The estimation for the Cu/Sb ratio (11.7±5.1 for incremental PM10) is close to the 10 

ones for PM10 elemental concentrations in other European locations including London, U.K. (on average 9.1, Gietl 11 

et al., 2010), Barcelona, Spain (7.0-7.9, Amato et al., 2011a); Bern and Zurich, Switzerland (respectively 13.2 and 12 

8.5, Hueglin et al., 2005) and in road dust below 10 µm collected in Barcelona, Zürich and Girona (respectively 13 

6.8±0.9, 13.5±6.1, 17.0±8.9, Amato et al., 2011). However, lower PM10 Cu/Sb ratio are found for other European 14 

traffic sites, in Sweden (4.6±2.3, Sternbeck et al., 2002 and 3.8, Johansson et al., 2009); in Portugal (about 2, Alves 15 

et al., 2015) and in Vienna, Austria (1.6, Handler et al., 2008). To complicate the matter further, published data 16 

from the analysis of brake pads and discs are even more scattered, roughly from 1.3 to 2000 (Adachi et al., 2004; 17 

Canepari et al., 2008; Ijima et al., 2007), and often different than the chemical composition of brake wear particles 18 

(Grigoratos and Martini, 2015). The poorer relationship between Cu and Sb (Pearson r2= 0.4) than those observed 19 

between Sn, Cu and Fe (Pearson r2>0.8) and the lower EF for Sb of this study than observations at other sites may 20 

be explained by the introduction of Sb-free brake pads. Thus, while the occurrence of Sb may be largely explained 21 

by braking activities, the use of a typical factor for braking activities using Sb seems to be less obvious. 22 

The very strong linear relationships found between Fe, Cu, Mn and Sn with no significant intercept (virtually equal 23 

to zero) suggests that ratios including these compounds also worth attention. Even though Fe is much less specific 24 

of brake wear emissions than Cu or Sb, Hulskotte et al. (2014) observed a stable Cu/Fe ratio of about 4 % in 25 

different European kerbside locations (The Netherlands: Boogaard et al., 2011; England: Gietl et al., 2010; 26 

Switzerland: Hueglin et al., 2005). They concluded that brake wear is probably the single source of both copper 27 

and iron in urban aerosols. The review of other recent studies leads to similar conclusions. Pio et al. (2013) 28 

determined an average Fe/Cu ratio of 21 (and then, Cu/Fe = 0.048) from tunnel and busy roads measurements in 29 

Portugal. Cu/Fe ratios at two traffic sites in Barcelona ranged from 0.034 to 0.058 (Amato et al., 2011a). Except 30 

for the site of Weerdsingel in Utrecht, Cu/Fe ratios calculated from average PM10 elemental concentrations 31 

measured at 8 street locations in The Netherlands also ranged from 0.039 to 0.048 (Boogaard et al., 2015). Only 32 

Alves et al. (2015) found a much higher Cu/Fe ratio in PM10 collected in a tunnel in Portugal mainly due to a very 33 

low EF for Cu compared to other studies. The Cu/Fe ratio determined in our study for light-duty traffic 34 

(0.041±0.010) is very similar to the ones found in the majority of these European roadside sites (Table 5), while 35 

the ratio determined for the heavy-duty traffic (0.070±0.017) is slightly larger due to proportionally higher 36 

emissions of Cu. Again, this suggests that brake materials used in different European countries are very similar 37 

and that the Cu/Fe ratio could be used as an indication of brake wear emissions. 38 

Ratios with Mn and Sn are more rarely discussed in the literature, and published information is scarce. Cu/Sn ratios 39 

of 6.2 and 4.3 can be calculated from data published by Handler et al. (2008) and Johansson et al. (2009), 40 
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respectively.  Amato et al. (2011a) found Cu/Sn ratio that ranged from 4.7 to 4.8 and did not estimate ratios with 1 

Mn because of the possible influence of a local steel source. Cu/Mn ratios of 3.7; 4.9 and 3.0 (Bern) and 4.4 2 

(Zurich) are respectively calculated from the studies of Handler et al. (2008), Johansson et al. (2009), and Hueglin 3 

et al. (2005). All these ratios are close to the ones of this study (Cu/Sn=4.1±1.0; Cu/Mn=3.6±1.6, Table 5), showing 4 

that they are possible other candidates to trace brake wear emissions. Cu/Sn would be the strongest candidate since 5 

the relation between these 2 elements is closer (r2=0.84 for Cu/Sn vs. r2=0.47 for Cu/Mn, see SI). 6 

3.2.3 Emissions of organic markers of diesel exhaust and lubricating oil 7 

As previously observed (Schauer et al., 2002; Perrone et al., 2014; El Haddad et al., 2009), n-alkanes are abundant 8 

organic compounds of total quantified organic compounds emitted by vehicles on road.  9 

In agreement with other chassis dynamometer measurements (Rogge et al.; 1993a; Cheung et al., 2010; Perrone et 10 

al., 2014; Cui et al., 2017), the most important n-alkanes in diesel exhaust emissions are C19 to C26, while, most 11 

emissions were below detection limit for the two petrol vehicles (Table 4). Schauer et al. (2002) showed that n-12 

alkanes are present in particulate exhaust emissions of non-catalyst equipped petrol vehicles, but they are almost 13 

absent in the exhaust of catalyst-equipped petrol motor vehicles. In 2011 virtually all petrol vehicles were catalyst-14 

equipped (Fallah Shorshani et al., 2015). C19-C26 n-alkanes are also the most important in roadside increments 15 

in concentration and as a further indication of road traffic contribution, the Carbon Preference Index (CPI, for 16 

calculation see SI section VI) is very close to unity (0.99) indicating equal distribution between odd and even 17 

carbon number typical of anthropogenic emissions (Harrad et al., 2003; Cincinelli et al., 2007; Kam et al., 2012; 18 

Alves et al., 2016). Light-duty traffic-EFs for C23 and C24 are in agreement with the ones of the Euro 3 diesel 19 

vehicle from chassis dynamometer measurements (upper range) and with the ones determined by Perrone et al. 20 

(2014) for Euro 3 diesel vehicles (C23: 16.3 µg/km ; C24: 12.7 µg/km). Good agreements are also found for C25 21 

and C26. However, the traffic-EFs determined by Perrone et al. for C21 is half the one of this study, the one for 22 

C20 is 1/5 of the one of this study. All EFs determined by Perrone et al. for Euro 4 diesel vehicles are larger the 23 

ones of the Euro 4 diesel vehicle of this study, but of similar size of magnitude. 24 

The relative contributions of the n-alkane series in diesel exhaust show Gaussian-like shapes peaking between C20 25 

and C22 (Rogge et al.,1993a; Morawska and Zhang, 2002; El Haddad et al.,2009; Cheung et al., 2010; Fujitani et 26 

al., 2012; Perrone et al., 2014; Cui et al., 2017). In this study, the dominant alkanes are C21 in the exhaust of test 27 

diesel vehicles and C22 in traffic RN87 emissions (Figure 6). Fujitani et al. (2012) showed that shifts from C20 to 28 

C22 and differences between real-atmosphere measurements and exhaust measurements are entirely explained by 29 

gas-to-particle partitioning at different dilution ratios (dominant n-alkanes were C20 and C22 at dilution ratios of 30 

14 and 238 respectively). Accordingly, in this study, C21 is the dominant n-alkane at diesel exhaust dilution ratios 31 

of about 80; and a shift toward a heavier n-alkane has been observed in the roadside atmosphere. N-alkanes 32 

normalized by OC (µg/g) (Figure 6) show values for Euro 3 and Euro 4 diesel emissions and RN87 traffic 33 

emissions that are about half of the values measured in a tunnel in Marseille (El Haddad et al., 2009). Much higher 34 

values are found with the vehicle retrofitted with PF (Figure 6). These high values are due to very low OC 35 

emissions by the vehicle equipped with PF and clearly show less effective reduction of n-alkanes than total OC. 36 

Because of their semi-volatile nature, n-alkanes may pass the particle filter in their gaseous phase at higher 37 

temperatures. While the n-alkanes series from C19 to C26 peaking around C20-C22 seems to be characteristics of 38 

diesel emissions, increase of the n-alkane/OC values could be expected for the future. 39 
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Low molecular weight PAH’s (An, Fla, Pyr) are frequently associated with particulate diesel exhaust emissions 1 

(e.g. Kleeman et al., 2008; Keyte et al., 2016). Accordingly, both chassis dynamometer and in-situ measurements 2 

indicate that diesel vehicles is a major source of these chemical species. Indeed, they are almost absent in petrol 3 

exhaust emissions and are strongly related to RN87 traffic emissions. EFs for PAHs determined for the heavy-4 

duty traffic are much higher than the ones determined for light-duty traffic: from 6-times higher for Fla, up to 20-5 

times higher for Pyr (Table 3). High emissions of Pyr by heavy-duty vehicles have already been observed anywhere 6 

else (Liacos et al., 2012; Cui et al., 2017). While the comparison between EFs determined during different 7 

conditions is not straightforward in absence of gas phase measurements due to the high vapour pressure of the 8 

lowest molecular weight organics (Fujitani et al., 2012; Polo Rehn, 2013), quite good agreements are found 9 

between chassis dynamometer measurements and traffic-EFs; and with data from other studies. Indeed, again the 10 

light-duty traffic-EFs for Fla and Pyr are quite consistent with the ones of the diesel Euro 3 measured with chassis 11 

dynamometer. The light-duty traffic-EF for An is proportionally lower, somewhere between the ones of test Euro 12 

3 and Euro 4 vehicles. The average EF for Pyr for the Euro 3 diesel vehicle of this study (Table 4) is close to the 13 

ones of Perrone et al. (2014) for Euro 3 diesel vehicles (740±300 ng/km for passenger cars and 1810±570 ng/km 14 

for commercial utility vehicles). Traffic EFs for Fla and Pyr are also in good agreement with average EFs in a 15 

tunnel in China (40-50 km.h-1/784-2776 veh.h-1/18.4-35.1% HDV, He et al., 2008). These satisfying agreements 16 

suggest that EFs determined in this research may be quite well representative of in-use vehicles. However, gas-17 

particle partitioning and photochemical degradation processes may make difficult the use of quantitative data for 18 

these markers, as already observed (Zhang et al., 2005; Phuleria et al., 2007; Katsoyiannis et al., 2011; Tobiszewski 19 

and Namieśnik, 2012). 20 

In agreement with previous observations (Phuleria et al., 2006 and 2007; He et al., 2008; El Haddad et al., 2009; 21 

Alves et al., 2016; Pant et al., 2017), 17α,21β-norhopane and 17α,21β-hopane are the two dominant hopanes 22 

associated with traffic emissions. Very few traffic-EFs are available for hopanes in the recent literature and most 23 

data available from recent studies are related to fuel consumption (e.g. Phuleria et al., 2006 and 2007). Traffic 24 

hopane EFs of this study are much lower than those computed for tunnels in China (He et al. 2008; Cui et al. 2016). 25 

In order to compare with European tunnel data, traffic-EFs are normalized by OC emissions. The normalized 26 

abundance of 17α,21β-norhopane (246 µg per g of OC) is similar to the one for a tunnel in Lisbon (Alves et al., 27 

2016) but almost half the ones for tunnels in Marseille and Birmingham (El Haddad et al., 2009; Pant et al., 2017). 28 

Conversely, the value for 17α,21β-hopane (301 µg per g of OC) is very close to the ones found in tunnels in 29 

Birmingham and Marseille but twice the one for the tunnel in Lisbon. These divergences and the quantification of 30 

heavy-duty traffic emissions require further work in order to be able to define specific EFs and normalized 31 

abundances for hopanes. 32 

 33 

3.2.4 Other non-exhaust emissions 34 

The average traffic-fleet EFs for Ca2+ is the fifth highest traffic-fleet emission factor after EC, OC, Fe and NO3
-. 35 

While the emissions of Ca2+ could not be discriminated between light-duty and heavy-duty traffics 36 

(autocorrelation), this much larger emission factor than the ones measured in the exhaust of diesel vehicles is in 37 

agreement with its origin. If Ca2+ mainly comes from road dust resuspension, it does not only depend on the 38 

intensity of traffic but also on the amounts of calcium deposited on the road (silt loading). Bukowiecki et al. (2009) 39 

used the mass concentration measured 1-hour earlier in order to empirically account for the observed 40 
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autocorrelation behaviour in the calcium time series due to the accumulation of resuspended dust. The time series 1 

resolution of 4 hours for collected particles in this study does not allow such calculations. Note that contrary to 2 

Bukowiecki et al., most other trace elements that could be regressed in this study do not have the same behaviour 3 

as Ca2+. This could be explained by the removal of road dusts thanks to frequent rain events before and during the 4 

sampling period. 5 

Since EU tyres contain about 1% zinc oxide (Pant and Harrison, 2013) and Zn is the most abundant metallic 6 

element in tyres commercialized in the U.S. (Apeagyei et al., 2011), Zn is often proposed as a key tracer of tyre 7 

wear emissions. In this study, similarly to other works (Boogaard et al., 2011; Amato et al., 2011), Zn 8 

concentrations did not show any roadside increment. This suggests the prevalence of other sources of Zn in the 9 

Grenoble-Alpes conurbation, as well as in other urban environments. Further research are needed to determine 10 

proper tracers of tyre wear emissions. 11 

4. Conclusions 12 

Thanks to a very large comprehensive dataset of particulate species collected from a simultaneous near-road and 13 

urban background measurement field campaign and chassis dynamometer experiments of a few in-use passenger 14 

cars, this study was able to determine emission factors for many particulate species from road traffic and to identify 15 

and quantify tracers of exhaust and non-exhaust vehicular emissions that could be used in source apportionment 16 

studies. Near-road measurements are made near a freeway with various driving conditions from free-flowing to 17 

stop-and-go traffic, including frequent and severe braking events during periods of congestion (morning and 18 

afternoon commuting times of workdays).  19 

EC has the highest traffic emission factors and is strongly associated with diesel traffic. The emission factor for 20 

EC for the light-duty traffic is similar to the ones of passenger diesel cars without particle filters. EC emissions 21 

from heavy-duty vehicles are estimated to be 5 times higher than those for light duty vehicles. The traffic-fleet EF 22 

for OC is slightly larger than those deduced from exhaust measurement of test vehicles. This later observation 23 

would require further investigations in order to delineate the several possible causes for such observation. The 24 

determination of the particle size distribution of OC could improve knowledge of the organic emissions of traffic. 25 

In this environment dominated by the diesel traffic, the OC/EC ratio is below 0.4 (increments in concentration or 26 

emissions), as it is in diesel exhaust emissions. However, this ratio depends on the traffic fleet and then may change 27 

in the future with the progressive introduction of vehicles retrofitted with particle filter. 28 

Results showed the important contribution of metals from brake wear to particulate vehicular emissions. In 29 

particular, Fe has the third higher traffic emission factor after EC and OC. Total brake wear emissions are estimated 30 

for the RN87 highway, they are on average almost twice the particle emission standards for the exhausts of newer 31 

vehicles (from Euro 5). We have shown that Cu is another important contributor to PM10 from traffic and it could 32 

be an excellent tracer of brake wear emissions in most environments. Even though they are less specific than Cu, 33 

other metals such as Fe and Sn may be used to trace brake wear emissions through typical ratios. In particular, 34 

ratios Cu/Fe of about 0.041 for light-duty traffic may possibly be the best option for estimating the brake wear 35 

emissions due to the traffic of European passenger cars. Cu/Fe ratios in agreement with literature values for other 36 

kerbside sites, while Cu/Fe ratios may be different for urban background or rural sites (e.g. Hueglin et al., 2005; 37 

this study: Les Frênes’ data), suggest similar brake composition for these elements throughout Europe (as long as 38 

Cu-free brakes do not increase in use). Our measurements support more the use of Cu/Sn than that of Cu/Mn and 39 
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Cu/Sb as tracers of brake wear emissions possibly due to an additional source of Mn and the introduction of Sb-1 

free brake pads. Similarly to OC, the determination of the particle size distribution of metals may possibly improve 2 

the discrimination between influential sources in urban areas. 3 

Particulate organic emission data for European motor vehicles is scarce. In this study, a few PAHs, n-alkanes and 4 

hopanes have been identified as organic molecular markers of fresh diesel traffic emissions and their emission 5 

factors have been quantified. In agreement with previous works, low molecular weight PAHs (mainly An, Fla, 6 

Pyr) are associated with diesel exhaust emissions. Pyrene and Fluoranthene are the ones the most strongly 7 

associated with fresh diesel exhaust emissions. Pyrene is more largely emitted by the heavy-duty traffic. Similarly 8 

to PAHs, n-alkanes from C19 to C26 are also associated with diesel vehicles, even though the determination of 9 

the concentration of the dominant alkanes (from C20 to C23) strongly depends on measurement conditions. While 10 

the comparison with other recent studies can be difficult in the absence of gas quantification for in situ 11 

measurements, a quite good agreement is found for most organics between chassis dynamometer and near-road 12 

measurements and between this study and other recent studies. However, the change of the gas-particle partitioning 13 

of low molecular PAHs and n-alkanes according to ambient temperature and dilution factors, and their possible 14 

short-term photochemical degradation may compromise their use as quantitative markers of fuel combustion. 15 

Hopanes are markers of lubricating oil in the emissions of high-emitting vehicles (Rogge et al. 1993a; Zielinska 16 

et al., 2004). In this study two hopanes (17α,21β-norhopane and 17α,21β-hopane) have been clearly associated 17 

with the traffic and more closely related to the heavy-duty traffic. However the quantification of ratios hopanes to 18 

OC showed divergences with other studies that require a better understanding. 19 

This study determines many quantitative data of traffic exhaust and non-exhaust emissions that could help in a 20 

better definition of traffic emissions in source apportionment studies. 21 
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 1 

Tables and figures 2 

Pollutant NT NUB 

Median 

increment 

(%) 

Sign 

test 

p 

value 

Rank 

Wilcoxon 

test p 

value 

R with 

total 

traffic 

R with 

HDV 

 

R with 

NOx 

 

R with 

EC 
Remarks 

OC 57 57 22.7 0.000 0.000 0.00 0.16 0.37** 0.38**  

EC 57 57 67.8 0.000 0.000 0.50** 0.89** 0.89** ----- R(Cu/EC)=0.83** 

NOx 55 55 73.9 0.000 0.000 0.49** 0.71** ----- 0.89**  

PM10 55 55 18.7 0.000 0.000 0.33* 0.33* 0.55** 0.65**  

PM2.5 48 48 21.3 0.000 0.000 0.38** 0.31* 0.62** 0.74**  

PMcoarse 48 48 8.2 0.041 0.115 0.27 0.29 0.26 0.24  

NO3
- 48 48 28.4 0.000 0.000 0.18 0.27 0.23 0.21  

Ca2+ 57 26 34.2 0.011 0.005 0.42** 0.63** 0.56** 0.44** R(Ca/Cu)=0.64** 

Na+ 57 26 33.2 0.001 0.003 0.14 0.30* 0.19 0.04  

Mg2+ 48 48 43.1 0.000 0.000 0.24 0.29* 0.17 0.33* R(Mg2+/NO3-)=0.63**; 

R(Mg2+/Ti)=0.57** 

Ba 57 26 37.2 0.035 0.013 0.49** 0.26 0.25 0.35** 
R(Ba/Cu)=0.57**; 

R(Ba/Sn)=0.74**; 

R(Ba/Fe)=0.71** 

Co 57 26 35.6 0.003 0.000 0.15 0.07 0.00 0.04 
R(Co/SO42-)=0.46**; 

R(Co/oxalates)=0.51**; 

R(Co/NH4+)=0.41** 

Cr 57 26 86.2$ 0.000 0.000 0.03 0.25 0.31* 0.40** R(Cr/Mn=0.52**); 

R(Cr/Fe)=0.45** 

Cu 57 26 68.9 0.000 0.000 0.67** 0.64** 0.79** 0.83** 

R(Cu/Sn)=0.95**; 

R(Cu/Sb)=0.79**; 

R(Cu/Ti)=0.68**; R(Cu-An,Fla,Py, 

H3, H4)>0.5** 

Fe 57 26 84.1 0.000 0.000 0.68** 0.60** 0.67** 0.74** R(Cu/Fe)=0.86**; 

R(Fe/Sn)=0.92** 

Mn 57 26 59.6 0.000 0.000 0.48** 0.66** 0.78** 0.77**  

Sb 57 26 63.3 0.000 0.000 0.44** 0.61** 0.71** 0.62** R(Sb/Sn)=0.81** 

Sn 57 26 54.1 0.000 0.000 0.71** 0.70** 0.77** 0.79**  

Sr 57 26 89.2$ 0.000 0.000 0.34** 0.41** 0.31* 0.28*  

Ti 57 26 60.8 0.003 0.001 0.58** 0.59** 0.44** 0.45** R(Ti/Al)=0.42** 

Table 1a: Median increments to concentrations measured near the RN87 highway in comparison to those measured in the urban 

background site (given in % of total concentrations) for species for which concentrations are significantly higher at the near-

traffic site according to Sign and Rank Wilcoxon tests (p<0.05). PMcoarse (difference between PM10 and PM2.5) is also included 

in this table. R are Spearman correlation coefficients with traffic, heavy-duty traffic (HDV), nitrogen oxides (NOx), and 

elemental carbon (EC). NT: number of samples collected at the traffic site (Echirolles), NUB : number of samples collected at 

the urban background site (Les Frênes site). $: concentrations at Les Frênes are most of the time below detection limit. * mean 

statistically significant at the 95% level, ** at the 99% level. Species significantly correlated with traffic indicators and for 

which local traffic contributions are above 50% are highlighted. 
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Pollutant NT NUB 

Median 

increment 

(%) 

Sign 

test 

p 

value 

Rank 

Wilcoxon 

test p 

value 

R with 

total 

traffic 

R with 

HDV 

R with 

NOx 

R with 

EC 
Remarks 

Phe (phenanthrene) 56 40 43.8 0.000 0.000 0.17 0.17 0.25 0.32*  

An (anthracene) 56 40 55.0 0.000 0.000 0.34* 0.39** 0.48** 0.51**  

Fla (fluoranthene) 56 40 70.3 0.000 0.000 0.38** 0.43** 0.51** 0.54**  

Pyr (pyrene) 56 40 81.3 0.000 0.000 0.40** 0.46** 0.50** 0.51**  

BaA 

(benzo(a)anthracene) 
56 40 55.3 0.000 0.000 0.16 0.23 0.29* 0.39** 

correlation with 

Levoglucosan : 

0.75** 

C17 (heptadecane) 56 40 78.7 0.005 0.001 -0.03 0.09 0.21 0.24  

C18 (octadecane) 56 40 39.6 0.010 0.004 0.14 0.22 0.36** 0.43**  

C19 (nonadecane) 56 40 83.1 0.000 0.000 0.23 0.29* 0.39** 0.39**  

C20 (icosane) 56 40 70.0 0.000 0.000 0.24 0.39** 0.50** 0.42**  

C21 (henicosane) 56 40 89.0 0.000 0.000 0.21 0.33* 0.46** 0.41**  

C22 (docosane) 56 40 79.3 0.000 0.000 0.27* 0.41** 0.52** 0.43**  

C23 (tricosane) 56 40 66.6 0.000 0.000 0.31* 0.40** 0.61** 0.59**  

C24 (tetracosane) 56 40 68.3 0.000 0.000 0.26 0.35* 0.50** 0.63**  

C25 (pentacosane) 56 40 48.2 0.000 0.000 0.24 0.29* 0.55** 0.61**  

C26 (hexacosane) 56 40 70.3 0.000 0.000 0.22 0.36** 0.62** 0.63**  

C27 (heptacosane) 56 40 36.4 0.000 0.000 0.17 0.18 0.36** 0.44**  

C28 (octacosane) 56 40 57.4 0.026 0.000 -0.15 -0.01 0.19 0.22 
correlation with 

Levoglucosan : 

0.55** 

C29 (nonacosane) 56 40 32.0 0.006 0.000 0.15 0.16 0.24 0.26 
correlation with 

Levoglucosan : 

0.39** 

C30 (triacontane) 56 40 54.7 0.002 0.000 0.03 0.16 0.33* 0.38** 
correlation with 

Levoglucosan : 

0.51** 

C31 (hentriacontane) 56 40 20.4 0.007 0.003 0.14 0.21 0.35* 0.41** 
correlation with 

Levoglucosan : 

0.48** 

C32 (dotriacontane) 56 40 63.4 0.004 0.002 -0.18 -0.06 0.13 0.21 
correlation with 

Levoglucosan : 

0.47** 

C33 (tritriacontane) 56 40 34.4 0.030 0.008 -0.03 0.07 0.23 0.32* 
correlation with 

Levoglucosan : 

0.47** 

H3 

(17α21βNorhopane) 
56 40 97.4$ 0.000 0.000 0.29* 0.46** 0.67** 0.67**  

H4 (17α21βhopane) 56 40 97.8$ 0.000 0.000 0.22 0.37** 0.59** 0.61**  

Table 1b: Median increments to concentrations measured near the RN87 highway in comparison to the urban background site 

(given in % of total concentrations at the traffic site) for organic species for which concentrations are significantly higher at 

the traffic site according to Sign and Rank Wilcoxon tests (p<0.05). R are Spearman correlation coefficients with traffic, heavy-

duty traffic (HDV), nitrogen oxides (NOx), and elemental carbon (EC). NT: number of samples collected at the traffic site 

(Echirolles), NUB: number of samples collected at the urban background site (Les Frênes site). $: concentrations at Les Frênes 

are most of the time below detection limit. * means statistically significant at the 95% level, ** at the 99% level.  Species 

significantly correlated with traffic indicators and for which local traffic contributions are above 50% are highlighted.
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EFs OC EC NO3- Na+ Mg2+ Ca2+ 
median 16.8 39.0 1.82 0.176 0.061 1.62 

IQR 8.4-27.8 35.5-45.5 0.45-2.6 0.104-0.394 0.044-0.106 0.80-2.27 
Table 2a: Median emission factors for OC, EC and major ions significantly related to traffic and Interquartile 

Range (IQR: 25th and 75th percentiles) in mg.veh-1.km-1 

 

EFs Ba Cr Cu Fe Mn Sb Sn Sr Ti 
median 66 43 300 6711 62 27 55 11 28 

IQR 20-136 38-75 228-450 4527-9302 51-72 19-39 40-81 8-16 22-40 
Table 2b: Median emission factors for elements significantly related to traffic and Interquartile Range (IQR: 25th 

and 75th percentiles) in µg.veh-1.km-1 

 

EFs Phe An Fla Pyr H3 H4 
median 0.716 0.054 1.69 2.54 3.46 4.34 

IQR 0.346-1.15 0.033-0.085 1.14-2.37 1.78-3.28 1.99-6.90 2.67-6.89 
Table 2c: Median emission factors for PAHs significantly related to traffic and 17α21βNorhopane (H3), 

17α21βhopane (H4) and their Interquartile Range (IQR: 25th and 75th percentiles) in µg.veh-1.km-1 

 

EFs C19 C20 C21 C22 C23 C24 C25 C26 
median 3.6 9.5 30.3 42.5 48.0 39.9 19.8 12.7 

IQR 2.0-8.3 5.2-18.9 19.9-62.4 29.8-81.4 30.6-70.3 26.1-52.5 12.5-34.2 9.3-21.9 
Table 2d: Median emission factors for n-alkanes significantly related to traffic and Interquartile Range (IQR: 25th 

and 75th percentiles) in µg.veh-1.km-1 

  



29 
 

 

 

 Unit r2 
HDV LDV 

Coeff. SD p conf.inter. 95% Coeff. SD p conf.inter.  95% 

EC mg.veh-1.km-1 0.92 148.4 22.7 0.000 102.9 193.9 30.2 1.9 0.000 26.4 34.0 

Cu µg.veh-1.km-1 0.73 3371 990 0.003 1312 5430 258 104 0.021 42 474 

Fe mg.veh-1.km-1 0.81 48.0 19.1 0.023 7.5 88.5 6.3 1.7 0.002 2.7 9.8 

Sb µg.veh-1.km-1 0.77 246 72 0.003 96 395 20.1 6.9 0.006 5.6 34.5 

Sn µg.veh-1.km-1 0.82 512 149 0.003 198 825 54 15 0.002 23 85 

Pyr µg.veh-1.km-1 0.60 28.4 6.3 0.000 15.6 41.1 1.459 0.658 0.034 0.121 2.798 

An µg.veh-1.km-1 0.55 0.435 0.128 0.002 0.174 0.697 0.0352 0.0131 0.011 0.0086 0.0618 

Fla µg.veh-1.km-1 0.58 7.38 3.38 0.037 0.49 14.27 1.254 0.305 0.000 0.632 1.875 

C23 µg.veh-1.km-1 0.66 277.8 70.6 0.000 133.8 421.7 23.9 6.3 0.001 11.1 36.8 

C24 µg.veh-1.km-1 0.62 163.9 54.0 0.005 53.7 274.1 19.2 4.8 0.000 9.3 29.0 

Table 3: Results of the Multiple Linear Regressions with the heavy-duty traffic (HDV) and the light duty traffic 

(LDV): square correlation coefficients, unstandardized coefficients with standard deviations for HDV and LDV, 

p-values and confidence intervals at 95%. 
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 Unit E3D E4D E2P E4P E4D+PF 

median IQR median IQR median IQR median IQR median IQR 

EC mg/km 31.6 29.7-41.2 27.1 15.8-37.4 <QL <QL 0.06 0-0.06 0.37 0.12-0.44 

OC mg/km 10.7 7.3-14.4 5.6 3.3-6.0 0.3 0.2-0.4 <QL <QL 0.14 0.07-0.18 

OC/EC - 0.29 0.24-0.33 0.16 0.12-0.19 und. und. und. und. 0.61 0.40-1.94 

Ba µg/km 25.0 17.7-48.9 27.3 13.6-30.3 3. 6 2.8-5.0 - - 0 0-0.2 

Co µg/km <DL <DL <DL <DL <DL <DL - - <DL <DL 

Cr µg/km 0.92 0.46-5.7 2.7 1.3-2.9 0.91 0.75-1.1 - - 0.16 0.08-0.27 

Cu µg/km 9.2 5.2-12.9 1.1 0.56-2.4 0.40 0.33-0.79 - - 0.14 0.10-0.29 

Fe µg/km 84 48-213 51 25-98 22 20-27 - - 0.93 0.47-2.5 

Mn µg/km 0.56 0.49-4.3 4.2 2.4-4.3 0.42 0.13-0.81 - - 0.07 0.03-0.09 

Sb µg/km <DL <DL <DL <DL <DL <DL - - <DL <DL 

Sn µg/km 0.92 0.46-5.4 2.25 1.1-2.6 0.06 0-0.14 - - 0.06 0.03-0.08 

Sr µg/km 0.67 0.48-1.0 0.68 0.60-1.5 0.15 0.10-0.31 - - 0.02 0.01-0.04 

Ti µg/km 8.3 7.4-10.7 15.6 12.0-28.1 2.8 1.5-4.4 - - <DL 0-0.1 

Ca2+ µg/km <DL 0-109 39 0-52 <DL <DL <DL <DL 1.2 1.0-2.8 

Na+ µg/km <DL 0-89 <DL 0-60 3.6 2.7-6.0 <DL <DL 1.5 0.34-6.8 

NO3
- µg/km 226 113-267 56.5 32-352 1.7 1.3-2.3 <DL <DL 35 26-49 

Phe µg/km 3.53 3.36-4.33 0.125 0-0.356 <QL 0-0.005 <QL <QL <QL 0-0.001 

An µg/km 0.091 0.07-0.11 0.013 0.01-0.02 <QL <QL <QL <QL 0.015 0-0.015 

Fla µg/km 0.956 0.37-1.27 0.072 0.05-0.11 <QL <QL 0.001 0-0.002 <QL <QL 

Pyr µg/km 1.066 0.26-1.3 0.110 0.03-0.19 <QL <QL 0.003 0-0.003 <QL 0-0.001 

C19 µg/km 17.4 11.5-22.3 4.66 3.05-5.66 0.15 0-0.16 <QL <QL 0.92 0-2.20 

C20 µg/km 25.4 14.3-29.7 5.10 3.36-6.36 <QL 0-0.27 <QL <QL 2.78 0.36-3.25 

C21 µg/km 31.5 17.1-35.1 5.84 3.65-7.65 <QL 0-1.08 <QL <QL 2.76 1.22-4.50 

C22 µg/km 22.1 13.0-25.8 4.94 2.90-6.39 <QL <QL <QL <QL 2.20 0-2.44 

C23 µg/km 16.8 9.43-21.3 4.18 2.23-5.86 <QL 0-0.85 <QL 0-0.04 1.11 0-1.82 

C24 µg/km 11.1 6.19-15.1 3.51 1.70-4.69 0.13 0-0.31 <QL <QL 0.22 0-0.70 

C25 µg/km 6.12 3.00-8.39 1.94 1.02-2.87 0.07 0-0.53 0.02 0.01-0.02 <QL <QL 

C26 µg/km 3.57 1.91-3.85 1.23 0.76-1.56 <QL 0-0.05 <QL 0-0.01 <QL <QL 

Table 4: Average emissions factors (median and IQR: interquartile range) determined by chassis dynamometer measurements 

for different types of passenger cars: Euro 3 diesel (E3D), Euro 4 diesel (E4D), Euro 2 Petrol (E2P), Euro 4 Petrol (E4P) and 

Euro 4 diesel equipped with particle filter (E4D+PF) using urban, urban cold, road real-driving cycles. Und: undetermined. 
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Ratios on Cu/Sb Cu/Fe Cu/Sn Cu/Mn OC/EC 

Roadside 

concentrations 
10.4 ±4.5 0.045 ±0.015 4.7 ±1.0 3.6 ±1.6 1.00 ±0.49 

Incremental 

concentrations 
11.7 ±5.1 0.043 ±0.015 5.4 ±1.8 6.4 ±5.9 0.33 ±0.22 

LDV Emission 

factors 
12.8 ±5.2$ 0.041 ±0.010$ 4.8 ±1.1$ und. und. 

HDV Emission 

factors 
13.7 ±4.3$ 0.070 ±0.017$ 6.6 ±1.1$ und. und. 

Traffic emission 

factors 
12.6 ±4.7 0.046 ±0.015 5.6 ±1.8 5.7 ±2.9 0.44 ±0.32 

Table 5: Ratios for road-side, incremental (road-side minus urban background) concentrations, and RN87-traffic emission 
factors, with standard deviations. $: using Taylor expansion for approx.: 𝑣𝑣𝑣𝑣𝑣𝑣 �𝑥𝑥

𝑦𝑦
� = 1

µ𝑦𝑦2
𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) + µ𝑥𝑥2

µ𝑦𝑦4
𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦) − 2 µ𝑥𝑥

µ𝑥𝑥3
𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) 
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(a)  
Figure 1: (a) Location of sampling sites in Grenoble-Alpes conurbation: the roadside site (Echirolles) and the urban background 
site (Les Frênes). (b) Echirolles sampling site: sampling and measurement devices are around the B point; the traffic 
electromagnetic loop monitoring are beneath the road (on the AB line), on the left, the cameras linked to automatic license 
plate recognition code are located on overhead gantries. 
 
 
 
 
 
 
 

 
Figure 2: Median concentrations measured at the roadside site (Echirolles) and urban background site (Les Frênes) and 
comparison with respective median TEOM-FDMS PM10 concentrations. OM is computed using the factor 1.8 estimated for 
Grenoble city (Favez et al., 2010).  
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a 

 

b 

 
c 

 

d
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f 

 
Figure 3: 4-hour concentrations measured at the traffic site: a: iron and copper; b: sulfate and organic carbon; c: chromium and 

titanium; d: calcium and strontium; e: fluoranthene, pyrene and anthracene; f: pyrene, benzo(a)anthracene and levoglucosan. 
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Figure 4 : Scatterplots and linear relationships for a few species : a : iron vs. copper ; b : manganese vs. copper ; c : tin vs. 

copper ; d : antimony vs. copper ; e : manganese vs. iron ; f : anthracene vs. Pyrene ; g : fluoranthene vs. Pyrene ; h : 

benzo(a)anthracene vs. pyrene
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a  b  
Figure 5: Emission factors for EC (a) and OC (b) for the mixed traffic fleet and the light duty traffic of the RN87/E712 freeway and from 
the chassis dynamometer measurements of exhaust emissions of EURO 3 and EURO 4 vehicles for respectively urban cold (UC), urban hot 
(UH) and road (R) driving cycles. The emission factor for OC for the LD traffic fleet could not be determined and no data available for the 
hot driving conditions for the Euro 4 diesel vehicles. 10 
 
 
 
 
 15 

  
Figure 6: n-alkanes emissions normalized by OC emissions at the traffic site (RN87/E712) and from the exhaust of a Diesel Euro 3 vehicle 

(E3D), a Diesel Euro 4 vehicle (E4D), a Diesel Euro 4 vehicle equipped with a particle filter (E4D+PF) (on the left only) and a Euro 2 Petrol 

vehicles.  
 20 
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