Supplementary Information

Positive Matrix Factorization of Organic Aerosol: Insights from a Chemical Transport Model

5

Anthoula D. Drosatou^{1,2}, Ksakousti Skyllakou², Georgia N. Theodoritsi^{1,2} and Spyros N. Pandis^{1,2,3}

¹Department of Chemical Engineering, University of Patras, Patras, Greece

 ²Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
³Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

15 SI-1 Model evaluation metrics

The normalized mean bias (NMB), the normalized mean error (NME), the mean bias (MB), the mean absolute gross error (MAGE) are used for the evaluation of the prediction of PMCAMx-SR

$$NMB = \frac{\sum_{i=1}^{n} (P_i - O_i)}{\sum_{i=1}^{n} O_i} \qquad NME = \frac{\sum_{i=1}^{n} |P_i - O_i|}{\sum_{i=1}^{n} O_i}$$

20

$$MAGE = \frac{\sum_{i=1}^{n} |P_i - O_i|}{n} \qquad MB = \frac{\sum_{i=1}^{n} (P_i - O_i)}{n}$$

where P_i represents the concentration of each PMF factor for data point *i*, O_i is the PMCAMx-SR predicted value for specific components and *n* is the total number of data points.

Table S1.	List of PMCAMx-S	R OA components	used in the PMC.	AMx-SR PMF
analysis.				

Number	Component	Volatility (C*) (µg m ⁻³)
1	РОА	0.01
2	РОА	0.1
3	РОА	1
4	РОА	10
5	РОА	100
6	SOA-sv and SOA-iv	0.01
7	SOA-sv and SOA-iv	0.1
8	SOA-sv and SOA-iv	1
9	SOA-sv and SOA-iv	10
10	SOA-sv and SOA-iv	100
11	bSOA	1
12	bSOA	10
13	bSOA	100
14	aSOA	1
15	aSOA	10
16	aSOA	100
17	bbPOA	0.01
18	bbPOA	0.1
19	bbPOA	1
20	bbPOA	10
21	bbPOA	100
22	bbSOA	0.01
23	bbSOA	0.1
24	bbSOA	1
25	bbSOA	10
26	bbSOA	100
27	LRT	0.01

Number	Component	Volatility (C*)	Age	
		$(\mu g m^{-3})$		
1	POA	0.01-100	fresh	
2	bSOA	1-100	first generation	
3	SOA-sv and SOA-iv	0.01	first generation	
4	SOA-sv and SOA-iv	0.1	first generation	
5	SOA-sv and SOA-iv	1	first generation	
6	SOA-sv and SOA-iv	10	first generation	
7	SOA-sv and SOA-iv	100	first generation	
8	aSOA	1	first generation	
9	aSOA	10	first generation	
10	aSOA	100	first generation	
11	LRT	0.01	highly aged	
12	SOA-sv and SOA-iv	0.01	second or higher generation	
13	SOA-sv and SOA-iv	0.1	second or higher generation	
14	SOA-sv and SOA-iv	1	second or higher generation	
15	SOA-sv and SOA-iv	10	second or higher generation	
16	SOA-sv and SOA-iv	100	second or higher generation	
17	aSOA	1	second or higher generation	
18	aSOA	10	second or higher generation	
19	aSOA	100	second or higher generation	

Table S2. OA components used to perform PMF analysis taking into account the age ofOA components.

Location	Mean	Mean	MB	MAGE	NB	NME
	bbPOA	bbPOA	$(\mu g m^{-3})$	$(\mu g m^{-3})$	(%)	(%)
	factor	$(\mu g m^{-3})$				
	$(\mu g m^{-3})$					
St.Petersburg	5	5.2	-0.2	0.3	-3	5
Catania	1.1	1.1	0.06	0.1	5	11
Majden	0.9	0.8	0.1	0.2	13	24

Table S3. Evaluation the PMF predictions* for the bbPOA factor against the PMCAMx-SR fresh bbPOA predictions in selected locations.

35 * Number of data points: 696

Table S4. Evaluation the PMF predictions* for the POA factor against the PMCAMx-SRfresh bbPOA predictions in selected locations.

POA	Mean	Mean	MB	MAGE	NMB	NME
	POA	POA	$(\mu g m^{-3})$	$(\mu g m^{-3})$	(%)	(%)
	factor	$(\mu g m^{-3})$				
	(µg m ⁻³)					
St.Petersburg	1.1	0.9	0.3	0.4	25	34
Majkow	3.2	3.4	-0.1	0.3	-5	10
Duzy						

40 * Number of data points: 696

Figure S1. PMCAMx-SR predicted ground – level concentrations of PM₁: (a) OA, (b) POA, and (c) SOA during May 2008.

Figure S2. Time series of POA factor (blue line) and PMCAMx-SR POA (red line) in St. Petersburg during May 2008.

Figure S3. Time series of bbSOA (blue line), aSOA (red line) and SOA-sv and SOA-iv (green line) in Catania during May 2008.

Figure S4. Time series of bbSOA (blue line), aSOA (red line) and bSOA (green line) in Majden during May 2008.

Figure S5. Time series of aSOA (blue line) and SOA-sv and SOA-iv (green line) in Melpitz during May 2008.

Figure S6. Time series of SOA-sv and SOA-iv (blue line), aSOA (red line) and bbSOA (green line) in Finokalia during May 2008.

Figure S7. Volatility distributions of each factor in: (a)-(b) St. Petersburg, (c)-(d) Catania, and (e)-(f) Majden.

Figure S8. Contribution of each OA component to the SOA and LRT factors based on the PMF and ME-2 analysis of PMCAMx-SR predicted OA in Melpitz.

Figure S9. Contribution of each OA component to the SOA and LRT factors based on the PMF and ME-2 analysis of PMCAMx-SR predicted OA in Finokalia.