Supplementary Information

Experimental budgets of OH, HO₂ and RO₂ radicals and implications for ozone formation in the Pearl River Delta in China 2014

Zhaofeng Tan^{1,2}, Keding Lu¹, Andreas Hofzumahaus^{2,*}, Hendrik Fuchs², Birger Bohn², Frank Holland², Yuhan Liu¹, Franz Rohrer², Min Shao¹, Kang Sun¹, Yusheng Wu¹, LiminZeng¹, Yinsong Zhang¹, Qi Zou¹, Andreas Wahner², Yuanhang Zhang^{1,*}

¹College of Environmental Sciences and Engineering, Peking University, Beijing, China

²Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany

Correspondence to: Andreas Hofzumahaus (a.hofzumahaus@fz-juelich.de), and Yuanhang Zhang (yhzhang@pku.edu.cn)

Supplementary text

Addtional uncertainties in the budget analyses

Radical initiation by unmeasured VOCs

As pointed out in Section 4.1, unmeasured VOCs were most likely responsible for the observed missing OH reactivity. This not only considerably influences the radical chain propagation from OH to RO_2 (Fig. 3e, g), but can also affect the primary production of OH, HO₂, and RO₂ radicals. Unmeasured alkenes could form additional radicals through ozonolysis. However, the contribution to radical formation is very likely unimportant as the small amount of $RO_2^{\#}$ compared to RO_2 (Fig. 1), and the analysis of the RO₂ and $RO_2^{\#}$ budgets suggest that most of the missing reactivity is not caused by alkenes (Section 4.1). Unmeasured OVOCs could form additional radicals (HO₂, RO₂) through photolysis. Such reactions would further increase the gap between the production and destruction rate for RO₂ and disturb the closed RO_x and HO₂ budgets.

Radical initiation by Cl atoms

Gaseous nitryl chloride (ClNO₂) can be formed at night by heterogeneous reaction of N_2O_5 with chloride in moist particles (e.g., Osthoff et al., 2008). In the morning, ClNO₂ photolyzes and forms Cl atoms which react very fast with VOCs and produce additional RO₂. This mechanism can play a role for 2 - 3 hours after sunrise until the ClNO₂ reservoir is depleted. ClNO₂ was not measured in Heshan, but was reported for other places in China. Measured concentrations shortly before sunrise are typically below 1 ppbv (e.g., Tham et al., 2016; Wang et al. (2018)), but can occasionally reach a few ppb (e.g., 2.1 ppbv in Wangdu, Tham et al. (2016); 4.7 ppbv in Hong Kong,(Wang et al., 2016)). With photolytical lifetimes of 2 - 3 hours, Cl production rates rarely exceed 0.5 ppbv/h. RO₂ production with a similar rate will make only a minor contribution to the RO₂ budget (Fig. 3e), and make the balance in the ROx budget slightly worse (Fig. 2g).

Chain propagation versus termination in the reaction of $RO_2 + NO$

The reaction of RO₂ radicals with NO can form HO₂ (reaction R8) resulting in radical chain propagation, or produce organic nitrates (reaction R14) resulting in chain termination. As the branching ratio can be different for each RO₂ species and as most of the organic reactivity was caused by unmeasured VOCs, the branching ratios of most RO₂ species are not known. Typical yields for organic nitrates lie in the range between 1% and 35% (Atkinson et al., 1982; Lightfoot et al., 1992). For the budget analysis (Figs. 2 - 4), an organic nitrate yield of 5% is assumed. Figs. S4 and S5 show cases where higher yields (10%, 20%) are assumed. Higher organic nitrate yields compensate the slightly negative bias of D-P in the RO_x budget (Fig. S4). An average yield of 10% would lead to a perfect balance between production and destruction rate of ROx during daytime, whereas a yield of 20% would result in a slightly positive bias of up to +1 ppbv/h in D-P. For the HO₂ production rate, these changes have little impact. Thus, in all cases (80%, 90%, 95% yield of HO₂), the HO₂ budget is balanced within the experimental uncertainties.

Measured quantity	Measurement technique	Time	Detection	Accuracy
		resolution	limit ^a	(1σ)
ОН	LIF ^b	300 s	$3.9 \times 10^{5} \text{cm}^{-3}$	±13 %
HO ₂	LIF ^{b, c}	300 s	$1.2 \times 10^{7} \text{cm}^{-3}$	±20 %
RO ₂	LIF ^{b, c}	300 s	$0.6 \times 10^{7} \text{cm}^{-3}$	±26 %
$\mathrm{RO_2}^{\#}$	LIF ^{b, c}	300 s	$1.7 \times 10^{7} \text{cm}^{-3}$	±32 %
$k_{ m OH}$	LP-LIF ^d	180 s	0.3 s^{-1}	±10 %, ±0.7 s ⁻¹
Photolysis frequencies	Actinic flux	20 s	e	±10 %
	spectroradiometry			
O ₃	UV photometry	60 s	0.5 ppbv	±5 %
NO	Chemiluminescence	60 s	60 pptv	±20 %
NO ₂	Chemiluminescence ^f	60 s	300 pptv	±20 %
HONO	LOPAP ^g	30 s	7 pptv	±20 %
CO,CH ₄ ,CO ₂ ,H ₂ O	Cavity ringdown	60 s	h	i
	spectroscopy			
SO_2	Pulsed UV fluorescence	60 s	0.1 ppbv	±5 %
НСНО	Hantzsch fluorimetry	60 s	25 pptv	±5 %
Volatile organic	GC-FID/MS k	1 h	20 - 300 pptv	±(15-20) %
compounds ^j				

Table S1 Measure	d quantities	used to	evaluate	the	radical	budgets.
------------------	--------------	---------	----------	-----	---------	----------

^a Signal to noise ratio = 1; ^b Laser-induced fluorescence; ^c Chemical conversion via NO reaction before detection; ^d Laser photolysis – laser-induced fluorescence; ^e Five orders of magnitude lower than maximum at noon; ^f Photolytic conversion to NO before detection, home built converter; ^g Long-path absorption photometry; ^h CO: 1 ppbv; CH₄:1 ppbv; CO₂: 25 ppbv; H₂O: 0.1 % (absolute water vapor content).; ⁱ CO: ±1 ppbv; CH₄: ±1 ppbv; CO₂: ±25 ppbv; H₂O: ±5 % ; ^j VOCs including C₂-C₁₁ alkanes, C₂-C₆ alkenes, C₆-C₁₀ aromatics; ^k Gas chromatography equipped with mass spectrometer and a flame ionization detector. Table S2 Measured volatile organic compounds.

Groups	VOC compounds
Alkanes	CYCLOHEXANE, CYCLOPENTANE, ETHANE, ETHYNE, I-BUTANE,
	METHYLCYCLOHEXANE, METHYLCYCLOPENTANE, N-BUTANE, N-DECANE,
	N-DODECANE, N-HEPTANE, N-HEXANE, N-NONANE, N-OCTANE, N-PENTANE,
	N-UNDECANE, PROPANE, 2,2,4-TRIMETHYLPENTANE, 2,2-DIMETHYLBUTANE,
	2,3,4-TRIMETHYLPENTANE, 2,3-DIMETHYLBUTANE, 2,3-DIMETHYLPENTANE,
	2,4-DIMETHYLPENTANE, 2-METHYLHEPTANE, 2-METHYLHEXANE,
	2-METHYLPENTANE, 3-METHYLHEPTANE, 3-METHYLHEXANE,
	3-METHYLPENTANE
Alkenes	CIS-2-PENTENE, CIS-BUTENE, ETHENE, I-BUTENE, I-PENTANE,
	N-PROPYLBENZENE, PROPENE, TRANS-2-BUTENE, TRANS-2-PENTENE,
	1-BUTENE, 1-HEXENE, 1-PENTENE, STYRENE ^a
Aromatics	BENZENE, ETHYLBENZENE, I-PROPYLBENZENE, M-DIETHYLBENZENE,
	M-ETHYLTOLUENE, M,P-XYLENE, O-ETHYLTOLUENE, O-XYLENE,
	P-DIETHYLBENZENE, P-ETHYLTOLUENE, TOLUENE, 1,2,3-TRIMETHYLBENZENE,
	1,2,4-TRIMETHYLBENZENE, 1,3,5-TRIMETHYLBENZENE
Biogenic	ISOPRENE
a Ctanana in ta	

^a Styrene is treated as alkene because its major functional group is the C-C double bond with respect to OH reaction.

Figure S1 Time series of measured photolysis frequencies, O_3 , O_x (O_3+NO_2), NO, NO₂, HONO, CO, isoprene, styrene, HCHO, and H₂O volume mixing ratios, PM_{2.5} mass concentrations and surface area of particulate matter. The vertical dashed lines represent midnight and grey areas represent nighttime.

Figure S2 Time series of measured OH, HO₂, RO₂ and RO₂[#] concentrations. The lowest panel shows the measured total OH reactivity (k_{OH}) and the calculated OH reactivity ($k_{OH}^{calc}_{OH}$) derived from measured concentrations of CO, NO_x, CH₄, NMHCs and HCHO. The vertical dashed lines represent midnight and grey areas represent nighttime.

Figure S3 Same as Figure 3, but with additional OH recyling by X equivalent to 0.4 ppbv NO ($RO_2 + X \rightarrow HO_2$, $HO_2 + X \rightarrow HO_2$).

Figure S4 Same as Figure 2, but assuming a different branching ratio between reaction R8 and R14. Left: HO₂ yield is 0.8, organic nitrate yield is 0.2. Right: HO₂ yield is 0.9, organic nitrate yield is 0.1.

Figure S5 Same as Figure 3(c, d), but assuming a different branching ratio between reaction R8 and R14. Left: HO₂ yield is 0.8, organic nitrate yield is 0.2. Right: HO₂ yield is 0.9, organic nitrate yield is 0.1.