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Abstract 10 
We performed seven and a half weeks of path-integrated concentration measurements of CO2, CH4, H2O, 11 
and HDO over the city of Boulder, Colorado.  An open-path dual-comb spectrometer simultaneously 12 
measured time-resolved data across a reference path, located near the mountains to the west of the city, and 13 
across an over-city path that intersected two-thirds of the city, including two major commuter arteries.  By 14 
comparing the measured concentrations over the two paths when the wind is primarily out of the west, we 15 
observe daytime CO2 enhancements over the city. Given the warm weather and the measurement footprint, 16 
the dominant contribution to the CO2 enhancement is from city vehicle traffic. We use a Gaussian plume 17 
model combined with reported city traffic patterns to estimate city emissions of on-road CO2 as (6.2 ± 2.2) 18 
× 105 metric tons (MT) CO2/year, after correcting for non-traffic sources. Within the uncertainty, this value 19 
agrees with the city bottom-up greenhouse gas inventory for the on-road vehicle sector of 4.5×105 MT 20 
CO2/year. Finally, we discuss experimental modifications that could lead to improved estimates from our 21 
path-integrated measurements. 22 
 23 
1. Introduction 24 
 Measurements of greenhouse gases, especially CO2 and CH4, are critical for monitoring, 25 
verification, and reporting as countries and cities work towards decreasing their carbon emissions.  26 
Measurements on the city-scale are critical because cities contribute to a large fraction of global 27 
emissions (Marcotullio et al., 2013; Seto et al., 2014).  However, quantification of city greenhouse gas 28 
emissions is challenging, especially for CO2 since it has a high background and numerous point and 29 
diffuse sources including traffic, power plants, and animal and plant respiration.  Emissions of pollutants 30 
are typically determined using two methods:  a top-down approach using atmospheric measurements over 31 
a specific site or area to adjust a prior model, and bottom-up inventories that calculate emissions based on 32 
sector activity and sector emissions factors.  Here we demonstrate a technique for top-down 33 
measurements that uses an open-path sensor rather than a point sensor.  34 
 Quantification of CO2 fluxes from cities has been determined from eddy covariance flux 35 
measurements with a point sensor located on a tower in or near a city (Nemitz et al., 2002; Velasco et al., 36 
2005; Coutts et al., 2007; Bergeron and Strachan, 2011; Velasco et al., 2014).  However, for a single 37 
sensor, the relatively small footprint of the eddy covariance flux measurements limits the utility of this 38 
technique for large cities as do violations of the horizontal homogeneity assumption (Järvi et al., 2018).  39 
To overcome this limitation, tower networks of point sensors can measure CO2 at multiple sites within a 40 
city and at background sites outside the city (McKain et al., 2012; Lauvaux et al., 2013; Bréon et al., 41 
2015; Staufer et al., 2016; Lauvaux et al., 2016; Shusterman et al., 2016; Mueller et al., 2017; Verhulst et 42 
al., 2017; Sargent et al., 2018; Mitchell et al., 2018).  To distinguish the small enhancements compared to 43 
the large background, these networks often use expensive, high-precision cavity ringdown (CRDS) 44 
instruments resulting in a high cost.  The BEACO2N network (Shusterman et al., 2016), on the other 45 
hand, has a much lower cost per sensor.  It requires calibration for quantitative results, but the high 46 
density of the point sensors can provide lower sensitivity to systematics (Turner et al., 2016).  All of these 47 
methods use an inversion to determine the total emissions and thus rely on well-known priors and high-48 
resolution mesoscale atmospheric models.   49 
 More recently, several other approaches have also been applied to city-scale emissions. Aircraft 50 
mass balance measurements (White et al., 1976; Ryerson et al., 2001) have been used to determine city 51 
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emissions (Mays et al., 2009; Heimburger et al., 2017). However, the use of an aircraft is costly and labor 52 
intensive, and therefore not suited to long-term continuous measurements.  Column measurements from 53 
the Total Carbon Column Observation Network (TCCON) were used to calculate total South Coast Air 54 
Basin (SoCAB) CO and CH4 emissions, but not CO2 (Wunch et al., 2009).  Data from the Orbiting 55 
Carbon Observatory satellite (OCO-2) was recently combined with TCCON data to estimate CO2 56 
emissions from the LA basin (Hedelius et al., 2018).   57 
 As an alternative to these approaches, horizontal, kilometer-scale, open-path instruments could in 58 
principle be used to determine CO2 emissions from cities.  Such instruments are capable of continuous 59 
measurements over a large area with a single instrument, e.g.(Wong et al., 2016; Dobler et al., 2017; 60 
Coburn et al., 2018). These sensors also have the advantage of being insensitive to small changes in local 61 
meteorology and are not subject to the same representation errors as point sensors (Ciais et al., 2010).  62 
Several such systems have been deployed. A laser absorption spectrometer system (GreenLITE) has 63 
mapped CO2 concentrations over Paris, but not yet quantified emissions (Dobler et al., 2017).  The 64 
California Laboratory of Atmospheric Remote Sensing Fourier Transform Spectrometer (CLARS-FTS) is 65 
a downward-looking slant column Fourier transform spectrometer (FTS) that scans across 28 66 
measurement targets in the Los Angeles Basin to measure CO2, CH4, and O2 (Wong et al., 2015).  Based 67 
on the measured CH4:CO2 ratio and the bottom-up CO2 inventory from California Air Resources Board, 68 
researchers have calculated the LA Basin CH4 emissions (Wong et al., 2016), but not yet the CO2 69 
emissions.  70 
 Here we present the quantification of city CO2 emissions using open-path measurements made 71 
with a dual frequency comb spectrometer.  While dual-comb spectroscopy is a relatively new technique it 72 
has a unique set of attributes that make it attractive for open path measurements (Rieker et al., 2014; 73 
Coddington et al., 2016; Waxman et al., 2017; Coburn et al., 2018). Dual-comb spectroscopy (DCS) is a 74 
high-resolution, broadband technique spanning hundreds of wavenumbers, but with a resolution that 75 
exceeds even high-end FTIRs leading to a negligible instrument lineshape (Coddington et al., 2016). This 76 
allows for simultaneous measurements of multiple species and path-integrated temperature with low 77 
systematic uncertainty and without the need for instrument calibration. Additionally, the eye-safe, high-78 
brightness, single transverse-mode output of a frequency comb allows for beam paths exceeding 10 km 79 
while the speed and parallelism of the measurement suppress any spectral distortion from the inevitable 80 
turbulence-induced power fluctuations over such a path (Rieker et al., 2014; Waxman et al., 2017).  81 
 Figure 1 shows the measurement layout for an initial campaign to quantify CO2 emissions from 82 
Boulder, Colorado.  Here we take the light from a dual comb spectrometer near the edge of the city and 83 
simultaneously measure two paths: a reference path that points west-southwest towards the mountains and 84 
an over-city path that crosses the city to the northeast, covering the main traffic arteries of the city with 85 
sensitivity to traffic emissions. We acquire time-resolved data at 5-minute resolution of CO2, CH4, H2O 86 
and isotopologues over 7.5 weeks. The dry mole fraction of CO2 shows a diurnal cycle consistent with a 87 
morning build-up from traffic followed by a mid-day decline due to the rising boundary layer.  In 88 
addition, there is a distinct difference between the weekday and weekend cycles for CO2, consistent with 89 
traffic patterns. In order to demonstrate the utility of this method for emissions quantification, we perform 90 
a preliminary estimate of the CO2 emissions from traffic. To do this, we filter the data for days when the 91 
wind is out of the west and not too strong so that there is a measurable daytime enhancement in CO2 92 
between the reference path and over-city path. Given the weather, beam path location, and observation 93 
times, the dominant contribution will be from traffic rather than residential or industrial emissions. We 94 
apply a Gaussian plume model to calculate the city emissions based on the expected distributed source 95 
(due to traffic) and the path-averaged concentrations. After adjusting for small expected contributions 96 
from residential sources and a local utility plant, the measured emission value is scaled to annual city-97 
wide emissions based on city traffic count data. We estimate (6.2 ± 2.2) × 105 metric tons (MT) CO2/year, 98 
compared to the bottom-up City of Boulder inventory estimate of 4.46 ×105 MT CO2/year.  Finally, we 99 
discuss improvements to this estimate, which could be realized by more advantageous beam paths that 100 
sample a larger spatial and temporal fraction of the full city emissions and by a more detailed inventory 101 
model.   102 
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 103 
2. Experimental data 104 
 105 
2.1 DCS measurements 106 
 The dual frequency comb spectroscopy (DCS) system was located on the top floor of the National 107 
Institute of Standards and Technology (NIST) building in Boulder, Colorado. This instrument has been 108 
described previously (Truong et al., 2016; Waxman et al., 2017). The light from the combs is split to 109 
generate two combined dual-comb outputs, one of which is transmitted over the reference path and one of 110 
which is transmitted over the city path (see Fig. 1.)  Here, we transmit 2-10 mW of light spanning 1.561 111 
to 1.656 m, which includes absorption lines from CO2, CH4, H2O and HDO. The returning light from 112 
each path is detected and digitized to yield the transmitted optical spectrum at a point spacing of 0.0067 113 
cm-1 (1.5 picometer) and with effectively perfect (10 ppb) frequency accuracy and narrow instrument 114 
lineshape (~4x10-6 cm-1).  A typical spectrum from the reference path is shown in Fig. 2.  A fit of this 115 
transmitted spectrum yields the path-averaged gas concentrations. The absolute frequency accuracy and 116 
high frequency resolution of the dual-comb spectrometers translates to a high precision and accuracy in 117 
the retrieved concentrations. Further, DCS spectra are undistorted by turbulence due to the simultaneous 118 
acquisition of all spectral channels and the fast sample rate of the instrument (1.6 ms/spectrum, averaged 119 
up to 5 minutes here) (Rieker et al., 2014).   120 

In previous work (Waxman et al., 2017), we confirmed the high precision and accuracy possible 121 
with open-path DCS. Two DCS instruments, constructed by different teams, measured atmospheric air 122 
over adjacent paths over a two-week period. The retrieved path-averaged gas concentrations agreed to 123 
better than 0.6 ppm (0.14%) for CO2 and 7 ppb (0.35%) for CH4 across the full two week period, where 124 
the analysis of the two DCS instruments used a common spectral database (HITRAN 2008, Rothman et 125 
al., 2009) to retrieve the concentrations from the absorption spectrum. In the work here, a single DCS 126 
instrument probes the concentrations across two different open paths simultaneously, which should 127 
further suppress any systematic offsets to below 0.45 ppm (Waxman et al., 2017). In addition, (Waxman 128 
et al., 2017) compared the two DCS instruments to a stationary cavity ringdown (CRDS) point sensor 129 
whose inlet was approximately at the midpoint of the open path.  This comparison actually took place 130 
over the reference path during the first two weeks of the present work.  During that time, we found a 131 
roughly constant difference of 3.4 ppm CO2 and 17 ppb CH4 between the DCS and CRDS systems.  At 132 
present, we attribute this offset to differences in the calibration scheme as the DCS is tied to the HITRAN 133 
database while the CRDS is tied to the manometric (or gravimetric depending on the gas) WMO scale. 134 
Similar level offsets have been observed in comparison of the TCCON open-path FTS instrument and 135 
point sensor-based vertical columns resulting in the TCCON CO2 scaling factor of 0.9898 (4.08 ppm for a 136 
mixing ratio of 400 ppm) (Wunch et al., 2015). This offset does not affect the results here as it is common 137 
to both the reference and over-city paths. 138 
 The reference and over-city paths had different path lengths and therefore used slightly different 139 
telescopes and launch powers. For the reference path, 2 mW of dual-comb light is launched from a 2-inch 140 
home-built off-axis telescope (Cossel et al., 2017; Waxman et al., 2017). The light travels to a 2.5-inch 141 
retroreflector located on a hilltop 1 km to the southwest of NIST and then is reflected back to a detector 142 
that is co-located with the launch telescope for a 1950.17 ± 0.15 m round-trip path. Return powers vary 143 
constantly with air turbulence but we collect about 200 W for a typical 10 dB link loss.  For the city 144 
path, 10 mW of dual-comb light is launched from a modified 10-inch diameter astronomical telescope to 145 
a 5-inch retroreflector located on a building roof 3.35 km to the northeast for a 6730.66 ± 0.15 m round-146 
trip path.  We collect about 100 W for a typical 20 dB link loss.  Round-trip path distances were 147 
measured with a laser range finder.  Telescope tracking of the retroreflector is implemented to 148 
compensate for thermal drifts via a co-aligned 850 nm light emitting diode (LED) and Silicon CCD 149 
camera (Cossel et al., 2017; Waxman et al., 2017).  150 
 The measured spectra are analyzed as described in (Rieker et al., 2014; Waxman et al., 2017) at 151 
32 second intervals.  Briefly, we fit a 7th-order polynomial and HITRAN data to the measured spectrum in 152 
100-GHz (0.333 cm-1) sections to remove the underlying structure from the comb themselves (as opposed 153 
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to the atmospheric absorption).  We fit the resulting absorption spectrum twice: once in the region from 154 
6171 cm-1 to 6271 cm-1 (1.595 to 1.620 m) to obtain the path-averaged temperature from the 1.6 m CO2 155 
band, and once over the entire spectrum to obtain 12CO2, 13CO2, CH4, H2O, and HDO concentrations using 156 
the retrieved temperature. We then use the retrieved H2O concentration to correct the wet CO2 and CH4 157 
mole fractions to dry mole fractions, hereafter referred to as XCO2 and XCH4 given in units of ppm and ppb 158 
(micromole of CO2 per mole of dry air, and nanomole of CH4 per mole of dry air).  The correction 159 
equations are XCO2 = CO2/(1-H2O) and XCH4 = CH4/(1-H2O).  160 
 The variations in the retrieved concentrations are due to statistical uncertainty, systematic 161 
uncertainty (discussed above), and the true variations in the gas concentrations.  Figure 8 of (Waxman et 162 
al., 2017) quantified the statistical uncertainty in terms of the Allan deviation over the 2-km reference 163 
path for both XCH4 and XCO2.  Figure 3 here provides an Allan deviation for just XCO2 over both the ~6.7-164 
km city and ~2-km reference paths, as calculated from a relatively “flat” 1000-s period of this 165 
measurement campaign on the night of 3 to 4 October 2016. As expected, the statistical uncertainty over 166 
both paths improves as the square root of integration time until reaching a floor, which we attribute to real 167 
variations in the atmospheric gas concentrations.  At 30 seconds, the statistical uncertainty of XCO2is 0.76 168 
ppm for the reference path and 0.64 ppm for the over-city path, finally dropping to 0.21 ppm and 0.15 169 
ppm, respectively, at about 15 minutes.  In most subsequent figures, we show results at a 5-minute 170 
averaging time for which the statistical uncertainty is well under 0.3 ppm of XCO2 for both paths and 171 
therefore well below the typical atmospheric variations. Note that the uncertainty also improves with path 172 
length, as expected due to the stronger absorption. The lower uncertainty over the city path reflects the 173 
expected improvement from the 3.4x longer path length lessened by the 2x reduction in return signal 174 
power for the longer path length.   175 
  176 
2.2 Meteorological Measurements 177 
 Meteorological data including pressure, wind direction, and wind speed measurements are 178 
obtained from meteorological stations located at NCAR-Mesa and NCAR-Foothills 179 
(ftp://ftp.eol.ucar.edu/pub/archive/weather), which are approximately the endpoints of our measurement 180 
paths (see Fig. 1), as well as a 3-D sonic anemometer located at NIST.  The path-averaged air temperature 181 
was retrieved from the CO2 spectra as described above.   182 
 183 
2.3 Traffic data 184 
 We measure a subset of Boulder traffic, so we use the city traffic data to determine the fraction 185 
covered by our footprint (see Fig. 1).  Traffic data from the City of Boulder is freely available at: 186 
https://maps.bouldercolorado.gov/traffic-counts/?_ga=2.264109964.1414067815.1500302174-187 
274759643.1492121882.  The city provides two types of traffic data that are useful in this work: the 188 
Arterial Count Program (ART) and the Turning Movement Count (TMC) data.  189 
 ART measures traffic at 18 major intersections in Boulder for five days (one work week, Monday 190 
through Friday) every year in one-hour bins to create a diurnal cycle. The traffic counts for 2016 are 191 
shown in Fig. 4. We use these data to scale our selected measurement time periods to a full day as 192 
discussed in section 3.3.4. Note that there is only a 10-20% “peak” in traffic counts at the standard 193 
commuter times with generally high traffic levels from 7:00 to ~19:00, which agrees with the traffic 194 
emissions reported by the Hestia inventory model for the similar city of Salt Lake City, UT (Mitchell et 195 
al., 2018).   196 
 TMC measures the number of vehicles at 140 intersections in Boulder for one work day per year 197 
during the hours of 7:45-8:45, 12:00-13:00, and 16:45-17:45. One third of each of these sites is measured 198 
every year. We have scaled the 2014 and 2015 data to 2016 traffic levels by using total vehicle mile 199 
values available from the City of Boulder. We approximate city vehicle emissions by using the TMC 200 
locations as our source locations with a source strength scaled based on the location’s fractional traffic 201 
count. 202 
 203 
3 Results and Discussion 204 
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 205 
3.1 DCS measurements 206 
 All 7.5 weeks of DCS measurements of CO2, CH4, H2O, and HDO are shown in Fig. 5.  HDO is 207 
not used here but is shown for completeness (note that the HDO concentration is scaled by the isotopic 208 
abundance in HITRAN). We have insufficient precision to measure time-resolved 13CO2 concentrations 209 
over the 2-km path.  However, there are very clear enhancements in the over-city path relative to the 210 
reference path for the other trace gases, especially for CO2.  These enhancements are observed primarily 211 
at night when the boundary layer is lower.  For example, on Oct. 13 the CO2 enhancement reaches 129 212 
ppm and the CH4 enhancement reaches 265 ppb.  Daytime enhancements occur when the wind speed is 213 
very low and intermittent (typically below 5 m/s), which allows emitted gases to build up over the city.  214 
When the wind increases to steady moderate speeds, the concentrations drop quickly as the emissions are 215 
flushed out of the city. The H2O retrieval is important as accurate knowledge of the time-dependent water 216 
concentration is needed to calculate the dry CO2 and CH4 mole fractions (see Section 2.1). Also, the 217 
correlation of the water concentration between the two paths indicates the two paths sense the same air 218 
mass, which is further substantiated in Figure 7a and is central to attributing their different CO2 219 
concentration to local urban sources. 220 
 221 
3.2 Diurnal Cycles 222 
 The diurnal cycle of XCO2 and XCH4 for both the reference path and the over city path are shown in 223 
Fig. 6 for weekdays (midnight to midnight Monday through Friday) and weekends (midnight to midnight 224 
Saturday and Sunday).  We choose to include Monday as a weekday and Saturday as a weekend because 225 
the influence of emissions from the previous day is expected to be low.  The diurnal cycle of the wind 226 
direction and the wind speed measured at NCAR Foothills are also shown in the top panel of Fig. 6.  All 227 
diurnal cycles are the median values over the full 7.5 weeks of measurements and the bars reflect the 228 
25%/75% quartile values.   229 
 The diurnal cycle of the reference path CO2 is nearly flat and nearly identical for both weekends 230 
and weekdays.  It has a slight maximum between 9 and 10 am, with average values of 410 to 420 ppm. 231 
The diurnal cycle of the city path CO2 shows a different trend with a stronger diurnal variation. Overnight 232 
from about 6 pm (18:00) to 9 am, there is an enhancement in the CO2 relative to the reference path as the 233 
CO2 from the city sources builds up due to the low winds out of the west and a presumed collapsing 234 
nighttime boundary layer.  During the weekdays, this enhancement increases in the morning consistent 235 
with the rise in traffic. After the morning, the combination of the presumed rising boundary layer, 236 
increased wind speed, and shift in average wind direction out of the west (270°) to the southeast (135 °) 237 
result in a drop in the city path CO2. Moreover, this shift in wind direction means that the reference path 238 
no longer samples the clean air from the direction of the mountains but rather sees a very similar CO2 239 
enhancement as the city path.  (Fortunately, as discussed below, there are days when the wind does not 240 
shift direction so that there is a measured enhancement of the city path compared to the reference path.) In 241 
the early evening, as the wind speed drops and the wind direction shifts back to out of the west, the 242 
enhancement of the city path over the reference path reappears and continues overnight as the boundary 243 
layer presumably drops. In general, the CO2 mixing ratios tend to be higher on the weekdays, sometimes 244 
exceeding 500 ppm, while weekend mixing ratios are entirely below 490 ppm.  This difference is 245 
reflected in the median values as well, which reach about 440 ppm during the weekdays but only 430 ppm 246 
during the weekend.  247 
 The diurnal cycle of the reference path CH4 is relatively flat for both weekends and weekdays at 248 
just over 1.9 ppm, with a slight peak between 9 and 10 am.  The diurnal cycle of the city path CH4 shows 249 
an enhancement, relative to the reference path, between midnight and about 9 am. We attribute this 250 
enhancement to sources of CH4 within the city combined again with low nighttime winds and collapsing 251 
boundary layer. These sources may be leaking natural gas infrastructure such as observed in Boston 252 
(Phillips et al., 2013; McKain et al., 2015; Hendrick et al., 2016), Washington, D.C. (Jackson et al., 253 
2014), and Indianapolis (Lamb et al., 2016).  Unlike for CO2, the CH4 diurnal cycle appears unrelated to 254 
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traffic (nor would we expect it to be for clean-burning vehicles) as it does not increase during high traffic 255 
times.   256 
 257 
3.3 Estimate for CO2 emissions due to traffic 258 
 259 
3.3.1 Measurement day selections 260 
 To select test case days to estimate the city emissions, we filter the XCO2 time series for time 261 
periods with daytime enhancement and a moderate wind strength predominantly out of the west (270 °). 262 
Given that the prevailing daytime winds are from the southeast (135°) and often strong, this limits the test 263 
case days significantly. However, as is clear from Fig. 1, for these wind conditions, the city path samples 264 
a significant fraction of the traffic emissions and the reference path samples no traffic emissions.  We 265 
consider only daytime enhancements because the nighttime boundary layer behavior is significantly more 266 
complicated than a well-mixed daytime stable boundary layer.  We find two days that meet these criteria:  267 
Saturday 22 October 2016 from 11:00 to 16:00. and Tuesday 25 October 2016 from 7:00 to 16:00.  Both 268 
days have moderate wind speeds (on average, 5 m/s) as measured at both meteorological sites.  There are 269 
additional days with daytime enhancement in XCO2, but the wind direction is variable. Additionally, there 270 
are many days with no daytime enhancement in XCO2 because the high wind speeds (6 m/s or higher) 271 
prevented buildup of CO2.  We use Oct. 22 as a proxy for all weekend days and Oct. 25 as a proxy for all 272 
weekdays.  The XCO2 and XCH4 mixing ratios as well as wind speed and wind direction for these two case 273 
study days are shown in Fig. 7.   274 

In order to confirm that the reference path measured clean background air and the over-city path 275 
measured city emissions, we calculated footprints for the two test case time periods using the Stochastic 276 
Time-Inverted Lagrangian Transport (STILT-R) model (Fasoli et al., 2018). The input meteorology file 277 
consisted of a uniform wind field with wind data from the NCAR Foothills lab, boundary layer height 278 
from the North American Regional Reanalysis (NARR), uniform turbulent velocity variance calculated 279 
from the Pasquill stability class (determined from wind speed and solar insolation) from the ground up to 280 
the boundary layer, and the hyper near-field scaling described in Fasoli et al., (2018). Average footprints 281 
for the two time periods are shown in Fig 7. The footprint for the reference path covers undeveloped areas 282 
extending from the near foothills into the mountains. The footprint for the over-city path also has 283 
contributions from the same general mountain region. In addition, this path has sensitivity to an extended 284 
area within the city and therefore to a large fraction of the traffic emissions. Note the open-path geometry 285 
leads to a much larger extended footprint for this path than would be the case for a single point sensor 286 
located at the same height within the city.   287 
 The variability in the reference CO2 on both days is a real atmospheric effect.  (In processing, any 288 
data is removed if the signal power is low, which is indicative of poor telescope alignment or strong 289 
weather-related attenuation over the beam path, so the variability is not due to variable signal strength.) 290 
We attribute this variability to the smaller footprint of the reference path relative to the over-city path, as 291 
seen in Fig. 7.  If the CO2 in the air is not fully mixed, then the temporal and spatial variability will be 292 
more evident in the path with the smaller footprint.   293 

To convert from the measured enhancement to an emissions rate, we require a model that 294 
connects the source strength to the plume concentration. Since we do not have a high-resolution, spatially 295 
resolved inventory for Boulder similar to the Hestia model for Salt Lake City (Mitchell et al., 2018), we 296 
use the existing Boulder traffic inventory (see Section 2.3) in conjunction with a Gaussian plume model.  297 
 298 
3.3.2 Gaussian plume calculations 299 
 The standard Gaussian plume model that includes total reflection at the Earth’s surface is 300 
(Seinfeld and Pandis, 2006): 301 

2 2 2

0

2 2 2

( ) ( ) ( )
( , , , ) exp exp exp

2 2 2 2y z y z z

y yq z H z H
c x y z t

u    

           
        
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   (1) 302 
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where (x,y,z) is the location in space for which the plume concentration is being calculated, (x0,y0,H) is the 303 
emissions location, c(x,y,z) is the concentration at location (x,y,z) and time t, q is the emissions strength 304 
(usually in kg/s), y and z are the plume variances in the y and z direction as a function of travel distance 305 
and Pasquill stability class  (Seinfeld and Pandis, 2006), and u is the wind speed in m/s.  The wind is 306 
assumed to be in the x-direction. The plume variances are calculated as: 307 

2exp (ln ) (ln )y y y yI J x K x                (2) 308 

and 309 
2exp (ln ) (ln )z z z zI J x K x                (3) 310 

where Iy, Jy, Ky, Iz, Jz, and Kz are from a look-up table based on the Pasquill stability class, which depends 311 
on the wind speed and solar insolation (Seinfeld and Pandis, 2006) and x is the x-distance relative to the 312 
plume origin. This plume model does not include any reflection at the boundary layer height; however, 313 
due to the small spatial scales, this effect is negligible here. 314 
 We modify this equation in several ways:  1) Since we measure the column-integrated 315 
concentration over a finite beam path at an angle to the wind direction, we integrate the plume 316 
concentration along this beam path and then normalize to the length of the beam path.  2)  We sum over 317 
the emissions locations in the city that contribute emissions to our measurements.  Thus our overall 318 
measurement equation is:   319 

2 2 2

0 2 2 20
( , )

( sin ) (15 1) (15 1)
( ) exp exp exp

2 2 2 2
j j

L j j

x y y z y z z

f s yQ
c c ds

L u



    

           
         

     
   (4) 320 

where (c ˗ c0) is our path-integrated concentration enhancement measurement (in MT/m3 and MT is 321 
metric tons; 1 MT = 1000 kg) along our path s which goes from 0 to L, Q is the total city emissions in 322 
MT/hour, L is our path length in m, (xj, yj) are the source emissions locations, fj is the fraction of traffic at 323 
source location (xj,yj) relative to traffic over all locations in the city from the TMC database, u is the wind 324 
speed in m/s, is the angle of the beam path with respect to the wind direction, and y and z are the 325 
plume dispersions in m in the y and z directions, which depend on the sources distance from the beam 326 

path.   In writing (4), we assume the wind is in the x̂  direction (which assumption is relaxed below). We 327 
assume that all plume emission locations are vehicle tailpipes at 1 m above the ground, and the beam path 328 
runs 15 m above ground so all measurement heights are at 15 m above ground.   329 
 330 
Grid rotation for variable wind directions 331 
 To calculate (4), we grid the emissions locations using UTM (Universal Transverse Mercator) 332 
coordinates obtained from Google Earth, where we then define north as +ŷ and east as +x̂. We translate 333 
the coordinate system such that the DCS path begins at the origin (0,0) and travels a distance L at angle 334 
with respect to the x-axis. Eq. (4) is then valid provided the wind is directly in the +x̂ direction. More 335 
generally, the wind is at a time varying small angle ( )t  with respect to +x̂.  Therefore, we apply a 336 

rotation about the origin (Prussin et al., 2015): 337 

cos sin '

sin cos '

x x

y y

 

 

     
     

     
  338 

to generate new traffic coordinates (xj’,yj’) and a new parameterized DCS beam path of (s cos(’),s 339 
sin(’)) where ’=- (t). In this new coordinate system, the wind is along the +x̂ direction and Eq. (4) 340 
holds with the substitutions ’ and yjyj’, and where the y and z are calculated based on the 341 
distance x = |xj’ – (yj’/tan’)|.   342 
 343 
Time dependent estimate of Q(t)  344 
The rotated Eq. (4) can be solved for Q in terms of the measured or estimated values of c(t)-c0(t), u(t), 345 
(t), y(t), z(t), , L, and fi, where the first five quantities are time dependent.  The resulting, time-346 
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dependent Q(t) for each test case day is shown in the bottom panels of Fig. 7 and has a mean value and 347 
standard deviation of QOct22 = 31 ± 17 MT CO2/hour for October 22 and QOct25 = 165 ± 45 MT CO2/hour 348 
for October 25 for the 5-minute averaged data as shown.  349 
 350 
Uncertainty in Q(t) 351 
 Seven measured parameters factor in to the emissions calculation of Q(t)for the two days.  These 352 
are given in Table I along with the instrumental measurement precision and the observed variability. Note 353 
that solar insolation is used solely in the determination of the Pasquill stability class  (Seinfeld and 354 
Pandis, 2006).  The stability class is relatively insensitive to the variations in solar insolation observed on 355 
the two test case days. As can be seen in the table, the uncertainty is dominated by the natural variability 356 
in parameters like wind speed, wind direction, and CO2 concentration rather than the DCS spectrometer 357 
precision. The observed variability over the 5-9 hour period is typically at least a factor of 2 larger than 358 
the instrument precision. The variability in these parameters leads to the observed variability in Q(t).  We 359 
use the mean of Q(t) as our emissions value and the standard deviation (at 5-minute time-averaging) as its 360 
uncertainty. In using this standard deviation as a measure of the uncertainty, we attempt to capture the 361 
uncertainty associated with the discrepancies between, for example, the weather-station measurements of 362 
wind direction and speed relative to the true wind direction (which results in greater or fewer number of 363 
plumes from the given traffic locations intercepting the measurement path).  This variability appears in 364 
Q(t) as the nominal measured wind direction varies. Future systems with redundant, distributed DCS 365 
beam paths would provide a superior estimate of all these uncertainties. 366 
 In addition, there are assumptions, and possible uncertainties, inherent to the Gaussian plume 367 
model.  First, the model does not include the effects of buildings, trees, or other objects that could break 368 
up the plume between the emissions location and the beam path.  Second, we assume that all CO2 369 
emissions come from the discrete locations shown in Fig. 1, while in reality the emissions are likely 370 
substantially more diffuse.  The assumption of discrete emissions simplifies modeling and is feasible due 371 
to the city traffic data but may result in a bias due to the coarse distribution of traffic measurements.  372 
Third, we approximate the measurement height at 15 m above ground although the beam height differs 373 
over the path since Boulder is not perfectly flat.  Finally, we use standard Iy, Jy, Ky, Iz, Jz, and Kz values 374 
which were derived for rural areas (Turner, 1970) which may be different than urban or suburban areas.  375 
However, the greatest differences between rural and urban conditions are expected to be at night (Turner, 376 
1970).  377 
 We further ran plume calculations in STILT-R using both wind fields derived from the local 378 
meteorological stations shown in Figure 1 and using the North American Mesoscale Forecast System 379 
(NAM, https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-380 
forecast-system-nam).  The High Resolution Rapid Refresh (HRRR, https://rapidrefresh.noaa.gov/hrrr/) 381 
and North American Regional Reanalysis (NARR, https://www.ncdc.noaa.gov/data-access/model-382 
data/model-datasets/north-american-regional-reanalysis-narr) wind projections did not match the 383 
measured winds at the meteorological stations.  These calculations produced emissions values ranging 384 
between 55 MT/hour and 770 MT/hour, depending on the wind fields and vertical dispersion 385 
parameterization used.  This brackets our emissions calculations by approximately a factor of three in 386 
each direction and shows how sensitive these kilometer-scale measurements are to vertical dispersion. 387 
 388 
3.3.3  Corrections for non-traffic sources of CO2 389 

There are a number of non-traffic sources of CO2 that could contribute to our measured XCO2 390 
enhancement including local power plants, residential emission, and biological activity. These non-traffic 391 
sources should have relatively minor contribution for several reasons. First, the footprint of the over-city 392 
path does not overlap the large power plant to the east of the Boulder city limits. Second, the temperature 393 
during the two test case days was 24 °C and 20 °C (68 °F and 75 °F) on October 22 and 25th leading to 394 
minimal residential and commercial heating.  Third, the measurements occurred in October after leaf 395 
senescence so there should be negligible biological activity. Nevertheless, as discussed below, we do 396 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam
https://rapidrefresh.noaa.gov/hrrr/
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
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adjust our measurements to account for the relatively minor contribution from non-traffic sources before 397 
scaling up to an estimate of the annual traffic emissions.   398 
 We first consider power plants. There are two power generation facilities on the Department of 399 
Commerce (DOC) campus located near the NIST building that houses the dual-comb spectrometer: the 400 
site’s Central Utilities Plant (CUP), and the National Oceanic and Atmospheric Administration (NOAA) 401 
building’s boilers.  To calculate their average CO2 emissions, we used available fuel consumption data 402 
(October 2016 monthly average for the CUP and mid-November to mid-December 2016 average for the 403 
NOAA boilers; October data was unavailable) and the EPA emissions factor (EPA, 1995).  We then 404 
modeled the CUP and boiler plume emissions using WindTrax (Flesch et al., 1995, 2004) with wind 405 
speed and direction data from the NCAR-Mesa site.  We find that due to the moderate wind speeds (~5 406 
m/s) during our case study days and the height mismatch between the emission stacks and our 407 
measurement path over the DOC campus, there is negligible enhancement over the reference path.  Given 408 
the location of the emission sources and the wind direction during our measurement periods, the 409 
emissions also do not cross the over-city beam path.  Therefore, we apply no correction for these two 410 
power plant emissions.    411 
 The University of Colorado also has a power plant that falls within the main footprint associated 412 
with the over-city beam path, shown in Fig. 7a, and whose emissions are expected to intersect our over-413 
city beam path.  The EPA Greenhouse Gas Reporting Program (GHGRP, 414 
https://www.epa.gov/ghgreporting) lists the 2017 emission from the power plant as 2.7 × 104 MT CO2 or 415 
an average of 3.1 MT/hour. (No breakdown by season or hour is provided.)  We apply this correction to 416 
our previous daily values and add a conservative uncertainty equal to this correction in quadrature with 417 
the previous uncertainty. The new adjusted values are then 28 ± 17 MT CO2/hour for October 22 and 162 418 
± 45 MT CO2/hour for October 25.  419 
 The large Valmont power station lies just outside the city limits to the east of Boulder; however, 420 
given its location and the dominant westerly wind, emissions from this source does not reach our beam 421 
paths.  There are no other power generation facilities within the city that report to the GHGRP, so we 422 
make no further corrections based on power plants.  423 
  In addition, there are also likely diffuse emissions from residential and commercial furnaces and 424 
water heaters that use natural gas.  The City of Boulder Community Greenhouse Gas Emissions Inventory 425 
reports twenty percent of the city emissions, or 3.18×105 MT CO2e, were from natural gas in 2016 426 
(https://www-427 
static.bouldercolorado.gov/docs/2016_Greenhouse_Gas_Emissions_Inventory_Report_FINAL-1-428 
201803121328.pdf?_ga=2.130927943.970967930.1525795820-107394975).  The natural gas usage varies 429 
strongly by month with building heating requirements. Although our measurements occurred in October, 430 
the measurement days were quite warm (20-24 C) so that residential and commercial building heating 431 
was unlikely and the use of an annual average would overestimate any contribution. Instead, we scale the 432 
natural gas usage according to the monthly breakdown provided by the United States Energy Information 433 
Administration database for Colorado (https://www.eia.gov/dnav/ng/hist/n3010co2m.htm). The mean 434 
daytime (approximately sunrise to sunset, 7 am to 6 pm) temperature in October was 18.2 C while the 435 
mean temperature (including day and night) for October was 15.7 C. Our daytime-only measurements 436 
therefore had a mean temperature that was much closer to the mean temperature (day and night) of 437 
September, which was 19.2 C. Therefore, we scale the Boulder annual natural gas consumption by the 438 
September 2016 nature gas usage, which was 2.4% of the Colorado annual total according 439 
(https://www.eia.gov/dnav/ng/hist/n3010co2m.htm). The estimated total emissions from residential and 440 
commercial natural gas usage in Boulder over our measurement days is then 10.2 MT CO2/hour. We 441 
apply this correction to our measured values and include a (conservative) uncertainty equal to this 442 
correction. The new adjusted values are then QOct22,adj = 18 ± 20 MT CO2/hour for October 22 and QOct25,adj 443 
= 152 ± 46 MT CO2/hour for October 25.  444 

Once leaf senescence has completed, neither plants nor soil respiration contribute to CO2 signal 445 
(Matyssek et al., 2013).  The National Phenology Network (USA National Phenology Network, 2018) 446 
data shows that for the site nearest to Boulder (64 km north of Boulder), the leaf fall dates were 447 
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September 15, 2016 for box elder trees October 6, 2016 for Eastern cottonwoods. Thus by our 448 
measurement dates leaf senescence should be fully complete and plants will not contribute to the city CO2 449 
enhancement.  We note that a wide range of biogenic contributions to CO2 have been noted in the 450 
literature (Gurney et al., 2017; Mitchell et al., 2018; Sargent et al., 2018).   451 
 452 
3.3.4 Scaling to annual emissions 453 
 In order to compare with the city inventory, we scale our results to an annual total. To do this, we 454 
use the hourly traffic data of Fig. 4 to scale QOct22,adj and QOct25,adj to a daily emission.  Based on Figure 4, 455 
34% of the total traffic counts occur during the 5-hour measurement period on Oct. 22 and 52% of the 456 
total traffic counts occur during the 8-hour measurement period on Oct. 25 (excluding the 13:00 to 14:00 457 
period). The daily emissions are then QOct22,day = QOct22,adj×(5 hours)÷(0.34) and QOct25,day = QOct25,adj×(8 458 
hours)÷(0.52)  (The traffic data in Fig. 4 is based on weekday measurement and we assume that the 459 
hourly distribution is the same for weekends; this may lead to a slight overestimate in the weekend data 460 
where a larger fraction of emissions occurs between 11 am and 4 pm than on weekdays.) We then scale to 461 
annual emissions by assuming that the emissions on Oct. 22 are representative of all 112 weekend/holiday 462 
days and the emissions on Oct. 25 are representative of all 253 workdays. Including their uncertainty, this 463 
calculation yields (6.2 ± 1.8) × 105 MT CO2/year.   464 

The scaling relies heavily on the traffic count data supplied by the city of Boulder, which does not 465 
have an associated uncertainty value. A comparison of these data over several years shows a typical 7% 466 
statistical variation at a given TMC location, after removing a linear trend. We assume this reflects day-467 
to-day fluctuations in traffic. In addition, there will be seasonal variations, which is not captured in the 468 
extrapolation from our two test case days to the annual emissions.  Due to the lack of seasonal data for 469 
Boulder traffic, we use the detailed Hestia traffic inventory for Salt Lake City, UT given in Figure 2 of 470 
(Mitchell et al., 2018). These data show a variation of ±18% in traffic emissions between “summer” and 471 
“winter” months.  Combined in quadrature with the 7% statistical uncertainty in the TMC traffic count 472 
data, this leads to an additional ~20% uncertainty to the scaled annual estimate. As noted earlier, we have 473 
not applied any additional uncertainty on the reliance on the TMC data as a proxy for emissions locations.   474 

Including the additional uncertainty on the scaling to annual emissions, we estimate an annual 475 
emission rate of (6.2 ± 2.2) × 105 MT CO2/year for traffic carbon emissions for Boulder CO.     476 

 477 
4 Comparison with city estimates 478 
 The city vehicle emissions estimate comes from total vehicle miles traveled based on data from 479 
the transportation department, miles per gallon inputs from the EPA state inventory tool, and vehicle type 480 
distribution from the Colorado Department of Public Health and the Environment (Kimberlee Rankin, 481 
City of Boulder, personal communication).The City of Boulder estimates total vehicle emissions of 482 
4.50×105 metric tons (MT) of CO2 in 2016 (https://www-483 
static.bouldercolorado.gov/docs/2016_Greenhouse_Gas_Emissions_Inventory_Report_FINAL-1-484 
201803121328.pdf?_ga=2.130927943.970967930.1525795820-107394975).  On-road emissions account 485 
for greater than 99% of the transportation emissions, so we have scaled this value down by one percent 486 
for an on-road emissions value of 4.46×105 MT CO2.  We assume that all traffic emissions are CO2 rather 487 
than a mix of CO2 and CH4.  There is no uncertainty provided by the city on this value. 488 
 In comparison, we estimate (6.2 ± 2.2) × 105 MT CO2/year MT CO2/year, which is 139% of the 489 
city estimate but agrees within the given uncertainty. Interestingly, other studies have also found that 490 
emissions measurements were higher than the reported inventory values.  Brioude et al., (2013) found 491 
top-down aircraft estimates of Los Angeles county and the South Coast Air Basin (SoCAB) CO2 were 492 
1.45 times larger than the Vulcan 2005 inventory (Gurney et al., 2009).  An earlier aircraft campaign over 493 
Sacramento, CA found an average CO2 emission, with 100% uncertainty, that was 15-20% higher than 494 
the Vulcan estimate (Turnbull et al., 2011).  Lauvaux et al. (2016) compared Indianapolis city CO2 495 
emissions measured by a network of CRDS instruments to the HESTIA inventory (Gurney et al., 2012) 496 
during INFLUX (Davis et al., 2017).  They found that despite the building-scale resolution in the 497 
HESTIA inventory, it still under-estimated the annual CO2 flux by 20%.  An updated version of HESTIA 498 
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predicted very similar emissions estimates for on-road, residential, and commercial sectors, so the 499 
discrepancy was attributed to missing sources of CO2, including animal (primarily human and companion 500 
animal) respiration, biofuel combustion, and biosphere respiration (Gurney et al., 2017).   501 
 502 
4.1 Improvements in future measurements 503 
 Future improvements should include additional and different beam paths, selected based on 504 
prevailing wind directions.  (Our initial assumption that the mountain path would generally act as a 505 
reference path was incorrect since the prevailing daytime winds are not out of the west but rather the 506 
southeast.) An east-west running beam north of the city and one south of the city would allow us to utilize 507 
a larger fraction of the data as the predominant midday wind direction during the fall is out of the north to 508 
north-east (see Fig. 1).  Even longer beam paths would also interrogate a larger fraction of the city and 509 
measure a correspondingly larger fraction of the vehicle emissions.  Vertically-resolved data from e.g. a 510 
series of stacked retroreflectors would better test the assumption of vertically-dispersing Gaussian 511 
plumes. 512 
 Additionally, more extensive modeling to cover variable wind directions and speeds would allow 513 
the incorporation of a much larger fraction of the data than the two days selected here.  An inversion-514 
based model similar to (Lauvaux et al., 2013) could potentially be applied to a small city like Boulder; 515 
however this would depend heavily on the quality of the bottom-up emissions inventory used to generate 516 
the priors. Indeed, one of the major future improvements would be to generate a detailed Hestia inventory 517 
of Boulder, CO similar to that generated for Salt Lake City, UT (Mitchell et al., 2018). 518 
 519 
5 Conclusions 520 
 We demonstrate the use of an open-path dual frequency comb spectroscopy system for 521 
quantifying city emissions of carbon dioxide.  We send light over two paths:  a reference path that 522 
samples the concentration of gases entering the city from the west, and an over-city path that measures the 523 
concentrations of gases after the air mass has crossed approximately two-thirds of the city including two 524 
major commuter arteries.  The measured diurnal cycle shows a significant traffic-related enhancement in 525 
the carbon dioxide signal during weekdays in the over-city path compared to the reference path.  We 526 
select two case study days with appropriate wind conditions and apply Gaussian plume modeling to 527 
estimate the total vehicular carbon emission.  We then scale these results up to annual city-wide emissions 528 
using traffic data from the City of Boulder.  We find overall traffic related carbon emissions that are 529 
approximately 1.4 times greater than the city’s bottom-up traffic emissions inventory but with an 530 
uncertainty that encompasses the city inventory estimate.  Further improvements to this method should 531 
include improved design of reference and over-city paths and a more detailed inventory model for 532 
Boulder CO, which together should further reduce the overall uncertainty in the estimate.   533 
 534 
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Appendix A:  Modification of the Gaussian plume equation 753 

 754 

Equation 1 is the standard Gaussian plume equation as discussed in Section 3.3.2 (Seinfeld and 755 

Pandis, 2006).  It is reproduced here,  756 

𝑐(𝑥, 𝑦, 𝑧, 𝑡) =
𝑞

2𝜋𝜎𝑦𝜎𝑧𝑢
exp (
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2𝜎𝑦
2

) [exp (
−(𝑧 − 𝐻)2

2𝜎𝑧
2

) + exp (
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2𝜎𝑧
2

)] 757 

 758 

where the standard variables are as defined in Section 3.3.2. 759 

 760 

Path-integrated substitutions 761 

The DCS returns the average concentration along a line path. We denote distance along this path 762 

by the variable s, where s runs from 0 to L. This path is assumed to lie in the x-y plane at an 763 

angle  with respect to the x-axis (which is assumed to be the wind direction in the standard 764 

Gaussian plume equation).  With these definitions, the contribution to the DCS signal from the 765 

plume is,  766 

(𝑐 − 𝑐0) =
1

𝐿
∫ 𝑐(𝑠 cos 𝜃,  𝑠 sin 𝜃, 𝑧, 𝑡)𝑑𝑠
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0

 767 

or: 768 

 769 

(𝑐 − 𝑐0) =
1

𝐿
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 770 

 771 

Accounting for multiple point sources 772 

Rather than a single source at (x0, y0), we have multiple sources at locations (xj, yj) , each with a 773 

source strength fjq, where fj is the fractional source strength out of the total value q. We now sum 774 

over all sources to find the total enhancement. We also change the units of q from kg/s to 775 

MT/year and thus change the emissions variable to Q to indicate the unit change.  This gives, 776 
2 2 2

0 2 2 20
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2 2 2 2
j j
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     
    777 

 778 

Height substitutions 779 

We assume that the point source emissions locations are 1 meter above ground (z = 1) and city 780 

topographic data indicates that our beam path is approximately 15 meters above ground (H = 15).  781 

These substitutions finally lead to Eq. (4) in the main text.  782 

 783 
  784 
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 785 
 786 
Figure 1:  Measurement layout.  The two measurement paths are shown by red (reference) and black 787 
(over-city) lines.  The two weather stations that provided wind speed and direction data are given by the 788 
green diamonds.  The colored circles are Turning Movement Count (TMC) locations, which are used as a 789 
proxy for the traffic source locations.  Both color and size represent the number of traffic counts at each 790 
location.  Dominant wind directions for the campaign overall (aqua) and the test case days (purple for 791 
10/22 and blue for 10/25) are given by colored arrows.   792 
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 793 
Figure 2:  Typical 32-second spectrum measured over the 2-km reference path.  CO2 bands are observed 794 
in the 6350 cm-1 and 6225 cm-1 regions, while CH4 and H2O are measured between 6150 and 6050 cm-1. 795 
The larger, slowly varying structure is from the comb intensity profile. The atmospheric absorption 796 
appears as the small and narrow dips.  797 
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 798 
 799 
Figure 3:  Statistical uncertainty as quantified by the Allan deviations for XCO2 over both the reference 800 
path (red triangles) and city path (black squares) from a well-mixed, three-hour time period on the night 801 
of October 3, 2016.  802 
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 803 
Figure 4:  City-wide traffic counts from the Boulder Arterial Count Program (ART), normalized to a peak 804 
of unity.   805 
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 806 
Figure 5:  7.5 weeks of dual-comb spectroscopy data for the reference path (red) and the over-city path 807 
(black) smoothed to 5-minute time intervals. Enhancements in the over-city path relative to the reference 808 
path are observed in CO2 and CH4 but not in H2O or HDO.  (Note:  the HDO concentration includes the 809 
HITRAN isotopic scaling.) 810 
  811 
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 812 

 813 
 814 
Figure 6:  Diurnal cycle analysis. Data is the median of the full 7.5 weeks.  (a) The mean direction in 815 
which the wind is blowing (black trace, left axis) and wind speed (gray trace, right axis) both from the 816 
NCAR Foothills measurement station, shaded regions reflect the 25th to 75th quartiles; (b) the weekend 817 
and (c) weekday median XCO2 values for the over-city path (blue triangles) and reference path (red 818 
squares). Uncertainty bars represent the 25%-75% range of values encountered. (d) and (e) Same data for 819 
XCH4. The vertical dashed black line marks 9:00 local time and the yellow shaded region highlights the 820 
region from sunrise to sunset on Oct. 22, 2016. 821 
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 822 
Figure 7:  Footprint calculations and time series data for the two case study days.  Left column:  Saturday, 823 
October 22, 2016; right column:  Tuesday, October 25, 2016 data.  Upper panels (a, d):  Footprints for the 824 
reference path.  Middle panels (b, e):  Footprints for the over-city path.  The footprints are averaged over 825 
the respective time windows and open paths. Lower panels (c,f):  Wind and CO2 data at 5-minute time 826 
intervals.  Reference and over-city measurement paths are shown in red and black, respectively.  Data plots 827 
show XCO2 over the reference path (red) and city path (black), wind speed and wind direction measurements 828 
taken at NCAR Mesa (blue) and NCAR Foothills (orange), and the calculated Q(t).  On Oct. 25, Q(t) data 829 
near 14:00 has been removed since the reference path wind direction is out of the southeast to east, resulting 830 
in city contamination along the reference path. All data is smoothed to 5-minute time intervals.  831 
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 832 
Table I:  Parameters used to calculate the emission rate from Eq. (4).  The measurement precision refers 833 
to the instrument uncertainty in the measurement quantity. The variability refers to the observed 834 
environmental variability over the measurement period. The variability from the enhancement, the wind 835 
direction, and the wind speed drive the observed variability in the estimated Q(t) . (The distance from a 836 

given source location to the DCS measurement path, xj varies with location and has a 5-m uncertainty.) 837 
 838 

  10/22 
11:00-16:00 

10/25 
7:00-16:00 

Quantity Measurement 
precision 

Mean Variability Mean Variability 

Pathlength 
L 

0.15 m 6730.66 
m 

0 6730.66 m 0 

Enhancement 
(c-c0)  

0.28 ppm (ref.)  
0.25 ppm (city) 

1.99 ppm 0.97 ppm 
(49%) 

10.3 ppm 1.9 ppm 
(19%) 

Wind speed 
u 

0.3 m/s 5.2 m/s 1.0 m/s 
(19%) 

5.6 m/s 1.3 m/s 
(23%) 

Solar insolation 5% 570 
W/m2 

76 W/m2 
(13%) 

275 W/m2 185 W/m2 
(67%) 

Wind direction 

 

2° 265° 21° 264° 15° 

 839 


