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Abstract. A negative extratropical shortwave cloud feedback driven by changes in cloud optical depth is a feature of global 20 

climate models (GCMs). A robust positive trend in observed liquid water path (LWP) over the last two decades across the 
warming Southern Ocean supports the negative shortwave cloud feedback predicted by GCMs.  This feature has been proposed 
to be due to transitions from ice to liquid with warming. To gain insight into the shortwave cloud feedback we examine 
extratropical cyclone variability and the response of extratropical cyclones to transient warming in GCM simulations. Multi-
Sensor Advanced Climatology Liquid Water Path (MAC-LWP) microwave observations of cyclone properties from the period 25 

1992-2015 are contrasted with GCM simulations with horizontal resolutions ranging from 7km to hundreds of kilometers. We 
find that inter-cyclone variability in LWP in both observations and models is strongly driven by moisture flux along the 
cyclone’s warm conveyor belt (WCB). Stronger WCB moisture flux enhances the LWP within cyclones. This relationship is 
replicated in GCMs, although its strength varies substantially across models. It is found that more than 80% of the enhancement 
in SH extratropical cyclone LWP in GCMs in response to a transient 4K warming can be predicted based on the relationship 30 

between WCB moisture flux and cyclone LWP in the historical climate and their change in moisture flux between the historical 
and warmed climates. Further, it is found that the majority of the robust trend in cyclone LWP over the Southern Ocean in 
observations and GCMs can also be predicted by changes in moisture flux.  We propose two cloud feedbacks acting within 
extratropical cyclones: a negative feedback driven by Clausius-Clapeyron increasing water vapor path (WVP), which enhances 

the amount of water vapor available to be fluxed into the cyclone; and a feedback moderated by changes in the life cycle and 35 
vorticity of cyclones under warming, which changes the rate at which existing moisture is imported into the cyclone. Both 
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terms contribute to increasing LWP within the cyclone. While changes in moisture flux predict cyclone LWP trends in the 
current climate and the majority of changes in LWP in transient warming simulations, a portion of the LWP increase in 

response to climate change that is unexplained by increasing moisture fluxes may be due to phase transitions. The variability 
in LWP within cyclone composites is examined to understand what cyclonic regimes the mixed phase cloud feedback is 
relevant to. At a fixed WCB moisture flux cyclone LWP increases with increasing SST in the half of the composite poleward 5 
of the low and decreases in the half equatorward of the low in both GCMs and observations. Cloud-top phase partitioning 
observed by the Atmospheric Infrared Sounder (AIRS) indicates that phase transitions may be driving increases in LWP in the 

poleward half of cyclones.   

1 Introduction  

Constraining the change in cloud reflectivity in response to warming is key to offering a more accurate prediction of 21st 10 
century climate change. Caldwell et al. (2016) showed that uncertainty in shortwave cloud feedback represented the largest 
contribution to uncertainty in climate sensitivity in the fifth coupled model intercomparison project (CMIP5) generation of 

models. Model uncertainty in the shortwave cloud feedback is driven by differences in the representation of clouds in the 
planetary boundary layer, which contribute strongly to albedo, but not to outgoing longwave radiation (Hartmann and Short, 
1980). These clouds exist at a time- and length-scale that is much finer than even the highest resolution simulation and are thus 15 
parameterized, leading to substantial disagreement in feedback from one model to another.   

The shortwave cloud feedback, while highly variable across models, does have some qualitatively similar features 

that appear in many CMIP-class GCMs. The most salient of these is the dipole pattern in the shortwave cloud feedback (Zelinka 
et al., 2012b, a;Zelinka et al., 2013;Zelinka et al., 2016). The shortwave cloud feedback dipole is  characterized by decreasing 
cloud coverage in the subtropics (a positive feedback) and increasing cloud optical depth in the extratropics (a negative 20 
feedback) in response to warming. There is a growing consensus that the positive lobe of the dipole, where subtropical cloud 

fraction decreases, is a robust feature of the climate system. Both empirical analysis of observations (McCoy et al., 
2017a;Clement et al., 2009;Klein et al., 1995;Myers and Norris, 2015, 2016;Norris et al., 2016) and very high resolution 
simulations (Blossey et al., 2013;Bretherton, 2015;Bretherton and Blossey, 2014;Bretherton et al., 2013;Rieck et al., 2012) 
have substantiated the subtropical positive feedback predicted by GCMs, although it appears that traditional GCMs somewhat 25 
underpredict the decrease in subtropical cloud cover in response to warming and thus underestimate the positive feedback 

(Klein et al., 2017).  
 With the growing consensus surrounding the positive lobe of the dipole, a constraint on the negative lobe, where 
extratropical cloud optical depth increases with warming, has increased in importance as a significant source of uncertainty in 
the global-mean shortwave cloud feedback. Evaluation of model behavior and some observations indicate that the negative 30 
lobe is related to a transition from a more ice-dominated to a more liquid-dominated state – the so called mixed phase cloud 

feedback (McCoy et al., 2017b;Ceppi et al., 2016a;Tsushima et al., 2006;Cheng et al., 2012;Naud et al., 2006;Choi et al., 
2014). This transition results in an increase in small, bright liquid droplets at the expense of ice crystals and thus an increase 
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in albedo(Zelinka et al., 2012a;McCoy et al., 2014). It is possible that this transition also decreases precipitation efficiency by 
decreasing the amount of frozen hydrometeors (Field and Heymsfield, 2015;Morrison et al., 2011;Heymsfield et al., 2009), 

and enhancing the total condensate.   
GCMs struggle to realistically simulate mixed-phase clouds. Evaluation of ice-liquid partitioning in GCMs 

participating in CMIP5 showed that there was a 30 K temperature range in which different models predicted an equal mixture 5 
of ice and liquid within clouds(McCoy et al., 2016). This model diversity in partitioning leads to a diversity in LWP response 
to warming and ultimately shortwave cloud feedback in the extratropics(Tan et al., 2016).  Models that glaciate at a warmer 

temperature transition more ice to liquid with warming, simply because they have a large reservoir of susceptible cloud ice in 
the climate mean state(McCoy et al., 2015b).  

The mixed-phase cloud transition mechanism is partially supported by the observationally-inferred response of 10 
extratropical clouds to warming. Several studies have substantiated that cloud optical depth responds to atmospheric and 
surface temperature in the midlatitudes, particularly the Southern Ocean (SO)(Ceppi et al., 2016b;Terai et al., 2016;Gordon 

and Klein, 2014). Multiple linear regression of cloud optical depth on atmospheric stability and temperature shows that 
increasing surface temperature tends to decrease cloud optical depth (Terai et al., 2016). These investigations examined the 
variability across the midlatitudes in a non-phenominological sense, making it difficult to assign a mechanism to their 15 
diagnosed covariability between optical depth, LWP, and temperature. Overall, it remains unclear if this optical depth change 

is directly related to shifts in cloud phase because it is difficult to accurately measure the phase of water in clouds and the total 
amount of frozen water (Jiang et al., 2012). In addition to the difficulties in measuring ice-phase cloud properties, the diversity 

in synoptic states in the midlatitudes further complicates this analysis. Bodas-Salcedo (2018) demonstrated that the radiative 

signal from increased LWP associated with phase transitions is masked by ice cloud within low pressure systems. This shows 20 
that extratropical variability in LWP needs to be considered in the context of the regime it is occurring in. This is supported 

by earlier studies that demonstrated that there was strong regime dependence in the bias in reflected shortwave radiation across 
SH extratropical cyclones (Bodas-Salcedo et al., 2014). Shifts in cyclonic regimes have been suggested as a possible 
explanation for negative midlatitude shortwave cloud feedback. Tselioudis and Rossow (2006) proposed that changes in 
cyclone frequency and surface pressure in response to a doubling in CO2 could increase reflected shortwave radiation over the 25 

midlatitudes by 1.9 Wm-2 to 4.9 Wm-2. Despite the complexity of midlatitude feedback processes, robust increases in 
extratropical cloud cover (Norris et al., 2016) and liquid water path (Manaster et al., 2017) have been observed over the 25 
years covered by satellite observations. It is reasonable to hypothesize that warming in the extratropics might be driving these 
trends partly via changes in cloud phase from ice to liquid.  Can our understanding of the large synoptic systems that dominate 
the extratropics assist us in interpreting the long-term cloud property trends observed across these regions?  30 

In this study we follow a similar technique to Tselioudis and Rossow (2006) and examine observations of midlatitude 
cyclones to infer a feedback. However, this is difficult to interpret in a causal sense. GCMs are used to support inferences 
made by examining observed covariability in the current climate.  The cloud organization within midlatitude cyclone systems 
exists on a variety of length scales from synoptic (thousands of kilometers) to mesoscale cellular convection (kilometers). 
Traditional GCMs are able to capture the overall synoptic length scale, but are typically too coarse to capture the finer 35 
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structures. Here, we utilize a diverse selection of GCMs with resolutions as fine as 7km to examine the impact of resolving 
these features. From these simulations we hope to offer guidance as to what aspects of models are important to capturing 

midlatitude variability and cloud feedback. 
We will show that the mixed-phase cloud feedback does not explain all of the observed variability or trends in 

extratropical LWP within cyclones in both observations and GCMs by showing that changes in moisture flux into the cyclones 5 
predict the majority of the change in LWP in response to warming. This is done by sorting our observations and simulations 
into cyclonic regimes across the extratropics. We show how clouds in cyclones have their LWP variability explained by 

meteorological variability and that trends in meteorological variability predict the majority of decadal trends in cyclone LWP. 
Similarly, changes in cyclone LWP between simulations forced with observed SST and simulations with enhanced SST can 
be explained by changes in moisture flux into cyclones. This work builds on earlier insight  by Kodama et al. (2014) who 10 
utilized aquaplanet simulations to posit that a relationship between SST and WVP modulated by Clausius-Clapeyron within 
extratropical cyclones should lead to a negative cloud feedback, in keeping with Betts and Harshvardhan (1987). We hope that 

the relationships between synoptic state and cyclone cloud LWP in this work provides a clear benchmark that models may be 
evaluated against and will reduce uncertainty related to the extratropical shortwave cloud feedback in models. 

2 Methods 15 

In this section we discuss the methodology used to identify the low-pressure centers of midlatitude cyclones. We compare 
microwave observations of cyclone properties to global model simulations ranging from CMIP5 GCMs with horizontal 

resolution in excess of 100 km, to convection-permitting GCMs with a resolution of approximately 7 km. The methodology 
used to create the unified microwave observations, cloud top phase, and the model set up for the global simulations is described 
in this section as well. 20 

2.1 Data analysis 

2.1.1 Cyclone compositing 

Numerous studies have examined midlatitude variability by compositing around cyclone centers (Field et al., 2011;Field and 
Wood, 2007;Naud et al., 2016;Catto, 2016;Naud et al., 2017;Grandey et al., 2013). Identification of cyclone centers may be 
achieved by using pressure (Jung et al., 2006;Löptien et al., 2008;Hoskins and Hodges, 2002;Field et al., 2008); geopotential 25 
height (Blender and Schubert, 2000); or vorticity (Sinclair, 1994;Hoskins and Hodges, 2002;Catto et al., 2010). Here we follow 
the methodology described in Field and Wood (2007). As in  Field and Wood (2007) SLP is averaged to 2.5° resolution. Daily-

mean anomalies in SLP (𝑝#$ ) are calculated by subtracting the average of SLP starting from 15 days before to 15 days after 

from each day for each 2.5°x2.5° region. Candidate 2.5°x2.5° grid points were found using the following criterion: 
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where SLP<1015 hPa. These candidate 2.5°x2.5° grid points are filtered to find the maximum negative anomaly 
within a 2000km radius of each grid point. Each composite is 4000 km across. Composited data is averaged onto an equal-
area grid centered around the maximum negative anomaly. The averaging grid was 18 zonal bins by 19 meridional bins. In 
this study we examine NH and SH cyclones. . For consistency with previous studies utilizing the Field and Wood (2007) 5 

cyclone compositing algorithm cyclone centers must have their center between 30° and 80° latitude. SH cyclones are flipped 
in the north-south direction so that all cyclones are oriented with the pole to the top of the figure. This is done to allow easy 
comparison of cyclone composites in the NH and SH. All cyclone means are the average of all data within 2000 km of the 
cyclone center. More complex analysis techniques exist that allow the definition of the edge of a cyclonic system(Pfahl and 
Sprenger, 2016). We have chosen to take averages around low pressure centers with a set radius. 10 

Some microwave radiometer products are unavailable over land or ice (e.g., surface wind), while others have larger 
uncertainty resulting from atmospheric emission signals being occasionally overwhelmed by land or ice emission (e.g., cloud 
liquid water). Therefore, only cyclone centers with 50% or more of the composite area located over ice-free ocean are 
considered valid in cyclone composites from observations or models. Model data over sea ice or land are removed from the 

composite to ensure parity with the observations.  15 

 

2.1.2 Regression analysis 

In this work we examine observed and simulated extratropical variability in the current climate in the context of linear 
regressions. This framework is used to infer a climate feedback from changes in cyclone properties and these inferred feedbacks 
are tested in a set of simulations of transient warming following Qu et al. (2015).  20 

In the cyclone compositing framework that this paper is built on we examine (i) variability of different variables 
between cyclones within the coordinate system of the cyclone composite (e.g. the inter-cyclone variability in some region of 
the composite),  (ii) variability in mean cyclone properties across many cyclones, and (iii) seasonal and regional mean 
variability in cyclone means (e.g. the average cyclone LWP for all cyclones in a given region).  To add clarity to our analysis 

we will refer to a given cyclone property 𝑋 as 𝑋?@ when a cyclone-wide mean is taken (where the mean of all data within a 25 

2000 km radius of  the low pressure center) and 𝑋A@ when we are examining the regional mean of many different cyclones. 

In the case where we will investigate the spatial variability around the low-pressure center we will write 𝑋BC to signify the 

different averaging regions within the composite. In the case of some variables only cyclone-means are defined (e.g. WCB 

moisture flux into the cyclone) and the ‘CM’ subscript is not written. A list of acronyms and subscripts is given in Table 1. 
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2.2 Observations and reanalysis 

2.2.1 MAC-LWP 

The Multi-Sensor Advanced Climatology framework used for developing monthly cloud water products (Elsaesser 

et al., 2017) is adapted for use here to create diurnal-cycle corrected and bias-corrected daily datasets for liquid water path 
(LWP, where path is the mass in an atmospheric column), 10-meter wind speed, and water vapor path (WVP). Bias correction 5 
was performed using observations from Aqua MODIS. As a function of WVP and 10-m surface wind, Aqua MODIS was used 
to determine clear-sky (here, by definition, LWP = 0) scenes, and these scenes were compared to AMSR-E LWP.  If a non-
zero difference was computed between AMSR-E and MODIS LWP, this difference was removed from all individual input 

LWP records (as a function of WVP/wind) prior to processing in the MAC algorithm.  This LWP bias correction is discussed 
in more detail in Elsaesser et al. (2017).     10 

Because passive microwave cloud liquid water retrievals must make assumptions regarding the partitioning of 
precipitating and non-precipitating liquid there is a systematic uncertainty in the microwave LWP data set. The cyclone LWP 

observations from this data set that are used in this study are the estimated non-precipitating liquid water averaged over both 
cloudy- and clear-sky, with the bias (largely due to the aforementioned precipitation partitioning errors) estimated to be ~0.01-
0.02 kg m-2 for the mid-latitude regions analyzed here (Greenwald et al., 2018). 15 

MAC-LWP uses data from multiple microwave radiometers to create a data set spanning 1988-2016. However, up 
until 1991 the only data source was F08 SSM/I, which therefore implies greater uncertainty in daily averages prior to 1992 

(since only two satellite overpasses per day would go into such estimates).   Thus, we consider this period less reliable and 
only obervations onwards from 1992 are considered in this study. Because sea surface temperature and sea ice coverage are 
only available through 2015 we do not examine extratropical cyclones after this period. 20 

One possible caveat in our analysis is that the radiative signal used to retrieve LWP may partly arise from upwelling 
radiation due to wind roughening of the ocean surface or emission from WVP.  In such cases, LWP is biased in one direction, 

while wind and/or WVP may be biased in an opposite direction (Elsaesser et al., 2017). However, retrievals of WVP and wind 
speed have been shown to be unbiased relative to in situ observations and thus such issues are likely minimal (Mears et al., 
2001;Wentz, 2015;Trenberth et al., 2005;Meissner et al., 2001;Elsaesser et al., 2017).  25 

 

2.2.2 MERRA2 

The Modern-Era Retrospective Analysis for Research and Applications version 2(Bosilovich et al., 2015) (MERRA2) 
daily-mean sea level pressure (SLP) was used to locate cyclone centers in the observational record from 1992-2015 using the 
algorithm described above.   30 
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2.2.3 AIRS Cloud-top phase partitioning 

The Atmospheric Infrared Sounder (AIRS) instrument on NASA’s EOS Aqua satellite provides estimates of cloud 
thermodynamic phase (liquid, ice, and unknown categories) (Kahn et al., 2014). The cloud phase algorithm is based on a 

channel selection that exploits differences in the index of refraction for liquid and ice (Nasiri and Kahn, 2008), while more 
ambiguous spectral signatures are classified as unknown phase. Jin and Nasiri (2014) showed that ice cloud within the AIRS 5 
field of view is correctly identified in excess of 90% of the time when compared to estimates of thermodynamic phase from 
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO; Hu et al. (2010)). Liquid phase clouds dominate 

subtropical stratocumulus regimes (Kahn et al., 2017) while unknown phase clouds are found most frequently in trade cumulus 
regimes and the cold sector of extratropical cyclones (Naud and Kahn, 2015). Observations from the ascending and descending 
orbits of AIRS were averaged together to approximate a daily mean.  10 

2.2.4 SST and sea ice 

The Met Office Hadley Centre sea ice and sea surface temperature data set (HadISST.2.1.0.0, Titchner and Rayner (2014)) 

was used to provide sea ice coverage and sea surface temperature (SST) within the cyclone composite for both models and 
observations up until 2015.  HadISST.2.1.0.0 SST and sea ice cover was also used to provide boundary conditions for the 
atmosphere-only PRIMAVERA simulations described below. 15 

2.3 Simulations 

In this study we have assembled a broad array of GCMs to examine their midlatitude variability. Model resolutions range from 

quite coarse, consistent with long integrations performed as part of CMIP5, to high resolution simulations performed under 
the auspices of PRIMAVERA for CMIP6, UM-CASIM, ICON, and NICAM. These simulations have long integration records 
and their trends may be compared to observations. Two very high-resolution simulations (nearer to 7km horizontal resolution) 20 
are also considered. Because of their demand on computational resources only short integrations are available, but they allow 
insight into the representation of midlatitude processes in the convective grey zone(Field et al., 2017).  Simulations are 

described in detail in the supplementary material and are listed in Table 2. Short descriptions of the CFMIP2 and PRIMAVERA 
model intercomparisons are provided below. 
 25 

2.3.1 CFMIP2 

We consider several models from the CMIP5 models participating in CFMIP2. These models are listed in Table 2. Atmosphere-

only (AMIP) simulations using observed SST as a boundary condition are available for the period 1979-2008. In addition, 
simulations were performed with SST uniformly increased by 4K (AMIP+4K). The contrast between these sets of simulations 
will be used to investigate warming-induced changes in extratropical cyclones. 30 
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2.3.2 PRIMAVERA 

 The PRocess-based climate sIMulation: AdVances in high-resolution modelling and European climate Risk 
Assessment (PRIMAVERA) project is intended to develop high-resolution GCMs. Several European modelling centers have 

coordinated to run instances of their CMIP6 models at increased horizontal resolution. These simulations use Easy 
Aerosol(Voigt et al., 2014) to unify aerosol perturbations across the models. At the time of writing historical simulations with 5 
prescribed SST and sea ice have been completed for the models analyzed here. These simulations allow insight into whether 
increasing horizontal resolution impacts the ability of models to realistically represent midlatitude variability. High resolution 

models are labeled HR and low resolution is labeled LR, with the exception of HadGEM3, which has three resolutions (low 
resolution is labeled LM, middle resolution is labeled MM, and high resolution is labeled HM).  PRIMAVERA simulations 
are performed under the HighResMIP protocols outlined by the climate model intercomparison project panel. 10 

3 Results 

3.1 Precipitation and WCB moisture flux 

The majority of moisture ingested into extratropical cyclones is imported along the warm conveyor belt (WCB) 

(Eckhardt et al., 2004;Field and Wood, 2007). The WCB moisture flux is defined as 

𝑊𝐶𝐵 = 𝑘 ∙ 𝑊𝑉𝑃?@ ∙ 𝑊𝑆J#K?@           [3] 15 

Where WVPCM is the cyclone-mean water vapor path in kg/m2 ; WS10mCM is the cyclone-mean wind speed at 10 
meters in m/s; and k is a constant parameterizing the width of the WCB as defined in Field and Wood (2007) and is calculated 

by linear regression of the precipitation rate on 𝑊𝑉𝑃?@ ∙ 𝑊𝑆J#K?@ . Cyclone means are the average of all data within a 2000 

km radius of the cyclone center. We note that the k in Field and Wood (2007) was based on AMSR-E data. AMSR-E observes 
half the precipitation rate in cyclones that Cloudsat does (Naud et al., 2018;Field et al., 2011). For consistency with previous 20 

literature we have chosen to use the k based on AMSR-E observations (𝑘 = 2.66 × 100O	𝑚0J) as calculated by Field and 

Wood (2007). Our results might change slightly in a quantitative sense if another k was used, but will remain qualitatively the 
same. 

Although the moisture imported along the WCB may condense and form clouds within the cyclone, in order to 
maintain water mass balance in extratropical cyclones the moisture flux into a cyclone must match the precipitation out of the 25 

cyclone over a 2000 km radius. We find that the product of WVP and wind speed within cyclones is a good predictor of 
precipitation rate in the GCMs considered in this study (Table 2  Fig. S1), in agreement with what has been found for 
observations(Field and Wood, 2007). Thus the WCB flux is a proxy for the moisture flux into a midlatitude cyclone that is 
balance by the precipitation for quasi-steadystate. Model values of the WCB width parameter (k) (Eq. 3) range from 

2.41 × 100O	𝑚0J  to 4.11 × 100O	𝑚0J and are near to the k trained on AMSR-E data(Field and Wood, 2007). It is interesting 30 

to note that the k value does not appear to depend on model resolution and the lowest and highest k’s come from the high 
resolution simulations in ICON and UM-CASIM, respectively. However, this range in k is within the observational uncertainty 
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in precipitation rate(Field et al., 2011). Naud et al. (2018) examined observed precipitation rate in extratropical cyclone and 
found that the mean extratropical cyclone precipitation rate differed substantially depending on whether a microwave 

radiometer (0.08 mm/hr, AMSR-E) or radar (0.17 mm/hr, Cloudsat) was used to measure precipitation rate. If we rescale the 
AMSR-E precipitation rates so that the cyclone-mean precipitation rate is consistent with radar measurements, k should be 

5.67 × 100O	𝑚0J. Overall, the GCM cyclone precipitation flux that is predicted by the simple model of WCB moisture flux 5 

and the k inferred from the GCMs is well within the observational uncertainty.  

WCB moisture flux provides a useful predictor of precipitation- both in the climate mean-state and in projected 
changes in rain rate via dynamical alterations (in wind speed) and Clausius-Clapeyron driven changes (in WVP). We compare 
the distributions of WCB moisture flux, WS10mCM, and WVPCM in models and observations. The mean WCB moisture flux in 
the GCMs considered in this study is generally lower than the observations (Fig. S2 ab), with model biases ranging from -1.16 10 
mm/day to -0.31 mm/day in the SH and from -0.79 mm/day to +0.24 mm/day in the NH. This bias appears to be linked to low 

10-meter wind speed in cyclones in models (Fig. S2 cd) as GCM WVPCM is near to the observed distribution (Fig. S2 ef). One 
possibility is that this issue is related to excessive surface drag over oceans, which is a known issue in modelling tropical 
cyclones(Donelan et al., 2004;Soloviev et al., 2014). Anecdotally, the CNRM-CM6 LR and HR GCMs cap surface drag and 
are the only two GCMs whose mean wind speed is greater than or equal to the observed wind speed. Based on this we suggested 15 

sensitivity tests in GCMs to the capping of surface drag as a step toward a realistic representation of midlatitude precipitation 
rates. If this is the cause of lower surface wind speed in cyclones then it means that modelled midlatitude cyclones have been 
systematically under-estimating precipitation through decreased flux of moisture into the cyclone.  It is also possible that the 
low WS10mCM in some of the GCMs reflects deficient horizontal resolution (Strachan et al., 2013). The most biased cyclone-
mean WS10m speeds are the IPSL-CM5 and CNMR-CM5 models, which have relatively low horizontal resolutions. This may 20 

be concidental as there does not appear to be a systematic trend in different resolution instances of the same model within the 
PRIMAVERA GCMs. 

 
 

3.2 LWP and WCB moisture flux 25 

As shown in section 3.1, precipitation within midlatitude cyclones is predicted by WCB moisture flux. This provides 
a useful way to understand changes in cyclone properties as it gives a predictor of precipitation rate that can be decomposed 
into a contribution from dynamics (the wind speed) and thermodynamics (the WVP).  

In McCoy et al. (2018b) it was proposed that when averaged over a sufficiently long period of time cyclones were in 
a steady state where the environment- in particular the moisture flux- dictated the precipitation rate out of the cyclone. If 30 

extratropical cyclones are in steady-state, then we expect that an increased moisture flux should enhance cyclone LWP, 
providing that precipitation processes are dominated by the warm rain process. This is because a higher in-cloud LWP is 
needed to generate a higher rain rate below cloud (Wood et al., 2009;Hill et al., 2015). Thus, areally-averaged rain-rate should 
increase as LWP increases either by increasing coverage of cloud, or by increasing in-cloud LWP. Both effects should translate 
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to an enhancement in cyclone albedo (at a fixed solar zenith angle, see the discussion in McCoy et al. (2018b)). This makes 
understanding the efficiency with which extratropical cyclones can convert moisture flux to precipitation via cloud water key 

in understanding variability in extratropical albedo. We note that in this study we utilize microwave observations of LWP, 
which are the average of cloudy and clear regions, so increases in either in-cloud LWP or cloud coverage should translate to 
an increase in microwave-observed LWP. Similarly, the GCM LWP is the average of clear and cloudy regions.  5 

Extratropical cyclone LWP represents a key variable in determining extratropical albedo, but does it scale with WCB 
moisture flux? A linkage between moisture flux into an extratropical cyclone and the total column liquid in the cyclone has 

been demonstrated previously in McCoy et al. (2018b).  A caveat to this is that in McCoy et al. (2018b) total liquid water path 
(TLWP, precipitating and non-precipitating liquid) was examined. Here, we examine the fraction of the TLWP which is 
suspended in clouds (referred to as LWP, here).  10 

Does LWPCM increase with WCB moisture flux in the same way that TLWPCM does? The efficiency with which 
extratropical cyclones can shift vapor to rain determines the relation between WCB moisture flux and LWPCM. In the limiting 

case this efficiency might increase sufficiently rapidly with moisture flux that LWPCM  would not increase in step with WCB 
moisture flux (all additional liquid becomes rain). Because we cannot directly observe how extratropical cyclones partition 
precipitating and non-precipitating liquid (see methods section), we cannot directly evaluate how precipitation efficiency scales 15 
with WCB moisture flux.  This represents an uncertainty in our analysis.  However, we can evaluate extratropical cyclone rain 

and cloud partitioning in high-resolution simulations as a check on the caclulations used in the MAC-LWP dataset. LWPCM, 
TLWPCM (rain+cloud liquid), and WCB moisture flux are calculated for extratropical cyclones observed using MAC-LWP 
and as simulated by UM-CASIM (see Table 2). The parameterization that partitions cloud and rain water paths in the MAC-

LWP observations results in a decrease in the fraction of  liquid water path that is in clouds (𝐿𝑊𝑃?@/𝑇𝐿𝑊𝑃?@) as WCB 20 

moisture flux decreases by -0.075 day/mm (see the slope of the line in Fig. S3). Comparison to UM-CASIM simulations shows 

a similar decrease in the fraction of liquid water that is suspended in clouds (-0.087 day/mm, Fig. S3).  Ultimately, the 
partitioning of rain and cloud water in MAC-LWP, and the microphysics scheme in UM-CASIM both lead to an increase in 
LWP with increasing WCB moisture flux. This is likely due to autoconversion becoming more efficient at higher LWP leading 
to a more pronounced flattening of the curve at higher LWP. It was shown in McCoy et al. (2018b) that this behavior could be 25 

fit as 𝐿𝑊𝑃 ∝ 𝑊𝐶𝐵& or 𝐿𝑊𝑃 ∝ 𝑅𝑅&, where RR is rain rate, since WCB moisture flux and rain rate are linearly related.  

We have examined how WCB moisture flux predicts precipitation. We have also examined how the partitioning 
between rain and cloud changes as a function of WCB moisture flux. Now we will embark on an examination of the relationship 
between WCB moisture flux and LWP. We will focus on the behavior of cyclones within the SH. This is done for the following 
reasons: (1) the SH has a large, unbroken expanse of midlatitude ocean to investigate; (2) GCMs have well-documented and 30 

ongoing issues in accurately representing cloudiness in these regions(Trenberth and Fasullo, 2010;McCoy et al., 2016;Grise 
et al., 2015); (3) the GCM-predicted negative cloud optical depth feedback that is the primary subject of this paper is most 
pronounced in the SH(Zelinka et al., 2012a;Zelinka et al., 2016); and (4) observations and GCMs show a robust trend in LWP 
in this region that is likely driven by warming (Manaster et al., 2017;Norris et al., 2016). Ultimately, we focus on the SH for 
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the sake of brevity. We find extremely similar behavior in the NH and the plots in the paper are reproduced in the 
supplementary material for the NH. 

With the caveat in mind that we must infer the partitioning of liquid between rain and cloud in the observations, we 
evaluate the ability of a wide array of GCMs to simulate the response of cyclone-mean LWP (LWPCM) to WCB moisture flux 
in the Southern Ocean (30°-80°S). We compare the WCB moisture flux dependence of LWPCM in the models listed in Table 5 
2 and observations from MAC-LWP (Fig. 1). Increasing WCB moisture flux increases LWPCM in both observations and 
models. As noted above, we should expect this based on the warm rain process. A greater LWP is required to yield a larger 

precipitation rate (Wood et al., 2009;Hill et al., 2015). As shown in section 3.1 precipitation rate is well-predicted by the WCB 
moisture flux. While the high-resolution models (<100km horizontal resolution) have a slope of the WCB-LWPCM relationship 
that is in keeping with the observed slope. They tend to have too low a LWPCM for a given WCB moisture flux. However, if 10 
the maximum bias in observed LWPCM of 0.03 kg/m2 is assumed based on an estimated range 0.01-0.02 kg/m2 (Greenwald et 
al., 2018), then many of these models are in the possible observational range. It is also reasonable to suspect that models that 

only generate clouds when the entire grid box is saturated (e.g. there is no convection parameterization or cloud scheme) will 
under-estimate cloudiness. 

 It is suggestive that the lower-resolution CFMIP2 models tend to have a much wider diversity in slopes than the 15 
higher resolution PRIMAVERA models, UM-CASIM, NICAM, and ICON. This may reflect parametric uncertainty in the 

representation of convection. UM-CASIM, NICAM, and ICON do not parameterize convection and have extremely similar 
relationships between WCB moisture flux and LWP. Based on this we suggest that the relationship between moisture flux and 
LWP may offer a possible evaluation tool for the realism of convection within GCMs. However, this may also just be chance 
related to the selection of models presented here as the low-resolution HadGEM3-GC31-LM has a reasonably close behavior 20 
to the higher resolution instances of that model (HadGEM3-GC31-MM, and HadGEM3-GC31-HM). Overall, the constraint 

provided by the WCB-LWPCM relationship shown here provides a useful tool for GCMs to evaluate their climate mean-state 
behavior in the extratropics.    

As discussed in the paragraph above, the partitioning between rain and cloud shifts toward rain at higher moisture 
fluxes (Fig. S3). This leads to the asymptotic nature of the curves shown in Fig. 1. Presumably differences in the degree to 25 
which the curve flattens at higher LWP as precipitation becomes more efficient in some models reflects differences in the way 

that precipitation is treated in the different GCMs with (for example) autoconversion being stronger in some models leading 
to a more pronounced flattening of the LWP-WCB curve (and vice-versa). The asymptotic behavior of the WCB-LWPCM curve 
is a second order effect in our analysis (we will return to this discussion in section 3.3.3).   

3.3 Long-term variability in observed cloud properties 30 

3.3.1 Monthly-mean regional variability in extratropical cyclone properties 

The moisture flux into extratropical cyclones plays a dominant role in determining their LWP and, ultimately, precipitation 
rate. How does this mechanism influence the cloud feedback in the midlatitudes? In keeping with earlier studies(Myers and 
Norris, 2016;Qu et al., 2015) we examine observed anomalous variability from 1992-2015 to infer the cloud feedback in these 
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regions within cyclones. We will then utilize transient warming simulations where SSTs have been increased by 4K to see if 
variability within the current climate has the capability to predict the change in cyclone properties in a warmed climate. This 

technique follows the analysis of stratocumulus clouds in Qu et al. (2015). The Indian, Pacific, and Atlantic oceans between 
30°S-80°S are each examined individually (precise regions are shown in Fig. S4). In this section we discuss cyclone-means in 
the context of the monthly-means across all the cyclones in each region. For each region the monthly-mean anomaly relative 5 
to the monthly-mean climatology is calculated.  Variables averaged to regional means are denoted RM (see Table 1 for a list 
of acronyms and subscripts).  

 Fig. 2 shows the relation between the regional- and monthly mean of various cyclone properties. For each ocean basin 
the average of the LWPCM for all cyclones for each month is taken (LWPRM). The climatological LWPRM is subtracted for each 
month to yield anomalies. The same procedure is repeated for WCB moisture flux. The relation between anomalies in LWPRM 10 
and WCB moisture flux anomalies is shown in Fig. 2a. This allows us to examine the relation of various predictors across the 
population of cyclones within a given basin in the Southern Ocean.  

 Anomalous variability in LWPRM in the SH extratropical oceans correlates with variability in WCB moisture flux 
(Fig. 2a). The South Pacific region has 42% of  monthly-mean LWPRM anomalies explained by moisture flux anomalies, the 
South Atlantic and Indian Oceans have approximately 30% of their monthly anomalies in LWPRM explained by moisture flux.  15 
Overall, the slope of the relation between anomalies in monthly-mean extratropical cyclone LWPRM and WCB moisture flux 

monthly means are quite similar across these regions and the slope has very little uncertainty. 

Why do the different ocean basins have such different explained variances (R2’s) in the relationship 𝐿𝑊𝑃A@ = 𝑎 ⋅

𝑊𝐶𝐵A@ + 𝑐 + 𝑟𝑒𝑠𝑖𝑑? Presumably this relates to some unconsidered predictor in our analysis expressed through the residual 

term. For example, CDNC variability in cyclones substantially affects LWP(McCoy et al., 2018b). The explained variances in 20 

the different ocean basins are consistent with this. The explained variance by WCB moisture flux is higher in the South Pacific 
compared to the rest of the Southern Ocean where intermittent phytoplankton blooms dramatically vary CDNC(McCoy et al., 
2015a;Meskhidze and Nenes, 2006;Charlson et al., 1987) and the NH where anthropogenic emissions vary from year to 
year(McCoy et al., 2018a;Bennartz et al., 2011). The global climate models that we focus on in this study to do not provide 
CDNC as an output and we will reserve partitioning inter-annual variability in cyclone behavior into contributions from 25 

meteorology and microphysics for future study.  
A large fraction (~1/3) of SH ocean anomalies in monthly- and regional-mean LWPRM may be explained by WCB 

moisture flux anomalies alone and the sensitivity of LWP to WCB moisture flux is robust and differs very little from basin to 
basin. What in turn explains moisture flux variability? As shown in Eq. 3, WCB moisture flux is the product of WVP and wind 
speed. We will discuss the contributions of each of these terms below. 30 

Monthly-mean cyclone WS10mRM, which is a proxy for the input rate of moisture into the cyclone, enhances as 
cyclones move poleward (Fig. 2b and Fig. S6). In the Southern Oceans 36-55% of anomalous monthly variability in wind 
speed is linearly related to cyclone latitude. Examination of cyclone-mean wind speed as a function of latitude shows agreement 
in models and observations. In models and observations cyclone-mean wind speed increases toward 60°, and then decreases 

poleward of 60° in both hemispheres (Fig. S6). Overall, the explained variance in anomalous monthly- and regional-mean 35 
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wind speed is 49% across all SH ocean basins (weighting all ocean basins equally). This reflects the genesis and development 
of an extratropical cyclone. The genesis of extratropical cyclones occurs toward the tropics and then over their life cycle 

cyclones move toward the pole. During this life cycle they intensify, leading to enhancement in near-surface wind speed 
(Tamarin and Kaspi, 2017;Beare, 2007;Bengtsson et al., 2009).   Two important questions stand out in regards to our analysis: 
Will the genensis region of extratropical cyclones shift in a warmed climate? Will extratropical cyclones develop differently 5 
in a warmed climate?  

The complexity of changes in the life cycle, frequency, and intensity of extratropical cyclones under warming makes 

it difficult to  say confidently how their vorticity and surface wind speed will change. There is a general consensus that storm 
tracks will shift toward the poles as the climate warms(Barnes and Polvani, 2013;Yin, 2005;Lorenz and DeWeaver, 
2007;Bender et al., 2011b), but the mechanism that prompts this poleward movement remains unclear (Shaw et al., 2016).  As 10 
they shift poleward storm tracks intensify(Lorenz and DeWeaver, 2007;Yin, 2005;Ulbrich et al., 2009). Simulations with green 
house gas warming generally show decreased frequency of midlatitude cyclones, but increases in cyclone intensity (Lambert 

and Fyfe, 2006;Bengtsson et al., 2006;Geng and Sugi, 2003). This may be related to changes in cyclone lifecycle with cyclones 
taking longer to reach peak intensity over a longer propogation in a warming world (Tamarin and Kaspi, 2017;Tamarin-
Brodsky and Kaspi, 2017). We will discuss the response to a transient warming within CFMIP2 GCMs where the prescribed 15 
SST is enhanced by 4 K in the following section. 

 Monthly-mean variability in extratropical cyclone ln(WVP)RM is explained by SSTRM with 80% of anomalous 
monthly mean variability in ln(WVP)RM predicted by SSTRM (Fig. 2c). This linkage between anomalies in cyclone-mean SST 
and anomalies in ln(WVP) via Clausius-Clapeyron has been shown previously in Field et al. (2008). 

In summary, we propose that Southern Ocean cloud feedbacks in cyclonic systems are not only related to the so-20 
called mixed-phase cloud feedback, but are contributed to by changes in WVP and wind speed. Because increasing SST 

increases WVP via Clausius-Clapeyron, which in turn increases condensed water, this response to increasing SST is easy to 
conflate with ice to liquid transitions. However, SST alone is a poor predictor of LWPRM (Fig. S7). The variance in LWPRM 
explained by SST alone is less than 10% in any basin and the fits in the different basins are different at 95% confidence. This 
is consistent with the weak negative dependence of cloud optical depth on SST shown by Terai et al. (2016). In the following 25 
sections we will continue to investigate the dependence of cyclone LWP on WCB moisture flux in the current climate and 

investigate how this mechanism might affect the extratropical cloud feedback. 

3.3.2 Model-observation comparisons of extratropical cyclone behavior 

As shown above, observed extratropical cyclone LWPCM depends on WCB moisture flux. This translates to anomalous 
regional- and monthly-mean variability in WCB moisture flux covarying with regional- and monthly-mean anomalous 30 
variability in extratropical cyclone LWPRM. As we saw in Fig. 1, climate model extratropical cyclone LWP also depends on 

WCB moisture flux, but models do not agree on how sensitive cyclone LWPCM is to moisture flux. In this section we examine 
how GCM regional- and monthly-mean anomalous variability in extratropical cyclone properties compares to observations 
within the current climate.  
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 First, we examine the ability of models to reproduce the WCB moisture flux-LWPRM relation observed in the SH. As 
in Fig. 2a, the slope of the best fit linear line between monthly-mean anomalies in cyclone LWPRM and WCB moisture flux is 

computed in each SH ocean basin, and is summarized in Fig. 3a.  The 95% confidence on the best fit line is also shown. All 
the models and the observations have a non-zero slope at 95% confidence. The slope of the WCB moisture flux LWP 
relationship in IPSL-CM5B-LR, and CNRM-CM5 models are more than twice the slope inferred from observations, while the 5 
CNRM-CM6 and HadGEM3 models have around half the observed slope. NICAM, HadGEM2, IPSL-CM5A-LR, and the EC-
Earth models compare favorably to the observations. Evaluation of model variability shows that all models have over 20% of 

their LWPRM variability explained by WCB in the SH, with some models able to explain up to 70% of their anomalous monthly- 
and regional-mean variability using WCB moisture flux (Fig. S8). Despite low explained variance in some models, the 
relationship between WCB moisture flux and LWP is significant at 95% confidence in all of the models. As discussed in the 10 
previous section, variability in warm cloud microphysics (eg. CDNC) has been shown to substantially affect cyclone 
LWP(McCoy et al., 2018b). The inclusion of these or other processes as predictors should increased explained variance by the 

regression model. For example, NICAM, which has no aerosol-cloud adjustments has the highest variance explained by WCB 
moisture flux alone (50%-75%, depending on the basin, Fig. S8). Overall, the variance explained in the current climate is of 
secondary interest to the confidence in the slope of the relationship.     15 
 Next, we investigate the relation between mean absolute (poleward) cyclone latitude and WS10m in cyclones. All 

models have a correlation between anomalous monthly-mean poleward latitude and WS10mRM at 95% confidence (Fig. 3b), in 
keeping with the agreement in the latitudinal dependence of WS10mCM shown in Fig. S6. The agreement between the observered 
and modeled sensitivities is good and most models overlap with the 95% confidence on the observational sensitivity. This 
supports the idea that the models presented here have a fairly consistent representation of the cyclone life cycle in the current 20 
climate.  

Finally, we examine the relation between ln(WVP)RM and SST RM in the GCMs as in Field et al. (2008). The relation 
between SST and column water vapor in the models and in the observations are quite similar (Fig. 3c), indicating that all the 
models are able to somewhat accurately reproduce the response in WVP associated with Clausius-Clapeyron and warming. 

3.3.3 Decadal trends in extratropical cyclone properties 25 

In section 3.3.1 and 3.3.2 we discussed how monthly variablity in LWPRM may be predicted by moisture flux. This 

examination of the variability within the system suggests that warming will lead to enhanced LWP across the midlatitude 
ocean via enhanced WVP that may be fluxed into cyclones. This means that the  shortwave cloud feedback in the Southern 
Ocean (SO) may be partially driven by changes in WCB moisture flux and not only by ice to liquid transitions. To support this 
argument we examine whether warming on a decadal scale across the midlatitudes is accompanied by an increase in WCB 30 
moisture flux and cyclone LWP. This LWP behavior has already been shown within the data record. Examination of zonal-

mean LWP anomalies in the MAC-LWP data record and in GCMs by Manaster et al. (2017) showed a robust positive trend in 
LWP. In this section we will examine the trend in cyclone LWP during the period 1992-2015 in the context of trends in 
moisture flux. This will be contrasted with the zonal-mean trend diagnosed by Manaster et al. (2017). 
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In this study we are pursuing a regime-oriented approach to understanding extratropical variability. Do the zonal-
mean trends in Manaster et al. (2017) agree with the trends in extratropical cyclone behavior? Because Manaster et al. (2017) 

investigated trends in the latitude band 44.5°S-59.5°S we subset our data record to only consider cyclones centered in this 
latitude band so that a more direct comparison can be made. Trends in Southern Ocean regional-mean cyclone LWPRM and 
zonal-mean LWP as calculated by Manaster et al. (2017) over the last two decades are similar (Fig. 4ab, 2.40±0.58 g m-2 5 
decade-1 within extratropical cyclones versus 1.8±0.8g m-2 decade-1 in the zonal-mean(Manaster et al., 2017), where uncertainty 
is the 95% confidence interval).  Given that cyclones cover approximately half the Southern Ocean (Bodas-Salcedo et al., 

2014), this in-cyclone trend can account for a good portion of the overall zonal-mean signal.   
We have shown in the previous section that around a third of the monthly- and regional-mean variability in cyclone 

LWPCM is related to variability in WCB moisture flux (Fig. 2a). A regression on SST alone explains less than a tenth of the 10 

variance (Fig. S7). Consistent with this, we could use the simple regression model 𝐿𝑊𝑃?@ = 𝑎 ⋅ 𝑊𝐶𝐵 + 𝑐 + 𝑟𝑒𝑠𝑖𝑑 trained on 

the observational record to see if the LWP trend in the Southern Ocean is consistent with the trend in WCB moisture flux. It 
is possible that there is some component of this trend that is related to changes from ice to liquid phase that is being obscured 
by WCB moisture flux variability. Both changes from ice to liquid and the WCB moisture flux (via WVP and Clausius-
Clapeyron) will be associated with variability in atmospheric temperature. To examine this we need to disentangle changes 15 
related to the synoptic state and changes in SST in the observational record. We attempt this utilizing a simple regression 

model fitting to a two-dimensional plane in WCB moisture flux and SST space. This fit splits the variability into a WCB 
moisture flux term and a term associated with SST variations around a given WCB moisture flux (Fig. 5). If changes from ice 
to liquid water are an important factor in the cloud feedback in this region, then increasing SST at a fixed WCB moisture flux 
should correspond to an increase in LWP.   20 

Regressing on WCB moisture flux and SST simultaneously is cumbersome as SST changes ultimately drive a 

significant fraction of WCB moisture flux changes via Clausius-Clapeyron. Analogously, SST and atmospheric stability 
covary, but have differing effects on cloud cover and similar linear regression analysis has been undertaken to disentangle 
their contributions and infer the shortwave cloud feedback  (Qu et al., 2015;Klein et al., 2017;Terai et al., 2016).  

To try and partition variance in the Southern Ocean into components related to synoptic variability and a component 25 

related to the variance in SST around the synoptic state we train the regression model 

𝐿𝑊𝑃?@ = 𝑎	 ⋅ 𝑊𝐶𝐵 + 𝑏 ⋅ 𝑆𝑆𝑇?@ + 𝑐 + 𝑟𝑒𝑠𝑖𝑑         [4] 

This regression model is trained on the population of  SH cyclone-means from 1992-2015 and centered in the latitude 
band considered in Manaster et al. (2017). In this analysis we ignore the power law dependence of LWP on WCB moisture 
flux (Fig. 1). In the following section we show that this assumption does not substantially affect the predictability of the change 30 

in cyclone LWP in response to warming. The regression model trained on the observational record has coefficients 

𝐿𝑊𝑃?@ = (28.71 ± 0.42)	 ⋅ 𝑊𝐶𝐵 − (0.29 ± 0.1) ⋅ 𝑆𝑆𝑇?@ + 3.70 ± 1.21, 𝑛 = 18842, 𝑅8 = 0.53   [5] 

As can be seen in Fig. 5 LWPCM primarily depends on WCB moisture flux. At a fixed WCB moisture flux changes of ±5K in 

the SST do not correspond to significant changes in LWP. Because of this most of the long-term trend in LWPCM averaged 
across the Southern Ocean can be explained by changes in WCB moisture flux alone (Fig. 4bd). This is not to say that changes 35 
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in SST do not have any effect- cleary they do via the WVP term in the WCB moisture flux. Most of the increase in WCB 
moisture flux may be explained by steadily increasing cyclone WVP, driven by enhanced SST (Fig. S9).  However, changes 

in SST independent of WCB do not predict the trend in LWP. This is also shown in  schematic form in Fig. 5: between 1992 
and 2015 SST increases and WCB moisture flux increases, driven by Clausius-Clapeyron, but the shift in SST has relatively 
little effect independent of the shift to higher WCB moisture flux.  5 

The regression model in Eq. 5 uses variability in WCB moisture flux and SST to predict variability in cyclone LWP. 
As discussed above, SST variability drives changes in WVP via Clausius-Clapeyron, leading to covariability between  WCB 

moisture flux and SSTCM (r=0.84 over the 1992-2015 period in both hemispheres, see also the contours of cyclone population 
in Fig. 5). While WCB moisture flux and SSTCM are fairly colinear, SSTCM is only poorly correlated with LWPCM (r=0.25). 
The correlation between LWPCM and WCB moisture flux is much stronger (r=0.63). As discussed in section 3.3.1, the 10 
correlation between monthly- and regional-mean anomalies in SST and LWP are also weak and are inconsistent between 
basins. Thus, despite being a good predictor of the WVP component of WCB moisture flux, SSTCM it is a poor predictor of 

cyclone LWPCM, which is consistent with the lack of a trend associated with SST variability independent of WCB moisture 
flux variability in Fig. 4.  

The coefficient relating WCB moisture flux and LWP in Eq.5 is relatively insensitive to whether or not SST is 15 
included as a predictor.  If WCB moisture flux is used as the only predictor, then the coefficient relating WCB moisture flux 

to LWP changes to 28.13±0.40 g m-2 day mm-1.  If only SST is used as predictor, then the coefficient relating SST and LWP 
changes sign (+2.90±0.12 g m-2 K-1).  This is because SST is a good predictor of WCB moisture flux so if WCB moisture flux 
is not held constant in the regression the coefficient relating SST to LWP absorbs variability related to WCB moisture flux. 
This also shows that studies using SST alone to infer the climate feedback in this region will lead to non-robust predictions of 20 
the change in LWP because SST will covary with WCB moisture flux in the mean climate, but the change in SST in response 

to green house gas-driven warming will not be the same as the change in WCB moisture flux.  This argument infers the change 
in LWP from current variability- to further support this analysis we will turn to transient warming simulations in section 3.3.4. 

 Once the trend in WCB moisture flux is accounted for relatively little room is left for an effect related to phase 
changes (Fig. 4b). SST was included as a predictor in Eq. 4 to see if variations in SST at a constant WCB moisture flux led to 25 
an increase in LWP consistent with a transition from ice to liquid. It was found that SST increases corresponded to a slight 

decrease in LWP at a given WCB moisture flux. This is consistent with SST acting as a proxy for several other boundary layer 
processes such as weakening the inversion strength and the buoyancy driven reductions in cloud cover(Bretherton and Blossey, 
2014). Overall, we cannot take the trends in the observational record of cyclone LWP as a sign of a strong mixed-phase cloud 
feedback because most of the trend is predicted by changes in synoptic state.  30 

Comparison of the trend in Southern Ocean LWPRM for the models listed in Table 2 are shown in Fig. 4b. Despite the 
models being run in AMIP-mode with prescribed SSTs, there is significant variability in the trend in LWPRM in the period 
1992-2015 (note that CFMIP2 models simulated 1979-2008). The GCMs all show a positive trend that is significant at 95% 
confidence, but generally under-predict the strength of the trend. It is also interesting to note that the trend in LWPRM across 
the Southern Ocean is almost completely explained by WCB moisture flux variability in all the GCMs. In the following section 35 
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we will revisit this puzzle and use spatial variability within cyclone composites and cloud top phase to attempt to disentangle 
the contributions of ice-to-liquid transitions and WCB moisture flux.   

Of course this only examines variability within extratropical cyclones. One possibility is that in anti-cyclones all long-
term trends relate to phase transitions consistent with the mixed-phase cloud feedback. However, this seems unlikely given the 
extensive analysis performed by Terai et al. (2016) demonstrating a substantial contribution to cloud optical depth variability 5 
in the Southern Ocean from variability in estimated inversion strength (EIS, Wood and Bretherton (2006)), and a lesser 
contribution linearly related to SST. It is also worth noting that increased SST predicted decreased cloud optical depth (Terai 

et al., 2016).  Thus, it is unlikely that all the trend in anti-cyclonic regions is related to phase transitions and it is more likely 
that the trend in these regions is dominated by trends in boundary-layer cloudiness consistent with enhancing inversion 
strength(Terai et al., 2016), which is a well-quantified feature of boundary-layer cloud cover(Wood and Bretherton, 2006;Klein 10 
and Hartmann, 1993). We reserve a more complete examination of cloud variability composited around both high and low 
pressure centers for a future paper and will focus on examining low pressure centers in the present work.  

The WCB moisture flux and cyclone LWP are covariable (Fig. 2a). This infers that warming over the midlatitudes 
should result in an increase in LWP as WCB moisture flux increases following Clausius-Clapeyron. The trend in cyclone LWP 
over the Southern Ocean in response to warming agrees with this inference made from internal variability (Fig. 4a).  We will 15 
now examine a simplified prediction of what the change in cyclone LWP might look like in response to a uniform warming. 

If we assume that the distribution of wind speed remains unchanged, that frequency of occurrence of cyclones remains 
unchanged, and that WVP increases by 6%/K due to increasing SST(Fig. 3c) we can estimate the change in WCB moisture 
flux consistent with a uniform 1K warming (Fig. 6).  In this paper we have been utilizing a linear fit between WCB moisture 
flux and cyclone LWP. As can be seen in Fig. 6a the shape of the relationship between WCB moisture flux and cyclone LWP 20 
is better represented by an exponential fit (as in McCoy et al. (2018b)). However, the variance in LWP explained by either 

function is nearly identical.  The linear relationship between WCB moisture flux and LWPCM predicts an increase of 3.62 g/m2 
in the SH (Fig. 6d) in response to the change in WCB moisture flux shown in Fig. 6c. If the exponential fit is used the change 
in cyclone LWP is 3.71 g/m2. Thus, use of a linear relationship between WCB moisture flux and LWP may slightly under-
estimate the change in cylone LWP to warming.  25 

Does this prediction offer any more information than an analysis using SST alone? The dependence of LWPCM on 

SSTCM in the SH is shown in Fig. 6b. The relationship appears to be somewhat non-monotonic (LWP increases with SST until 
10°C and then decreases) and the correlation is substantially weaker than between WCB moisture flux and LWPCM. Linear 
regression of LWPCM on SSTCM and a 1K increase in SSTCM predicts a 1.12 g/m2 increase in LWPCM, nearly a third of the 
prediction based on changes in WCB moisture flux.  We offer this quick estimate in order to provide an approximate scale to 30 

the potential of the WVP-mediated changes in extratropical cyclone LWP in a warming climate.  An estimate of the change in 
reflectivity consistent with this change in cyclone LWP will be offered in section 3.4 when we examine the change in cyclone 
structure in response to change in WCB moisture flux. In the following section we will investigate whether WCB moisture 
flux-driven increases in LWP can explain the warming response in GCMs.  

 35 
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3.3.4 Predicting the cyclone LWP response in transient warming simulations 

In section 3.3.1 and 3.3.2 we examined month-to-month regional variability. In section 3.3.3 we examined whether 
trends in SST, WCB moisture flux, and cyclone LWP from 1992-2015 were consistent with the predictions based on month-

to-month variability. The analysis in these sections inferred that increasing WCB moisture flux should increase cyclone LWP 
in a warming world. In this section we will test the assumption that the relationship between WCB moisture flux and LWP can 5 
predict the warming response of a model. At the time of writing the only GCMs considered in this study that have simulated a 
global increase in temperature (outside of the observational record) are the GCMs participating in CFMIP2 (see Table 2). The 

CFMIP2 GCMs performed a set of simulations where the specified SST in the atmosphere-only (AMIP) runs was increased 
by 4K (AMIP+4K). The CFMIP2 GCMs represent a wide array of different relationships between WCB moisture flux and 
cyclone LWP and it is hoped that even though we have limited our analysis of cyclone behavior in a warmed climate to these 10 
models, it still provides insight into the broader collection of models examined in the rest of this study.   

Comparison of the WCB moisture flux-LWP relationship (see Fig. 1) between the AMIP and AMIP+4K CFMIP2 

simulations shows that they are fairly similar in the SH (Fig. 7). Only IPSL-CM5A-LR has a substantially different relationship 
between LWPCM and WCB moisture flux in the AMIP and AMIP+4K simulations. Examination of the NH shows that all the 
models display a downward shift in the WCB moisture flux-LWP relationship in the warmed simulations (Fig. S10). It is 15 
unclear why the WCB moisture flux-LWP relationship in the NH shifts downward, while it shifts upward in the SH in only 
one of the GCMs. At least in the SH this upward shift is conceptually consistent with a decrease in precipitation efficiency due 

to decreased ice-phase precipitation. In this case an increase in cyclone LWP would be in line with the necessity of balancing 
precipitation out of the cyclone and moisture flux into the cyclone(McCoy et al., 2018b).   

To test whether the current climate’s variability can be used to predict the future (as in Qu et al. (2015)) we train a 20 

linear regression model of the form 𝐿𝑊𝑃?@ = 𝑎 ∙ 𝑊𝐶𝐵 + 𝑐 + 𝑟𝑒𝑠𝑖𝑑 for each GCM. The regression model is fit using the 

variability in the present-day AMIP simulations. Cyclone LWP in the AMIP+4K simulations is predicted based on the 
regression model and the WCB moisture flux in the AMIP+4K simulations. To reiterate, if we know the relationship between 
moisture flux and cyclone LWP in the current climate, and we know how moisture flux changes, then can we predict the 
change in cyclone LWP? 25 

  Changes in WCB moisture flux explain the majority of cyclone LWP difference between the AMIP+4K and AMIP 

simulations (Fig. 8). Over 80% of the difference in southern hemisphere cyclone LWP between AMIP and AMIP+4K is 
explained by differences in WCB moisture flux in four out of five of the models. The change in cyclone LWP in IPSL-CM5A-
LR is 30% greater than the change predicted by WCB moisture flux alone, consistent with a potential phase-transition-driven 
increase in LWP. For completeness the same calculation was carried out in the NH. Differences in northern hemisphere cyclone 30 

LWP between AMIP and AMIP+4K are within 25% of the prediction based on the AMIP WCB moisture flux-LWP 
relationship and the difference in WCB moisture flux (Fig. S11). 

The ability of the regression model to explain changes in LWP is quite high, although its ability to explain monthly- 
and regional-mean variability is not exceptionally high in some of the GCMs (Fig. S8). As discussed in section 3.3.1, the 
residual term in Eq. 4 is generated by predictors not considered in our analysis. For example, cloud droplet number 35 
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concentration(CDNC), which has been shown to have substantial predictive ability(McCoy et al., 2018b). These unconsidered 
predictors might contribute to the variance in the current climate, leading to a lower explained variance by the regression 

model, but if these other predictors do not change between the AMIP and AMIP+4K simulations then the regression model 
will be able to accurately predict the change in LWP between these simulations. For example, aerosol emissions do not change 
between AMIP and AMIP+4K. By extension CDNC is unlikely to change so variance unexplained by this factor in the 5 
historical climate is unimportant for explaining the change in LWP between AMIP and AMIP+4K.  

It appears that the relationship between extratropical cyclone latitude and wind speed and SST and cyclone WVP 

from the current climate hold in a warmed climate. As cyclones shift poleward in response to warming their mean wind speed 
increases (Fig. 9). Similarly, as SSTs rise WVP increases.  As prescribed by the AMIP+4K simulations the SST rises in both 
hemispheres, leading to increasing WVP. The response in mean cyclone position is varied and difficult to interpret in the 10 
context of a green house gas-induced warming due to the fixed SST imposed in these simulations. The mechanism that links 
the mean cyclone latitude and cyclone wind speed is not clear, but one possibility is that cyclone lifecycle changes in response 

to warming, leading to changes in the average wind speed within a cyclone as the average latitude range that cyclones exist in 
changes. We reserve understanding why mean cyclone location and wind speed change in this way for a future paper using 
both uniform increases in SST and a more realistic warming pattern. 15 

In summary, we find that most of the cyclone LWP trend in the SH observational record can be explained by a steady 

increase in WCB moisture flux, as opposed to a transition to less-glaciated clouds. We support this result by contrasting 
CFMIP2 AMIP and AMIP+4K simulations. More than 80% of the difference in SH cyclone LWP between these simulations 
can be explained by changes in WCB moisture flux. In the next section we will utilize observations of cloud-top phase to 
further examine how cloud glaciation might affect cyclone LWP. 20 

 

   

3.4 The spatial distribution of LWP within cyclones  

3.4.1 Sensitivity to WCB moisture flux and SST 

 In section 3.3 we have investigated the link between large-scale meteorology, as characterized by WCB moisture 25 
flux, and extratropical cyclone LWP averaged to a cyclone-mean, or regional scale. The moisture flux along the WCB explains 

a great deal of the variability in cyclone LWP in models and observations. Increases in WCB moisture flux also predict the 
decadal trend in SH LWPRM. Over 80% of the cyclone LWP response in the SH can be explained using the GCM’s current 
variability and the predicted change in WCB moisture flux. All of these lines of evidence show that mixed-phase transitions 
do not account for the majority of the increase in LWP in response to warming, and ultimately the negative feedback in 30 
extratropical cyclones. In this section we will use observations of cloud-top phase to examine whether any variability in 

extratropical cyclone LWP can be linked to a transition from ice to liquid consistent with a warming signal (that is to say, 
phase transitions consistent with the mixed-phase cloud feedback).  
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 We will examine the response of LWP within the cyclone composite (LWPij) based on multiple linear regression on 
WCB moisture flux into the cyclone and SSTij. Similarly to Eq. 4, the regression model considered here is 

𝐿𝑊𝑃BC = 𝑎BC ∙ 𝑊𝐶𝐵 + 𝑏BC ∙ 𝑆𝑆𝑇BC + 𝑐BC + 𝑟𝑒𝑠𝑖𝑑BC        [6] 

where the subscripts i and j refer to areal averages within the composites in the longitudinal and poleward directions (see Table 
1). Each averaging region is approximately 200 kmx200 km. Values for the coefficients are calculated by fitting the regression 5 
model across cyclones in each averaging region ij. To simplify our presentation and compare across GCMs and observations, 
we show the regression coefficients for the GCMs in Table 2 and the observations averaged in the longitudinal direction. The 

zonal-means of coefficient values of aij and bij are shown in Fig. 10 (full composite maps of aij and bij are shown in Fig. S12, 
but show little additional structure in the longitudinal direction). Unsurprisingly, there is a strong positive relationship between 
WCB moisture flux and LWPij throughout the cyclone (e.g. the coefficient aij in Eq. 6). Increasing SSTij tends to covary with 10 
increased LWPij in the part of the composite poleward of the low and with decreased LWPij in the portion of the composite 
equatorward of the low (e.g. bij).  

Comparison between models and observations show that there is variability between models and observations 
regarding the sensitivity of LWPij to WCB moisture flux into the cyclone (Fig. 10a), which is consistent with the range of 
slopes shown in Fig. 1.  However, the relation between LWPij  and SSTij within the composite is fairly similar across models 15 
(Fig. 10b).   Increasing SST in the equatorward part of the composite tends to covary with decreasing LWPij and increasing 

SSTij in the poleward part of the composite covaries with increases in LWPij.   
This negative relationship between local changes in SSTij and LWPij within the part of the composite that is 

equatorward of the low agrees with previous studies showing break up in midlatitude stratocumulus with advection over 
warmer SSTs due to decoupling of the subcloud layer (Norris and Iacobellis, 2005), and is consistent with the prevailing 20 
hypothesis regarding warm clouds in the sub-tropical trade cumulus and stratocumulus regions (Klein et al., 2017). It is possible 

that the poleward enhancement in LWPij in response to enhancement in SSTij may relate to shifts from ice to liquid cloud, but 
it might also relate to other meteorological controls on cloud cover and thickness(Grise and Medeiros, 2016).    

Do the changes in LWP inferred from Eq. 6  translate into a meaningful change in reflected shortwave radiation? As 

shown in Bodas-Salcedo (2018) and Bodas-Salcedo et al. (2016), the effect of changes in LWP are highly dependent on the 25 

cloud regime that they are occurring in. In particular, overlying cloud can act to blunt the effect of changes in LWP on top of 
atmosphere reflected shortwave radiation. For example, an optically thick layer of ice cloud over the liquid in the cyclone 
would result in very little impact from LWP variability.  We offer an approximate calculation of the change in reflected 
shortwave radition consistent with the coefficients calculated in Eq. 6 using observations from CERES. The idea underlying 
this calculation is that the CERES top of atmosphere reflected shortwave radiation will include the effects of overlying ice 30 

cloud. The sensitivity in reflected shortwave radiation to LWP will be lowered by the effects of ice cloud. Daily-mean all-sky 
albedo from CERES SYN1DEG(Doelling et al., 2016;Wielicki et al., 1996) was calculated from 3-hourly data from 2003-
2015 where the solar zenith angle does not exceed 45° (see McCoy et al. (2018b) for a full discussion of these data). Regression 
of albedo on LWP variability gives an empirical relationship between LWP and albedo (Fig. S14). Radiative fluxes are more 
readily comparable to previous studies of cloud feedbacks. Thus, the change in albedo is scaled by the annual mean insolation 35 
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taken from the CERES EBAF-TOA edition 4 dataset (Loeb et al., 2009) averaged over 30-80° to give the change in Wm-2 per 
change in LWP. While empirical, this is a relatively simple way to examine the effects of overlying ice cloud blunting the 

effects of underlying liquid variability on top of atmosphere albedo.  
We find that LWP is always positively correlated with albedo (Fig. S14). At zeroth order we expect this based on the 

robust positive relationship between cloud fraction and all-sky albedo(Bender et al., 2011a;Bender et al., 2017), and 5 
remembering that microwave LWP is the average of in-cloud liquid and clear sky. If we multiply the relationships for the SH 
from the regression model (Eq. 6, Fig. S12ab) by the slope of the regression between LWP and albedo, then this gives the 

change in albedo across the cyclone composite consistent a unit increase in WCB moisture flux or SST. WCB moisture flux 
increases by approximately 0.2 mm/day for a 1K increase in SST in the SH if wind speed is held constant and WVP increases 
following Clausius-Clapeyron (Fig. 6c). Thus, we scale the change in albedo per unit change in WCB moisture flux by 0.2 10 
mm/day to give a change in albedo related to changes in WCB moisture flux consistent with a 1K SST increase (assuming no 
change in wind speed). In the context of Eq. 6 the net change in reflected shortwave that is implied by a 0.2 mm/day increase 

in WCB moisture flux is 0.87 Wm-2 and reflected shortwave decreases by 0.23 Wm-2 for a 1K SST increase. Again, these 
empirical calculations are simplistic and are only intended to approximate the effect of the blunting of the efficacy of liquid 
on driving changes in top of atmosphere albedo. Overall, we find that the changes in LWP that are empirically linked to 15 
changes in WCB moisture flux and SST in the multiple regression shown in Eq. 6 translate to reasonably large negative and 

positive feedbacks, respectively. These implied feedbacks may be contrasted with the zonal-mean cloud feedbacks from the 
CFMIP2 and CFMIP1 models, with a strongest value for the negative lobe of the shortwave cloud feedback dipole of -2 Wm-

2 in some GCMs (Zelinka et al., 2013;Zelinka et al., 2016). 

3.4.2 Insight from cloud-phase observed by AIRS 20 

 We have shown that LWP covaries with WCB moisture flux at a fixed SST and how SST and LWP covary at a fixed 

WCB moisture flux within cyclones. It is also shown that the LWP changes associated with changes in SST and moisture flux 
could have the capability to appreciably change reflected shortwave flux in extratropical cyclones. Is this increase in LWPij 
with increasing SSTij at a fixed WCB moisture flux in the poleward half of the composite from phase transitions? We examine 
the sensitivity of cloud top phase to SSTij and WCB to see if there is any consistency in regions where clouds become more 25 
liquid dominated, and regions where the LWPij sensitivity to SSTij suggests a phase transition. Cloud top phase is measured 

by the AIRS instrument during the period 2003-2015. It is important to caveat the following analysis by noting that, unlike the 
other observational data sets used in this paper (MAC-LWP, and CERES), data from AIRS is not diurnally-averaged. It is only 
available for the Aqua satellite’s overpass times. The effects of this temporal subsetting of the data are not clear. However, the 
goal of the analysis we are pursuing is qualitative. Our intention is to see if liquid cloud phase increases at the expense of ice 30 
phase with increasing SST in the same regions that LWP increases with increasing SST.  Fig. S15 shows cyclone composited 

AIRS observations. The structure of ice and liquid phase exhibits a reasonable ice cloud shield and liquid warm sector- 
indicating that it may shed at least some light on variability in cloud-top phase within cyclones. 
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  As discussed in the methods section, when the cloud is broken, mixed-phased, or possibly supercooled liquid the 
infrared signature becomes weak and the cloud top is flagged as unknown by AIRS. Here, we examine the probability that a 

given cloud-top phase (liquid, ice, or unknown) was detected by AIRS given that any phase detection was made in a cyclone 
composite framework.  We examine how phase depends on WCB moisture flux, and how it depends on SSTij.  This is done 
analogously to the analysis performed in section 3.4.1 in the context of multiple linear regression 5 

𝑝(𝑥)BC = 𝑎BC ∙ 𝑊𝐶𝐵 + 𝑏BC ∙ 𝑆𝑆𝑇BC + 𝑐BC + 𝑟𝑒𝑠𝑖𝑑BC        [6] 

where 𝑝(𝑥)BC	is the probability of a cloud top phase being an arbitrary phase x (ice, liquid, or unknown) given that a phase 

detection was made.  
In this work we have focused on the SH for brevity because it is interesting from a modelling perspective and because 

the behavior of cyclone LWP as a function of WCB moisture flux in the NH is approximately the same, giving little additional 10 
explanatory value to including it. However, the preponderance of unknown-topped cloud observed by AIRS in the SH 
necessitates contrasting NH and SH midlatitude oceans to offer insight into whether cloud top phase changes might explain 

some of the response of LWP to SST within cyclones.  
The coefficients from training Eq. 6 across cyclones in the SH are shown in Fig. 12. Overall, the effect of increasing 

moisture flux into the cyclone is to increase the frontal cloud which is ice-topped (Fig. 12c).  The ice cloud is anti-correlated 15 
with SST- as one would intuitively expect (Fig. 11d and Fig. 12d). However, most of this is along the comma-shaped frontal 

region, consistent with Bodas-Salcedo (2018). In the SH increasing SSTs covaries with enhancement in the prevalence of 

unknown cloud tops at the expense of liquid and ice fraction across the entire cyclone composite (Fig. 12bdf). 
While the SST-dependence of LWPij is quite similar across models and observations in both hemispheres (Fig. 10b, 

Fig. S14), the dependence of observed cloud-top phase on SSTij is different in the NH and SH. This because AIRS identifies 20 
a very large fraction of the SH clouds as unknown phase. 

 In the NH, the probability of liquid-topped clouds increases with increasing SST in the poleward part of the composite 
(Fig. 11b). Toward the equator, increasing SST increases the fraction of unknown cloud tops (Fig. 11f). Increasing liquid 
fraction in the poleward half of NH cyclones over warmer SSTs (Fig. 11b) is consistent with transitions from a more ice-
dominated to a more liquid-dominated state.  The covariance of LWPij and SSTij in these regions (Error! Reference source 25 

not found.Fig. 10b, Fig. S12bd,13b) appears to bear out this explanation. This may simply reflect an increase in liquid at the 
expense of ice, or it may reflect an increase in overall condensate via suppression of the efficient depletion of cloud condensate 
via ice-phase precipitation(Field and Heymsfield, 2015).   

The decrease in both liquid and ice fraction and the increase in unknown cloud tops over warmer SSTs in equatorward 
portion of NH cyclones and in the entirety of SH cyclone composites is perplexing. One possibility is that it may be linked to 30 

transitions from closed to open mesoscale cellular convection(McCoy et al., 2017c;Norris and Iacobellis, 2005) leading to 
weaker IR signals and thus unknown cloud top-phase classification from AIRS (Nasiri and Kahn, 2008;Kahn et al., 2011). 
This may point toward the pathway: higher SST, more cumuliform cloud, and more broken cloud(Norris and Iacobellis, 2005), 
which is also consistent with other empirical studies of low cloud cover in the subtropics(Klein et al., 2017).  Another 
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possibility is that the Southern Oceans are much more dominated by supercooled liquid cloud(Chubb et al., 2013;Kanitz et al., 
2011;Hu et al., 2010;Tan et al., 2014) and they do not have the same phase transition sensitivity as the NH oceans.  

 

4 Conclusions 

We have examined the behavior of extratropical cyclones (centered 30°-80°) in models and long-term microwave 5 
observations for the period 1992-2015. We use the warm conveyor belt (WCB) moisture flux to characterize the synoptic state 
of these cyclones. The WCB moisture flux is the product of water vapor path (WVP) and wind speed at 10 meters (WS10m) 

averaged within 2000 km of the cyclone center. As the moisture flux along the WCB increases the liquid water path (LWP) 
within the cyclone increases (Fig. 1, Fig. 2a). The ability of GCMs to reproduce this relationship is examined using an array 
of models from high-resolution simulations within the convective grey zone to coarse resolutions typical of fully-coupled 10 
GCMs performing climate integrations. It is found that the sensitivity of cyclone LWP to WCB moisture flux in these GCMs 
varies by a factor of two around the observed sensitivity.  There was not a systematic dependence of this relationship on 

resolution (Fig. 1). However, convection-permitting models agreed well with each other and the observations- indicating that 
parametric uncertainty within convective parameterizations may contribute to uncertainty in the relationship between WCB 
moisture flux and cyclone LWP in GCMs.  15 

WCB moisture flux into cyclones will increase as the planet warms because WVP scales with temperature following 
Clausius-Clapeyron. Because cyclone LWP increases with WCB moisture flux this is projected to lead to a negative shortwave 

cloud feedback. A simple calculation holding wind speed and cyclone frequency of occurrence fixed and assuming that WVP 
changes by 6% estimates an increase in cyclone LWP of 3.62 g/m2 in the SH (Fig. 6). An empirical calculation of brightening 
estimates that changes in cyclone LWP due to enhanced WCB moisture flux would equate to a brightening of 0.87 Wm-2 20 
within Southern Ocean cyclones, which is an appreciable fraction of the multimodel mean shortwave cloud feedback(McCoy 

et al., 2016;Zelinka et al., 2013). 
 Within the observational record we can only infer feedbacks from covariability, but by using model simulations of 
transient warming we can see if these inferences have predictive ability. Analysis of simulations performed with observed 
SSTs and SST enhanced by 4K show that differences in WCB moisture flux can explain the majority of the change in 25 
simulated cyclone LWP between the current climate and the warmed climate (Fig. 8). Thus, the relationship between WCB 

moisture flux and cyclone LWP in the current climate may be used to understand cloud feedbacks. Based on this we propose 
two extratropical cloud feedbacks within cyclone systems:  

1. A Clausius-Clapeyron mediated local feedback where increasing atmospheric temperature enhances the 
available moisture to be fluxed into the cyclone. This feedback is in line with the feedback proposed in 30 
Betts and Harshvardhan (1987), but expressed in the framework of a midlatitude cyclone, which imposes a 

structure on the derivative of the moist adiabat with respect to temperature. 
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2. A dynamical feedback related to changes in the genesis and development of cyclones in response to 
warming, which in turn affects the wind speed and thus the flux of moisture into the cyclone. The sign of 

the wind speed-driven feedback appears to be uncertain in a warming climate, but this relationship creates 
a pathway between synoptic-scale dynamics and the cloud feedback.   

Cloud-top phase observed by AIRS was used to investigate whether changes in LWP within cyclones unexplained by 5 
WCB moisture flux were consistent with a transition from ice to liquid phase. In the equatorward half of cyclones LWP 
decreases with increasing SST and in the poleward half of cyclones LWP increases with increasing SST. Utilizing cloud top 

phase data from AIRS we show that changes from ice to liquid cloud could contribute to increasing LWP with increasing SST 
in the poleward half of cyclone composites (Fig. 11b and Fig. 12b).  In the equatorward half of NH cyclone composites and 
across all of SH cyclones unknown phase (broken or mixed-phase) cloud tops become more frequent as SST increases (Fig. 10 
11f).  This may be consistent with breakup of stratocumulus over warmer SSTs(Norris and Iacobellis, 2005).  

In summary, we find a robust relationship between the moisture flux into extratropical cyclones and their LWP in 

observations and GCMs (Fig. 3a). This relationship has the ability to explain cyclone-to-cyclone variability, regional- and 
monthly-mean variability across ocean basins (Fig. 2a), and the observed trend in Southern Ocean LWP from 1992 to 2015 
(Fig. 4). While we can only examine covariability within the observational record, we can examine the transient climate 15 
response within GCMs to see if this relationship has utility in predicting the response of extratropical cyclone LWP to climate 

change. It is found that over 80% of the LWP change in extratropical cyclones can be explained using their change in WCB 
moisture flux and the relationship between WCB moisture flux and cyclone LWP in their simulations of the present climate. 
We propose that the relationship between WCB moisture flux is a key aspect of whether a GCM will have a strongly or weakly 
negative shortwave cloud feedback in the extratropics and thus acts as a useful constraint on climate sensitivity(Caldwell et 20 
al., 2016).  
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Table 1 Acronyms and subscripts used in this work. 

Acronym Defintion 

CCN Cloud condensation nuclei 

CDNC Cloud droplet number 
concentration 

CM Cyclone mean within a 2000 km 
radius of the low pressure center 

GCM Global climate model 

LWP Liquid water path 

ij Mean within each averaging region 
of the cyclone 

NH Northern hemisphere 

RM Regional mean of individual 
cyclone means 

SH Southern hemisphere 

SLP Sea level pressure 

SO Southern Ocean 

SST Sea surface temperature 

WCB Warm conveyor belt 

WVP Water vapor path 

WS10m Wind speed at 10 meters 
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Table 2 Brief descriptions of the models used in this study. The label in the left column is used in some figures for brevity in labelling. 
The observations used in this study are discussed more completely in the methods section. 

Label Name Approximate 
Atmospheric 

Resolution 

References Time Period 

A Observations ~ See methods 1992-2015 

B HadGEM2-A1 1.25°x1.875°~ 
139kmx208 km 

(Collins et al., 
2011;Martin et al., 

2011) 

1979-2008 

C IPSL-CM5A-LR1 1.8947x3.75° 
~211kmx417km 

(Dufresne et al., 
2013) 

1979-2008 

D MIROC51 1.4008°x1.40625° 
~156kmx156km 

(Watanabe et al., 

2010) 

1979-2008 

E IPSL-CM5B-LR1 1.8947°x3.75° 
~211kmx417km 

(Hourdin et al., 
2013) 

1979-2008 

F CNRM-CM51 1.4008°x1.40625° 
156kmx156km 

(Voldoire et al., 

2013) 

1979-2008 

G NICAM 14km (Kodama et al., 
2015) 

1979-2007 

H EC-Earth32 60km (Haarsma, 2018) 1989-2014 

I EC-Earth3-HR2 25km  1989-2014 

J CNRM-CM6-12 150km (Roehrig, 2018) 1989-2014 

K CNRM-CM6-1-

HR2 

50km  1989-2014 

L HadGEM3-GC31-
LM2 

130km (Williams et al., 
2018) 

1989-2014 

M HadGEM3-GC31-

MM2 

60km  1989-2014 

N HadGEM3-GC31-
HM2 

25km  1989-2014 

~ ICON 10km (Giorgetta et al., 

2018) 
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~ UM-CASIM 0.088°x0.059° 
10kmx7km 

(McCoy et al., 
2018b;Hill et al., 

2015) 

 

 1CFMIP2 

2PRIMAVERA 
   

 

 
 
 

 5 
Fig. 1 Cyclone-mean LWP (LWPCM) as a function of WCB moisture flux in models and observations. LWPCM is shown averaged 
into 9 equal quantiles for the observations and each GCM. The maximum bias in the observations (~0.03kg/m2) is shown as a lighter 
blue line.  
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Fig. 2 Observed monthly- and regional-mean anomalies in extratropical cyclone properties in the SH oceans (NH oceans are shown 
in Fig. S5). (a) Cyclone monthly-mean LWPRM as a function of WCBRM; (b) regional- and monthly-mean wind speed as a function 
of regional- and monthly-mean cyclone absolute (poleward) latitude; (c) monthly-mean ln(WVP)RM as a function of SSTRM. Each 
data point in the plot represents the monthly- and regional-mean anomaly in a given variable within extratropical cyclones relative 5 
to the monthly-mean climatology. The shaded area corresponds to the 95% confidence interval on the fit. The R2 and best fit line 
are listed for each subplot and for each ocean region. The R2 of all monthly- and regional-mean anomalies is also noted (the 
variability in regional- and monthly-mean anomalies are weighted equally between regions to calculate the overall R2).  Bars on the 
sides of the plot show the mean (marker), standard deviation (thick lines) and 90th percentile range (thin lines) of monthly- and 
regional-mean anomalies for each region. 10 



35 
 

 

Fig. 3 The slope of the best fit line between monthly- and regional-mean anomalies of different cyclone-mean properties. Symbols 
denote different SH ocean basins (South Atlantic:squares, South Indian:triangles, and South Pacific:circles). Model colors are as in 
Fig. 1Error! Reference source not found.. Each model is labelled with a letter on the ordinate (see Table 2). The observations are shown 
as ‘A’. The 95% confidence on the slope is noted for each basin. The shaded area shows the 95% confidence on the mean of the 5 
observed slope based on the SH ocean basins. (a) shows the slope of the regression of cyclone LWPRM on WCB moisture flux, (b) 
shows the regression slope of the mean wind speed in cyclones on mean poleward latitude; and (c) shows the regression slope of 
ln(WVP)RM on SSTRM.  

 
  10 
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Fig. 4 (a) SH cyclone LWPRM in observations (thick blue line) and models (colors as in Fig. 1Error! Reference source not found.) where 
cyclones are centered between 44.5°S and 59.5°S. A 2-year running mean has been applied to simplify the plot. (b) The red shaded 
area shows the zonal-mean Southern Ocean LWP trend calculated in Manaster et al. (2017) (Southern Ocean defined as 44.5°S-5 
59.5°S therein). Trends in cyclone LWPRM from observations and models are shown in dark colors (where LWPRM is calculated 
using cyclones centered in the same region as Manaster et al. (2017)). Models and observations are labelled by a letter on the ordinate 
(see Table 2). Observations are labelled as ‘A’. The 95% confidence in each trend is shown using errorbars. A multiple linear 
regression of LWPCM on SSTCM and WCB moisture flux is used to partition the trend into contributions from WCB and SST changes. 
The trend in LWPRM predicted by the regression model (Eq. 4) and changes in SSTRM is shown in (c), and the trend in LWPRM 10 
associated with WCB is shown in (d). The trend from models and observations consistent with their multiple linear regression models 
and changes in SSTRM and WCB is shown in (b) using lighter colors and labelled as (S) for SST, and (W) for WCB. 
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Fig. 5 Average Southern Ocean cyclone LWPCM binned as a function of SSTCM and WCB moisture flux for the latitude band 
44.5°S to 59.5°S, following Manaster et al. (2017). Contours of cyclone distribution are shown in white. The mean cyclone WCB 
moisture flux and SSTCM for 1992 and 2015 are shown as blue and red points, respectively. Errorbars show the 95% confidence on 
the mean. 5 
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Fig. 6 (a) The LWPCM observed in SH as a function of WCB moisture flux, the best fit line to the observations using the form 
𝑳𝑾𝑷𝑪𝑴 = 𝒂 ⋅𝑾𝑪𝑩𝒃 + 𝒄 is shown using a green line. A simple linear fit is shown in yellow. The observations are binned into equal 
quantiles for visual clarity. Errorbars show a standard deviation within each bin. (b) the fit of cyclone LWPCM to SSTCM.  (c) The 5 
distribution of SH WCB moisture flux in the current climate, and when WVP moisture flux is scaled by 1.06 consistent with a 
uniform 1K increase in SST. The difference in WCB moisture flux is noted in the title.  (c) The distribution of LWPCM in the current 
climate and as predicted by the fits shown in (a) and (b). The LWPCM when SST is increased by 1K as predicted by the fits in (a) is 
based on scaling WVP by 1.06. The whLWPCM predicted by the fit shown in (b) is based on SST increasing uniformly by 1K. The 
mean difference between LWPCM between the prediction and the climate mean state is noted in the legend.  10 
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Fig. 7 As in Fig. 1, but contrasting the AMIP and AMIP+4K simulations in the CFMIP2 simulations. 

 
Fig. 8 The difference in cyclone LWP in the SH between AMIP and AMIP+4K simulations versus the difference in SH cyclone LWP 
inferred from changes in WCB moisture flux and the relationship between WCB moisture flux and LWPCM in the current climate. 5 
The one to one line is shown as a dark dashed line. 
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Fig. 9 Changes in cyclone-mean wind speed at 10m (WS10m) and the natural log of WVP between AMIP and AMIP+4K simulations 
plotted against changes in mean poleward cyclone latitude and SST, respectively. Open symbols show the change over the NH and 
closed symbols show the change over the SH.  The best fit line to NH and SH is noted in each plot along with 95% confidence in the 
slope. 5 
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Fig. 10 The multiple linear regression slopes from Eq. 6 averaged zonally across the composite. The x-axis shows distance from the 5 
low pressure center oriented toward the pole. Regression slopes from the NH are shown in (Fig. S13). (a) shows the slope relating 
the WCB moisture flux into the cyclone and LWPij (units are kg mm day-1m-2). (b) shows the slope of the regression relating SSTij 
and LWPij (kg m-2K-1). The 95% confidence intervals in the zonal-mean regression slope are shown as shading. 
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Fig. 11 as in Error! Reference source not found., but showing the coefficients in the multiple linear regression relating the probability 
of liquid, ice, and unknown cloud top phase to WCB moisture flux (units are day mm-1) into the cyclone and SSTij within the cyclone 
(units are K-1, Eq.  6). All data is from the NH. (a and b) relate to the probability of liquid topped clouds, (c and d) relate to ice-
topped clouds, and (e and f) to unknown phase. Note that all probabilities are the probability of detecting a specific phase, given that 5 
a phase detection has been made. The first row shows the coefficient relating WCB moisture flux into the cyclone to cloud top phase 
probability. The second row shows the coefficient between SSTij and cloud top phase.  

   
Fig. 12 as in Fig. 11, but for the SH. 
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