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ABSTRACT  28 

Some air pollution datasets contain multiple variables with a range of measurement units, 29 

and combined analysis by Positive Matrix Factorization (PMF)  can be problematic, but can 30 

offer benefits from the greater information content.  In this work, a novel method is devised 31 

and the source apportionment of a mixed unit data set (PM10 mass and Number Size 32 

Distribution NSD) is achieved using a novel two-step approach to PMF.  In the first step the 33 

PM10 data is PMF analysed using a source apportionment approach in order to provide a 34 

solution which best describes the environment and conditions considered.  The time series 35 

G values (and errors) of the PM10 solution are then taken forward into the second step where 36 

they are combined with the NSD data and analysed in a second PMF analysis. This results 37 

in NSD data associated with the apportioned PM10 factors.  We exemplify this approach 38 

using data reported in the study of Beddows et al.  (2015), producing one solution which 39 

unifies the two separate solutions for PM10 and NSD data datasets together.  We also show 40 

how regression of the NSD size bins and the G time series can be used to elaborate the 41 

solution by identifying NSD factors (such as nucleation) not influencing the PM10 mass. 42 

Keywords:  PM10; London; PMF; source apportionment; receptor modelling 43 

44 
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1. INTRODUCTION 45 

It is unquestionable that worldwide, the scientific vista of air quality is expanding; whether it 46 

is the increasing number of observatories or the refinement of information mined from the 47 

increasing sophistication of measurements often incorporated in campaign work. The 48 

number of metrics being measured has increased from simple measurements of PM mass 49 

and gas concentrations, and we can now probe the composition of the PM mass and the 50 

size distributions with mass spectrometers, mobility analysers and optical devices. 51 

 52 

Studies using PMF as a tool for source apportionment of particle mass using 53 

multicomponent chemical analysis data are published frequently using datasets from around 54 

the world.  However, they do not always provide consistent outcomes (Pant and Harrison, 55 

2012), and one means by which source resolution and identification can be improved is by 56 

inclusion of auxiliary data, such as gaseous pollutants (Thimmaiah et al., 2009), particle 57 

number count (Masiol et al., 2017) or particle size distribution (Beddows et al., 2015; Ogulei 58 

et al., 2006; Leoni et al., 2018).   59 

 60 

Harrison et al. (2011), analysed NSD data (merged SMPS and APS data) with PMF using 61 

auxiliary data (meteorology, gas concentration, traffic counts and speed).  The study used 62 

particle size distribution data collected at the Marylebone Road supersite in London in the 63 

autumn of 2007 and put forward a 10 factor solution comprised of roadside and background 64 

particle source factors.  Sowlat et al., 2016 carried out a similar analysis on number size 65 

distribution (13nm - 10µm) data combined with several auxiliary variables collected in Los 66 

Angeles.  These included BC, EC/OC, PM mass, gaseous pollutants, meteorological, and 67 

traffic flow data. A six-factor solution was chosen comprising of: nucleation, 2 x traffic, an 68 

urban background aerosol, a secondary aerosol and a soil factor. The two traffic sources 69 

contributed up to above 60% of the total number concentrations combined.  Nucleation was 70 
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also observed as a major factor (17%).  Urban background aerosol, secondary aerosol, and 71 

soil, with relative contributions of approximately 12, 2.1, and 1.1%, respectively, overall 72 

accounted for approximately 15% of PM number concentrations, although these factors 73 

dominated the PM volume and mass concentrations, due mainly to their larger mode 74 

diameters.  Chan et al. (2011) considered extracting more source information from an 75 

aerosol composition dataset by including data on other air pollutants and wind data in the 76 

analysis of a small but comprehensive dataset from a 24-hourly sampling programme 77 

carried out during June 2001 in an industrial area in Brisbane. They chose multiple types of 78 

composition data (aerosols, VOCs and major gaseous pollutants) and wind data in source 79 

apportionment of air pollutants and found it to result in better defined source factors and 80 

better fit diagnostics, compared to when non-combined data were used.  Likewise, Wang et 81 

al. (2017) report an improvement in source profiles when coupling the PMF model with 14C 82 

data to constrain the PMF run as a priori information.   83 

 84 

However, while combining, for example, particle chemical composition and size distribution 85 

data in a single PMF analysis may assist source resolution,  difficulties arise if the two 86 

datasets have different and/or ambiguous rotations (discussed in Section 2).  This tends to 87 

result in factors with either mass contributions and small number contributions or number 88 

contributions and small mass contributions and rarely a meaningful contribution from both 89 

data types.  Experimental design can of course circumnavigate this problem, for instance, 90 

using chemical data which is already size segregated, measured using a cascade impactor 91 

(Contini et al., 2014).  Such an approach is attractive by view of the fact that there is no 92 

question as to whether both datasets sufficiently overlap across the size bins.  However, 93 

cascade impactors do not offer the high time resolution of particle counting instruments, with 94 

individual measurements lasting hours or days.  Even so, for the case where two or more 95 
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instruments are available in a campaign to measure two or more different metrics, e.g. PM 96 

mass and particle number (PN), then a combined data analysis is useful.  Emami and Hopke 97 

(2017) have shown that the effect of adding variables as auxiliary data (with potentially 98 

different units) to a NSD data set is to decrease the rotational ambiguity of a solution from a 99 

1-step PMF analysis. 100 

  101 

In this study, we present a method for analysing simultaneously collected PM10 composition 102 

and NSD data.  In the work of Beddows et al. (2015), both particle composition and number 103 

size distribution (NSD) data from a background site in London (2011 and 2012) was 104 

analysed using Positive Matrix Factorization.  As part of the methodology development, it 105 

was concluded that it was preferable not to combine these two data types in a single analysis 106 

but to conduct separate PMF analyses for PM10 mass and particle number.  This yielded a 107 

6 factor solution for the PM10 data (Diffuse Urban; Marine; Secondary; Non-Exhaust 108 

Traffic/Crustal (NET/Crustal)); Fuel Oil; and Traffic.  Factors described as Diffuse Urban; 109 

Secondary; and Traffic were identified in the 4 factor solution for the NSD data, together with 110 

a Nucleation factor not seen in the PM10 mass data analysis (see Figure 1).  When combining 111 

the PM10 and NSD data in a single PMF analysis, Diffuse Urban; Nucleation; Secondary; 112 

Aged Marine and Traffic Factors were identified but the factors were not as clearly separated 113 

from each other as the factors derived from the separate datasets.  For example, Fuel Oil 114 

was now mixed in with Marine and called Aged Marine.  This is summarized in Figure 1.  115 

However, it would still be useful to obtain a number size distribution for each of the 6 PM10 116 

factors and/or a chemical composition for the 4 NSD factors.  As a continuation of this work, 117 

we present an alternative method for analysing the combined dataset in a so called, two-118 

step methodology.  In the first step, we analyse the mass data (PM10; units: µg/m3) according 119 

to the methodology of Beddows et al. (2015).  This results in a time series factor G which is 120 
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carried forward into a second PMF analysis of a combined dataset consisting of the G time 121 

series and an auxillary data set (i.e. NSD; units: 1/cm3).  The first step identifies sources and 122 

apportions the G factors to their contribution to mass and in the second step, an FKEY matrix 123 

is chosen such that G ‘drives’ the model and the NSD data ‘follow’.  This means that we 124 

have PM10 factors each of which is augmented by its number size distribution. Furthermore, 125 

we also consider linear regression as a second step in a PMF-LR analysis to show that 126 

although the initial analysis is biased toward mass by analysing PM10 factors only, unseen 127 

factors influencing the NSD data (e.g. nucleation) can be identified in the data. 128 

 129 

2. EXPERIMENTAL 130 

With a population of 8.5 million in 2014 (ONS, 2017), the UK city of London is the focus of 131 

study in this work where the London North Kensington (NK) Site (LAT = 51º : 31' : 15.780'' 132 

N and LONG = 0º : 12' : 48.571'' W ) was considered.  NK is part of both the London Air 133 

Quality Network and the national Automatic Urban and Rural Network and is owned and 134 

part-funded by the Royal Borough of Kensington and Chelsea.  The facility is located within 135 

a self contained cabin within the grounds of Sion Manning School. The nearest road, St. 136 

Charles Square, is a quiet residential street approximately 5 metres from the monitoring site 137 

and the surrounding area is mainly residential.  The nearest heavily trafficked roads are the 138 

B450 (~100 m East) and the very busy A40 (~400 m South).  For a detailed overview of the 139 

air pollution climate at North Kensington, the reader is referred to Bigi and Harrison (2010). 140 

 141 

2.1  Data 142 

As alluded to, this work is a continuation of the study carried out by Beddows et al (2015), 143 

which analysed NSD and PM10 chemical composition data collected at the London NK 144 

receptor site.  Number Size Distribution (NSD) data were collected continuously every 15 145 
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min using a Scanning Mobility Particle Sizer (SMPS) consisting of a CPC (TSI model 3775) 146 

combined with an electrostatic classifier (TSI model 3080) and air dried according to the 147 

EUSAAR protocol (Wiedensohler et al., 2012).  The particle sizes covered were 51 size bins 148 

ranging from 16 nm to 604 nm and the 15 min distributions were aggregated up to hourly 149 

averages (where there were at least 3 x 15 min samples per hour) and all missing values 150 

were replaced using a value calculated using the method of Polissar et al. (1998).  Further 151 

details of the SMPS settings are given in Table S1 and the reader is also referred to 152 

Beccaceci et al. (2013a,b) for an extensive account of how the NSD data was collected and 153 

quality assured. 154 

 155 

Accompanying the NSD data from the study of Beddows et al. (2015) was the PMF output 156 

from the analysis of  PM10 chemical composition data. The latter data consisted of 24h air 157 

samples taken daily over a 2-year period (2011 and 2012) using a Thermo Partisol 2025 158 

sampler fitted with a PM10 size selective inlet. These filters were analysed for total metals 159 

PMmetals (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, Pb, Sn, Sb, Sr, V, and Zn), using a 160 

Perkin Elmer/Sciex ELAN 6100DRC following HF acid digestion of GN-4 Metricel membrane 161 

filters. Water-soluble ions PMions (Ca2+, Mg2+ , K, NH4
+ , Cl− , NO3

- and SO4
2−) were measured 162 

using a near-real-time URG-9000B (hereafter URG) ambient ion monitor (URG Corp).  The 163 

data capture over the 2 years ranged from 48 to 100% as different sampling instruments 164 

varied in reliability.  Data gaps were filled by measurements made on daily PM10 filter 165 

samples collected continuously at this site using a Partisol 2025; laboratory-based ion 166 

chromatography measurements were made for anions on Tissuquartz ™2500 QAT-UP 167 

filters) . No cation measurements were available from these filters, and this resulted in a 168 

lower data capture for the cations.  Again, all missing data were replaced using a value 169 

calculated using the method of Polissar et al. (1998). A woodsmoke metric, CWOD, was 170 
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also included. This was derived as PM Woodsmoke from the methodology of Sandradewi 171 

et al. (2008) utilising Aethalometer and EC/OC data, as described in Fuller et al. (2014). 172 

Samples were also collected using a Partisol 2025 with a PM10 size selective inlet and 173 

concentrations of elemental carbon (EC) and organic carbon (OC) were measured by 174 

collection on quartz filters (Tissuquartz ™ 2500 QAT-UP) and analysis using a Sunset 175 

Laboratory thermal–optical analyser according to the QUARTZ protocol (which gives results 176 

very similar to EUSAAR 2: Cavalli et al., 2010) (NPL, 2013).   We refer to CWOD, EC and 177 

OC as PMcarbon. In addition, particle mass was determined on samples collected on Teflon-178 

coated glass fibre filters (TX40HI20WW) with a Partisol sampler and PM10 size-selective 179 

inlet. 180 

 181 

This aforementioned PM10 data was represented in this work as the PMF solution for PM10-182 

only data, derived in Beddows et al. (2015) and consisting of 6 sources, namely: Diffuse 183 

Urban; Marine; Secondary; Non-Exhaust Traffic/Crustal; Fuel Oil; and Traffic.  The Diffuse 184 

Urban factor had a chemical profile indicative of contributions mainly from both woodsmoke 185 

(CWOD) and road traffic (Ba, Cu, Fe, Zn).  The Marine factor explained much of the variation 186 

in the data for Na, Cl− and Mg2+, and the Secondary factor was identified from a strong 187 

association with NH4
+, NO3

-, SO4
2- and organic carbon. For the Traffic emissions, the PM 188 

did not simply reflect tailpipe emissions, as it also included contributions from non-exhaust 189 

sources, i.e. resuspension of road dust and primary PM emissions from brake, clutch and 190 

tyre wear. The Non-Exhaust Traffic/Crustal factor explained a high proportion of the variation 191 

in the Al, Ca2+ and Ti measurements consistent with particles derived from crustal material, 192 

derived either from wind-blown or vehicle-induced resuspension. There was also a 193 

significant explanation of the variation in elements such as Zn, Pb, Mn, Fe, Cu and Ba, which 194 

had a strong association with non-exhaust traffic emissions. As there was a strong 195 
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contribution of crustal material to particles resuspended from traffic this likely reflected the 196 

presence of particulate matter from resuspension and traffic-polluted soils. The last factor 197 

was attributed to Fuel Oil, characterised by a strong association with V and Ni together with 198 

significant SO4
2-.  This output comprised the first-step solution in the 2-step analysis of PM10 199 

and NSD data and in this study we concentrate on the analysis of the NSD data in the 200 

second PMF step with the aim of assigning a NSD to each of the 6 PM10 factors. 201 

 202 

2.2  Methods 203 

2.2.1  PMF 204 

Positive Matrix Factorization (PMF) is a well-established multivariate data analysis method 205 

used in the field of aerosol science.  PMF can be described as a least-squares formulation 206 

of factor analysis developed by Paatero (Paatero and Tapper, 1994). It assumes that the 207 

ambient aerosol concentration X (represented by n x m matrix of n observations and m PM10 208 

constituents or NSD size bins), measured at one or more sites, can be explained by the 209 

product of a source profile matrix F and source contribution matrix G whose elements are 210 

given by equation 1: 211 

ijkj

p

=k

ikij e+fg=x 
1

      i=1…n; j=1…m 

 

(1) 

where the jth PM constituent (element, size bin, or auxiliary measurement) on the ith 212 

observation (i.e. hour) is represented by xij. The term gik is the contribution of the kth factor 213 

to the receptor on the ith hour, fkj is the fraction of the jth PM constituent in the kth factor, and 214 

eij is the residual for the jth measurement on the ith hour. The residuals (i.e. difference 215 

between measured and reconstructed concentrations) are accounted for in matrix E and the 216 
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two matrices G and F are obtained by an iterative algorithm which minimises the object 217 

function Q (see equation 2). 218 

 219 

Using the data and uncertainty matrices for the model, equation 1 is optimised in the PMF 220 

algorithm by minimising the Q value (equation 2), 221 

 











n

=i

m

=j ij

ij

s

e
=Q

1 1

2

 

 

(2) 

 222 

where sij is the uncertainty in the jth measurement for hour i.   All analyses were carried out 223 

in Robust mode which reduces the impact of outliers (Paatero, 2002).  224 

 225 

PMF is a weighted technique and the value of Q, and hence the model fit, is determined by 226 

the input variables with the lowest values of uncertainty, sij , thus giving their variables a 227 

higher weighting in the analysis.  Input variables with low weight have little effect upon the 228 

value of Q, even when their residuals are large.  This can be used to the advantage of the 229 

operator, e.g. when apportioning total PM mass in a conventional one-step PMF, the total 230 

PM concentrations are normally input with artificially high uncertainty, so that they are 231 

essentially passive in the PMF analysis and do not influence its outcome.  By doing so, the 232 

chemical composition data determine the apportionment of PM mass to the source-related 233 

factors identified by the PMF.  A similar approach can be followed in the PMF analysis of a 234 

combined dataset where higher weightings can be applied to the main dataset of interest 235 

such that it “drives” the analysis and the auxillary data set “follows”, i.e. the uncertainties are 236 

chosen such that the balance of total weights from the two data sets is tipped towards the 237 

measurement of interest and highest reliability in regards of rotational unabiguity.    238 
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To assess the PMF model, the Q value is outputted by PMF and compared to a theoretical 239 

value Qtheory which is approximately the difference between the product of the dimensions of 240 

X and the product of the number of factors and the sum of dimensions of X (i.e. n x m – p(n 241 

+ m)) pk x m.  For a given number of factors, the whole uncertainty matrix is scaled by a 242 

factor bscale until the ratio between Q and Qtheory is approximately one (rQ value = Q/Qtheory = 243 

1 ± 0.02).  244 

 245 

With regards to the final output from PMF, a scaling has to be applied in order to achieve 246 

quantitative results.  This is done by scaling either G or F to unity such that the units from X 247 

are carried over to either F or G respectively to complete the apportionment.  However, 248 

different routes have to be considered depending on whether X has homogeneous or 249 

heterogeneous units. 250 

 251 

2.2.2  1-Step method using data in the same units - homogeneous units 252 

Given a PMF input data matrix X, a solution GF + E can be computed where G represents 253 

the time series of the source profiles F, with a residual matrix E.  Often X comprises columns 254 

of PM10 component concentrations (e.g. ICPMS values measured from acid-digested filters 255 

collected with a Partisol 2025) and it is common practice to also include a Total variable 256 

(e.g. column of PM10, measured using a TEOM) in the data matrix.  The resulting PM10 257 

profile element value can then be used to scale G and F such that G carries the units of X 258 

with F unitless.  Note that neither G or F is scaled to unity in this approach. Instead, scaling 259 

is done after the analysis using a constant ak, determined by the time series of a Total 260 

variable (e.g. PM10), down weighted by applying a high uncertainty, within the input data.   261 

 262 
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𝑥𝑖𝑗 =∑(𝑎𝑘𝑔𝑖𝑘) (
𝑓𝑘𝑗

𝑎𝑘
)

𝑝

𝑘=1

 

(3) 

 263 

The resulting value for the PM10 contribution for each factor within the F matrix is then used 264 

as a scaling constant ak in equation 3. Such scaling results in unitless factors F which 265 

describe the characteristics of the sources and time series G with units of µg/m3. 266 

Apportionment can then be carried out by averaging the G values for each source factor, or 267 

a fully quantified time series of each factor can be presented, e.g. in Bivariate plots.  Of 268 

course, the G and F can be normalized such that G is unitless and F carries units; an 269 

approach necessary when X contains heterogeneous units.  This approach however, 270 

requires each column of G to be scaled to unity, by using the PMF setting Mean ӏGӏ = 1. 271 

 272 

2.2.3  1-Step method using data with different units - heterogeneous units 273 

If the analysis of X was to be enhanced by the inclusion of data from a second instrument 274 

with different units, then a different approach to the 1-Step method with homogeneous units 275 

would be required to analyse the joint data matrix [X,Z] = G[X,Z] F[X,Z] + E[X,Z].  If the 276 

previous method was applied where F was normalized, then it would not be clear what units 277 

to assign to G, whether the units from X or Z.  To get around this problem, G is scaled to 278 

unity.  This results in a unitless time series G and a quantified F matrix.  For each source 279 

profile the sum of the species associated with either data type gives the average total 280 

apportionment, e.g. of PM10 or number concentration PN.  Of course, this requires the 281 

complete mass or number closure of the elements making up either PM10 or PN respectively, 282 

although inclusion of measurements of total PM10 or PN can used instead, if available.   283 

 284 
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In the ideal case, if the individually computed factors for both data sets result in G(X) and 285 

G(Z) being identical, then a straightforward joint model [X,Z] is successful and G[X,Z] = G(X) 286 

= G(Z).  However, if G(X) and G(Z) are significantly different then the joint model will fail, 287 

identified by a too large Q value.  A solution to this problem is to set the total weights of the 288 

better dataset X significantly higher than the total weights of the auxiliary data set Z such 289 

that X will “drive the model” and G[X,Z] will be approximately equal to G(X) and a reasonable 290 

Q value is obtained for the Z.  However, care is required to ensure that X or Z do not contain 291 

rotational ambiguity because such rotation for X may not be suitable for Z. For such cases, 292 

equal total weights for both X and Z are applied in the hope that the best rotation for both X 293 

and Z can be found. 294 

 295 

2.2.4  2-Step method using data with different units - heterogeneous units 296 

The method proposed in this work separates the analysis of the two data sets X and Z into 297 

two different PMF analyses.  Dataset X is first analysed and an unambiguous rotation is 298 

selected which gives computed factors G(X).  These are then carried over into a second 299 

PMF step in which G(X) are combined with Z to form a joint matrix for analysis.  By using 300 

FKEY (described below) factors, G(X,Z) are forced to be equal to G(X) from step 1.  So for 301 

example, if in the first step we analyse PM10 data and carry forward the output G(PM10) into 302 

a second step combined with the NSD data, i.e. [G(PM10),NSD] this results in profiles 303 

F[G(PM10),NSD].  In other words, we force out of the NSD data source profiles which have 304 

the same G factors as the PM10 data and extend the list of components of the sources 305 

identified in the first step and thus improve characterisation of the source.  Note that this is 306 

equivalent to non-negative weighted regression of matrix Z by columns of matrix G for which 307 

other tools exist.  Furthermore, by using a two step method, we can continue to use the 308 

scaling method described in Section 2.2.2 to apportion the sources using a quantified time 309 
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series G(X) rather than normalising the G(X,Z) matrix sums to 1 and relying on the 310 

summation of the elements in the rows of F(X,Z) to give the apportionment of X and Z. 2.2.5.  311 

 312 

Application of PMF 313 

Positive Matrix Factorization was carried out in this work using the DOS based executable 314 

file PMF2 v4.2 compiled by Pentti Paatero and released on Feb 11, 2010 (downloaded from 315 

www.helsinki.fi/~paatero/PMF/).  This is used by the author in preference to a GUI version of 316 

PMF (e.g. US EPA PMF 5.0, Norris et al., 2014) because of the ease with with it can be 317 

incorporated into a Cran R procedure script using shell commands, thus facilitating 318 

automation of the analysis and any optimisation.  R-script can be written to manipulate and 319 

organise input data for PMF2, run PMF2, collect the output and produce the necessary 320 

output for consideration as text, table or plot.  The main strength for this approach is to 321 

improve the repeatability and transference of a method between practitioners within our 322 

group. 323 

 324 

The two step method is shown schematically in Figure 2.  Matrix X yields factors 1G and 1F 325 

in the first step.  The timeseries 1G matrix is carried through to the second step where it is 326 

combined with an auxiliary data set Z, to give the a step 2 input matrix [1G Z].  This in turn 327 

is analysed to produce factors 2G  and 2F.  In the current example, the dataset of Beddows 328 

et al.  (2015) is used as a starting matrix X and comprises the PM10 chemical composition 329 

dataset.  This yields timeseries 1G and source profile 1F and the reader is referred to 330 

Beddows et al. (2015) for a description of the analysis and output.  Figure 1 shows the output 331 

from the first step which was found to be the optimum solution after considering 3 to 8 factor 332 

solutions.    The normalised timeseries matrix 1G from this analysis was combined with the 333 

http://www.helsinki.fi/~paatero/PMF/
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NSD data - concurrently measured with the PM10 data - to form the input matrix [1GZ], for 334 

step 2. The uncertainties of the 1G1 matrix, 1G are transferred from the output of the first 335 

step and entered as input uncertainties for the second step.  The hourly NSD data was 336 

aggregated into daily values to match the daily 1G factors outputted from the PMF analysis 337 

of the daily PM10 data sampled.  This reduced the data matrix down to 590 rows by 57  338 

columns (1G1…1G6, NSD1
16nm…NSD51

640nm) for which a we have a Qtheory value of 29748 339 

for a 6 factor solution.  For the NSD data, the uncertainties are taken as the NSD values 340 

multiplied by the value of an arbitrary parameter bscale (see Figure 2).  Initially, bscale was set 341 

to 4 to to ensure that the model was weighted such that it was driven by the PM10 data.  342 

However, this operation becomes somewhat redundant by the use of the FKEY matrix 343 

discussed in the next section.  However, in order to find the optimal NSD uncertainties the 344 

value of the parameter bscale (typically, 0.2) was optimised in Cran R so that the ratio of 345 

Q/Qtheory = 1 ± 0.02, indicating an relative percentage uncertainty in the region of 20%.  In 346 

retrospect – by taking into account the decrease in reliability of the size bin counts towards 347 

the edges of the size bin range - an improvement would be to gradually increase the 348 

uncertainties from 5% in the middle range of sizes to a pre defined larger value, e.g. 50%, 349 

over the lower and upper size bins. The uncertainties were entered directly into the model 350 

using PMF matrix T with U and V redundant. 351 

 352 

2.2.6  Pulling down with GKEY and FKEY 353 

GKEY and FKEY are matrices with the same dimensions as G and F respectively,  for 354 

incorporating a priori information into a PMF analysis.  They are used in the second step of 355 

the PMF analysis to “pull” elements of the source profiles to zero.  GKEY and FKEY indicate 356 

the location of suspected zeros in source profiles 2F or contributions 2G (Figure S1). Since 357 

we are concerned with the profiles, this information is given in the form of integer values in 358 
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an FKEY. The greater the certainty that an element of a source profile is zero, the larger the 359 

integer value that is specified.  In this case, in the second step for the input dataset [1G 360 

NSD], it is certain that only one unique contribution will be strong for each row of the profile 361 

2F, outputted from the second PMF analysis, e.g. only 1G1 and not 1G2.. 1G6 will contribute 362 

the to (1G1, 2F1) position in output factor   2F1.  (Figure S1).  All ‘non-zero’ elements within 363 

the output of 2F take a FKEY value of zero whereas all elements of 2F which are pulled to 364 

zero take an non-zero value of fkey1. This leads to a FKEY matrix which can be understood 365 

in two parts.  The first part is a square matrix of dimension equal to the number of columns 366 

of 1G with all its entries equal to fkey1 except for the leading diagonal; this part ensures that 367 

1G is the same as 2G.  The second part of the matrix consist of all the elements as zero and 368 

represents the NSD input data.  An fkey1 value of 7 to 9 is considered a medium to strong 369 

pull, and in this work, we used a value of 24 which in comparison is very aggressive ensuring 370 

only one rotational solution is available ensuring 1G   2G. 371 

 372 

To extend the analysis from 6 factors to 7 factors an extra row was added to FKEY.  This 373 

was done in order to investigate any factors missed in the NSD data which the first analysis 374 

using PM10 would not be sensitive to.  For example, a nucleation mode would be detected 375 

in NSD data but not PM10 data.  In order to give the model freedom to factorise out a 376 

nucleation factor, the 7th row of of FKEY values consisted {fkey1, fkey2… fkey6,nsd1, nsd2… 377 

nsd51}.  This ensured that all the 2G contributions were allocted to the first 6 factors only 378 

leaving the 7th factor to account for the remaining unfactorised NSD data.  There is no reason 379 

why more than 7 factors could not be used to investigate possible unresolved NSD factors.  380 

However, we constrained the scope of our investigation to reidentifying those in Figure 1. 381 

 382 

 383 
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2.3  Regression 384 

As an alternative to using PMF in the second step, a regression was carried out.  Each 385 

column of data for each of the 51 size bins j within the NSD was regressed against the six 386 

1G time series using Equation 4 387 

𝑁𝑆𝐷𝑗 = 𝛼0,𝑗 + 𝛼1,𝑗 𝐺1 1 + 𝛼2,𝑗 𝐺1 2 +⋯+ 𝛼6,𝑗 𝐺1 6 (4) 

 388 

where 0 is the population intercept and 1-6 are the populations slope coefficents.  This 389 

results in a 7 by 51 matrix of values.  Each column represents a size bin of the NSD data 390 

and each row represents the slope coefficients associated with 6 of the factors (giving an 391 

indication of how each size bin scales with each of the 6 factors) and an intercept.  When 392 

1-6,j  is plotted against the size bin, 6 plots showing the dependence of each size bin j on 393 

each of the 6 PM10 factors are produced.  It is also assumed that these (referred to here as 394 

NSD regression source profiles) will be comparable to the actual NSD PMF source profile.  395 

Similarly, the 0,j  values are expected to give a  background value due possibly to noise;  396 

however, it is more likely to yield a source (such nucleation) to which the PM10 mass analysis 397 

is insensitive.   398 

 399 

2.4  Peak Fitting 400 

If it is assumed that the factors derived from the daily NSD data are the same as those 401 

present in the hourly data, i.e. the factors are conserved when averaging the data from 402 

hourly to daily data before PMF analysis, then daily NSD profiles can be fitted to the hourly 403 

NSD spectra to recover a diurnal cycle for the factors.  However, it is worth noting that the 404 

process of aggregating hourly data to daily NSD data may cause loss of information implying 405 

that minor factors (e.g. due to event episodes) might well be averaged out of the data.    406 
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Given the jth size bin in the ith number size distribution NSDi,j (of dimensions M x N),  the 407 

factors can be fitted using equation (5). 408 

𝐷𝑖 =∑𝑑𝑖

𝑀

𝑖=1

 
 

(5) 

which is the ith sum Di of the difference (di give by equation 6) across the size bins of the ith 409 

NSDi and the linear sum of the p NSD source profiles (p = 7 in this case) scaled with respect 410 

to the scalar values cik, representing the timeseries of each fitted NSD source profile.  411 

𝑑𝑖 =
∑{𝑁𝑆𝐷𝑖𝑗 −∑ 𝑐𝑖𝑘 ×

𝑝

𝑘=0
𝑓𝑘𝑗}

𝑁

𝑗=1

, 𝑐𝑖𝑘 ≥ 0

1 × 1010, 𝑐𝑖𝑘 < 0

 

(6) 

 412 

The Cran R package Non-Linear Minimization (nlm) (R Core Team, 2018) was used to 413 

minimise the value of Di with respect to the scalar values cik   with a non-negative constraint 414 

on cik placed in the function.  If a negative value is returned by any of the ck values then D 415 

returns an excessively large value.   Furthermore, in order to extract an apportionment to 416 

number concentration (1/cm3) the fitted values were scaled using a scalar βk.  Seven values 417 

were derived for βk by regressing the total particle number (total hourly SMPS) against each 418 

of the fitted values ck (equation 7. 419 

𝑃𝑁 = 𝛽0 + 𝛽1𝑐1 + 𝛽2𝑐2 +⋯+ 𝛽7𝑐7 (7) 

The resulting scaled-fitted values were then used to calculate the PN concentration for each 420 

of the regression source profiles (equation 8) allowing subsequent plotting of the 7 diurnal 421 

cycles. 422 

𝑃𝑁𝑘 = 𝛽𝑘𝑐𝑘 
(8) 

 423 

 424 
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2.5  Bivariate Plot 425 

Identification of the sources responsible for the factors outputted from PMF can be assisted 426 

by meteorological data.  Time series of the kth factor (or gk values) can be plotted against 427 

wind direction and wind speed using either the polarPlot or polarAnnulus functions provided 428 

in the Openair package.  Polar Plots are simply used for plotting the factor contribution on a 429 

polar coordinate plot with North, East, South and West axes.  Mean concentrations are 430 

calculated for wind speed-direction ‘bins’ (e.g. 0-1, 1-2 m/s,... and 0-10, 10-20 degrees etc.) 431 

and smoothed using a generalized additive model.  Each bin concentration is plotted as a 432 

group of pixels (coloured according to a concentration-colour scale) and positioned a 433 

distance away from the origin according to the magnitude of wind speed and along an angle 434 

from the North axis according to the wind direction.  Such plots are useful when identifying 435 

the nature of the source.  A diffuse source will tend to have its highest concentration showing 436 

as a hotspot at the origin of the polar plot, whereas a point source will cause a hotspot both 437 

away from the origin and in the direction pointing towards the source.  On the other hand 438 

wind blown sources tend to be recognised by their relation to wind speed and hence do not 439 

necessarily produce hotspots. Instead, they produce a minimum to maximum gradual 440 

gradient of colour from the origin, spreading radially out towards the edge of the plot in the 441 

direction of the source, e.g. for a marine source.  Likewise, Annulus Plots plot the mean 442 

factor concentration on a colour scale by wind direction and as a function of hour-of-the-day 443 

as an annulus, represented by the distance of the coloured pixels from the origin. The 444 

function is good for visualising how concentrations of pollutants vary by wind direction and 445 

hour of the day.  For example, for the North Kensington site – positioned West of the city 446 

centre – we might well expect most of the anthropogenic sources (traffic, diffuse urban, etc) 447 

to show an Easterly direction with the appropriate diurnal cycle (e.g. rush hour traffic 448 

patterns).  Similarly, we might expect cleaner air (Marine, Nucleation, etc) to occur from a 449 
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Westerly direction and at times of the day when the solar strength is highest. 450 

 451 

3.  RESULTS AND DISCUSSION 452 

The aim of this work has been to show how a given PMF result can be complemented with 453 

concurrently measured auxillary data.  We exemplify this using PM10 and NSD data collected 454 

from the North Kensington receptor site in London and start with the premise that we are 455 

completely satisfied with the PM10 analysis and are using a rotation which gives quantified 456 

factors (quantified G and scaled F) which best represent the urban atmosphere sampled, 457 

i.e. the output from Beddows et al. (2015).   For each PM10 factor we wish to assign a NSD 458 

distribution. Rather than repeat the PMF analysis using a combined PM10+NSD dataset 459 

which can be complicated if the rotations of the individual PMF analyses of PM10 and NSD 460 

data are mismatched or ambiguous, we can carry out a  a second PMF analysis or a 461 

regression. 462 

 463 

Furthermore, by the nature of any factor analysis, we also have to make the assumption that 464 

each source chemical profile and size distribution not only remain unchanged between 465 

source and receptor but that it remains constant throughout the measurement campaign.  466 

This of course limits our capacity to fully understand the aerosol within the atmosphere we 467 

are considering.  Chemical reactions during the transit of the air masses will of course modify 468 

the chemical composition.  It might be assumed that a fully aged aerosol remains unchanged 469 

and is identified as a background component, but for example we would expect progressive 470 

chlorine depletion within a fresh marine aerosol passing over a city.  Likewise, we also have 471 

to appreciate that different particle sizes will have different atmospheric transit efficiencies 472 

with large particles settling out of the air mass before smaller ones.  Similarly, particles 473 

nucleate and grow from 1 nm up to 20-30 nm over a short time period of time.  It is these 474 
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finer details which are missed when making an overall assessment of the chemical and 475 

physical composition of an air mass measured over a long period (e.g. 2 years) dataset 476 

using PMF.  477 

 478 

3.1  2-Step PMF-PMF Analysis 479 

Figure 3 presents  the profiles 1Fk and 2Fk  from the first and second PMF analysis 480 

respectively.  The plots of 1Fk were carried over from Beddows et al. (2015) to complete the 481 

assignment of the source profiles. 482 

 483 

The  time series 1Gk and uncertainties 1Gk from the first PMF analysis of PM10 data were 484 

carried over into the second step where they are combined with the NSD data for PMF 485 

analysis (Figure 2).  The uncertainties of the NSD data are taken as an optimised multiple 486 

of the NSD values themselves (~ 5 % uncertainty, yielding a Q value of 30,333 in the robust 487 

mode; see Table S2 for PMF settings).  Also in order to  encourage 2Gk to be proportional 488 

to 1Gk for k = 1-6 (see Table S4), the FKEY matrix is applied to pull elements in the source 489 

matrix to zero as described in section 2.3.3. This ensured that the PMF analysis of the NSD 490 

data was driven by the 1G time series and  resulted in a 6 factor output in which there were 491 

unique contributions from the kth factor 1Gk from the first analysis to the kth factor 2Fk  in the 492 

second analysis.   This is mainly due to the aggressive pulling of the factor element in 2F 493 

applied using FKEY.   494 

 495 

When inspecting Figure 3 it is notable that the source profiles are surprisingly similar to 496 

those calculated for the just-NSD and PM10+NSD data in Beddows et al. (2015).  The Diffuse 497 

Urban factor has a modal-diameter just below 0.1 µm which is comparable to the same 498 
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factor in the just-NSD analysis.  Marine is comparable to the Aged Marine factor derived 499 

from the PM10+NSD analysis. The Secondary factor is again the factor with the largest modal 500 

diameter (between 0.4 and 0.5 µm) and traffic has as expected a modal diameter between 501 

30 and 40 nm.  The Fuel Oil factor appears to be a combination of a nucleation factor and a 502 

mode comparable to diesel exhaust seen in the Traffic factor. 503 

 504 

3.2  2-Step PMF-LR Analysis 505 

Figure S2 shows the results of the linear regression of the NSD data plotted against the 506 

PM10 1Gk scores and again what is remarkable is the similarity between these regression 507 

source profiles and both the factors derived in Beddows et al. (2015) and those from the 2-508 

step PMF-PMF analysis.   509 

 510 

This PMF-LR analysis was carried out using daily averaged data and to obtain hourly 511 

information - and thus obtain the diurnal patterns (Figure S2) - the resulting regression 512 

source profiles were re-fitted to the original NSD data.  On inspection of these source profiles 513 

and diurnal plots, the negative values make interpretation a struggle reinforcing one of the 514 

4 conditions (Hopke, 1991) in the analysis if it is to make sense. We can however fit non-515 

negative gradients using non-negative regression.  However, the surprising consequence of 516 

applying this constraint is that the same profiles are derived but they are clipped so that all 517 

negative values are replaced by zero values – hence, information is lost by doing this.   One 518 

interpretation of the negative values is that these are particle sinks but this contradicts the 519 

PMF-PMF findings and hence it is concluded that the PMF-LR analysis only serves as an 520 

indication of how the PM10 factors are augmented by the NSD data.  If all profiles are shifted 521 

to above the zero line then comparisons to the PMF-PMF data can be made.  However, 522 
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what is interesting to note in this result is the intercept NSD which is comparable in profile 523 

and diurnal pattern to the nucleation mode identified in Beddows et al. (2015).  This is a 524 

seventh regression source profile, in addition to the 6 PM10 factors and suggests that 525 

although the PMF analysis of the PM10 data alone misses a Nucleation factor, this can be 526 

recovered in a second analysis as a remainder or bias in the data.  Furthermore, this result 527 

indicates that the composition of the Nucleation NSD factor has no link to the chemical PM10 528 

composition and cannot be used to infer a composition. This is unsurprising given the very 529 

small mass contributed by the nucleation mode particles.  530 

 531 

Returning to the PMF-PMF analysis and extending the analysis from 6 factors to 7 factors,  532 

an extra row in the FKEY  matrix was added to pull all of the 1G7 contributions to 2F7 to zero 533 

in the solution (Figure S1).  The same FKEY matrix of fkey1 and 0 values was used but this 534 

time it was augmented with a 7th row of fkey2 and zero values.  In this case, the fkey2 values 535 

were set to a value of 20.   536 

 537 

The same 6 factor solution is obtained with the additional 7th factor (Figure 4 and Figure S3) 538 

and as expected, this seventh factor was a Nucleation factor.  It was suspected that in the 539 

6 factor solution, the Nucleation factor was combined with the Fuel-Oil factor.  This does not 540 

suggest any link between the Nucleation and Fuel-Oil factor other than there was an 541 

insufficient number of factors within the model for the two to factorise out of the data giving 542 

the Fuel-Oil NSD profile a more reasonable modal peak between 50 and 60 nm rather than 543 

20, 30 and 60 nm. 544 

 545 

Beddows et al. (2015), applied a 1-step analysis to three different datasets: PM10-only; NSD-546 
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only and PM10+NSD.  The analyses of the PM10-only and NSD-only – both with 547 

homogeneous units - produced quantitative timeseries G.  This was unlike the analysis of 548 

the PM10+NSD with heterogeneous units which could not apportion its 5 factors using G but 549 

was able to factorise out a Nucleation factor from the data, seen also in the 4 sources in the 550 

PMF solution for the NSD-only data.    A PM10-only seven factor solution  did not reveal this 551 

factor, presumably because the mass associated with nucleation mode particles is too small 552 

to affect composition significantly.  Furthermore, Fuel Oil was not factorised out of the 553 

PM10+NSD data and was more likely divided across all 5 factors.   554 

 555 

Another interesting observation is that although only 4 factors were derived from the PMF 556 

analysis of NSD-alone (Diffuse Urban; Secondary; Traffic and Nucleation), when extra 557 

information is included from the PMF analysis of the PM10 data, more information can be 558 

extracted from the PMF analysis of the NSD data in the form of the Marine; Fuel Oil and 559 

NET & Crustal factors.  The Nucleation factor is only revealed when performing a regression 560 

between the NSD size bins and the G scores of the PM10 PMF analysis which leads to 561 

increasing the factor number from 6 to 7 which yields the Nucleation profile.  It is also 562 

reassuring that the bivariate plots for the 7 factors (discussed in the next section) correspond 563 

to the bivariate plots given in Beddows et al. (2015).  Also note that there is no reason why 564 

any further investigation might not explore using more than 7 factors.  In fact the Nucleation 565 

factor appears at first sight to be multimodal.  However, we restricted our analysis to 7 566 

factors, considering it complete in terms of identifying the sources obtained by Beddows et 567 

al. (2015). 568 

 569 

 570 
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3.3  Diurnal and Bivariate Plots  571 

The original PMF was carried out on daily PM10 data and in order to make diurnal and 572 

bivariate plots, a higher time resolution is desirable.  It is assumed that the factors derived 573 

in the hourly NSD data are the same as those derived from the daily averaged data, i.e. the 574 

factors are conserved when averaging the data from hourly to daily data before PMF 575 

analysis.  Then the hourly NSD data can be fit with the PMF profiles derived from the daily 576 

data (see Section 2.4).  Figure 5 shows the resulting diurnal profiles.  The diurnal trends of 577 

the parameter ck (equation 7), required to fit the 7 daily NSD factors to the hourly NSD data 578 

are shown.  These have been scaled to PN (measured in 1/cm3) using the integral of the 579 

NSD (equation 8).  The Nucleation factor diurnal trend behaves as expected rising to a 580 

maximum during the day and then falling back down to a minimum at night.  This 581 

corresponds to the intensity of the sun during the day and the increased likelihood of 582 

nucleation on clean days when there is sufficient precursor material to form particles with a 583 

low particle condensation sink.  The Marine factor is also high during the day presumably 584 

due to higher wind speeds.  Diffuse Urban, NET & Crustal, and Traffic all follow a trend which 585 

is synchronised to the daily cycle of anthropogenic activity and traffic as influenced by 586 

greater atmospheric stability at night.  The Secondary factor shows a small diurnal range.   587 

Fuel Oil is highest during the evening and night and may correspond to home heating rather 588 

than shipping emissions.  The particle size distributions associated with the Marine and NET 589 

& Crustal sources are of limited value as these sources are dominated by coarse particles, 590 

beyond the range of the SMPS data, although there is a sharp increase in the volume of the 591 

particles above 0.5 µm in the Marine factor.  As pointed out in Beddows et al. (2015), the 592 

Marine factor is identified by its chemical profile of sodium and chloride and is accompanied 593 

by an aged nucleation mode at around 30nm.  This can be either viewed simply as clean 594 

marine air being ‘polluted’ by traffic emission and/or as the consequence of nucleation 595 
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occuring over at city in clean maritime air masses (Brines et al. 2015).  The key point here 596 

is that the factors derived in this work are comparable to those factorised in Beddows et al. 597 

(2015) using the combined dataset and the advantage of the 2-step approach is that now 598 

we have quantified hourly timeseries G. 599 

 600 

The hourly contributions are aggregated into daily values and plotted as bivariate plots in 601 

Figure 5 to assist comparison with the daily plots in Beddows et al. (2015).  In that work, the 602 

same PMF analysis of the NSD data yielded 4 factors which are named identically to those 603 

in the bivariate plots.  The similarity of both of the polar and annular plots for each of the 4 604 

factors supports our previous factor identification.  The Secondary and Diffuse Urban are 605 

background sources with strongest contributions in the evening and morning.  Traffic is 606 

strongest for all wind speeds from the East which makes sense since North Kensington is 607 

to the West of the city centre of London where traffic is expecting to be most dense.  608 

Nucleation is also seen to be strongest for those wind direction from the West which are 609 

expected to be cleaner, and have a lower condensation sink.  NET & Crustal and Fuel Oil 610 

are similar to Diffuse Urban suggesting a similar predominant source location in the centre 611 

of London.  Marine is observed to be strongest for elevated wind speeds for all wind 612 

directions which is consistent with the expected strong contribution for all high wind speeds 613 

from the South West, as observed in the daily polar plots in Beddows et al. (2015). 614 

 615 

3.4  Composition associated with the Nucleation Factor 616 

The Nucleation factor was extracted from the two-step PMF-PMF analysis which included 617 

pulling the 1G1-1G6 to zero of factor 2F7.  It might be reasonable to suggest that if the two-618 

step PMF-PMF analysis is repeated and the order of analysis of PM10 and NSD datasets 619 
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reversed that it would be possible to derive the chemical conditions within the atmosphere 620 

which were conducive to nucleation.  For this, the time series of the 4 NSD factors (1G1-1G4) 621 

reported in Beddows et al. (2015) were combined with the PM10 data.  We again assume 622 

that the first PMF step has been carried out and that we are satisified with how the final 623 

solution represents the urban environment of the receptor site and that there are no 624 

rotational ambiguities.  We then carry out the second step PMF analysis on the 34 x 591 625 

input matrix ([1G1…1G4], PM10[PM,PMcarbon,PMions,PMmetals]).  The hourly output 626 

uncertainies from the first PMF analysis of the NSD data 1G1…1G4 were carried forward 627 

into the second PMF analysis by adding them in quadrature to give daily uncertainties.  As 628 

with the analysis of the auxillary data in the PM10-NSD data, the measurement uncertainties 629 

for the PM10 data (this time the auxillary data) was naively taken as 4 times the PM10 matrix.  630 

Extra care could have been take in assigning the PM10 uncertainties but since we force the 631 

output using FKEY a simpler approach was taken.  In fact, the FKEY consisted of a 4 x 4 632 

diagonal matrix of zero values with an fkey1 of 20 for all the off-diagonal positions joined to 633 

a 4 x 30 matrix of zeros.  Furthermore, the uncertainty values of the PM10 were scaled until 634 

Q/Qtheory = 0.99 using parameter bscale = 0.35 (see Table S3 for more details). 635 

 636 

Ideally, the chemical data would be limited to the composition of the particles in the same 637 

size range as the SMPS data.  However, when since we are using the PM10 composition 638 

data we can at best describe the composition of the aerosol which accompanied each factor 639 

(Figure S4).  For the NSD Secondary factor with its strongest contribution (indicated by the 640 

Explained Variation) ~400 nm, we have a strong contribution to PM10 and PM2.5 together 641 

with nitrate, sulphate and ammonium.  Diffuse Urban, with its strongest contribution at 100 642 

nm is accompanied by contributions from elemental carbon and wood smoke indicative of 643 

traffic and recreational wood burning. There are also contributions from barium, chromium, 644 
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iron, molybdenum, antimony and vanadium, all indicative of non-exhaust traffic emissions 645 

and the burning of fuel oil.  Similarly, the Traffic factor has a modal diameter at roughly 30 646 

nm which is indicative of exhaust emissions and this is accompanied by contributions to 647 

aluminum, barium, calcium, copper, iron, manganese, titanium and various other metals 648 

attributed to vehicles, albeit from tyre or brake wear or resuspension.   649 

 650 

The Nucleation factor with its peak ~20 nm, was associated with marine air as indicated by 651 

the strong contributions to Na, Cl and Mg (Figure S4).  There are also traces of V, Cr, Ni 652 

and a high contribution to PM10 mass which are all associated with marine air.  This is 653 

explained by an association with the south-westerly wind sector which brings strong winds 654 

and marine aerosol rather than reflecting the composition of the nucleation particles 655 

themselves.  Marine air is considered to provide the conditions required of an air mass 656 

conducive to nucleation, i.e. cleaner air with particles with a low condensation sink.  As these 657 

air masses pass over the land and eventually into London, anthropogenic precursor gases 658 

are added to this air which then nucleate particles seen at the receptor site as a nucleation 659 

mode.  This also goes some way to explain the earlier observation of aged nucleation 660 

particles observed in the marine factor in Figure S3.  There are also strong contributions to 661 

vanadium which is most likely from an unresolved Fuel Oil source being mixed into the 662 

Marine and Diffuse Urban factors.    663 

 664 

4.  CONCLUSIONS 665 

A two-step PMF analysis method is presented whereby existing PMF profiles can be extend 666 

to incorporate auxillary data concurrently measured and having different units.  This is 667 

exemplified using PM10 and NSD data.   668 
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 669 

When analysing PM10 data, the inclusion of auxillary data such as meteorological, gas and 670 

particle number data has proved to give a clearer separation of factors.  However, for a 671 

successful output, there must be no rotational ambiguity in either the PM10 data or in the 672 

auxillary data.  In the ideal case, the individually computed factors G(X), G(Z) and G(X,Z) 673 

need to be similar if the joint model is to be successful and not produce large residuals and 674 

hence a too large Q value.  In the best case, the total weight of the PM10 data can be set 675 

higher than the auxillary data so that the PM10 data drives the analysis. In this work, we 676 

present an alternative method called the 2-step PMF method. In the first step the PM10 data 677 

is PMF analysed using the standard approach without the inclusion of additional data.  An 678 

appropriate solution is derived using the methods described in the literature in order to give 679 

an initial separation of source factors.  The time series G (and errors) of the PM10 solution 680 

are then taken forward into the second step where they are combined with the NSD data.  681 

The PMF analysis is then repeated using the combined and mixed unit G time series and 682 

NSD dataset.  In order to ensure that unique factors are obtained for the G scores, FKEY is 683 

used to pull off-diagonal values to zero thus driving the NSD data. This ensures that the 684 

NSD factors are specific to the PM10 solution and the PM10 analysis is not affected by any 685 

rotational ambiguity of the NSD data.  For our demonstration using the Beddows et al. (2015) 686 

analysis, this results in 6 PM10 factors whose time series are not only apportioned in mass 687 

but the source profiles are identified for the NSD data.  Comparisons of both the factor 688 

profiles, diurnal trends and bivariate plots to those of Beddows et al. (2015), show that this 689 

technique produces one solution linking the two separate solutions for PM10 and NSD data 690 

datasets together.  This generates confidence that the NSD and PM10 factors ascribed to 691 

one source are in fact attributable to that same source.   692 

 693 
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Hence, the process starts with a dataset which produces a solution which is sensitive to 694 

mass but the factors more sensitive to number can be accessed using a second step. 695 

Furthermore, by exploring a higher number of factors,  NSD factors which are insensitive to 696 

PM10 mass can be identified as in the case of the Nucleation factor.  This information can 697 

also be extracted using a linear regression PMF-LR where the size bins of the NSD data are 698 

regressed against the PM10 PMF time series.  For this dataset, the Nucleation factor profile 699 

is identified as an intercept within the fitted model leading to an increase in the number of 700 

PMF factors from 6 to 7. 701 

 702 
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FIGURE LEGENDS: 827 

 828 

Figure 1.  Venn Diagram showing the summary of the findings of Beddows et al. (2015); 829 

applying PMF to PM10-only, NSD-only and PM10+NSD datasets.  Table shows the 830 

apportionment of PM10 and NSD taken from Beddows et al. (2015). 831 

 832 

Figure 2. Flow diagram showing the flow of data through the 2-step PMF-PMF analysis.  833 

The PMF analyses of single data set X are considered in step 1 and output indicated by 834 

factors/uncertainties 1G, 1G, 1F and 1F.  The second PMF analysis is carried out on the 835 

joint data set [1GZ] and yields factors/uncertainties i2G, 2G, 2F and 2F.  In our analysis, 836 

X and 1G are the PM10 and resulting time series from the analysis of Beddows et al. (2015) 837 

and Z is the auxillary NSD data concurrently measured using a SMPS.   838 

 839 

Figure 3. Source profiles 1F and 2F from both the first and second PMF step using 6 840 

factors.   [Grey bars and black line indicate the values of F; red lines and dots indicate the 841 

explained variations; and grey dotted line indicates the dV/dlogDp.]. 842 

 843 

Figure 4. Nucleation and Fuel Oil factors derived when extending the second PMF analysis 844 

from the 6 factors (shown in Figure 3) to 7 factors.  Source profiles 2F1 to 2F6 are given in 845 

Figure S3.  Each plot is divided into 2 showing the output 1Fk and 2Fk.  [Grey bars and black 846 

line indicate the values of F; red lines and dots indicate the explained variations; and grey 847 

dotted line indicates the dV/dlogDp.] 848 

 849 

Figure 5. Diurnal cycles derived PNk calculated by the fitting of the daily PMF factor profiles 850 

to the hourly NSD data fitted (see equation 8 and Section 2.4).  [Left-left column – diurnal 851 

trends of PNk; left-middle column – bivariate plot of PNk; middle-right – annular plot PNk; 852 

right-right – bivariate plot of PNk, plotted using the Openair program. Polar plots show a 853 

point coloured acording to the key, the number concentration at that point on the plot whose 854 

distance from the origin represents wind speed and angle wind direction.  Likewise for the 855 

angular plots the number concentration represent wind direction at an hour of the day 856 

between 0 and 23 hrs.].  Note that the diurnal plots do not start at zero.  857 
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Traffic 0.8 2460 
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Total 17.2  5512  

   
 

 
Figure 1.  Venn Diagram showing the summary of the findings of Beddows et al. (2015); 
applying PMF to PM10-only, NSD-only and PM10+NSD datasets.  Table shows the 
apportionment of PM10 and NSD taken from Beddows et al. (2015). 
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Figure 2. Flow diagram showing the flow of data through the 2-step PMF-PMF analysis.  

The PMF analyses of single data set X are considered in step 1 and output indicated by 

factors/uncertainties 1G, 1
G, 1F and 1

F.  The second PMF analysis is carried out on 

the joint data set [1GZ] and yields factors/uncertainties i2G, 2
G, 2F and 2

F.  In our 

analysis, X and 1G are the PM10 and resulting time series from the analysis of Beddows 

et al. (2015) and Z is the auxillary NSD data concurrently measured using a SMPS.   
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Figure 3. Source profiles 1F and 2F from both the first and second PMF step using 6 factors.     870 

[Grey bars and black line indicate the values of F; red lines and dots indicate the explained 871 

variations; and grey dotted line indicates the dV/dlogDp.] 872 
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Figure 4. Nucleation and Fuel Oil factors derived when extending the second PMF analysis 
from the 6 factors (shown in Figure 3) to 7 factors.  Source profiles 2F1 to 2F6 are given in 
Figure S3.  Each plot is divided into 2 showing the output 1Fk and 2Fk.  [Grey bars and black 
line indicate the values of F; red lines and dots indicate the explained variations; and grey 
dotted line indicates the dV/dlogDp.] 
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Figure 5. Diurnal cycles derived PNk calculated by the fitting of the daily PMF factor profiles 882 

to the hourly NSD data fitted (see equation 8 and Section 2.4).  [Left-left column – diurnal 883 

trends of PNk; left-middle column – bivariate plot of PNk; middle-right – annular plot PNk; 884 

right-right – bivariate plot of PNk, plotted using the Openair program. Polar plots show a 885 

point coloured acording to the key, the number concentration at that point on the plot whose 886 

distance from the origin represents wind speed and angle wind direction.  Likewise for the 887 

angular plots the number concentration represent wind direction at an hour of the day 888 

between 0 and 23 hrs.].  Note that the diurnal plots do not start at zero.   889 
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