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Title: Receptor modelling of both particle composition and size distribution from a background 
site in London, UK – the two step approach 
Author(s): David C. S. Beddows and Roy M. Harrison  
 

RESPONSE TO REVIEWERS 
 
REVIEWER #1 
General comment: The paper regards the description of a two-step approach for performing source 
apportionment using the PMF receptor model and an input composed by variables having different 
measurement units. The approach has elements of originality and potentially several applications. The topic 
is interesting considering that source apportionment is a major topic in nowadays research and the 
possibility to use an approach that use input variables having heterogeneous measurement units is 
certainly appealing. I also believe that the topic is suitable for the Journal and the paper generally well 
written and understandable. However, I found that some aspects are not completely clear (see my specific 
comments) and the paper need a revision before publication.  
RESPONSE:  We thank the reviewer for these positive overall remarks.   
 
Specific comments: 
Lines 59-62. This sentence is not completely true and I would suggest to modify it. This happens only if 
number size distributions are mixed with chemical composition (in mass), however, there are examples in 
which size-segregated chemical composition is used in PMF analysis to obtain quantitative evaluation of 
size distribution of sources (see for example Contini et al., 2014 Science of the Total Environment 472, 248–
261 and references therein). 
RESPONSE:  Text has been added to this effect, saying that by careful experimental design the 
issue of datasets with heterogeneous units can be avoided, for example using a Cascade Impactor 
to measure size-fractionated chemical PM mass composition rather than two measurements: one 
for particle number size and the other for total PM mass. 
 
Lines 140-141. Better to write 16-604 nm (like in line 149) because two decimal digits for size is an illusory 
precision.  
RESPONSE:  Correction made. 
 
Lines 159-161. The conversion of mass difference in PN0.6-10 is likely quite uncertain. Some details should 
be given because I believe that some assumptions have been done regarding size distribution in the range 
0.6-10 micron and the result of the conversion would be strongly influenced by these assumptions. A 
comment on this aspect is needed.  
RESPONSE:  This section has been re-written to include more details and a statement added that 
a large uncertainty is applied to this measurement so as not to influence the final results. 
  
Lines 312-314. This could happen because nanoparticles have a limited mass to influence significantly PM10 
mass composition, however, it could be different if NSD are mixed with PM1 chemical composition for 
example. A comment on this aspect would be useful.  
RESPONSE:  Within the context of response to comments on lines 59-62, we have commented on 
this to say that with a different measurement, PM1, the NSD data would give a better overlap.  
However, having said this, PN measurements have a sensitivity bias towards the smaller 
nucleation particles whereas PM measurements have a bias towards the more coarse particles. 
 
There is a particular reason for using PMF2 and not the more advanced PMF5 that is becoming the 
standard version of source apportionment with PMF?  
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RESPONSE:  PMF2 is not version 2 of the US EPA PMF.  PMF2 is the ordinary 2-way factor 
analysis as opposed to the 3-way factor analysis PMF3 or ME-2 for solving arbitrary (quasi) 
multilinear models.  This has been clarified in the Experimental part of the text. 
 
Lines 215-216. How much is it the X value chosen? This should likely be reported for completeness.  
RESPONSE:  We have added this information, which says that once fitted the NSD data have a 
relative uncertainty of 4-5%. 
 
Line 259. I believe that the number of factors is six rather than seven. 
RESPONSE:  Yes, the correction has been made. 
 
Lines 358-360. Looking at figures 4 and S3, it seems that the marine source is dominated by nanoparticles. 
Considering that this is a source generally made of coarse particles, and also authors mention this aspect, 
this result appears unusual and some discussion and explanations are needed.  
RESPONSE:  This apparent contradiction has already been addressed in Beddows et al. (2015) in 
the five-factor solution from the combined composition–NSD data set.  In this, a factor which can 
be clearly assigned on the basis of its chemical association is that described as aged marine. This 
explains a large proportion of the variation in Na, Mg and Cl but shows a NSD with many features 
similar to that of the traffic factor, with which it has rather little in common chemically. Since the 
aged marine mass mode is expected to be in the super-micrometre region and hence well beyond 
that measured in the NSD data set, it seems likely that the size distribution associated is simply a 
reflection of other sources influencing air masses rich in marine particles. The main point to take 
away is that we get the same solution using the 2-step approach. 
 
Minor comments: 
Lines 148. “spherical”  
RESPONSE:  Yes, the correction has been made. 
 
Line 351. “there is...” The source “NET and crustal” is reported in the text but repeated in the figures as 
“NET and coarse”. I would suggest to use “NET and crustal” in all the paper that is more understandable 
and appropriate.  
RESPONSE:  Yes, the correction has been made to be consistent with our original work in 
Beddows et al. (2015). 
 
Title Section 3.4. Why hidden?  
RESPONSE:  The work hidden has been replaced by unresolved.  It was not resolved until a 7 
factor solution was chosen using an FKEY matrix (as specified in Figure 3 with  6 x 6 zero diagonal 
FKEY matrix augmented with an 7th column and 7th row of zero entries). 
 
Moreover, this section is dedicated to several factors...what is the hidden one the nucleation? An 
explanation or a change of the title is needed.  
RESPONSE:  Extra explanation is given. 
 
What is the meaning of the “*” reported in figures 4 and 5? 
RESPONSE:  These have been removed. 
 

REVIEWER #3  
The manuscript has several elements of originality (to my knowledge, no similar methods have been 
already published) and directly hits a very controversial and up-to-date topic in the atmospheric sciences. 
Nowadays, source apportionment by PMF is amply used in both routine monitoring and research studies. 
Although most of them use “one-kind” variables (mostly PM chemical speciation data), an increasingly high 
number of studies (just a few have been cited in the manuscript, but the list should be improved) use 
variables with multiple units. Since the large number of available air quality measurement techniques, the 
merging of dataset(s) with different units is a suitable (and proven) way to better resolve the PMF source 
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profiles and to detect unresolved sources. Essentially, additional variables may help in better detecting the 
edges.  
RESPONSE:  We thank the reviewer for this positive perspective on the work.   

 
Under this view, a recent paper (Emami and Hopke, Chemometr. Intell. Lab. 162 (2017) 198–202, which 
findings are unfortunately not considered in this manuscript), showed the effect of adding variables with 
different units to decrease the rotational ambiguity of PMF solutions.  
RESPONSE:  This paper has now been cited. 
 
Thus, the topic is suitable for the journal ACP.  However, the manuscript needs revisions before to be 
accepted for publication. Major points. Essentially, the rationale behind the whole manuscript is based on 
the statement reported in lines 59-62: “However, while combining, for example, particle chemical 
composition and size distribution data in a single PMF analysis may assist source resolution, it does not 
allow quantitative attribution of either particle mass or particle number to the source factors.”. Later, the 
authors also presented a case study where they mixed variables with different units without giving 
quantitative results. Even if one can agree with this statement, the authors have not exhaustively explained 
it. Since this is a methodological manuscript, I strongly encourage the authors to better support these 
statements.  
RESPONSE:  The comment regarding the unapportioned factor analysis of data with 
heterogeneous units from the supporting output of Beddows et al. (2015), is referred to in Section 
3.2 entitled 2-Step PMF-LR Analysis.  We have expanded this section of text to report more 
clearly, what was carried out in the supporting study. 
 
Another major weakness of this manuscript is the lack of sufficient details on the PMF analyses. This point 
can be easily solved by the authors, who have an extended experience with PMF analysis. This manuscript 
presents a new approach, so particular care should be given to details so that anyone can easily reproduce 
what the authors did (and test with their own data). However, details of the PMF are generally missing or 
they are reported in the companion paper (Beddows et al., 2015).  

 For example, the authors should describe the method(s) used to compute the uncertainties in the 1st 
step (including PN0.6-10, see next point).  

RESPONSE:  This section has been rewritten to give more detail. 
 

 Also, the authors should report how the raw data have been handled (if any correction was done) and 
the number of variables and cases inputted into the models. For example, they should report the 
outliers detection and how they managed the missing values (SMPS sampled every 15 min, what is the 
minimum number of 15 min records to have a valid 1-hour NSD value?).  

RESPONSE:  The details of the SMPS setup are now in Table S1 and a note is added to say that 
the raw data was quality assured by the National Physical Laboratory (NPL), and to see Beccaceci 
et al. (2013a,b) for an extensive report on how the data was collected.  Furthermore, we addressed 
these points by carrying forward the descriptions in Beddows et al. (2015) of how the PM10 data 
was collected and prepared for this study.  
 
In addition, since the Q values are used (lines 199-203 and 215-216), they should be reported as well. 
Furthermore, it is unknown if the authors dealt with the rotational ambiguity of the models.  
RESPONSE:  This is addressed in the response to P. Paatero’s comments. 
 
The authors used R to “optimize” X to have Q/Qtheory ∼ 1. More details should be reported. In particular, 
what does “∼ 1” mean? It can be every number, but having it from 0.5 to 1.5 or from 0.99 to 1.01 makes a 
big difference. Please explain.  
RESPONSE:  We have set a criterion of within 1 ± 0.02. 
 
Basic information on the PMF set-up is important to report. This information will allow the reader to 
completely understand what the authors did and (possibly) to reply the methods. It would be useful to 
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have a quick overview of such details in the main text with the deepest description in the supplementary 
information.  
RESPONSE:  This point has been addressed within the rewritten mathematical description of the 
PMF analysis. 
 
Another unclear point is related to the “proxy-data” used to assess the PN0.6-10 variable. This is an 
artificial variable: it was not directly measured, but it was computed on the basis of two (three?) main 
assumptions: (i) particles are assumed to be spherical, and (ii) particles have fixed density. But it is not 
completely clear if the density is assumed constant over the time or over the whole (16-604 nm) size 
spectra (or both, as it should be). The authors used a density of 2 g/cm3 over all the study period, but they 
report a 1.8-2.5 g/cm3 range for an urban background aerosol. Consequently, the PN0.6-10 variable will be 
affected by a large uncertainty that cannot be well assessed. I suggest to add more details and provide an 
estimate of the uncertainty of this new variable.  
RESPONSE:  Clarification of this has been made by adding a fuller and more mathematical 
description to explain how the proxy variable is calculated and how the density value is used. 
 
This latter point raises another question. Why the authors did not plan to also use an APS to complete the 
size range to 10 µm? One can argue that the sampling campaign was not planned to have an APS included 
(or the merging of SMPS and APS was unreliable). However, my opinion is that this point should be at least 
mentioned in the text, so colleagues who want to pursue the same approach are advised on the possible 
use of wide range particle size spectra.  
RESPONSE:  We have added this point to a list of alternative approaches to using the proxy-data 
at the end of Section 2.2. 
 
Minor comments: 
Line 103. Missing bracket “)”  
RESPONSE:  Corrected. 
 
Subsection 2.1: Please add more details on the SMPS set-up. For example, sheath and sample flows, the 
status of the CPC and electrostatic classifier (serviced, calibrated?), the type of neutralizer (X-ray, 85Kr?), 
software/algorithm used for the data inversion (or version of the AIM software), use of multiple charge 
and/or diffusion loss corrections, etc. These details need to be added as supplementary information. 
RESPONSE:  This has been added in Table S1, although it does seem like too much information 
for what the referee correctly identifies as a PMF methodology paper; it is not a data collection 
paper. 
 
Line 138: 1 4 hour -> 15 min  
RESPONSE:  Change made although this is considered to be a personal preference. 
 
There are two equations numbered as (3), see pages 11 and 12. This should be fixed, as most of the 
discussion on the method refers to these equations.  
RESPONSE:  Correction made. 
 
Figure 3 can be easily moved to the supplementary material file.  
RESPONSE:  Figure moved. 

 
Figure 4. NET & coarse should be NET & crustal.  
RESPONSE:  Correction made. 
 
Figure 6. Once printed, the labels and axes of the single plots will be likely unreadable. Please increase the 
font size and (if possible) please uniform the font style and size among the figures. Also, it is advisable to 
use a color scale that is also easily readable when the paper is printed with a black and white printer. 
RESPONSE:  We have increased the font size at the expense of the size of the plots which has 
improved the readability of the text in these plots.  However, we have not found a palette which 
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looks good in colour and preserves the information in black and white.  All we can suggest is that a 
grey scale is used for the option of black and white printing. 
 
Figure 6 shows polarplots and polarannuli. These “openair” analyses are commonly reported in air quality 
studies and are very helpful to better interpret the data. However, a quick overview of the information 
provided by these two plots should be briefly reported into the materials and methods section. 
RESPONSE:  General descriptions of polarPlot and polarAnnulus have been added to the 
Methods Section. 
 

REVIEWER #4 
The paper by Beddows et al. described a two-step source apportionment methodology on a combined 
database of both PM mass and number size distribution measurements carried out in London. A previous 
source apportionment study using the same database had been reported by Beddows et al. (2015). Thus, 
the novelty of this study could be represented by the methodology development. The topic is interesting, 
and the methodology would be useful in deal with mixing data types as input in PMF, which provide a 
better defined source factor and better fit diagnostics compared to when non-combined data were used. 
However, I found that some aspects are not clear and improvements should be made before the work be 
published in ACP.  
RESPONSE:  We thank the referee, and we welcome the opportunity to provide greater clarity. 
 
Major comments:  
1. The motivation of this study is to clarify the source contribution when a combined database was used in 
PMF. As the authors state, the combined PM chemical composition and size distribution data in a single 
PMF analysis could not allow quantitative attribution of either particle mass or particle number to the 
source factors. However, one could calculate the source contributions either by PM mass or by NSD base 
on the output results of PMF. The following reference is an example described the source contribution 
using combined database in PMF. Please clarify this item. Sowlat et al., 2016. Source apportionment of 
ambient particle number concentrations in central Los Angeles using positive matrix factorization 
(PMF).Atmos. Chem. Phys., 16, 4849-4866,  
RESPONSE:  We do calculate the source contributions either by PM mass or by NSD based on 
the process of using output from the PMF results in Beddows et al. (2015). Those results are 
carried through into this work, so we are already carrying out a 1-step analysis resulting in an 
apportionment.  To address this oversight of the referee, we have added a line to Figure 2 saying 
“[The PMF analyses of Beddows et al. (2015) are considered as Step 1].”   We have also added a 
table of apportionment values from Beddows et al. (2015) into Figure 1 as an insert showing the 
apportionment of the factors, and the reference to Sowlat et al. (2016) which is very similar to 
Harrison et al. (2010), which reports PMF of merged SMPS-APS data and chemical and 
meteorological data. 
 
2. The two-step PMF-PMF method is new but the results maybe questionable. The G1 time series from the 
PMF analysis of PM10 chemical composition (Step One) could be considered as a constraint in Step Two, 
which means that six factors identified by PM mass was also applied to NSD. I think this is why the results 
from two step PMF-PMF method was different from results using combined dataset of PM and NSD in PMF 
reported by Beddows et al. (2015).  
RESPONSE:  The reviewer is correct in this interpretation. 

 
Thus, what about the results if using the G1 time series from the PMF analysis of NSD as step one? Please 
clarify this item.  
RESPONSE:  The aim here is to assign a NSD description to the PM10 mass sources, so we are 
not sure why we would consider a 1-step PMF analysis of the combined G1 + NSD data set 
without applying an ‘FKEY constraint’.  When removing the FKEY constraint, there is no clear 
separation of the G1 scores and we can no longer match the NSD of the resulting factors to the 
original source.  Instead we have to introduce new descriptions based on the 6 factor names: 
Diffuse Urban; Marine; Secondary; NET / Coarse; Fuel Oil and Traffic.  Furthermore, a conclusion 
from Beddows et al. (2015) was that a better result was obtained when analysing the datasets 
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separately.  This work continues with this recommendation by heavily biasing the analysis to the 
data analysed in Step 1. 
 
Specific comments:  
1. Line 157-160. The particle number greater than 600nm is calculated from the difference between 

PM10 and PM0.6 estimated from SMPS. Except PM0.6-10, particle density, particle shape (spherical) 
and size distribution should be know when calculated the PN0.6-10. Please provide more description 
about the calculation process.  

RESPONSE:  This point has been address in line with the comment of Referee #1. 
 
2. Line355-356. Why the secondary factor be expected to be strongest at night? 3. Line 362-363. These is 

not Fig.7 in the text. 
RESPONSE:  Typo: Figure 7 is Figure 6.  This has been corrected.  Furthermore, the secondary 
factor is expected to be stronger at night when compared to the secondary NSD factor derived in 
Beddows et al. (2015).  In Beddows et al. (2015), both the secondary component derived from the 
PM10 and NSD analysis are strongest at night, and in particular, the PM10 secondary factor has a 
strong nitrate component which does grow to a maximum during the night due to reduced volatility 
of ammonium nitrate. Clarification has been given. 
 

REFEREE: P. PAATERO pentti.paatero86@gmail.com 
This manuscript deals with PMF analyses of "combined" data matrices such as [X Z] where X contains 
elemental composition profiles of aerosol samples and Z contains aerosol number size distributions 
measured simultaneously with composition profiles. This is an important problem that occurs often in 
modern aerosol research. There are specific problems in this task; these problems have not been studied in 
depth in literature so far. This manuscript studies one specific combined data matrix and reports a PMF 
model for this matrix. Thus the ms might deserve publication despite of certain serious problems. These 
problems are in part related to misunderstandings found in earlier papers that discuss this same topic. For 
this reason, the present review contains a lengthy general discussion of the task of modeling combined 
matrices. The specific questions regarding this ms are based on this general discussion. The ms might also 
be suitable for publication in the sister Journal AMT, tmospheric Measurement Techniques. My personal 
view is slightly in favour of AMT. However, both ACP and AMT seem possible, and this review considers 
publication in either Journal. The structure of this review is as follows: 
RESPONSE:  We recognise the immense contribution made by Professor Paatero to this field, and 
thank him for the critical insights which he provides.   
 
================================================== 
Recommendations 
Notation used in this review 
Background 
Common mode errors 
Joint matrices containing different units 
Discussion of the manuscript 
Two-stage PMF model vs. customary PMF model 
The hidden factor, aka Nucleation factor 
Miscellaneous 
 
Recommendations 
There are very many problems of different kinds in this manuscript. For this reason, I hesitantly recommend 
that this ms should NOT be published by ACP or AMT. However, if it is desired to publish this ms because of 
the importance of the problem, then a thorough rewriting of the text and mathematical details must be 
undertaken. I recommend that the following enhancements be performed: There has apparently been lack 
of communication between the person(s) who did the actual computations and those who wrote the 
paper.  
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RESPONSE:  This first author is responsible for both the computation and the manuscript and we 
have endeavoured to follow these recommendations to avoid the appearance that an unnamed 
contributor has been involved.  The paper has been extensively revised in response to the 
comments of all four reviewers.   
For this reason, the mathematical description is erratic, chaotic and impossible to understand or replicate. 
In order to create an accurate description, the person(s) who did the computations should be included in 
the group of authors. Without such help, it may not be possible to achieve a satisfactory mathematical 
description of what was done. The entire mathematical discussion about problems attributed to PMF 
analysis of joint matrices containing different units is erroneous, based on a widespread misunderstanding. 
This discussion must be rewritten according to suggestions given below. It might be good to include in the 
author group somebody familiar with the quantitative mathematical structure of the PMF model.  
RESPONSE:  Thank you for highlighting this misunderstanding which we have addressed in the 
revised manuscript. 
 
In particular, it seems that lines 79,80 are not based on quantitative understanding of the model. These 
lines, and other similar sentences, must be removed. Much of Conclusions must be rewritten so that the 
claims against using variables with different dimensions/units are replaced by opposite sentences stating 
e.g. that a joint analysis of matrices of variables with different dimensions/units is not harmed by these 
differences but unfortunately the opposite was believed to be true when the work was carried out.  
RESPONSE:  This correction has been carried out. 
 
The mathematical description of what was done must be totally rewritten so that systematic matrix-form 
notation is used. Equations must be corrected and written in correct notation, using correct terminology 
and correct numbering. Details of PMF modeling must be reported, such as dimensions of matrices, used 
parameters such as uncertainties of data values, robust/nonrobust, obtained Q values, numbers of 
observed outliers, unique or multiple minima, and so on. 
RESPONSE:  This has been corrected following the guidance of all the other referees. 
 
Rotational questions are an ever-present problem in factor analytic modeling, independently of what 
programs are used. It is alarming that the word "rotation" does not occur in this manuscript. Pay attention 
to rotational questions. There are certain weaknesses in the plan of this work, such as assuming that the 
rotational status of the original PMF model of X was correct or best possible (see below). These weaknesses 
cannot be corrected in an enhanced ms but they should be briefly discussed. This is important because 
otherwise, colleagues following the example of this work will feel the need to replicate everything that was 
done here, being unaware that some details may not have been optimal.  
RESPONSE:  Rotations are now briefly discussed. 
 
Enhance figure captions so that readers do not need to guess what is shown. Have the enhanced ms 
proofread by colleagues. Check also the references. This ms illustrates, once again, how difficult it is to find 
ones own mistakes and typos.  
RESPONSE:  Enhancements of figure captions have been carried out. 
 
Notation used in this review 
The notation "[X Z]" indicates here attached or joined matrices, i.e. placing X and Z side by side so that they 
form one larger matrix. The notations G(X) and F(X) will indicate factor matrices (G and F) obtained from an 
individual PMF model of X only, and similarly G(Z) and F(Z) for Z only. The left and right parts of F, when 
modeling [X Z], are denoted by F[Xz] and F[xZ]. Q(X) and Q(Z) indicate Q values from separate analyzes of X 
and Z. Similarly, Q[Xz] and Q[xZ] denote Q sums computed over elements of X and over elements of Z in the 
joint analysis of [X Z]. Hence, Q[X Z] = Q[Xz] + Q[xZ]. Total weight of X means the sum of squares of X_ij/s_ij 
over X, where s_ij is the uncertainty assumed for X_ij. If both X and Z are equally important, and if X and Z 
are of different sizes, all s_ij reported for the larger matrix should be increased so that total weights of X 
and Z become approximately equal. This implies a deviation from the general principle of determining 
weights from std-dev of values. 
RESPONSE:  An amended notation as suggested has now been implemented. 
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Background 
Before examining this manuscript in detail, it is necessary to discuss the model that it tries to solve and the 
problems that make this task difficult. It is known that PMF of combined matrices often leads to 
disappointing results, such that some factors only (or mainly) fit X while other factors only/mainly fit Z. 
Such result is worthless in cases where X and Z are caused by the same emission sources whose emission 
profiles should be determined for X and Z. It is important to realize what advantages may be expected from 
the joint analysis of X and Z. Three Cases are possible: PMF models computed separately for X and for Z 
may be valid and rotationally unique for (A) both X and Z, (B) one of them (for X, say), or (C) neither one of 
them.  
 
Case A: If individually computed factors G(X) and G(Z) are practically identical, then a straight-forward joint 
model is successful for this case. Then G_[X Z] = G(X) = G(Z). If G(X) and G(Z) are significantly different, 
however, then the joint model will fail, producing too large residual values and hence too large Q. Such 
result might be caused e.g. by "common-mode errors" (see below) in X and/or in Z. 
 
Case B: Now a joint model should be specified so that total weight (see Notations, above) of better-
analyzed matrix X is significantly higher than total weight of Z. Then X will "drive the model", and G_[X Z] 
will be approximately equal to G(X). If a reasonable Q[xZ] is obtained, then it indicates that X and Z are 
compatible, i.e. a joint PMF model is meaningful. Larger Z residuals and larger Q[xZ] would be obtained e.g. 
if X and Z do not have common sources or if there are common-mode errors. Then the joint PMF model is 
not meaningful for the chosen number of factors. 
 
Case C: individual PMF models of both X and Z contain rotational ambiguity and/or other problems such as 
unidentifiable factors or missing factors. In this case, the approach of Case B cannot be used because the 
obtained ambiguous rotation, based mostly on X, may not be the best rotation for fitting Z. Ideally, equal 
total weights should be applied on X and Z, hoping that the best rotation for fitting both will be obtained 
when rotational information from Z is combined with information from X. Experience shows that quite 
often, such modeling fails. Few, if any, studies have been made about the reasons of such failures. It must 
be stressed that these failures must not be ascribed to "different units used in X and Z" (see below). As a 
first remedy, one might inspect the residuals in order to see if common mode errors are visible. Such errors 
might be corrected by hand, or by using an enhanced PMF model that automatically corrects for common 
mode errors. One might also inspect individual variables in order to see 
if only few variables are causing incompatibility of X and Z. Such variables might be downweighted in order 
to obtain a better overall model. Of course, one must also consider the possibility that in addition to their 
joint sources, X and Z may also have one or several unique sources. An enhanced PMF model may be 
developed for analysing such joint matrices containing common and non-common sources. 
 
Summary of Case C: too little is known about reasons why this case fails. Well documented case studies are 
needed. Singular value decompositions of G matrices computed for X, Z, and [X Z] may be useful for 
demonstrating the root of the problem. Reliable remedies may only be suggested when more is known 
about the reasons for failures in joint PMF modeling. 
RESPONSE:  An account of cases B and C has been added to the paper. 
 
Common mode errors 
Certain problems in measurements will cause so-called "common mode" errors. E.g. an error in air volume 
control in an aerosol sampler, when measuring sample i, causes that all aerosol concentrations on row i of 
X will change by the same fractional amount. Such common mode deviation does not contribute to 
residuals in customary PMF analysis of such aerosol data. Instead, common mode disturbance of sample i 
will change all elements of row i of matrix G. In a combined matrix, the other part Z is often measured using 
another instrument. Then Z may have its own common mode errors, different than those of X. In a joint 
analysis of X and Z, two independent sets of common mode errors will cause increased residuals when 
factors are common to X and Z. It appears highly probable that such common mode errors are an important 
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reason for those PMF results where individual factors tend to fit either X or Z but not both. Joint matrices 
containing different units This ms claims that quantitative PMF modeling of a joint matrix [X Z] is not 
possible if variables in X and Z are measured in different units, such as mass concentration (expressed in 
mass/airvolume) and particle number concentration (expressed in particles/airvolume). These claims are 
based on a widespread misunderstanding, as explained in this section. Customary aerosol PMF models are 
often scaled so that the sum of all elements in each row of matrix F equals unity. Then factor element F_pj 
indicates the fraction of species j in profile of source p. With joint matrices containing different units, 
summation over a row of F is not meaningful. The following workflow should be used instead in order to 
preserve the quantitative nature of the model: In PMF (or after PMF), scale factors so that the average of 
each column of G is scaled ("normalized") to unity. Then elements of F have the following quantitative 
meaning: F_pj indicates the average contribution of source p to observations in column j, both for species j 
in matrix X and for species j in Z. The average total amount of all aerosol species in source p is obtained by 
summing values F_pj over all species j in F[Xz], i.e. in the part of F corresponding to aerosol matrix X. In this 
way, the customary interpretation of F_pj as fractions of total may be obtained "off-line" after PMF 
computations by dividing the F_pj values by their sums taken over F[Xz]. The ms also suggests that 
presence of other variables (Z) in PMF model somehow makes the model non-quantitative or unreliable: 
ms lines 79-80: there can be no confidence as to whether the sources are apportioned by units of number 
concentration (1/cm3) or any of the other units used in the auxiliary data. Units may be entirely ignored in 
PMF modeling if all variables are represented in same units. If different units are present in different 
columns of matrix X, then the following practice is followed: elements of factor matrix G are pure numbers. 
Elements in column j of factor matrix F carry the same dimension and unit as column j of data matrix X. In 
the present case, all elements of left part F[Xz] of factor matrix F will be in mass/airvolume (same as X) 
while all elements of the right part F[xZ] are in units of number concentration (1/cm3) (same as Z). There is 
no confusion regarding dimensions or units. 
 
Disturbance of quantitative modeling of X by "other variables" in Z may only be present if Z variables make 
the fit of X extremely poor, so that Q[Xz] increases to unacceptable levels in comparison to the original 
Q(X). This can be seen from Eq. (1) which defines PMF model: all values in column j of X are fitted using F 
factor elements from column j of F only. The "other columns" in F, corresponding to "other variables" in Z, 
do not enter in the fit of any X variables. If Q[Xz] remains normal, model of X remains quantitative even 
when Z is introduced in modeling. However, if introduction of Z requires that number of factors must be 
increased, then the two models are different. Then rotational uniqueness and interpretatability of the joint 
model of [X Z] may well be better or worse in comparison to the original model of X only. On the other 
hand, G(X) and G[X Z] may appear significantly different even when all Q values are normal. In this sense, 
including Z may interfere with the fit of X although the new fit of X remains as quantitative (or better) than 
the original fit of X. Such effect depends on rotational ambiguity of the original PMF fit of X: when Z is 
introduced, it may "rotate" a rotationally ambiguous model of X so that Z obtains a better fit while Q[Xz] 
does not increase from Q(X) or increases a little. Such rotation may only occurr if the original model of X is 
rotationally ambiguous, "non-quantitative". If such ambiguity is not understood by the scientist, it might 
appear that introduction of other variables "harms" the original model. In contrast, however, modifying the 
original model of X by a rotation is what is desired when using the joint model: both X and Z should be 
fitted as well as possible. This effect does not harm the quantitative nature of the model, as long as Q value 
of X does not grow too much. Summary of this section: if Q computed over X elements increases 
significantly when modeling [X Z] instead of X, this indicates that X and Z are not compatible (when 
assuming this number of factors). Then analysis of [X Z] should be rejected. In all other cases, the joint 
model of X is equally good or better than the original model of X. If original model is rotationally 
ambiguous, then factors usually change: G[X Z] is different from G(X) and similarly F[Xz] is different from 
F(X). These new factors fit X as well as the original factors, thus they are as quantitative as the original 
factors. The rotation of these new factors takes into account information from matrix Z. In some cases, the 
new factors are rotationally unique, without any ambiguity. More often, the ambiguity of new factors is less 
than the original ambiguity.  
RESPONSE:  This fullsome explanation is very valuable, and aspects of this background relevant 
to our paper have been added to the manuscript. 
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Discussion of the manuscript 
This manuscript suffers badly from almost complete avoidance of equations and mathematical symbols and 
mathematical notation in general. Also, there are serious problems in the few equations that are present. A 
more compact and easier to read presentation is obtained if mathematical notation is used as the primary 
means of communication. It is possible that part of my criticism in this review is simply based on 
misunderstanding unclear and/or ambiguous verbal explanations of mathematical concepts.  
RESPONSE:  We have addressed this by a new, more mathematical description of our methods. 
 
The ideal of scientific work is repeatability. This ms does not provide facts that might enable repeatability, 
even in principle. E.g., I could not find dimensions of data matrices or obtained Q values.  
RESPONSE:  Dimensions have been added. 
 
How were NSD data preprocessed before PMF computations? Using averages or medians? How were 
outliers handled?  How many factors were used in each case? And so on. 
RESPONSE:  This information has been added together with a reference to a report provided by 
the data provider, NPL. 
 
The basic assumption of factor analytic modeling is that for each source, chemical profile and size 
distribution stay constant throughout the measurement campaign. On the other hand, it is well known that 
whenever nucleation happens, aerosol size distributions do vary. Also, largest particles tend to settle down 
more during longer transit times. In this work, constancy of size distributions was silently assumed.   It 
might be good to discuss this fundamental question in future versions of this work.  
RESPONSE:  Point taken.  This is something that we have mentioned in previous papers with 
reference to the assumption that the profile of the sources does not change between emission and 
arrival at the receptor site.  
 
Two-stage PMF model vs. customary PMF model In the present ms, the goal was to determine the size 
distributions corresponding to the previously determined aerosol composition sources. It was assumed (on 
what grounds?) that the rotation of the original PMF result was correct, so that the originally obtained G 
matrix was deemed suitable for the PMF model of NSD matrix Z. 
RESPONSE:  We clarify the assumption that we were satisfied with the solution from the first 
analysis referring the reader to Beddows et al. (2015).  This solution gave the best solution/rotation 
(agreed with all the authors during the work) to describe the urban atmosphere measured at the 
NK site.  There are details in Beddows et al. (2015) justifying this. 
 
 In other words, it was desired that X "drive" the modeling of [X Z]. Essentially, this method corresponded 
to Case B, discussed above. Apparently, the authors were unaware of the one-stage method suggested for 
Case B.  
RESPONSE:  We were aware of this method but avoided it in view of having a united G factor 
which would not be possible with a joint matrix [X Z]. 
 
In hindsight, the best approach might have been to follow both Case B and Case C, especially if there was 
no positive information confirming that the original PMF model of X was rotationally unique and correct. An 
enhanced version of the ms should briefly discuss the one-stage possibilities of doing this work according to 
Case B and/or Case C.  
RESPONSE:  We have added two sections which describe Case B and case C. 

 
The one-stage method, with suitably weighted X and Z, would be easier to explain and much easier to 
understand. However, it is not reasonable to expect that the work be redone using the one-stage approach.  
I understand step 2 so that the computed G factors from step 2 were forced to be practically identical to G 
factors from step 1. Is this right?  
RESPONSE:  Yes, this is correct. 
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If this is right, then step 2 appears to be equivalent to non-negative weighted regression (non-negative 
weighted linear least squares fit) of matrix Z by columns of matrix G. This should be mentioned.  
RESPONSE:  We have now mentioned this. 
 
There are easy-to-use computer programs for computing such LS fits. Although PMF may also be used for 
this fit, using simpler tools would make the process more transparent, so avoiding unnecessary 
complications. Equations for defining the hidden factor should be given. The verbal definition is hard to 
understand and I did not manage to understand it. 
RESPONSE:  We hope that the clarification of the description and mathematics will mean that this 
is now expressed clearly. 
 
The hidden factor, aka Nucleation factor  
It is a good idea to assume that due to its higher time resolution, the NSD matrix Z may contain factors that 
are not visible in matrix X of chemical profiles. Unfortunately, the method for defining the hidden factor(s) 
in Z is questionable. First of all, why did you assume that there is only one hidden factor?  
RESPONSE:  The hidden factor was revealed as the intercept in the regression of the NSD values 
against the G1…G6 timeseries, after which, we then looked for it in the PMF analysis. 
Furthermore, from the results of Beddows et al. (2015) (for which optimum solutions were derived 
without factor splitting), we did not anticipate another factor to be present above 7 factors (see the 
Venn diagram shown in Figure 1) and this constrained our search to 7 factors, i.e. we had 
accounted for all of the factors in Beddows et al. (2015) and saw no need to go higher. 
 
It seems that in stage 2, 6 factors were used. This is not defined (why not) but this is how I understand the 
ms. Why did you not use in 2nd stage PMF a 7th (and maybe an 8th) factor that may only fit the NSD part of 
the data matrix? This simple arrangement would determine hidden factor(s) avoiding the bias that non-
negativity constraints may introduce in your method (see below). This alternative must be mentioned in a 
future version of the paper.  
RESPONSE:  We have clarified this.  We initially used 6 and then 7 to find the nucleation factor 
and only went to 7 factors because of the response given to the previous point, i.e. we only looked 
for those factors in Beddows et al. (2015). 
 
The second Equation (3) is incorrectly formulated. Symbol j is used as a summation index on the right side. 
Then it cannot appear on the left side. There is a symbol "x". It is not defined, what does it mean? The text 
says: "The Cran R package NonLinear Minimization (nlm) (R Core Team, 2018) was used to minimise 
equation 3." You must not say "minimize equation". You must specify the expression that is minimized, and 
also specify the free variable(s) that are varied in order to minimize. I cannot understand the expression to 
minimize nor the free variables. For this reason, I cannot comment more on determining the hidden factor. 
Maybe it is properly determined, maybe not. This part of the work is certainly not reproducible by others.  
RESPONSE:  This equation has been correctly formulated and numbered. 
 
Bias: It seems that the second Equation (3) is not applied to all data because of nonnegativity constraints 
(however, there seems to be an error in the constraints, it is impossible to guess what was really intended). 
When some data are excluded, this creates a bias. It is impossible to know from the outside if this bias was 
negligible or if it distorted the results. The bias question must be documented.  
RESPONSE:  No data has been excluded.  All data was fitted with non-negative constraints. 
 
Miscellaneous 
Lines 415-417 in Conclusion: "This generates confidence that the NSD and PM10 factors ascribed to one 
source are in fact attributable to that same source." This is a very important statement, good! There are 
two equations numbered (3). This caused a LOT of trouble when trying to understand the discussion of the 
"hidden profile" a.k.a. "nucleation profile". The first Equation 3 does not appear correctly on my computer. 
Possibly, it uses a symbol font that is not present on my computer so that one symbol is not visible. There is 
also another problem in this equation: symbol "a" is used as summation index, and symbol "a" appears also 
on left side. A summation index cannot be present on left side. Please check your equations before 
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submitting new versions of the ms. Make sure that the .pdf file contains all non-standard fonts that are 
used e.g. in equations.  
RESPONSE:  Changes made to clarify this matter. 
 
The presentation should be helpful for the reader. The symbols used in text and in equations should be 
defined. Example: in first Eq. (3), there is symbol j. What does it mean? Is it the index of size bin? Why not 
help the reader and say so? In second Eq. (3), there is again a symbol j. What is it now? Please update the 
ms so that symbols are used in a systematic way, in order to help the reader. The following method is 
recommended in order to avoid confusion with symbols: 
RESPONSE:  Changes made to provide clarity. 
 
 For your own use, create a table where each symbol, however trivial, is entered. When needing more 
symbols, check first with the table if the symbol is already reserved for another use. When you are ready, 
include short definitions from the table into the ms, either in a table of notation or to the location of first 
use of each symbol. Use customary matrix element notation whenever possible. In this way, you could 
avoid using scalar "a" first as an index and then vector a_j as a vector of unknowns.  
RESPONSE:  This system has been adopted in the interests of clarity. 
 
Description of the linear regression model (section 2.4) is strange. I have never seen that the coefficients 
are called "gradients". Also, correlations should not be mentioned when discussing linear least squares. It 
would be best to simply show the equation. I recommend that explanation of regression be omitted, except 
that the equation, using matrix element notation, should be shown.  
RESPONSE:  Changes made as recommended. 
 
Figure 6 is unclear. What is illustrated by the bivariate plots? Figure caption only tells that they are bivariate 
plots, plotted using the Openair program. Instead of naming the plotting program, it would be more 
important to define what is plotted vs. what, and what are the dimensions in individual diagrams. After 
working with the ms for a long time, I tend to guess that the "bivariate plots" might represent NSD 
concentrations in polar plots of wind direction and wind speed. Why did you not say this? Saving one 
sentence from the ms may cost hours for your new readers. 
RESPONSE:  A description of the Bivariate plots is given as an added section and the details 
requested added in the figure legend.  
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ABSTRACT  28 

Some air pollution datasets contain multiple variables with a range of measurement units, 29 

and combined analysis by Positive Matrix Factorization (PMF) is can be  problematic, but 30 

can offer benefits from the greater information content.  In this work, a novel method is 31 

devised and the source apportionment of a mixed unit data set (PM10 mass and Number 32 

Size Distribution NSD) is achieved using a novel two-step approach to PMF.  In the first step 33 

the PM10 data is PMF analysed using a source apportionment approach in order to provide 34 

a solution which best describes the environment and conditions considered.  The time series 35 

G values (and errors) of the PM10 solution are then taken forward into the second step where 36 

they are combined with the NSD data and analysed in a second PMF analysis. This results 37 

in apportioned NSD data associated with the apportioned PM10 factors.  We exemplify this 38 

approach using data reported in the study of Beddows et al.  (2015), producing one solution 39 

which unifies the two separate solutions for PM10 and NSD data datasets together.  We also 40 

show how regression of the NSD size bins and the G time series can be used to elaborate 41 

the solution by identifying NSD factors (such as nucleation) not influencing the PM10 mass. 42 

Keywords:  PM10; London; PMF; source apportionment; receptor modelling 43 

44 
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1. INTRODUCTION 45 

It is unquestionable that worldwide, the scientific vista of air quality is expanding; whether it 46 

is the increasing number of observatories or the refinement of information mined from the 47 

increasing sophistication of measurements often incorporated in campaign work. The 48 

number of metrics being measured has increased from simple measurements of PM mass 49 

and gas concentrations, and we can now probe the composition of the PM mass and the 50 

size distributions with mass spectrometers, mobility analysers and optical devices. 51 

 52 

Studies using PMF as a tool for source apportionment of particle mass using 53 

multicomponent chemical analysis data are published almost dailyfrequently using datasets 54 

from around the world.  However, they do not always provide consistent outcomes (Pant 55 

and Harrison, 2012), and one means by which source resolution and identification can be 56 

improved is by inclusion of auxiliary data, such as gaseous pollutants (Thimmaiah et al., 57 

2009), particle number count (Masiol et al., 2017) or particle size distribution (Beddows et 58 

al., 2015; Ogulei et al., 2006; Leoni et al., 2018).   59 

 60 

Harrison et al. (2011), analysed NSD data (merged SMPS and APS data) with PMF using 61 

auxiliary data (meteorology, gas concentration, traffic counts and speed).  The study used 62 

particle size distribution data collected at the Marylebone Road supersite in London in the 63 

autumn of 2007 and put forward a 10 factor solution comprised of roadside and background 64 

particle source factors.  Sowlat et al., 2016 carried out a similar analysis on number size 65 

distribution (13nm - 10µm) data combined with several auxiliary variables collected in Los 66 

Angeles.  These included BC, EC/OC, PM mass, gaseous pollutants, meteorological, and 67 

traffic flow data. A six-factor solution was chosen comprising of: nucleation, 2 x traffic, an 68 

urban background aerosol, a secondary aerosol and a soil factor. The two traffic sources 69 

madecontributed up to above 60% of the total number concentrations combined.  Nucleation 70 
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was also observed as a major factor (17%).  Urban background aerosol, secondary aerosol, 71 

and soil, with relative contributions of approximately 12, 2.1, and 1.1%, respectively, overall 72 

accounted for approximately 15% of PM number concentrations, although, these factors 73 

dominated the PM volume and mass concentrations, due mainly to their larger mode 74 

diameters.  Chan et al. (2011) considered extracting more source information from an 75 

aerosol composition dataset by including data on other air pollutants and wind data in the 76 

analysis of a small but comprehensive dataset from a 24-hourly sampling programme 77 

carried out during June 2001 in an industrial area in Brisbane. They chose multiple types of 78 

composition data (aerosols, VOCs and major gaseous pollutants) and wind data in source 79 

apportionment of air pollutants and found it to result in better defined source factors and 80 

better fit diagnostics, compared to when non-combined data were used.  Likewise, Wang et 81 

al. (2017) report an improvement in source profiles when coupling the PMF model with 14C 82 

data to constrain the PMF run as a priori information.   83 

 84 

However, while combining, for example, particle chemical composition and size distribution 85 

data in a single PMF analysis may assist source resolution, it does not allow difficulties arise 86 

if the two datasets have different and/or ambiguous rotations (discussed in sSection 2).  This 87 

tends to result in factors with either mass contributions and small number contributions or 88 

number contributions and small mass contributions and rarely a meaningful contribution 89 

from both data types. quantitative attribution of either particle mass or particle number to the 90 

source factors.  Experimental design can of course circumnavigate this problem, for  91 

instance, using  chemical data which is already size segregated, measured using a cascade 92 

impactor (Contini et al., 2014).  Such an approach is attractive by view of the fact that there 93 

is no question as to whether both data sets sufficiently overlap across the size bins.  94 

However, impact cascaders impactors do not don’t necessarily enjoyoffer the high time 95 
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resolution of particle counting instruments, with individual measurements lasting hours or 96 

days.  Even so, for the case where two or more instruments are available in a campaign to 97 

measure two or more different metrics, e.g. PM mass and particle number and (PN), then 98 

thea prescribed methodcombined data analysis is useful.  Furthermore, Emami and Hopke 99 

(2017) haves showned that the effect of adding variables as auxiliary data (with potentially 100 

different units) to a NSD data set is to decrease the rotational ambiguity of a solution from a 101 

1-step PMF analysis. 102 

 103 

Comero et al. (2009) alluded to the problem of including more than one metric with different 104 

units when citing Hopke (1991).  In order to obtain a physically realistic PMF solution some 105 

natural constraints must be satisfied, one being, “Only for chemical elements or compounds, 106 

where the unit of measurement are the same, the sum of the predicted elemental mass 107 

contributions for each source must be less than or equal to total measured mass for each 108 

element; the whole is greater than or equal to the sum of its parts (only in the case of 109 

chemical elements or compounds)”.  This underlies the necessity to have a consistency of 110 

units throughout the input dataset in order to make a quantified apportionment.  To exemplify 111 

this point, in  112 

 113 

The potential for an improved factor solution obtained by mixing data types in PMF provides 114 

a motivation in the community to develop a methodology which can overcome the 115 

aforementioned difficulties.  In this study, we present such a method for analysing 116 

simultaneously collected PM10 composition and NSD data.  In the work of Beddows et al. 117 

(2015), both particle composition and number size distribution (NSD) data from a 118 

background site in London (2011 and 2012) was analysed using Positive Matrix 119 

Factorization.  As part of the methodology development, it was concluded that it was 120 
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preferable not to combine these two data types in the a single analysis but to conduct 121 

separate PMF analyses for PM10 mass and particle number.  This yielded a 6 factor solution 122 

for the PM10 data (Diffuse Urban; Marine; Secondary; Non-Exhaust Traffic/Crustal 123 

(NET/Crustal)); Fuel Oil; and Traffic.  Factors described as Diffuse Urban; Secondary; and 124 

Traffic were identified in the 4 factor solution for the NSD data, together with a.  A further 125 

factor was the Nucleation factor not seen in the PM10 mass data analysis (see Figure 1).  126 

When combining the PM10 and NSD data in a single PMF analysis, Diffuse Urban; 127 

Nucleation; Secondary; Aged Marine and Traffic Factors were identified but the factors were 128 

not as clearly separated from each other as the factors derived from the separate datasets.  129 

For example, Fuel Oil was now mixed in with Marine and called Aged Marine.  This is 130 

summarized in Figure 1.  However in the analysis, it would still be useful to obtain a number 131 

size distribution for each of the 6 PM10 factors and/or a chemical composition for the 4 NSD 132 

factors.  As a continuation of this work, we present an alternative method of for analysing 133 

the combined dataset in a so called, two-step methodology.  In the first step, we analyse the 134 

mass data (PM10; units: µg/m3) according to the methodology of Beddows et al. (2015).  This 135 

results in a time series factor G which is carried forward into a second PMF analysis of a 136 

combined data set consisting of the G time series and an auxillary data set (egi.e. NSD; 137 

units: 1/cm3).  The first step identifies sources and apportions the G factors to their 138 

contribution to mass and in the second step, an FKEY matrix is chosen such that G ‘drives’ 139 

the model and the NSD data ‘follow’.  This means that we have PM10 factors each of which 140 

are is augmented by its number size distribution. Furthermore, we also consider linear 141 

regression as a second step in a PMF-LR analysis to show that although the initial analysis 142 

is biased toward mass by analysing PM10, factors only, seen unseen factors influencing the 143 

NSD data (e.g. nucleation) can be identified in the data. 144 

 145 
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2. EXPERIMENTAL 146 

With a population of 8.5 million in 2014 (ONS, 2017), the UK city of London is the focus of 147 

study in this work where the London North Kensington (NK) Site (LAT = 51º : 31' : 15.780'' 148 

N and LONG = 0º : 12' : 48.571'' W ) was considered.  NK is part of both the London Air 149 

Quality Network and the national Automatic Urban and Rural Network and is owned and 150 

part-funded by the Royal Borough of Kensington and Chelsea.  The facility is located within 151 

a self contained cabin within the grounds of Sion Manning School. The nearest road, St. 152 

Charles Square, is a quiet residential street approximately 5 metres from the monitoring site 153 

and the surrounding area is mainly residential.  The nearest heavily trafficked roads are the 154 

B450 (~100 m East) and the very busy A40 (~400 m South).  For a detailed overview of the 155 

air pollution climate at North Kensington, the reader is referred to Bigi and Harrison (2010). 156 

 157 

2.1  Data 158 

For this studyAs alluded to, this work is a continuation of the study carried out by Beddows 159 

et al (2015), which analysised chemical NSD and PM10 chemical composition data were 160 

collected at the London NK receptor site. the same datasets considered, and PMF analysis 161 

outputs generated, by Beddows et al. (2015) were used.  For this, 24h air samples were 162 

taken daily over a two year period (2011 and 2012) using a Thermo Partisol 2025  sampler 163 

fitted with a PM10 size selective inlet, and alongside,  Number Size Distribution (NSD) data 164 

were collected continuously every ¼ hour15 min using a Scanning Mobility Particle Sizer 165 

(SMPS) consisting of a CPC (TSI model 3775) combined with an electrostatic classifier (TSI 166 

model 3080) and air dried according to the EUSAAR protocol (Wiedensohler et al., 2012).  167 

The particle sizes covered were 51 size bins ranging from 16.55 nm to 604.3 nm and the 15 168 

min distributions were aggregated up to hourly samplesaverages (where there were at least 169 

3 x 15 min samples per hour) and all missing values were replaced using a value calculated 170 
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using the method of Polissar et al. (1998).  Further details of the SMPS settings are given in 171 

Table S1 and.  Analysis of this data resulted in PMF source profiles F and source time series 172 

G of the PM10 and NSD data sets which were carried forward into this work.  Further details 173 

of the data, collection methods, coverage and first analysis are given in Beddows et al.  174 

(2015)  the reader is also referred to Becceaceci et al. (2013 a,b) for an extensive 175 

studyaccount of how the NSD data was collected and quality assured. 176 

 177 

Accompanying the NSD data from the study of Beddows et al. (2015) was the PMF output 178 

from the analysis of Analysis of this data resulted in PMF source profiles F and source time 179 

series G of the PM10 chemical PM10 composition data. PM10 and NSD data sets which were 180 

carried  forward into this work.  The latter data consisted of 24h air samples taken daily over 181 

a 2-year period (2011 and 2012) using a Thermo Partisol 2025 sampler fitted with a PM10 182 

size selective inlet. These filters were analysed for total metals PMmetals (Al, Ba, Ca, Cd, Cr, 183 

Cu, Fe, K, Mg, Mo, Na, Ni, Pb, Sn, Sb, Sr, V, and Zn), using a Perkin Elmer/Sciex ELAN 184 

6100DRC following HF acid digestion of GN-4 Metricel membrane filters. Similarly, wWater-185 

soluble ions PMions (Ca2+, Mg2+ , K, NH4
+ , Cl− , NO3

- and SO4
2−) were measured using a 186 

near-real-time URG-9000B (hereafter URG) ambient ion monitor (URG Corp).  The data 187 

capture over the 2 years ranged from 48 to 100% as different sampling instruments varied 188 

in reliability.  TheseData gaps were filled by measurements made on daily PM10 filter 189 

samples collected continuously at this site using a Partisol 2025; laboratory-based ion 190 

chromatography measurements were made for anions on Tissuquartz ™2500 QAT-UP 191 

filters) . No cation measurements were available from these filters, and this resulted in thea 192 

lower data capture for the cations.  But aAgain, all missing data were replaced using a value 193 

calculated using the method of Polissar et al. (1998). A woodsmoke metric, CWOD, was 194 

also included. This was derived as PM Woodsmoke from the methodology of Sandradewi 195 
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et al. (2008) utilising Aethalometer and EC/OC data, as described in Fuller et al. (2014). 196 

Samples were also collected using a Partisol 2025 with a PM10 size selective inlet and 197 

concentrations of elemental carbon (EC) and organic carbon (OC) were measured by 198 

collection on quartz filters (Tissuquartz ™ 2500 QAT-UP) and analysis using a Sunset 199 

Laboratory thermal–optical analyser according to the QUARTZ protocol (which gives results 200 

very similar to EUSAAR 2: Cavalli et al., 2010) (NPL, 2013).   We refer to CWOD, EC and 201 

OC as PMcarbon. In addition, particle mass was determined on samples collected on Teflon-202 

coated glass fibre filters (TX40HI20WW) with a Partisol sampler and PM10 size-selective 203 

inlet. 204 

 205 

This aforementioned PM10 data was represented in this work as the PMF solution for PM10-206 

only data, derived in Beddows et al. (2015) and consisting of 6 sources, namely: Diffuse 207 

Urban; Marine; Secondary; Non-Exhaust; Traffic/Crustal; Fuel Oil; and Traffic.  The Diffuse 208 

Urban factor had a chemical profile indicative of contributions mainly from both woodsmoke 209 

(CWOD) and road traffic (Ba, Cu, Fe, Zn).  The Marine factor explained much of the variation 210 

in the data for Na, Cl− and Mg2+, and the sSecondary factor was identified from a strong 211 

association with NH4
+, NO3

-, SO4
2- and organic carbon. For the tTraffic emissions, the PM 212 

did not simply reflect tailpipe emissions, as it also included contributions from non-exhaust 213 

sources, i.e. resuspension of road dust and primary PM emissions from brake, clutch and 214 

tyre wear. The nNon-eExhaust tTraffic/cCrustal factor explained a high proportion of the 215 

variation in the Al, Ca2+ and Ti measurements consistent with particles derived from crustal 216 

material, derived either from wind-blown or vehicle-induced resuspension. There was also 217 

a significant explanation of the variation in elements such as Zn, Pb, Mn, Fe, Cu and Ba, 218 

which had a strong association with non-exhaust traffic emissions. As there was a strong 219 

contribution of crustal material to particles resuspended from traffic this likely reflected the 220 
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presence of particulate matter from resuspension and traffic-polluted soils. The last factor 221 

was attributed to fFuel oOil, characterised by a strong association with V and Ni together 222 

with significant SO4
2-.  This output comprised the first-step solution in the 2-step analysis of 223 

PM10 and NSD data and in this study we concentrate on the analysis of the NSD data in the 224 

second PMF step with the aim of assigning a NSD to each of the 6 PM10 factors. 225 

 226 

2.2 Proxy Data  227 

As alluded to in the introduction, experimental design can ensure that measurements cover 228 

the the same particle size range by using a single instrument such as a cascade impactor 229 

which gives size and mass information.  However for our case, the NSD spanned anthe 230 

aerodynamic particle sizes 0.10 – 0.88 µm (i.e. PN0.9) which is smaller than the range  231 

covered by the particulate mass, 10 µm, i.e. PM10.   232 

 233 

 234 

Besides the The value of PM10 is given by the measured PM10 mass, and tThe PM0.9 mass 235 

is calculated by equation 3 1 from the NSD assuming estimates of PM mass can be derived 236 

using the NSD assuming sphericial particles of a fixed density.  For the SMPS settings, a 237 

particle size range between 16 and 604 nm is collected which can beand was used to 238 

estimate a PM0.96 value using equation 1,. 239 

𝑃𝑀0.96 = 𝜌𝑒𝑓𝑓 ×

𝜋

6
∑ 𝑑3

𝑠𝑖𝑧𝑒𝐵𝑖𝑛𝑠

 (3

1) 

 240 

wWhere eff is set to 2 g/cm3 (for the whole time series and across all size bins) for a Diffuse 241 

Urban background (based taken as the rounded midpoint of the rangeupon 1.8-2.5 g/cm3 242 
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for an urban background aerosol; Beddows et al., 2010).  Due to the approximations used 243 

in this proxy variable, a large uncertainty was applied to it in the PMF analysis so not to 244 

affect the result. 245 

 246 

Figure S1 plots the total apportioned PM10 mass against the PM0.96 estimates and shows 247 

that although the SMPS does not account for the whole mass, it does track with the total 248 

PM, with a fitted gradient of 0.635, i.e. accounting for 635% of the mass.  To account for the 249 

particles greater than 600 nm in the PMF analysis, a proxy was used created by using the 250 

difference between the total daily apportioned PM mass in the step 1 of the PMF analysis 251 

and the mass estimated from the SMPS data.  This difference was then converted back into 252 

a number and added to the NSD matrix of counts as PN0.6-10 to improve the match of the 253 

NSD matrix to the PM10. This was appended as a column in to the input matrix of the PMF 254 

analysis with uncertainties taken as the 4 x 𝑃𝑁1.0−10𝑖
 so not overly influence the analysis.   255 

With the considertation of future measurements where this method wasis to be applied, an 256 

improved result might be possible if PM1.0 was used in preference to PM10 in order to give a 257 

better match between the size ranges of the mass and number data, if only, to close any 258 

uncertainty over the the issue.  Another alternative is simply to include an APS in the 259 

measurements and merge the APS data to the SMPS data as in Beddows et al. (2010).  260 

This would provide a complete overlap between the NSD and PM10 data. 261 

 262 

2.3 2  Methods 263 

2.32.1  PMF 264 

Positive Matrix Factorization (PMF) is a well-established multivariate data analysis method 265 

used in the field of aerosol science.  PMF can be described as a least-squares formulation 266 
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of factor analysis developed by Paatero (Paatero and Tapper, 1994). It assumes that the 267 

ambient aerosol concentration X (represented by n x m matrix of n observations and m PM10 268 

constituents or NSD size bins), measured at one or more sites, can be explained by the 269 

product of a source profile matrix F and source contribution matrix G whose elements are 270 

given by equation 41: 271 

ijkj

p

=k

ikij e+fg=x 
1

      i=1…n; j=1…m 

 

(4

1) 

where the jth PM constituent (element, size bin, or auxiliary measurement) on the ith 272 

observation (i.e. hour) is represented by xij. The term gik is the contribution of the kth factor 273 

to the receptor on the ith hour, fkj is the fraction of the jth PM constituent in the kth factor, and 274 

eij is the residual for the jth measurement on the ith hour. The residuals (i.e. difference 275 

between measured and reconstructed concentrations) are accounted for in matrix E and the 276 

two matrices G and F are obtained by an iterative algorithm which minimises the object 277 

function Q (see equation 52). 278 

 279 

Given,Using the data and uncertainty to matrices for the model, equation 1 1 is optimised in 280 

the PMF2 algorithm by minimising the Q value (equation 22), 281 

 











n

=i

m

=j ij

ij

s

e
=Q

1 1

2

 

 

(5
2) 

 282 

where sij is the uncertainty in the jth measurement for hour i.   All analyses were carried out 283 

in Robust model which reduces the impact of outliers (Paatero, 2002).  284 

 285 
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It may be seen from equation (2) that PMF is a weighted technique;   and the value of Q, 286 

and hence the model fit, is determined by the input variables with the lowest values of 287 

uncertainty, Ssij , thus giving their variables a higher weighting in the analysis.  Input 288 

variables with low weight high uncertainty have little effect upon the value of Q, even when 289 

their residuals are large.  This can be used to the advantage of the operator, e.g. when .  290 

When apportioning total PM mass in a conventional one-stepstage PMF, the total PM 291 

concentrations are normally input with artificially high uncertainty, so that they are essentially 292 

passive in the PMF analysis and do not influence its outcome.  By doing so, the chemical 293 

composition data determine the apportionment of PM mass to the source-related factors 294 

identified by the PMF.  A similar approach can be followed in the PMF analysis of a combined 295 

data set where higher weightings can be applied to the main data set of interest such that it 296 

“drives” the analysis and the auxillary data set “follows”, i.e. the uncertainties are chosen 297 

such that the balance of total weights from the two data sets is tipped towards the 298 

measurement of interest and highest reliabilitiy in regards toof rotational unabiguity.   In this 299 

work, the primary aim was to define a particle size distribution associated with each factor 300 

derived from the PMF of PM10 composition.  Consequently, in the second stage of the PMF, 301 

large uncertainties were input for the particle number data, combined with realistic 302 

uncertainties for the PM G-values, so that the latter determine the outcome of (“drive”) the 303 

PMF analysis.   304 

 305 

To assess the PMF modael, the In this work, the Q value is outputted by PMF2 and 306 

compared to a theoretical value Qtheory which is approximately the difference between the 307 

product of the dimensions of X and the product of the number of factors and the sum of 308 

dimensions of X (i.e. n x m – p(n + m)) pk x m.  For a given number of factors, the whole 309 

uncertainty matrix is scaled by a factor Xscale bscale until the ratio between Q and Qtheory is 310 
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approximately one (rQ value = Q/Qtheory = 1 ± 0.02).  311 

 312 

With regards to the final output from PMF, a scaling has to be applied in order to achieve 313 

quantitative results.  This is done by scalining either G or F to unity such that the units from 314 

X are carried over to either F or G respectively to complete the apportionment.  However, 315 

different routes have to be considered depending on whether X has homogenieous or 316 

heterogenieous units. 317 

 318 

2.32.2 1-Step method using data from the same instrumentin the same units - 319 

Hhomogeneous units 320 

Given a PMF input data matrix X, a solution GF + E can be computed where G represents 321 

the time series of the source profiles F, with a residual matrix E.  Often X comprises of 322 

columns of PM10 composition valuescomponent concentrations (e.g. ICPMS values 323 

measured from quartz filtersacid-digested filters collected with a Partisol 2025) and it is 324 

common practice to also include a Total Vvariable (e.g. column of PM10, measured using a 325 

TEOM) in the data matrix.  The resulting PM10 profile element value can then be used to 326 

scale G and F such that G carries the units of X with F unit less.  Note that neither G or F is 327 

scaled to unity in thies approach. Instead, scaling is done after the analysis using a constant 328 

ak, determined by the time series of a Total Vvariable (e.g. PM10), down weighted by a factor 329 

of 4applying a high uncertainty, within the input data.   330 

 331 

𝑥𝑖𝑗 = ∑ (𝑎𝑘𝑔𝑖𝑘) (
𝑓𝑘𝑗

𝑎𝑧𝑘
)𝑝

𝑘=1  (63) 

 332 
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The resulting value for the PM10 contribution for each factor within the F matrix is then used 333 

as a scaling constant ak in equation 63. Such scaling results in unit less factors F which 334 

describe the characteristics of the sources and time series G with units of µg/m3. 335 

Apportionment can then be carried out by averaging the G values for each source 336 

profilefactor, andor a fully quantified time series of each factor can be presented, e.g. in 337 

Bivariate plots.  Of course, the G and F can be normalized such that G is unitless and F 338 

carries the units; an approach necessary when X contraincontains heterogeneous units.  339 

This approach however, requires each column of G to be scaled to unity, by using the PMF 340 

setting Mean ӏGӏ = 1. 341 

 342 

2.32.3 1-Step method using data from different instrumentswith different units - 343 

Hheterogeneous units 344 

If the analysis of X was to be enhanced by the inclusion of data from a second instrument 345 

with different units, then a different approach to the 1-Step method with Hhomogeneous 346 

units would be required to analyse the joint data matrix [X,Z] = G[X,Z] F[X,Z] + E[X,Z].  If the 347 

previous method was applied where F was normalized, then it would not be clear what units 348 

to assign to G, whether the units from X or Z.  To get around this problem, G is scaled to 349 

unity.  This results in a unit less time series G and a quantified F matrix.  For each source 350 

profile the sum of the species associated with either data type gives the average total 351 

apportionment, e.g. of PM10 or number concentration PN.  Of course, this requires the 352 

complete mass or number closure of the elements making up either PM10 or PN respectively, 353 

although inclusion of measurements of total PM10 or PN can used instead, if available.   354 

 355 

In the ideal case, if the individually computed factors for both data sets result in G(X) and 356 

G(Z) being identical, then a straight forward joint model [X,Z] is successful and G[X,Z] = 357 
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G(X) = G(Z).  However, if G(X) and G(Z) are significantly different then the joint model will 358 

fail, identified by a too large Q value.  A solution to this problem is to set the total weights of 359 

the better dataset X significantly higher than the total weights of the auxiliary data set Z such 360 

that X will “drive the model” and G[X,Z] will be approximately equal to G(X) and a reasonable 361 

Q value is obtained for the Z.  However, care is required to ensure that X or Z do not contain 362 

rotational ambiguity because such rotation for X may not be suitable for Z. For such cases, 363 

equal total weights for both X and Z are applied in the hope that the best rotation for both X 364 

and Z can be found. 365 

 366 

2.32.4 2-Step method using data from different instrumentswith different units - 367 

Hheterogeneous units 368 

The method proposed in this work, separates the analysis of the two data sets X and Z into 369 

two different PMF analyses.  Dataset X is first analysed and an unambiguous rotation is 370 

selected which gives computed factors G(X).  These are then carried over into a second 371 

PMF step in which G(X) are combined with Z to form a joint matrix for analysis.  By using 372 

FKEY (described below) factors, G(X,Z) are forced to be equal to G(X) from step 1.  So for 373 

example, if in the first step we analyse PM10 data and carry forward the output G(PM10) into 374 

a second step combined with the NSD data, i.e. [G(PM10),NSD] this results in profiles 375 

F[G(PM10),NSD].  In other words, we force out of the NSD data source profiles which have 376 

the same G factors as the PM10 data and extend the list of components of the sources 377 

idendtified in the first step and thus improve identificationcharacterisation of the source.  378 

Note that this is equivalent to non-negative weighted regression of matrix Z by columns of 379 

matrix G for which other tools exist.  Furthermore, by using a two step method, we can 380 

continue to use the scaling method described in Section 2.32.2 to apportion the sources 381 

using a quantified time series G(X) rather than normalising the G(X,Z) matrix sums to 1 and 382 
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relying on the summation of the elements in the rows of F(X,Z) to give the apportionment of 383 

X and Z.  384 

 385 

2.3.22.5. Application of PMF 386 

Positive Matrix Factoriszation was carried out in this work using the DOS based executable 387 

file PMF2 v4.2 compiled by Pentti Paatero and released inon Feb 11, 2010 (downloaded 388 

from www.helsinki.fi/~paatero/PMF/).  This is used by the author as ain preference to a GUI 389 

version of PMF (e.g. US EPA PMF 5.0, Norris et al., 2014)) because of the ease with with it 390 

can be encorportedincorporated into an Cran R procedure script using shell commands, 391 

thus facilitating automation of the analysis and any optimisation.  R-script can be written to 392 

manipulate and organise input data for PMF2, run PMF2, collect the output and produce the 393 

necessary output for consideration as text, table or plot.  The main strength for this approach 394 

is to improve the repeatability and transferaence of a method between practitioners within 395 

our group. 396 

 397 

The two step method is shown schematically in Figure 2.  Matrix X yields factrors 1G and 1F 398 

in the first step.  The timeseries 1G matrix is carried through to the second step where it is 399 

combined with an auxiliariy data set Z, to give the a step 2 input matrix [1G Z].  This in 400 

ternturn is analysed to produce factors 2G  and 2F.  In the current example, it uses the PMF 401 

output of the dataset of Beddows et al.  (2015) is used as a starting point matrix X and 402 

comprisesassumes that a PMF analysis of the PM10 chemical composition dataset.  This 403 

yields timeseries 1G and source profile 1F and the reader is referred to Beddows et al. (2015) 404 

for a description of the analysis and output.  Figure 1 shows the output from the first step 405 

which was found to be the optimimum solution after considering 3 to 8 factor solutions.   406 

http://www.helsinki.fi/~paatero/PMF/
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(Step One) has already been carried out and dealt with as in the previous study.  The 407 

normalised timeseries matrix 1G from this analysis werewas combined with the NSD data - 408 

concurrently measured with the PM10 data - to form the input matrix [1GZ], for step 2. In this 409 

current work, a second step which takes the output from the first step and uses it as an input 410 

for the second step is developed.  This is done by using the G1 time series from the PMF 411 

analysis of PM10 and combining this with secondary data, (i.e. NSD data).  The uncertainties 412 

of the 1G1 matrix, 1G are transferred from the output of the first step and entered as input 413 

uncertainties for the second step.  The hourly NSD data was aggregated into daily 414 

samplesvalues to match the daily 1G factors outputted from the PMF analysis of the daily 415 

PM10 data sampled.  This reduced the data matrix down to 590 rows by 57 52 columns 416 

(1G1…1G6, NSD1
16nm…NSD51

640nm) for which a we have a Qtheory value of 29748 30,916 for 417 

a 6 factor solution.  For the NSD data, the uncertainties are taken as X times the NSD values 418 

multiplied by the value of an arbitrary parameter bscale in order to be large and ensure that 419 

the PMF is driven by the G1 matrix (see Figure 2).  Initially, thisbscale was set to 4 to inorderto 420 

ensure that the model was weighted such that it was driven by the PM10 data.  However, this 421 

operation becomes somewhat redundant by the use of the FKEY matrix discussed in the 422 

next section.  However, in order to find the optimal NSD uncertainties theThe value of X the 423 

parameter bscale (typically, 0.2) was optimised in Cran R so that the ratio of Q/Qtheory = 1 ± 424 

0.012~ 1, indicating an relative percentage uncertainty in the region of 20%.  In retrospect – 425 

by taking into account the decrease in reliability of the size bins counts towards the edges 426 

of the size bin range - an improvement would be to gradually increase the uncertainties from 427 

5 % in the middle range of sizes over the lower and upper size bins from 5 % uptoto a pre 428 

defined larger value, e.g. 50 %,. over the lower and upper size bins. The uncertainties were 429 

entered directly into the model using PMF matrix T with U and V redundant. 430 

 431 
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Using equation 7 the uncertainies were entered directly into the model using via matrix T 432 

with U and V redundant. 433 

𝑠𝑖𝑗 = 𝑡𝑖𝑗 + 𝑢𝑖𝑗√|𝑥𝑖𝑗| + 𝑣𝑖𝑗|𝑥𝑖𝑗| (7) 

 434 

2.3.32.6  FkeyPulling down with GKEY and FKEY 435 

GKEY and FKEYkey areis a feature matrices with the same dimensions ofas G and F 436 

respectively, in for incorporating a priori information into a PMF analysis.  They are  and is 437 

used in the second step of the PMF-PMF analysis.  It is used  to “pull” elements of the source 438 

profiles to zero. This method uses a matrix that GKEY and FKEY indicates the location of 439 

suspected zeros in source profiles 2F or contributions 2G (Figure S123). Since here it iswe 440 

are concerned with the profiles, this information is given in the form of integer values in an 441 

FKEYkey. The greater the certainty that an element of a source profile is zero, the larger the 442 

integer value that is specified.  In this case, in the second step, for the input dataset [1G 443 

NSD],  it is certain that only one  unique contribution will be strong for each row of the profile 444 

2F, outputted from the second PMF analysis,  PM G score from one of the sources will be 445 

strong, e.g. only 1G1 and not 1G2.. 1G6 will contribute the to (1G1, 2F1) position in output 446 

factor   2F1.  e.g. the traffic source will be the only contributing to the PM G value in the Traffic 447 

NSD profile, and likewise for the other sources: Diffuse Urban; Secondary; Marine; Fuel Oil; 448 

and NET & Crustal (Figure S123).  All ‘non-zero’ elements within the output of 2F take a 449 

FKEY value of zero whereas all elements of 2F which are pulled to zero take an non-zero 450 

value of fkey1. This leads to a FKEY matrix which can be understood in two parts.  The first 451 

part is a square matrix of dimension equal to the number of columns of 1G with all its entries 452 

equal to fkey1 except for the leading diagonal; this part ensures that 1G is the same as 2G.  453 

The second part of the matrix consist of all the elements areas zero and represents the NSD 454 
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input data.  An fkey1 value of 7 to 9 is considered a medium to strong pull, and in this work, 455 

we used a value of 24 which in comparison is very aggressive ensuring only one rotational 456 

solution is available ensuring 1G   2G. 457 

 458 

To extend the analysis from 6 factors to 7 factors an extra row was added to FKEY.  This 459 

was done in order to investigate any factors missed in the NSD data for which the first 460 

analysis using PM10 would not be sensitive to.  For example, a nucleation mode would be 461 

detected in NSD data but not PM10 data.  In order to give the model freedom to factorise out 462 

a nucleation factor, the 7th row of of FKEY values consisted {fkey1, fkey2… fkey6,nsd1, nsd2… 463 

nsd51}.  This ensured that all the 2G contributions were allocted to the first 6 factors only 464 

leaving the 7th factor to account for the remaining unfactorised NSD data.  There is no reason 465 

why more than 7 factors could not be used to investigate to see if there are morepossible 466 

un resolvedunresolved NSD factors.  However, we constrained the scope of our 467 

investigation to reidentifying those in Figure 12. 468 

 469 

2.4 3  Regression 470 

The output of the regression of a dependent variable Y regressed against independent 471 

variables X1, X2, X3, … Xn is n gradients and one intercept.  When n = 1 it yields a line, 472 

when n = 2 it is a fitted plane. But when n > 2 or in this case n = 6, it is a multidimensional 473 

fitted model.  Each of the n gradients show how Y varies with the n X values given that the 474 

other X values are fixed and the intercept provides a bias value.  If Y is allowed to take on 475 

each value of the NSD size bin and X variables are set to the 6 G time series from the first 476 

step of PMF analysis, then it can be seen how the NSD are correlated to the 6 G time series 477 

and infer an associated NSD for each of the factors derived in the first step of the PMF-LR 478 

analysis. 479 
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 480 

As an alternative to using PMF in the second step, a regression was carried out.  Eeach 481 

column of data for each of the 51 size bins j within the NSD was regressed against the six 482 

1G1 time series using, Equation 834. 483 

𝑁𝑆𝐷𝑗 = 𝛼0,𝑗 + 𝛼1,𝑗 𝐺1
1 + 𝛼2,𝑗 𝐺1

2 + ⋯ + 𝛼6,𝑗 𝐺1
6 (8

4) 

 484 

where 0 is the population intercept and 1-6 are the populations slope coefficents.  This 485 

results in a 7 by 51 matrix of values.  Each column represents a size bin of the NSD data 486 

and each row represents the slope coefficients associated with 6 of the factors (giving an 487 

indication of how each size bin correlates scales with each of the 6 factors) and an intercept.  488 

When 1-6,j  grada,j is plotted against the size bin, 6 plots showing the dependence of each 489 

size bin j on each of the 6 PM10 factors are produced.  It is also assumed that these (we 490 

refer to referred to here as NSD regression source profiles) will be comparable to the actual 491 

NSD PMF source profile.  Similarly, the 0,j intj values are expected to give a  background 492 

value due to, possibly to noise;  however, it is more likely to yield a source (such nucleation) 493 

to which the PM10 mass analysis is insensitive.  However, this method can extract 494 

information known as a remainder factor, shown later in this paper. 495 

 496 

2.5 4  Peak Fitting 497 

If it is assumed that the factors derived from the daily NSD data are the same as those 498 

present in the hourly data, i.e. the factors are conserved when averaging the data from 499 

hourly to daily data before PMF analysis, then daily NSD profiles can be fitted to the hourly 500 

NSD spectra to recover a diurnal cycle for the factors.  However, it is worth noting that the 501 



22 

 

process of aggregating hourly data to daily NSD data may indeed cause loss of information 502 

implying that minor factors (e.g. due to event episodes) might well be averaged out of the 503 

data.  Given the ith number size distribution,  NSDi, the difference Di,j,k (equation 3), between 504 

the kth element and the linear superposition of the kth
 element of the seven factors fj,k is 505 

minimised.  Given the jth size bin in the ith number size distribution NSDi,j (of dimensions M 506 

x N),  the factors can be fitted using equation (95). 507 

𝐷𝑖 = ∑ 𝑑𝑖

𝑀

𝑖=1

 
 

(9
5) 

which is the ith sum Di of the difference (di give by equation 6) across the size bins of the ith 508 

NSDi and the linear superpositionsum of the p factorsNSD source profiles (p = 7 in this case) 509 

scaled bywith respect to the scalar values cik, representing the timeseries of each fitted NSD 510 

source profileas shown by equation 10.  511 

𝑑𝑖 =
∑ {𝑁𝑆𝐷𝑖𝑗 − ∑ 𝑐𝑖𝑘 ×

𝑝

𝑘=0
𝑓𝑘𝑗}

𝑁

𝑗=1

, 𝑐𝑖𝑘 ≥ 0

1 × 1010, 𝑐𝑖𝑘 < 0

 

(106) 

 512 

The Cran R package Non-Linear Minimization (nlm) (R Core Team, 2018) was used to 513 

minimise equation the value of Di with respect to the scalar values cik 3.  A with a non-514 

negative constraint is on cik placed in the function.  If a negative value is returned by any of 515 

the ak ck values then D returns an excessively large value.   Furthermore, in order to extract 516 

an apportionment to number concentration (1/cm3) the fitted values were scaled using a 517 

factor scalar βk.  Six Seven values were derived for βk by regressing the total particle number 518 

(total hourly SMPS) against each of the fitted values ck (using equation 119).  7 7. 519 

𝑃𝑁 = 𝛽0 + 𝛽1𝑐1 + 𝛽2𝑐2 + ⋯ + 𝛽7𝑐7 
(117) 
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The resulting scaled-fitted values were then used to calculate the PN concentration for each 520 

of the regression source profiles (equation 12 8) and plotallowing subsequent plotting of the 521 

7 diurnal cycles in Figure 5. 522 

𝑃𝑁𝑘 = 𝛽𝑘𝑐𝑘 
(128) 

 523 

2.65 Bivariate Plot 524 

Identification of the sources responsible for the factors outputted from PMF can be assisted 525 

by meteorological data.  Time series of the kth factor (or gk values) can be plotted against 526 

wind direction and wind speed using either the polarPlot or polarAnnulus functions provided 527 

in the Openair package.  Polar Plots are simply used for plotting the factor contribution on a 528 

polar coordinate plot with North, East, South and West axes.  Mean concentrations are 529 

calculated for wind speed-direction ‘bins’ (e.g. 0-1, 1-2 m/s,... and 0-10, 10-20 degrees etc.) 530 

and smoothed using a generalized additive model.  Each bin concentration is plotted as a 531 

group of pixels (coloured according to a concentration-colour scale) and positioned a 532 

distance away from the origin according to the magnitude of wind speed and along an angle 533 

from the North axis according to the wind direction.  Such plots are useful when identifying 534 

the nature of the source.  A backgrounddiffuse source will tend to have its highest 535 

concentration yeildshowing as a hotspot at the origin of the polar plot, whereas a point 536 

source will cause a hotspot both away from the origin and in the direction pointing towards 537 

the source.  On the other hand wind blown sources tend to be recognised by their 538 

proportionalityrelation to wind speed and hence do not necessarily produce hotspots. 539 

Instead, they produce a minimum to maximum gradual gradient of colour from the origin, 540 

spreading radially out towards the edge of the plot in the direction of the source, e.g. for a 541 

marine source.  Likewise, Annulus Plots, plot the mean factor concentration on a colour 542 

scale by wind direction and as a function of hour-of-the-day as an annulus, represented by 543 
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the distance of the coloured pixels from the origin. The function is good for visualising how 544 

concentrations of pollutants vary by wind direction and hour of the day.  For example, for 545 

the North Kensington site – positioned West of the central city centre – we might well expect 546 

most of the anthropogenic sources (traffic, diffuse urban, etc) to haveshow an Easterly 547 

direction with the appropriate diurnal cycle (e.g. yeilding rush hour traffic patterns).  Similarly, 548 

we might expect cleaner air (Marine, Nucleation, etc) to occur from a Westerly direction and 549 

duringat times of the day when the solar strength is highest. 550 

 551 

3.  RESULTS AND DISCUSSION 552 

The aim of this work has been to show how, given a given PMF result, it can be 553 

complemented with concurrently measured auxillary data.  We exemplify this using PM10 554 

and NSD data collected from the North Kensington receptor site in London and start with 555 

the premise that we are completely satisfied with the PM10 analysis and are using a rotation 556 

which gives quantified factors (quantified G and scaled F) which best representation of the 557 

urban atmosphere sampled, i.e. the output from Beddows et al. (2015).   And, fFor each 558 

PM10 factor we wish to assign a NSD distribution. is to take the results from the first step of 559 

a PMF analysis where a successful source apportionment study has been completed and 560 

then complement the results with a second step to derive further information about the 561 

sources.  Rather than repeat the PMF analysis using a combined PM10+NSD 562 

analysisdataset which can be complicated if the rotations of the individual PMF analyses of 563 

PM10 and NSD data are miss matched or ambiguous, we can carry out a This can be done 564 

using a second PMF analysis or a regression. 565 

 566 

Furthtermore, by the nature of any factor analysis, we also have to make the assumption 567 

that each source chemical profile and size distribution not only remain unchanged between 568 
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source and receptor but that it remains constant throughout the measurement campaign.  569 

This of course limits our capacity to fully understand the aerosol within the atmosphere we 570 

are considering.  Chemical reactions during the transit of the air masses will of course modify 571 

the chemical composition.  We might wellIt might be assumed that a fully aged aerosol 572 

remains unchanged and is identified as a background component, but for example we would 573 

expect progressive chlorine depletion within a fresh marine aerosol passing over a city.  574 

Likewise, we also have to appreciate that different particle sizes will indeed have different 575 

atmospheric transit sizesefficiencies with large particles settling out of the air mass before 576 

smaller ones.  Similarly, particles nucleate and grow from 1 nm up to 20-30 nm over a short 577 

time period of time.  It is these finer details which are missed when making an overall 578 

assessment of the chemical and physical naturecomposition of thean air mass measured 579 

over a long period (e.g. 2 years) dataset (eg 2 year) using PMF.  580 

 581 

3.1  2-Step PMF-PMF Analysis 582 

Figure 3 presents our results the profiles 1Fk and 2Fk  from the first and second PMF analysis 583 

respectivelyof a combined dataset.  The plots of 1Fk were carried over from Beddows et al. 584 

(2015) to complete the assignment of the source profiles. 585 

 586 

The G1 time series 1Gk and uncertainties 1
Gk from the first PMF analysis of PM10 data 587 

weare carried over into the second step where they are combined with the NSD data for 588 

PMF analysis (Figure 2).  The uncertainties of the NSD data are taken as an optimised 589 

multiple of the NSD values themselves (~ 5 % uncertainty, yeiielding a Q value of 30,333 in 590 

the robust mode; see Table S2 for PMF settings).  Also in order to maintain the solution from 591 

step 1 in step 2 the encourage 2Gk to be proportional to 1Gk for k = 1-6 (see Table S4), the 592 
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FKEYFkey  matrix is applied to pull elements in the source matrix to zero as described in 593 

section 2.3.3. This ensureds that the PMF analysis of the NSD data wais driven by the 1GG1 594 

time series and .  This resulteds in a 6 factor outputsolution in which there  weare unique 595 

contributions from the kth factor 1Gk from the first analysis to the kth factor from one of the 596 

G1 2Fk scores and an in the second analysis.   This is mainly due to the aggressive pulling 597 

of the factor element in 2F applied using FKEY.   598 

 599 

associated NSD source profile, and it is When inspecting Figure 3 it is notable that they the 600 

source profiles are surprisingly similar to those calculated for the just-NSD and PM10+NSD 601 

data in Beddows et al. (2015).  The Diffuse Urban factor has a modal-diameter just below 602 

0.1 µm which is comparable to the NSD same factor in the just-NSD analysis.  Marine is 603 

comparable to the Aged Marine factor derived from the PM10+NSD analysis. The Secondary 604 

factor is again the factor with the largest modal diameter (between 0.4 and 0.5 µm) and 605 

traffic has as expected a modal diameter between 30 and 40 nm.  The Fuel Oil factor is 606 

interesting as it appears to be a combination of a nucleation factor and a mode comparable 607 

to diesel exhaust seen in the Traffic factor. 608 

 609 

3.2  2-Step PMF-LR Analysis 610 

Figure S232 shows the results of the linear regression of the NSD data plotted against the 611 

PM10 1Gk1 scores and again what is remarkable is the similarity between these regression 612 

source profilescorrelation plots and both the factors derived in Beddows et al. (2015) and 613 

those from the 2-step PMF-PMF analysis.   614 

 615 
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This PMF-LR analysis was carried out using daily averaged data and .  Tto obtain hourly 616 

information - and thus obtain the diurnal patterns (Figure S235) -, the resulting regression 617 

source profiles correlation factors were re-fitted to the original NSD data.  On inspection of 618 

these source profiles and diurnal plots, the negative values make interpretation a struggle 619 

reinforcing one of the 4 conditions (Hopke, 1991) in the analysis if it is to make sense. We 620 

can however fit non-negative gradients using non-negative regression.  However, the 621 

surprising consequence of applying this constraint is that the same profiles are derived but 622 

they are clipped so that all negative values are replaced by zero values – hence, information 623 

is lost by doing this.   One interpretation of the negative values is that these are particle sinks 624 

but this contradicts the PMF-PMF findings and hence it is concluded that the PMF-LR 625 

analysis only serves as an indication of how the PM10 factors are augmented by the NSD 626 

data.  If all profiles are shifted to above the zero line then comparisons to the PMF-PMF data 627 

can be made.  However, what is interesting to note in this result is the intercept NSD which 628 

is comparable in profile and diurnal pattern to the nucleation mode identified in Beddows et 629 

al. (2015).  This is a seventh factor regression source profile, in addition to the 6 PM10 factors 630 

and suggests that although the PMF analysis of the PM10 data alone misses a Nucleation 631 

factor, this can be recovered in a second analysis as a remainder or bias in the data.  632 

Furthermore, this result indicates that the composition of the Nucleation NSD factor has no 633 

link to the chemical PM10 composition and cannot be used to infer a composition. This is 634 

unsurprising given the very small mass contributed by the nucleation mode particles.  635 

 636 

Returning to the PMF-PMF analysis and extending the analysis from 6 factors to 7 factors,  637 

and adding an extra row in the FKEY key matrix was added to which pulls all of the 1G71 638 

scores contributions to 2F7 to zero in the solution (Figure S12).,  The same FKEY matrix of 639 

fkey1 and 0 values was used but this time it was augmented with a 7th row of fkey2 and zero 640 
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values.  In this case, the fkey2 values were set to a value of 20.   641 

 642 

Tthe same 6 factor solution is obtained with the additional 7th factor (Figure 4 and Figure 643 

S334) and . Aas expected, this seventh factor wasis a Nucleation factor.  It wasis suspected 644 

that in the 6 factor solution, the nNucleation factor was combined with the Fuel-Oil factor.  645 

This does not suggest any link between the nNucleation and Fuel-Oil factor other than there 646 

were was an insufficient number of factors within the model for the two to factorise out of 647 

the data giving the Fuel-Oil NSD profile a more reasonable modal peak between 50 and 60 648 

nm rather than 20, 3010 and 60 nm. 649 

 650 

In the results of Beddows et al. (2015), applied a 1-step analysis to three different datasets: 651 

PM10-only; NSD-only and PM10+NSD.  The analyses of the PM10-only and NSD-only – both 652 

with homogenieous units - produced quantitative timeseries G.  This was unlike the analysis 653 

of the PM10+NSD with heterogenieous units which could not apportion its 5 factors using G 654 

but was able to factorise out a the Nucleation factor from the data, seen also in the 4 sources 655 

in the PMF solution for the NSD-only data.  was only seen when applying PMF to the just-656 

NSD and PM10+NSD data, and in the PM10+NSD results,   Fuel Oil was not separated and 657 

appeared to be smeared across all 5 factors.  A PM10-only seven factor solution to PMF of 658 

the PM10 chemical composition data did not reveal this factor either, presumably because 659 

the mass associated with nucleation mode particles is too small to affect composition 660 

significantly.  Furthermore, Fuel Oil was not factorised out of the PM10+NSD data and was 661 

more likely divided across all 5 factors.   662 

 663 

Another interesting observation is that although only 4 factors were derived from the PMF 664 
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analysis of NSD- data alone (Diffuse Urban; Secondary; Traffic and Nucleation), when extra 665 

information is included from the PMF analysis of the PM10 data, more information can be 666 

extracted from the PMF analysis of the NSD data in the form of the Marine; Fuel Oil and 667 

NET & Crustal factors.  The Nucleation factor is only revealed when performing a regression 668 

between the NSD size bins and the G scores of the PM10 PMF analysis which leads to 669 

increasing the factor number from 6 to 7 which yields the Nucleation profile.  It is also 670 

reassuring that the bivariate plots for of the 7 factors (discussed in the next section) 671 

correspond to the bivariate plots given in Beddows et al. (2015).  Also note, that there is no 672 

reason why any further investigation might not explore using more than 7 factors.  In factor 673 

the nNucleation factor appears at first glancesight to be multimodal.  However, we restricted 674 

our analysis to 7 factors, considering it complete in terms of identifying the sources obtained 675 

by Beddows et al. (2015). 676 

 677 

3.3  Diurnal and Bivariate Plots  678 

The original PMF was carried out on daily PM10 data and in order to make diurnal and 679 

bivariate plots, a higher time resolution is requireddesirable.  It is assumed that the factors 680 

derived in the hourly NSD data are the same as those derived from the daily averaged data, 681 

i.e. the factors are conserved when averaging the data from hourly to daily data before PMF 682 

analysis.  Then the hourly NSD data can be fit with the PMF profiles derived from the daily 683 

data (see Section 2.54).  Figure 5 shows the resulting diurnal profiles.  The diurnal trends of 684 

the parameter ck (equation 117), required fitted peaks show the values required in equation 685 

3 to fit the 7 daily NSD factors to the hourly NSD data are shown.  These have been scaled 686 

to PN (measured in 1/cm3) in these plots according to using the integral of the NSD (equation 687 

128)factor measured in 1/cm3.  The nNucleation factor diurnal trend behaves as expected 688 

rising to a maximum during the day and then falling back down to a minimum at night.  This 689 
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corresponds to the intensity of the sun during the day and the increased likelihood of 690 

nucleation on clean days when there is sufficient precursor material to form particles with a 691 

low particle condensation sink.  The Marine factor is also high during the day presumably 692 

due to higher wind speeds.  Diffuse Urban, NET and & Crustal, and Traffic all follow a trend 693 

which is synchronised to the daily cycle of anthropogenic activity and traffic as influenced by 694 

greater atmospheric stability at night.  The Secondary factor shows a small diurnal range.   695 

also follows a similar anthropogenic cycle, however, although the polar plots are comparable 696 

to the  and would be expected to be strongest at night those of Beddows et al 2015, the 697 

nighttime contributions is small. This results a contribution not being strong during the night 698 

in the diurnal trend plot of Figure 5 as would be expected when compared to the NSD diurnal 699 

trend of Beddows et al 2015.  Fuel Oil is highest during the evening and night and may 700 

correspond to home heating rather than marine shipping emissionsactivity.  The particle size 701 

distributions associated with the Marine and NET and & Crustal sources are of limited value 702 

as these sources are dominated by coarse particles, beyond the range of the SMPS data, 703 

although there is a sharp increase in the volume of the particles above 0.5 µm in the Marine 704 

factor.  As pointed out in Beddows et al. (2015), the mMarine factor is interesting by way of 705 

the fact that we would indeed expect to see the wing of a coarse particle mode, whose modal 706 

diameter is way above the upper size bin of the SMPS and in the coarse mode.   Instead, 707 

the factor is identified by its chemical profile of sodium and chloiride and is accompanied by 708 

an aged nucleation mode at around 30nm.  This can be either viewed simply as clean marine 709 

air being ‘polluted’ by traffic emission and/or as the consequence of nucleation occuring over 710 

at city forin a clean maritime air masses (Brines et al. 2015).  The key point here is that the 711 

factors derived in this work are comparable to those factorised in Beddows et al. (2015) 712 

using the combined data set and the advantage of the 2-step approach is that now we have 713 

quantified hourly timeseries G. 714 
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 715 

The hourly contributions are aggregated into daily values and plotted as bivariate plots in 716 

Figure 57 to assist comparison with the daily plots in Beddows et al. (2015).  In that work, 717 

the same PMF analysis of the NSD data yielded 4 factors which are represented here 718 

againnamed identically to those in the bivariate plots.  The similarity of both of the polar and 719 

annular plots for each of the 4 factors justifies supports our aformentioned previous factor-720 

fitting assumption identification.  The Secondary and Diffuse Urban are background sources 721 

with strongest contributions in the evening and morning.  Traffic is strongest for all wind 722 

speeds from the East which makes sense since North Kensington is to the West of the city 723 

centre of London where traffic is expecting to be most dense.  Nucleation is also seen to be 724 

strongest for those wind direction from the West which are expected to be cleaner, and have 725 

a lower condensation sink.  NET & Crustal and Fuel Oil are similar to Diffuse Urban 726 

suggesting a similar predominant source location in the centre of London.  Marine is 727 

observed to be strongest for elevated wind speeds for all wind directions which is consistent 728 

with the expected strong contribution for all high wind speeds from the South West, as 729 

observed in the daily polar plots in Beddows et al. (2015). 730 

 731 

3.4  Composition associated withof the Nucleation Hidden Factor 732 

The Nucleation factor was extracted from the two-step PMF-PMF analysis when which 733 

included pulling the 1G1-1G6 to zero of factor 2F7. forcing the condition of no PM10 contribution 734 

through G1 to G6.   It might be reasonable to suggest that if the two-step PMF-PMF analysis 735 

is repeated and the order of analysis of PM10 and NSD datasets reversed that it would be 736 

possible to derive the chemical conditions within the atmosphere which were conducive to 737 

nucleation.  For this, the time series of the 4 NSD factors (1G1-1G4) reported in Beddows et 738 

al. (2015) were combined with the PM10 data.  We again assume that the first PMF step has 739 
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been carried out and that we are satisified with how the final solution represents the urban 740 

environment of the receptor site and that there are no rotational ambitguities.  We then carry 741 

out the second step PMF analysis on the 34 x 591 input matrix ([1G1…1G4], 742 

PM10[PM,PMcarbon,PMions,PMmetals]).  The hourly output uncertainies from the first PMF 743 

analysis of the NSD data 1G1…1G4 were carried forward into the second PMF analysis 744 

by adding them in quadrature to give daily uncertainties.  As with the analysis of the auxillary 745 

data in the PM10-NSD data, the measurement uncertainties for the PM10 data (this time the 746 

auxillary data) was naively taken as 4 times the PM10 matrix.  Extra care could have been 747 

take in assigning the PM10 uncertainties but since we force the output using FKEY a simpler 748 

approach was taken.  In fact, the FKEY consisted of a 4 x 4 diagonal matrix of zerso values 749 

with an fkey1 of 20 for all the off-diagonal positions joined to a 4 x 30 matrix of zeros.  750 

Furthermore, the uncertainty values of the PM10 were scaled until Q/Qtheory = 0.99 using 751 

parameter bscale = 0.35 (see Table S3 for more details). 752 

 753 

Ideally, for this the chemical data would be more informed with regardslimited to the 754 

composition of the particles below 100 nm (eg using PM0.1 or PM1.0)in the same size range 755 

as the SMPS data.  However, when since we are using the PM10 composition data we can 756 

at best describe the composition of the aerosol which accompanied each factor (Figure 757 

S45).  For the NSD Secondary NSD factor with its strongest contribution (indicated by the 758 

ExpectedExplained Variation) ~400 nm, we have a strong contribution to PM10 and PM2.5 759 

contribution together with nitrate, sulphate and ammonium.  Diffuse Urban, with its strongest 760 

contribution at 100 nm is accompanied by contributions tofrom elemental carbon and wood 761 

smoke indicative of traffic and recreational wood burning. There isare also contributions from 762 

barium, chromium, iron, Mmolybdenum, Aantimony and Vvanadium, all indicative of none-763 

exhaust traffic emissions and the burning of fuel oil.  Similarly, the tTraffic factor has a modal 764 
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-diameter at roughly 30 nm which is indicative of exhaust emissions and this is accompanied 765 

by contributionsn to aluminum, barium, calcium, copper, iron, manganese, titanium and 766 

various other metals attributed to vehicles, albeit from tyre or brake wear or resuspension.   767 

 768 

For tThe Nucleation factor with its peak ~20 nm, this was associated with marine air withas  769 

indicated by the strong contributions to Na, Cl and Mg (Figure S4S4).  .  There are also 770 

traces of V, Cr, Ni and a high contribution to PM10 level mass which are all associated with 771 

marine air.  This is explained by an association with the south-westerly wind sector which 772 

brings strong winds and marine aerosol rather than reflecting the composition of the 773 

nucleation particles themselves.  Marine air is considered to provide the conditions required 774 

of an air mass which is conducive to nucleation, i.e. cleaner air with particles with a low 775 

condensation sink.  As these air masses pass over the land and eventually into London, 776 

anthropogenic precursor gases are added to this air which then nucleate particles seen at 777 

the receptor site as a nucleation mode.  This also goes some way to explain the earlier 778 

observation of aged nucleation particles observed in the marine factor in Figure S34.  There 779 

are also strong contributisons to vanadium which is most likely from an un resolved Fuel Oil 780 

source being mixed into the mMarine and dDiffuse uUrban factors.   Secondary shows a 781 

strong association with ammonium, nitrate and sulphate  but there are also traces of 782 

organics, Al, Cd, Mn, Pb, Ti and Zn and high PM2.5 and PM10.  Diffuse Urban makes the 783 

smallest contribution to PM but shows strong elemental carbon, wood smoke, Ba, Cr, Fe, 784 

Mo, Sb, V and Zn; indications of recreational wood burning and brake dust.  Traffic has 785 

strong associations with Ba, Al, Ca, Cu, Mn, Ti and Zn which have sources in tyre and brake 786 

dust and resuspension. 787 

 788 

4.  CONCLUSIONS 789 
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It is recommended when applying PMF to atmospheric PM data that only metrics with the 790 

same unit are input in order to make a meaningful quantitative apportionment.  However, t 791 

A two-step PMF analysis method is presented whereby existing PMF profiles can be extend 792 

to incorporate auxillary data condcurrently measured and having different units.  This is 793 

exemplified using PM10 and NSD data.   794 

 795 

When analysing PM10 data, the inclusion of auxillary data such as meteorological, gas and 796 

particle number data has proved to give a clearer separation of factors.  However, for a 797 

successful output, there must be no rotational ambibuityambiguity in either the PM10 data or 798 

in the auxillary data.  In the ideal case, the individually computed factors G(X), G(Z) and 799 

G(X,Z) need to be similar if the joint model is to be successful and not produce to large 800 

residuals and hence a too large a Q value.  In the best case, the total weight of the PM10 801 

data can be set higher than the auxillary data so that the PM10 data drives the analysis. In 802 

this work, we present an alternative method called the 2-step PMF method. Mixed unit 803 

datasets limit the PMF to a qualitative analysis and the quantitative step of  apportioning the 804 

sources to a mass or number concentration has to be omitted.  This problem is overcome in 805 

this work by using a novel Two-Step PMF approach.  In the first step the PM10 data is PMF 806 

analysed using the standard approach without the inclusion of additional data.  An 807 

appropriate solution is derived using the methods described in the literature in order to give 808 

an initial separation of source factors.  The time series G (and errors) of the PM10 solution 809 

are then taken forward into the second step where they are combined with the NSD data.  810 

The PMF analysis is then repeated using the combined and mixed unit G time series and 811 

NSD dataset.  In order to ensure that unique factors are obtained for the G scores, Fkey 812 

FKEY is used to pull off- diagonal values to zero thus driving the NSD data. This ensures 813 

that the NSD factors are specific to the PM10 solution and the PM10 analysis is not affected 814 



35 

 

by any rotational ambiguity of the NSD data.  For our demonstration using the Beddows et 815 

al. (2015) analysis, Tthis results in 6 PM10 factors which are not onlywhose time series are 816 

not only apportioned in mass but the source profiles are augmented byidentified for the NSD 817 

data.  Comparisons of both the factor profiles, diurnal trends and bivariate plots to those of 818 

Beddows et al. (2015), show that this technique produces one solution linking the two 819 

separated solutions for PM10 and NSD data datasets together.  This generates confidence 820 

that the NSD and PM10 factors ascribed to one source are in fact attributable to that same 821 

source.   822 

 823 

Hence, the process starts with a dataset which produces a solution which is sensitive to 824 

mass but the factors more sensitive to number can be accessed using a second step. 825 

Furthermore, by exploring a higher number of factors,  NSD factors which are insensitive to 826 

PM10 mass can be identified as in the case of the Nucleation factor.  This information can 827 

also be extracted using a linear regression PMF-LR where the size bins of the NSD data are 828 

regressed against the PM10 PMF time series.  For this dataset, the Nucleation factor profile 829 

is identified as an intercept within the fitted model leading to an increase in the number of 830 

PMF factors from 6 to 7. 831 

 832 
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FIGURE LEGENDS: 965 

 966 

Figure 1.  Venn Diagram showing the summary of the findings of Beddows et al. (2015); 967 

applying PMF to PM10-only, NSD-only and PM10+NSD datasets.  Table shows the 968 

apportionment of PM10 and NSD taken from Beddows et al. (2015). 969 

 970 

Figure 2. Flow diagram showing the flow of data through the 2-step PMF-PMF analysis.  971 

The PMF analyses of single data set X are considered in step 1 and output indicated by 972 

factors/uncertainties 1G, 1G, 1F and 1F.  The second PMF analysis is carried out on the 973 

joint data set [1GZ] and yieilds factors/uncertainties i2G, 2G, 2F and 2F.  In our analysis, 974 

X and 1G are the PM10 and resulting time series from the analysis of Beddows et al. (2015) 975 

and Z is the auxillary NSD data concurrently measured using a SMPS.   976 

 977 

Figure 3. Source profiles 1F and 2F from both the first and second PMF step using 6 978 

factors.   [Grey bars and black line indicates the values of F; red lines and dots indicated 979 

the explained variations; and grey dotted line indicates the dV/dlogDp.]. 980 

 981 

Figure 4. Nucleation and Fuel Oil factors derived when extending the second PMF analysis 982 

from the 6 factors (shown in Figure 3) to allow for a 7th factors.  Source profiles 2F1 to 2F6 are 983 

given in Figure S34.  Each plot is divided into 2 showing the output 1Fk and 2Fk.  [Grey bars 984 

and black line indicates the values of F; red lines and dots indicated the explained variations; 985 

and grey dotted line indicates the dV/dlogDp.] 986 

 987 

Figure 5. Diurnal cycles derived PNk calculated by the fitting of the daily PMF factor profiles 988 

to the hourly NSD data fitted (see equation 12 8 and sSection 2.54).  [Left-left column – 989 

diurnal trends of PNk; left-middle column – bivariate plot of PNk; middle-right – annular plot 990 

PNk; right-right – bivariate plot of PNk, plotted using the Openair program. Polar plots show 991 

a point coloured acording to the key, the number concentration at that point on the plot 992 

whose distance from the origin represents wind speed and angle wind direction.  Likewise 993 

for the angular plots the number concentration represent wind direction at an hour of the day 994 

between 0 and 23 hrs.].  Note that the diurnal plots do not start at zero.  995 
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Figure 1.  Venn Diagram showing the summary of the findings of Beddows et al. (2015); 
applying PMF to PM10-only, NSD-only and PM10+NSD datasets.  Table shows the 
apportionment of PM10 and NSD taken from Beddows et al. (2015). 
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Figure 2. Flow diagram showing the flow of data through the 2-step PMF-PMF analysis.  

The PMF analyses of single data set X are considered in step 1 and output indicated by 

factors/uncertainties 1G, 1
G, 1F and 1

F.  The second PMF analysis is carried out on 

the joint data set [1GZ] and yieilds factors/uncertainties i2G, 2
G, 2F and 2

F.  In our 

analysis, X and 1G are the PM10 and resulting time series from the analysis of Beddows 

et al. (2015) and Z is the auxillary NSD data concurrently measured using a SMPS.   
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Figure 3. Source profiles 1F and 2F from both the first and second PMF step using 6 factors.     1008 

[Grey bars and black line indicates the values of F; red lines and dots indicated the explained 1009 

variations; and grey dotted line indicates the dV/dlogDp.] 1010 
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Figure 4. Nucleation and Fuel Oil factors derived when extending the second PMF analysis 
from the 6 factors (shown in Figure 3) to allow for a 7th factors.  Source profiles 2F1 to 2F6 are 
given in Figure S34.  Each plot is divided into 2 showing the output 1Fk and 2Fk.  [Grey bars 
and black line indicates the values of F; red lines and dots indicated the explained variations; 
and grey dotted line indicates the dV/dlogDp.] 
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Figure 5. Diurnal cycles derived PNk calculated by the fitting of the daily PMF 
factor profiles to the hourly NSD data fitted (see equation 12 8 and sSection 
2.54).  [Left-left column – diurnal trends of PNk; left-middle column – bivariate 
plot of PNk; middle-right – annular plot PNk; right-right – bivariate plot of PNk, 
plotted using the Openair program. Polar plots show a point coloured acording 
to the key, the number concentration at that point on the plot whose distance 
from the origin represents wind speed and angle wind direction.  Likewise for the 
angular plots the number concentration represent wind direction at an hour of 
the day between 0 and 23 hrs.].  Note that the diurnal plots do not start at zero.   
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Table S1. Setup of TSI SMPS. 39 

 40 

EC 3080 

Neutraliser Kr-85 radioactive source 
Drier  EUSAAR/ACTRIS Drier 
DMA TSI 3081 long DMA 

Aerosol Flow 0.3 lpm 
Sheath Flow 3.0 lpm 

Impactor Type 0.0508 cm 
HV Polarity  Neg 

AIM version 9.0 
Scans per Sample 6 

Number of Samples 1 
Total Sample Time 14 min 0 sec 

Multiple charge  

Diffusion loss correction   

Particle Density  1.2 g/cc 
Gas Density 0.0012 g/cc 

Nano Aggregate Mobility Analysis  

CPC3775  

CPC3775 Iinlet flow 0.3 lpm 
Data Coverage 72.5 % over the 2 years 2011/2012 

Service and Calibration Date February 2011 and February/March 2012 

 41 

 42 

Table S2. Miscellaneous PMF-PMF details for the PM10-NSD data set. 43 

 44 

INPUT DATA (1G1…1G6, NSD1
16nm…NSD52

640nm) 

Input Settings  
PMF2 version number  4.2 
Number of Factors  6 
FPEAK 0.1 
Input dimensions: Row x Columns 590  x   58 
Number of Repeats 1 
Outlier Distance 4 
Robust Analysis  

Error Model -12 
Seed 3 
Initially Skipped  0 
Uncertainty Matrices T/U/V // 
Normalization of factor vectors before output None 
Optional parameter lines missingneg 10 
  
Output values  
Q in the robust mode 30333  
Q when not down weighting outliers 32568  
POS-Outlier limit (4.0) exceeded by 221 positive residuals 
NEG-Outlier limit (4.0) exceeded by 38  negative residuals 

  
  

 45 
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 46 

Table S3. Miscellaneous PMF-PMF details for the NSD-PM10 data set. 47 

 48 

INPUT DATA ([1G1…1G4],PM10[PM,PMcarbon,PMions,PMmetals]).   

Input Settings  
PMF2 version number  4.2 
Number of Factors  4 
FPEAK 0.1 
Input dimensions: Row x Columns 591  x   34 
Number of Repeats 1 
Outlier Distance 4 
Robust Analysis  

Error Model -12 
Seed 3 
Initially Skipped  0 
Uncertainty Matrices T/U/V // 
Normalization of factor vectors before 
output 

None 

Optional parameter lines missingneg 10 
  
Output values  
Q in the robust mode 17652 
Q when not down weighting outliers 18089 
POS-Outlier limit (  4.0) exceeded by 19 positive residuals 
NEG-Outlier limit (  4.0) exceeded by 3  negative residuals 

  
  

 49 

Table S4. Summary of the regression results, comparing 1Gk with 2Gk for k in 1 to 6. 50 

 51 

  const in 1Gk = const x 2Gk R2 
Diffuse Urban 1G1 vs 2G1 1.2 0.72 
Marine 1G2 vs 2G2 0.73 0.94 
Secondary 1G3 vs 2G3 0.56 0.71 
NET & Crustal 1G4 vs 2G4 0.54 0.96 
Fuel Oil 1G5 vs 2G5 2.9 0.41 
Traffic 1G6 vs 2G6 15.5 0.40 

 52 
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Figure S2S1.  Entries in the FKEY matrix used in step 2 of the PMF-PMF analysis using 
(a) 6 factors and (b) 7 factors.  An extremely strong value of 24 was chosen for fkey1 and 
20 for fkey2. 
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Figure S3S2. Daily regression source profiles (k vs dp in equation 8) 
obtained from regressing the NSD data against 1Gk (left hand panels) as in 
equation 4 and diurnal trends of the fit parameter ck resulting from the fit of 
the daily regression source profiles to the hourly NSD data (equations 10 & 
11). 
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Figure S3. Source profiles 1F and 2F from both the first and second PMF step using 7 factors. 
[Grey bars and black line indicates the values of F; red lines and dots indicated the explained 
variation; and grey dotted line indicates the dV/dlogDp.] 
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Figure S4.  PMF-PMF 4 factor analysis of NSD data followed by PM10. Each plot is divided 
into 2 showing the output 1Fk and 2Fk.  [Grey bars and black line indicates the values of F; 
red lines and dots indicated the explained variation; and grey dotted line indicates the 
dV/dlogDp.] 
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Figure S4. Source profiles 1F and 2F from both the first and second PMF step using 7 factors. 
[Grey bars and black line indicates the values of F; red lines and dots indicated the explained 
variation; and grey dotted line indicates the dV/dlogDp.] 
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Figure S5.  PMF-PMF 4 factor analysis of NSD data followed by PM10. Each plot is divided 
into 2 showing the output 1Fk and 2Fk.  [Grey bars and black line indicates the values of F; 
red lines and dots indicated the explained variation; and grey dotted line indicates the 
dV/dlogDp.] 
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