Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 french sites

Abdoulaye Samake¹, Jean-Luc Jaffrezo¹, Olivier Favez², Samuël Weber¹, Véronique Jacob¹, Alexandre Albinet², Véronique Riffault³, Esperanza Perdrix³, Antoine Waked^{1*}, Benjamin Golly¹, Dalia Salameh^{1†}, Florie Chevrier¹, Diogo Miguel Oliveira^{2,3}, Jean-Luc Besombes⁴, Jean M.F Martins¹, Sébastien Conil⁵, Géraldine Guillaud⁶, Boualem Meshba⁷, Benoit Rocq⁸, Pierre-Yves Robic⁹, Agnès Hulin¹⁰, Sébastien Le Meur¹¹, Maxence Descheemaecker¹², Eve Chretien¹³, and Gaëlle Uzu¹.

¹Univ. Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000 Grenoble, France.

²INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France

³IMT Lille Douai, Univ. Lille, SAGE – Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France

⁴Univ. Savoie Mont-Blanc, LCME, F-73000 Chambéry, France

⁵ANDRA DRD/GES Observatoire Pérenne de l'Environnement, F-55290 Bure, France

⁶Atmo AuRA, F-38400 Grenoble, France

⁷Air PACA, F-03040, France

⁸Atmo Hauts de France, F-59000, France

⁹Atmo Occitanie, F-31330 Toulouse, France

¹⁰Atmo Nouvelle Aquitaine, F-33000, France

¹¹Atmo Normandie, F-76000, France

¹²Lig'Air, F-45590 Saint-Cyr-en-Val, France

¹³ Atmo Grand Est, F-16034 Strasbourg, France

*Now at IMT Lille Douai, Univ. Lille, SAGE – Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000 Lille, France

[†]Now at Airport pollution control authority (ACNUSA), 75007 Paris, France

Corresponding author(s): A Samaké (<u>abdoulaye.samake2@univ-grenoble-alpes.fr</u>) and JL Jaffrezo (Jean-luc.Jaffrezo@univ-grenoble-alpes.fr)

Sampling site	Altitude (m)	PM fraction	AASQA* in charge of sampling sites	Number of Samples	Sugar compounds analyzed by	PMF analysis	Typology
OPE-ANDRA	293	PM ₁₀	OPE-ANDRA	266	IGE		Rural
OPE-ANDRA	293	PM _{2.5}	OPE-ANDRA	310	IGE		Rural
Peyrusse Vieille	175	PM ₁₀	ATMO Occitanie	59	IGE		Rural
Revin	395	PM ₁₀	ATMO Grand-Est	168	LSCE	+	Rural
Revin	395	PM _{2.5}	ATMO Grand-Est	162	IGE		Rural
Dieulefit	550	PM _{2.5}	ATMO AuRA	56	IGE		Rural
Verneuil	180	PM _{2.5}	LIG'AIR	60	IGE		Rural
Chamonix	1035	PM ₁₀	ATMO AuRA	120	IGE	+	Urban
Marnaz	504	PM ₁₀	ATMO AuRA	203	IGE	+	Urban
Passy	588	PM ₁₀	ATMO AuRA	344	IGE	+	Urban
Lanslebourg	1400	PM ₁₀	ATMO AuRA	82	IGE		Urban
Grenoble_LF	214	PM ₁₀	ATMO AuRA	714	IGE	+	Urban
Grenoble_CB	212	PM ₁₀	ATMO AuRA	72	IGE		Urban
Grenoble_VIF	310	PM ₁₀	ATMO AuRA	72	IGE		Urban
Gap	743	PM ₁₀	AIR PACA	125	IGE		Urban
Lyon	160	PM ₁₀	ATMO AuRA	172	IGE	+	Urban
Marseille	64	PM ₁₀	AIR PACA	255	IGE	+	Urban
Gardanne	212	PM ₁₀	AIR PACA	88	IGE		Urban
Meyreuil	235	PM ₁₀	AIR PACA	91	IGE		Urban
Mallet	200	PM ₁₀	AIR PACA	96	IGE		Urban
Port-de-Bouc	1	PM ₁₀	AIR PACA	242	IGE	+	Urban
Aix-en-Provence	188	PM ₁₀	AIR PACA	177	IGE	+	Urban
Nice	9	PM ₁₀	AIR PACA	228	IGE	+	Urban
Talence	20	PM_{10}	ATMO Nouvelle- Aquitaine	159	IGE	+	Urban
Poitiers	0	PM ₁₀	ATMO Nouvelle- Aquitaine	134	IGE	+	Urban
Lens	47	PM_{10}	ATMO	118	IGE	+	Urban
			Hauts-de-France	169	LSCE	+	Urban
Nogent	47	PM ₁₀	ATMO Hauts-de-France	155	LSCE	+	Urban
Rouen	6	PM10	ATMO Normandie	168	LSCE	+	Urban
Roubaix	10	PM ₁₀	ATMO Hauts-de-France	159	LSCE	+	Traffic
Strasbourg	139	PM ₁₀	ATMO Grand-Est	120	IGE	+	Traffic

Table S1: Characteristics of sampling sites (including altitude, site typology) and number of analyzed samples

*AASQA: Officially-approved French Air Quality Monitoring networks which instrument and maintain the sampling sites, and handle the filters. Symbol (+) indicates cases where PMF analysis was performed.

*Except PM_{10} collected at OPE-ANDRA (sampled on weekly basis with low volume sampler operating at a flow rate of 1 m³.h⁻¹), all others PM samples were collected on daily basis, using high volume samplers operating at a flow rate of 30 m³.h⁻¹.

Figure S1: Timeline of Particulate matter (PM) sampling campaign periods for each studied site.

Figure S2: Percentage of each species apportioned by the PBOA profile from PMF studies. Values lower than a few pg μ g⁻¹ are not displayed on purpose. For each boxplot, the top, middle and bottom lines of the box represent the 75th, median and 25th percentile, respectively. The whiskers at the top and bottom of the box extend from the maximum to the minimum.

Figure S3: Overview of the average relative mass distributions of individual primary sugar alcohols and saccharide compounds quantified in some aerosol samples at three sites over summer and autumn periods (June to November) corresponding to maximal atmospheric concentrations of sugar alcohols/saccharide compounds. For Lanslebourg, threalose is not visible since its concentration was below the limit of quantification.

Figure S4: Spatial and seasonal average contributions of dominant polyols (arabitol + mannitol) and glucose to total organic (OM) aerosols at various sites in France. Symbol (*) indicates PM_{2.5} aerosol samples

Figure S5 : Maximum seasonal contributions of dominant polyols to total organic aerosols (OM) at various sites in France. Symbol (*) indicates PM_{2.5} aerosol samples.

Chemical species	Mean (ng µg⁻¹)	Standard deviation (ng μg ⁻¹)		
OC*	394	51		
EC	81	68		
Cl⁻	3.9	6.8		
NO ₃ -	22	49		
SO4 ²⁻	55	61		
Na ⁺	4.6	5.2		
NH4 ⁺	13	14		
K ⁺	9.5	3.2		
Mg ²⁺	0.75	0.86		
Ca ²⁺	5.6	6.3		
MSA	0.12	0.32		
Polyols	25	10		
Levoglucosan	0.5	1.5		
Mannosan	0	0		
Fe	9.0	6.2		
AI	3.1	2.5		
	(pg µg ⁻¹)	(pg µg⁻¹)		
As	21	19		
Ва	209	153		
Cd	1.8	3.2		
Со	3.2	4.7		
Cr	107	182		
Cs	0.6	1.5		
Cu	351	298		
La	5.4	4.8		
Mn	115	130		
Мо	11	11		
Ni	31	57		
Pb	75	80		
Rb	7	10		
Sb	29	26		
Se	45	54		
Sn	43	45		
Sr	31	36		
Ti	64	111		
V	32	33		
Zn	333	484		

Table S2: PBOA average factor profile (in fraction of PM mass) identified in the DECOMBIO and SOURCES programs.

*OC** corresponds to the bulk organic carbon fraction minus individual molecular weight of characterized organic species.